151
|
Stabilization of Nrf2 by tBHQ prevents LPS-induced apoptosis in differentiated PC12 cells. Mol Cell Biochem 2011; 354:97-112. [PMID: 21461609 DOI: 10.1007/s11010-011-0809-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 03/24/2011] [Indexed: 12/14/2022]
Abstract
The inflammatory reaction plays an important role in the pathogenesis of the neurodegenerative disorders. tert-butylhydroquinone (tBHQ) exhibits a wide range of pharmacological activities including anti-oxidative and anti-inflammatory action. In this study, we tried to elucidate possible effects of tBHQ on lipopolysaccharide (LPS)-induced inflammatory reaction and its underlying mechanism in neuron-like PC12 cells. tBHQ inhibited LPS-induced generation of reactive oxygen species (ROS) and elevation of intracellular calcium level. It also inhibited LPS-induced cyclooxygenase 2 (COX-2), TNF-α, nuclear factor KappaB (NF-kB), and caspase-3 expression in a dose-dependent manner while stabilizing nuclear factor-erythroid 2 p45-related factor 2. Moreover, the phosphorylations of p38, ERK1/2, and JNK were suppressed by tBHQ. These results suggest that the anti-inflammatory properties of tBHQ might result from inhibition of COX-2 and TNF-α expression, inhibition of NF-kB nuclear translocation along with suppression of MAP kinases (p38, ERK1/2, and JNK) phosphorylation in PC12 cells, so may be a useful agent for prevention of inflammatory diseases.
Collapse
|
152
|
Burguillos MA, Deierborg T, Kavanagh E, Persson A, Hajji N, Garcia-Quintanilla A, Cano J, Brundin P, Englund E, Venero JL, Joseph B. Caspase signalling controls microglia activation and neurotoxicity. Nature 2011; 472:319-24. [PMID: 21389984 DOI: 10.1038/nature09788] [Citation(s) in RCA: 444] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 12/23/2010] [Indexed: 01/05/2023]
Abstract
Activation of microglia and inflammation-mediated neurotoxicity are suggested to play a decisive role in the pathogenesis of several neurodegenerative disorders. Activated microglia release pro-inflammatory factors that may be neurotoxic. Here we show that the orderly activation of caspase-8 and caspase-3/7, known executioners of apoptotic cell death, regulate microglia activation through a protein kinase C (PKC)-δ-dependent pathway. We find that stimulation of microglia with various inflammogens activates caspase-8 and caspase-3/7 in microglia without triggering cell death in vitro and in vivo. Knockdown or chemical inhibition of each of these caspases hindered microglia activation and consequently reduced neurotoxicity. We observe that these caspases are activated in microglia in the ventral mesencephalon of Parkinson's disease (PD) and the frontal cortex of individuals with Alzheimer's disease (AD). Taken together, we show that caspase-8 and caspase-3/7 are involved in regulating microglia activation. We conclude that inhibition of these caspases could be neuroprotective by targeting the microglia rather than the neurons themselves.
Collapse
Affiliation(s)
- Miguel A Burguillos
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, 171 76, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Safieh-Garabedian B, Jabbur SJ, Dardenne M, Saadé NE. Thymulin related peptide attenuates inflammation in the brain induced by intracerebroventricular endotoxin injection. Neuropharmacology 2011; 60:496-504. [DOI: 10.1016/j.neuropharm.2010.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 09/28/2010] [Accepted: 11/02/2010] [Indexed: 12/18/2022]
|
154
|
Bélanger M, Allaman I, Magistretti PJ. Differential effects of pro- and anti-inflammatory cytokines alone or in combinations on the metabolic profile of astrocytes. J Neurochem 2011; 116:564-76. [DOI: 10.1111/j.1471-4159.2010.07135.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
155
|
Ferreira R, Xapelli S, Santos T, Silva AP, Cristóvão A, Cortes L, Malva JO. Neuropeptide Y modulation of interleukin-1{beta} (IL-1{beta})-induced nitric oxide production in microglia. J Biol Chem 2010; 285:41921-34. [PMID: 20959451 PMCID: PMC3009919 DOI: 10.1074/jbc.m110.164020] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 10/14/2010] [Indexed: 01/19/2023] Open
Abstract
Given the modulatory role of neuropeptide Y (NPY) in the immune system, we investigated the effect of NPY on the production of NO and IL-1β in microglia. Upon LPS stimulation, NPY treatment inhibited NO production as well as the expression of inducible nitric-oxide synthase (iNOS). Pharmacological studies with a selective Y(1) receptor agonist and selective antagonists for Y(1), Y(2), and Y(5) receptors demonstrated that inhibition of NO production and iNOS expression was mediated exclusively through Y(1) receptor activation. Microglial cells stimulated with LPS and ATP responded with a massive release of IL-1β, as measured by ELISA. NPY inhibited this effect, suggesting that it can strongly impair the release of IL-1β. Furthermore, we observed that IL-1β stimulation induced NO production and that the use of a selective IL-1 receptor antagonist prevented NO production upon LPS stimulation. Moreover, NPY acting through Y(1) receptor inhibited LPS-stimulated release of IL-1β, inhibiting NO synthesis. IL-1β activation of NF-κB was inhibited by NPY treatment, as observed by confocal microscopy and Western blotting analysis of nuclear translocation of NF-κB p65 subunit, leading to the decrease of NO synthesis. Our results showed that upon LPS challenge, microglial cells release IL-1β, promoting the production of NO through a NF-κB-dependent pathway. Also, NPY was able to strongly inhibit NO synthesis through Y(1) receptor activation, which prevents IL-1β release and thus inhibits nuclear translocation of NF-κB. The role of NPY in key inflammatory events may contribute to unravel novel gateways to modulate inflammation associated with brain pathology.
Collapse
Affiliation(s)
| | - Sara Xapelli
- From the Center for Neuroscience and Cell Biology
| | - Tiago Santos
- From the Center for Neuroscience and Cell Biology
| | - Ana Paula Silva
- the Institute of Pharmacology and Experimental Therapeutics
- the Institute of Biomedical Research on Light and Image
| | - Armando Cristóvão
- From the Center for Neuroscience and Cell Biology
- the Department of Life Sciences, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Luísa Cortes
- From the Center for Neuroscience and Cell Biology
| | - João O. Malva
- From the Center for Neuroscience and Cell Biology
- the Institute of Biochemistry, Faculty of Medicine, and
| |
Collapse
|
156
|
Silva SL, Vaz AR, Barateiro A, Falcão AS, Fernandes A, Brito MA, Silva RF, Brites D. Features of bilirubin-induced reactive microglia: From phagocytosis to inflammation. Neurobiol Dis 2010; 40:663-75. [DOI: 10.1016/j.nbd.2010.08.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/26/2010] [Accepted: 08/11/2010] [Indexed: 01/05/2023] Open
|
157
|
Cernak I, Merkle AC, Koliatsos VE, Bilik JM, Luong QT, Mahota TM, Xu L, Slack N, Windle D, Ahmed FA. The pathobiology of blast injuries and blast-induced neurotrauma as identified using a new experimental model of injury in mice. Neurobiol Dis 2010; 41:538-51. [PMID: 21074615 DOI: 10.1016/j.nbd.2010.10.025] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 10/05/2010] [Accepted: 10/27/2010] [Indexed: 12/24/2022] Open
Abstract
Current experimental models of blast injuries used to study blast-induced neurotrauma (BINT) vary widely, which makes the comparison of the experimental results extremely challenging. Most of the blast injury models replicate the ideal Friedländer type of blast wave, without the capability to generate blast signatures with multiple shock fronts and refraction waves as seen in real-life conditions; this significantly reduces their clinical and military relevance. Here, we describe the pathophysiological consequences of graded blast injuries and BINT generated by a newly developed, highly controlled, and reproducible model using a modular, multi-chamber shock tube capable of tailoring pressure wave signatures and reproducing complex shock wave signatures seen in theater. While functional deficits due to blast exposure represent the principal health problem for today's warfighters, the majority of available blast models induces tissue destruction rather than mimic functional deficits. Thus, the main goal of our model is to reliably reproduce long-term neurological impairments caused by blast. Physiological parameters, functional (motor, cognitive, and behavioral) outcomes, and underlying molecular mechanisms involved in inflammation measured in the brain over the 30 day post-blast period showed this model is capable of reproducing major neurological changes of clinical BINT.
Collapse
Affiliation(s)
- Ibolja Cernak
- Biomedicine Business Area, National Security Technology Department, Johns Hopkins University Applied Physics Laboratory (JHU/APL), Laurel, MD 20723, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Abstract
The aetiology of psychiatric diseases such as depression or schizophrenia remains largely unknown, even though multiple theories have been proposed. Although monoamine theory is the cornerstone of available pharmacological therapies, relapses, incomplete control of symptoms or failure in treatment occur frequently. From an inflammatory/immune point of view, both entities share several common hallmarks in their pathophysiology, e.g. neuroendocrine/immune alterations, structural/functional abnormalities in particular brain areas, and cognitive deficits, suggesting a dysregulated inflammatory-related component of these diseases that better explains the myriad of symptoms presented by affected individuals. In this review we aimed to explore the role and relevance of inflammatory related lipids (prostanoids) derived from arachidonic acid metabolism by identification of new inflammatory markers and possible pharmacological/dietary modulation of these compounds, with the aim of improving some of the symptoms developed by individuals affected with psychiatric diseases (a critical review of basic and clinical studies about inflammatory-related arachidonic acid metabolism on neuropsychiatric diseases is included). As a specific candidate, one of these immunoregulatory lipids, the anti-inflammatory prostaglandin 15d-PGJ₂ and its nuclear receptor peroxisome proliferator-activated nuclear receptor (PPARγ) could be used as a biological marker for psychiatric diseases. In addition, its pharmacological activation can be considered as a multi-faceted therapeutic target due to its anti-inflammatory/antioxidant/anti-excitotoxic/pro-energetic profile, reported in some inflammatory-related scenarios (neurological and stress-related diseases). PPARs are activated by a great variety of compounds, the most relevant being the currently prescribed group of anti-diabetic drugs thiazolidinediones, and some cannabinoids (both endocannabinoids, phytocannabinoids or synthetic), as possible novel therapeutical strategy.
Collapse
|
159
|
Lotocki G, de Rivero Vaccari JP, Perez ER, Sanchez-Molano J, Furones-Alonso O, Bramlett HM, Dietrich WD. Alterations in blood-brain barrier permeability to large and small molecules and leukocyte accumulation after traumatic brain injury: effects of post-traumatic hypothermia. J Neurotrauma 2010; 26:1123-34. [PMID: 19558276 DOI: 10.1089/neu.2008.0802] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated the temporal and regional profile of blood-brain barrier (BBB) permeability to both large and small molecules after moderate fluid percussion (FP) brain injury in rats and determined the effects of post-traumatic modest hypothermia (33 degrees C/4 h) on these vascular perturbations. The visible tracers biotin-dextrin-amine 3000 (BDA-3K, 3 kDa) and horseradish peroxidase (HRP, 44 kDa) were injected intravenously at 4 h or 3 or 7 days post-TBI. At 30 min after the tracer infusion, both small and large molecular weight tracers were detected in the contusion area as well as remote regions adjacent to the injury epicenter in both cortical and hippocampal structures. In areas adjacent to the contusion site, increased permeability to the small molecular weight tracer (BDA-3K) was evident at 4 h post-TBI and remained visible after 7 days survival. In contrast, the larger tracer molecule (HRP) appeared in these remote areas at acute permeable sites but was not detected at later post-traumatic time periods. A regionally specific relationship was documented at 3 days between the late-occurring permeability changes observed with BDA-3K and the accumulation of CD68-positive macrophages. Mild hypothermia initiated 30 min after TBI reduced permeability to both large and small tracers and the infiltration of CD68-positive cells. These results indicate that moderate brain injury produces temperature-sensitive acute, as well as more long-lasting vascular perturbations associated with secondary injury mechanisms.
Collapse
Affiliation(s)
- George Lotocki
- Department of Neurological Surgery, Neurotrauma Research Center, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | | | | | | | | | | |
Collapse
|
160
|
Abdi A, Sadraie H, Dargahi L, Khalaj L, Ahmadiani A. Apoptosis Inhibition Can Be Threatening in Aβ-Induced Neuroinflammation, Through Promoting Cell Proliferation. Neurochem Res 2010; 36:39-48. [DOI: 10.1007/s11064-010-0259-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2010] [Indexed: 12/14/2022]
|
161
|
Dargahi L, Nasiraei-Moghadam S, Abdi A, Khalaj L, Moradi F, Ahmadiani A. Cyclooxygenase (COX)-1 activity precedes the COX-2 induction in Aβ-induced neuroinflammation. J Mol Neurosci 2010; 45:10-21. [PMID: 20549385 DOI: 10.1007/s12031-010-9401-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 05/26/2010] [Indexed: 12/31/2022]
Abstract
Two different isoforms of cyclooxygenases, COX-1 and COX-2, are constitutively expressed under normal physiological conditions of the central nervous system, and accumulating data indicate that both isoforms may be involved in different pathological conditions. However, the distinct role of COX-1 and COX-2 and the probable interaction between them in neuroinflammatory conditions associated with Alzheimer's disease are conflicting issues. The aim of this study was to elucidate the comparable role of each COX isoform in neuroinflammatory response induced by β-amyloid peptide (Aβ). Using histological and biochemical methods, 13 days after stereotaxic injection of Aβ into the rat prefrontal cortex, hippocampal neuroinflammation and neuronal injury were confirmed by increased expression of tumor necrosis factor-alpha (TNF-α) and COX-2, elevated levels of prostaglandin E2 (PGE2), astrogliosis, activation of caspase-3, and neuronal cell loss. Selective COX-1 or COX-2 inhibitors, SC560 and NS398, respectively, were chronically used to explore the role of COX-1 and COX-2. Treatment with either COX-1 or COX-2 selective inhibitor or their combination equally decreased the level of TNF-α, PGE2, and cleaved caspase-3 and attenuated astrogliosis and neuronal cell loss. Interestingly, treatment with COX-1 selective inhibitor or the combined COX inhibitors prevented the induction of COX-2. These results indicate that the activity of both isoforms is detrimental in neuroinflammatory conditions associated with Aβ, but COX-1 activity is necessary for COX-2 induction and COX-2 activity seems to be the main source of PGE2 increment.
Collapse
Affiliation(s)
- Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
162
|
Molina-Holgado E, Molina-Holgado F. Mending the broken brain: neuroimmune interactions in neurogenesis. J Neurochem 2010; 114:1277-90. [PMID: 20534007 DOI: 10.1111/j.1471-4159.2010.06849.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neuroimmune networks and the brain endocannabinoid system contribute to the maintenance of neurogenesis. Cytokines and chemokines are important neuroinflammatory mediators that are involved in the pathological processes resulting from brain trauma, ischemia and chronic neurodegenerative diseases. However, they are also involved in brain repair and recovery. Compelling evidence obtained, in vivo and in vitro, establish a dynamic interplay between the endocannabinoid system, the immune system and neural stem/progenitor cells (NSC) in order to promote brain self-repair. Cross-talk between inflammatory mediators and NSC might have important consequences for neural development and brain repair. In addition, brain immune cells (microglia) support NSC renewal, migration and lineage specification. The proliferation and differentiation of multipotent NSC must be precisely controlled during the development of the CNS, as well as for adult brain repair. Although signalling through neuroimmune networks has been implicated in many aspects of neural development, how it affects NSC remains unclear. However, recent findings have clearly demonstrated that there is bi-directional cross-talk between NSC, and the neuroimmune network to control the signals involved in self-renewal and differentiation of NSC. Specifically, there is evidence emerging that neuroimmune interactions control the generation of new functional neurones from adult NSC. Here, we review the evidence that neuroimmune networks contribute to neurogenesis, focusing on the regulatory mechanisms that favour the immune system (immune cells and immune molecules) as a novel element in the coordination of the self-renewal, migration and differentiation of NSC in the CNS. In conjunction, these data suggest a novel mode of action for the immune system in neurogenesis that may be of therapeutic interest in the emerging field of brain repair.
Collapse
Affiliation(s)
- Eduardo Molina-Holgado
- Laboratorio de Neuroinflamación, Unidad de Neurología Experimental, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda, Toledo, Spain.
| | | |
Collapse
|
163
|
Saura CA. Presenilin/gamma-Secretase and Inflammation. Front Aging Neurosci 2010; 2:16. [PMID: 20559464 PMCID: PMC2887037 DOI: 10.3389/fnagi.2010.00016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 04/08/2010] [Indexed: 01/02/2023] Open
Abstract
Presenilins (PS) are the catalytic components of γ-secretase, an aspartyl protease that regulates through proteolytic processing the function of multiple signaling proteins. Specially relevant is the γ-secretase-dependent cleavage of the β-amyloid precursor protein (APP) since generates the β-amyloid (Aβ) peptides that aggregate and accumulate in the brain of Alzheimer's disease (AD) patients. Abnormal processing and/or accumulation of Aβ disrupt synaptic and metabolic processes leading to neuron dysfunction and neurodegeneration. Studies in presenilin conditional knockout mice have revealed that presenilin-1 is essential for age-dependent Aβ accumulation and inflammation. By contrast, mutations in the presenilin genes responsible for early onset familial AD cause rapid disease progression and accentuate clinical and pathological features including inflammation. In addition, a number of loss of function mutations in presenilin-1 have been recently associated to non-Alzheimer's dementias including frontotemporal dementia and dementia with Lewy bodies. In agreement, total loss of presenilin function in the brain results in striking neurodegeneration and inflammation, which includes activation of glial cells and induction of proinflammatory genes, besides altered inflammatory responses in the periphery. Interestingly, some non-steroidal anti-inflammatory drugs that slow cognitive decline and reduce the risk of AD, decrease amyloidogenic Aβ42 levels by modulating allosterically PS/γ-secretase. In this review, I present current evidence supporting a role of presenilin/γ-secretase signaling on gliogenesis and gliosis in normal and pathological conditions. Understanding the cellular mechanisms regulated by presenilin/γ-secretase during chronic inflammatory processes may provide new approaches for the development of effective therapeutic strategies for AD.
Collapse
Affiliation(s)
- Carlos A Saura
- Institut de Neurociències, Departament Bioquímica i Biologia Molecular, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona Bellaterra, Spain
| |
Collapse
|
164
|
Radiolabeling with fluorine-18 of a protein, interleukin-1 receptor antagonist. Appl Radiat Isot 2010; 68:1721-7. [PMID: 20435481 DOI: 10.1016/j.apradiso.2010.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/26/2010] [Accepted: 04/01/2010] [Indexed: 11/23/2022]
Abstract
IL-1RA is a naturally occurring antagonist of the pro-inflammatory cytokine interleukin-1 (IL-1) with high therapeutic promise, but its pharmacokinetic remains poorly documented. In this report, we describe the radiolabeling of recombinant human interleukin-1 receptor antagonist (rhIL-1RA) with fluorine-18 to allow pharmacokinetic studies by positron emission tomography (PET). rhIL-1RA was labeled randomly by reductive alkylation of free amino groups (the epsilon-amino group of lysine residues or amino-terminal residues) using [(18)F]fluoroacetaldehyde under mild reaction conditions. Radiosyntheses used a remotely controlled experimental rig within 100min and the radiochemical yield was in the range 7.1-24.2% (decay corrected, based on seventeen syntheses). We showed that the produced [(18)F]fluoroethyl-rhIL-1ra retained binding specificity by conducting an assay on rat brain sections, allowing its pharmakokinetic study using PET.
Collapse
|
165
|
Abstract
Microglia, the resident macrophages of the CNS, are exquisitely sensitive to brain injury and disease, altering their morphology and phenotype to adopt a so-called activated state in response to pathophysiological brain insults. Morphologically activated microglia, like other tissue macrophages, exist as many different phenotypes, depending on the nature of the tissue injury. Microglial responsiveness to injury suggests that these cells have the potential to act as diagnostic markers of disease onset or progression, and could contribute to the outcome of neurodegenerative diseases. The persistence of activated microglia long after acute injury and in chronic disease suggests that these cells have an innate immune memory of tissue injury and degeneration. Microglial phenotype is also modified by systemic infection or inflammation. Evidence from some preclinical models shows that systemic manipulations can ameliorate disease progression, although data from other models indicates that systemic inflammation exacerbates disease progression. Systemic inflammation is associated with a decline in function in patients with chronic neurodegenerative disease, both acutely and in the long term. The fact that diseases with a chronic systemic inflammatory component are risk factors for Alzheimer disease implies that crosstalk occurs between systemic inflammation and microglia in the CNS.
Collapse
|
166
|
Giovanni SD. Molecular targets for axon regeneration: focus on the intrinsic pathways. Expert Opin Ther Targets 2009; 13:1387-98. [DOI: 10.1517/14728220903307517] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
167
|
Abstract
Astrocytes are the main neural cell type responsible for the maintenance of brain homeostasis. They form highly organized anatomical domains that are interconnected into extensive networks. These features, along with the expression of a wide array of receptors, transporters, and ion channels, ideally position them to sense and dynamically modulate neuronal activity. Astrocytes cooperate with neurons on several levels, including neurotransmitter trafficking and recycling, ion homeostasis, energy metabolism, and defense against oxidative stress. The critical dependence of neurons upon their constant support confers astrocytes with intrinsic neuroprotective properties which are discussed here. Conversely, pathogenic stimuli may disturb astrocytic function, thus compromising neuronal functionality and viability. Using neuroinflammation, Alzheimer's disease, and hepatic encephalopathy as examples, we discuss how astrocytic defense mechanisms may be overwhelmed in pathological conditions, contributing to disease progression.
Collapse
Affiliation(s)
- Mireille Bélanger
- Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
168
|
Abstract
Stroke is the major cause of disability in the Western world and is the third greatest cause of death, but there are no widely effective treatments to prevent the devastating effects of stroke. Extensive and growing evidence implicates inflammatory and immune processes in the occurrence of stroke and particularly in the subsequent injury. Several inflammatory mediators have been identified in the pathogenesis of stroke including specific cytokines, adhesion molecules, matrix metalloproteinases, and eicosanoids. An early clinical trial suggests that inhibiting interleukin-1 may be of benefit in the treatment of acute stroke.
Collapse
|
169
|
Bıber N, Toklu HZ, Solakoglu S, Gultomruk M, Hakan T, Berkman Z, Dulger FG. Cysteinyl-leukotriene receptor antagonist montelukast decreases blood–brain barrier permeability but does not prevent oedema formation in traumatic brain injury. Brain Inj 2009; 23:577-84. [DOI: 10.1080/02699050902926317] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
170
|
Solano JN, Damiani S, Munno I, Guastamacchia F, Anglani S, Baccaro M, Benedetto G, Megna M, Ranieri M, De Vargas CER, Lancioni G, Megna G. The Role of Neuroinflammation in Severe Acquired Brain Injuries. Preliminary Results on Subacute and Chronic Patients. Int J Immunopathol Pharmacol 2009; 22:13-20. [DOI: 10.1177/03946320090220s303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- J. Navarro Solano
- Fondazione San Raffaele. Highly Specialised Rehabilitation Hospital of Ceglie Messapica, Italy
| | | | - I. Munno
- Department of Immunology Bari “Aldo Moro” University, Italy
| | | | | | | | - G. Benedetto
- OSMAIRM Neuropsychomotor Rehabilitation Center - Laterza (TA)
| | | | | | | | - G.E. Lancioni
- Department of Psychology Bari “Aldo Moro” University, Italy
| | | |
Collapse
|
171
|
Shi P, Raizada MK, Sumners C. Brain cytokines as neuromodulators in cardiovascular control. Clin Exp Pharmacol Physiol 2009; 37:e52-7. [PMID: 19566837 DOI: 10.1111/j.1440-1681.2009.05234.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. The role of cytokines in cardiovascular control, especially in neurogenic hypertension, has received considerable attention during the past few years. Brain cytokines have been shown to exert profound effects on neuronal activity. Recently, a number of studies have shown that administration of pro-inflammatory cytokines or anti-inflammatory cytokines into the central nervous system has a significant impact on sympathetic outflow, arterial pressure and cardiac remodelling in experimental models of hypertension and heart failure. 2. Our objective in this review is to present a succinct account of the effect of cytokines on neuronal activity and their role in cardiovascular disease. Furthermore, we propose a hypothesis for a neuromodulatory role of cytokines in the neural control of cardiovascular function.
Collapse
Affiliation(s)
- Peng Shi
- Department of Physiology and Functional Genomics, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610-0274, USA
| | | | | |
Collapse
|
172
|
Hu T, Fu Q, Liu X, Zhang H, Dong M. Increased acetylcholinesterase and capase-3 expression in the brain and peripheral immune system of focal cerebral ischemic rats. J Neuroimmunol 2009; 211:84-91. [PMID: 19411116 DOI: 10.1016/j.jneuroim.2009.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 03/31/2009] [Accepted: 04/02/2009] [Indexed: 10/20/2022]
Abstract
Cerebral ischemia induces rapid neuro-immunological injury as demonstrated by changes in inflammatory factors, cytokines and chemokines in the circulation and peripheral immune system. In addition, elevated acetylcholinesterase (AChE) activity was reported in ischemic brain tissue. Here, we evaluated the time dependent changes in AChE levels and cytokines and NK activity, as well as the relationship of AChE to apoptosis in the brain, spleen and thymus at different time points after focal cerebral ischemia. The data show an elevated level of immunoreactive AChE in the cortex of ischemic brains. This sustained elevated level of AChE in the brain, thymus and spleen activates capase-3 in response to cerebral ischemia. We propose that this pro-apoptotic activity may result in a T helper cell (Th1/Th2) imbalance and impaired immune function in ischemia.
Collapse
Affiliation(s)
- Tao Hu
- Department of Immunology, Binzhou Medical College, Yantai, PR China.
| | | | | | | | | |
Collapse
|
173
|
Vafeiadou K, Vauzour D, Lee HY, Rodriguez-Mateos A, Williams RJ, Spencer JP. The citrus flavanone naringenin inhibits inflammatory signalling in glial cells and protects against neuroinflammatory injury. Arch Biochem Biophys 2009; 484:100-9. [DOI: 10.1016/j.abb.2009.01.016] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 01/06/2009] [Accepted: 01/06/2009] [Indexed: 01/13/2023]
|
174
|
Cui Q, Yin Y, Benowitz LI. The role of macrophages in optic nerve regeneration. Neuroscience 2009; 158:1039-48. [PMID: 18708126 PMCID: PMC2670061 DOI: 10.1016/j.neuroscience.2008.07.036] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/18/2008] [Accepted: 07/20/2008] [Indexed: 11/25/2022]
Abstract
Following injury to the nervous system, the activation of macrophages, microglia, and T-cells profoundly affects the ability of neurons to survive and to regenerate damaged axons. The primary visual pathway provides a well-defined model system for investigating the interactions between the immune system and the nervous system after neural injury. Following damage to the optic nerve in mice and rats, retinal ganglion cells, the projection neurons of the eye, normally fail to regenerate their axons and soon begin to die. Induction of an inflammatory response in the vitreous strongly enhances the survival of retinal ganglion cells and enables these cells to regenerate lengthy axons beyond the injury site. T cells modulate this response, whereas microglia are thought to contribute to the loss of retinal ganglion cells in this model and in certain ocular diseases. This review discusses the complex and sometimes paradoxical actions of blood-borne macrophages, resident microglia, and T-cells in determining the outcome of injury in the primary visual pathway.
Collapse
Affiliation(s)
- Q Cui
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, 147K Argyle Street, Kowloon, Hong Kong, PR China.
| | | | | |
Collapse
|
175
|
Patzer A, Zhao Y, Stöck I, Gohlke P, Herdegen T, Culman J. Peroxisome proliferator-activated receptorsgamma (PPARgamma) differently modulate the interleukin-6 expression in the peri-infarct cortical tissue in the acute and delayed phases of cerebral ischaemia. Eur J Neurosci 2009; 28:1786-94. [PMID: 18973594 DOI: 10.1111/j.1460-9568.2008.06478.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Interleukin-6 (IL-6) exerts neuroprotective effects after cerebral ischaemia but can also exacerbate inflammation and induce neuronal death. The current study investigates the role of cerebral peroxisome proliferator-activated receptor(s) gamma (PPARgamma) in the regulation of IL-6 expression in the peri-infarct cortical tissue in rats exposed to focal cerebral ischaemia. Pioglitazone, a high-affinity PPARgamma ligand, was infused intracerebroventricularly (i.c.v.) via osmotic minipumps over a 5-day period before, during and 24 h or 48 h after middle cerebral artery occlusion (MCAO) for 90 min followed by reperfusion. The expression of PPARgamma and IL-6 in cortical tissue adjacent to the ischaemic core was studied 24 h and 48 h after MCAO. Pioglitazone augmented the ischaemia-induced upregulation of PPARgamma at both time points. Cerebral ischaemia substantially increased IL-6 expression in the peri-infarct cortical tissue. Twenty-four hours after MCAO, the majority of microglial cells/macrophages showed an intense IL-6 immunoreactivity. IL-6 was also localized in neurons, but the distribution of neurons positively stained for IL-6 at the border of the infarct was very heterogeneous. Pioglitazone effectively decreased the number of IL-6-immunoreactive cells and IL-6 protein levels at 24 h but not at 48 h after MCAO. Pioglitazone treatment reduced the infarct size and improved neurological functions. The present study demonstrates that cerebral PPARgamma suppresses the expression of IL-6 in ischaemic brain tissue during the initial phase of ischaemic stroke, in which the overproduction of IL-6 may aggravate neuronal damage, but not at later time points, when IL-6 promotes neuroprotection and inhibits neuronal death.
Collapse
Affiliation(s)
- Andreas Patzer
- Institute of Pharmacology, University Hospital of Schleswig-Holstein, Kiel, Germany
| | | | | | | | | | | |
Collapse
|
176
|
El-Hage N, Bruce-Keller AJ, Yakovleva T, Bazov I, Bakalkin G, Knapp PE, Hauser KF. Morphine exacerbates HIV-1 Tat-induced cytokine production in astrocytes through convergent effects on [Ca(2+)](i), NF-kappaB trafficking and transcription. PLoS One 2008; 3:e4093. [PMID: 19116667 PMCID: PMC2605563 DOI: 10.1371/journal.pone.0004093] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 11/26/2008] [Indexed: 12/26/2022] Open
Abstract
Astroglia are key cellular sites where opiate drug signals converge with the proinflammatory effects of HIV-1 Tat signals to exacerbate HIV encephalitis. Despite this understanding, the molecular sites of convergence driving opiate-accelerated neuropathogenesis have not been deciphered. We therefore explored potential points of interaction between the signaling pathways initiated by HIV-1 Tat and opioids in striatal astrocytes. Profiling studies screening 152 transcription factors indicated that the nuclear factor-kappa B (NF-κB) subunit, c-Rel, was a likely candidate for Tat or Tat plus opiate-induced increases in cytokine and chemokine production by astrocytes. Pretreatment with the NF-κB inhibitor parthenolide provided evidence that Tat±morphine-induced release of MCP-1, IL-6 and TNF-α by astrocytes is NF-κB dependent. The nuclear export inhibitor, leptomycin B, blocked the nucleocytoplasmic shuttling of NF-κB; causing p65 (RelA) accumulation in the nucleus, and significantly attenuated cytokine production in Tat±morphine exposed astrocytes. Similarly, chelating intracellular calcium ([Ca2+]i) blocked Tat±morphine-evoked MCP-1 and IL-6 release, while artificially increasing the concentration of extracellular Ca2+ reversed this effect. Taken together, these results demonstrate that: 1) exposure to Tat±morphine is sufficient to activate NF-κB and cytokine production, 2) the release of MCP-1 and IL-6 by Tat±morphine are highly Ca2+-dependent, while TNF-α appears to be less affected by the changes in [Ca2+]i, and 3) in the presence of Tat, exposure to opiates augments Tat-induced NF-κB activation and cytokine release through a Ca2+-dependent pathway.
Collapse
Affiliation(s)
- Nazira El-Hage
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| | | | | | | | | | | | | |
Collapse
|
177
|
The role of interleukin-1 in seizures and epilepsy: a critical review. Exp Neurol 2008; 216:258-71. [PMID: 19162013 DOI: 10.1016/j.expneurol.2008.12.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Revised: 12/01/2008] [Accepted: 12/13/2008] [Indexed: 01/15/2023]
Abstract
Interleukin-1 (IL-1) has a multitude of functions in the central nervous system. Some of them involve mechanisms that are related to epileptogenesis. The role of IL-1 in seizures and epilepsy has been investigated in both patients and animal models. This review aims to synthesize, based on the currently available literature, the consensus role of IL-1 in epilepsy. Three lines of evidence suggest a role for IL-1: brain tissue from epilepsy patients and brain tissue from animal models shows increased IL-1 expression after seizures, and IL-1 has proconvulsive properties when applied exogeneously. However, opposing results have been published as well. More research is needed to fully establish the role of IL-1 in seizure generation and epilepsy, and to explore possible new treatment strategies that are based on interference with intracellular signaling cascades that are initiated when IL-1 binds to its receptor.
Collapse
|
178
|
Pedersen MØ, Larsen A, Stoltenberg M, Penkowa M. Cell death in the injured brain: roles of metallothioneins. ACTA ACUST UNITED AC 2008; 44:1-27. [PMID: 19348909 DOI: 10.1016/j.proghi.2008.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 10/02/2008] [Indexed: 10/21/2022]
Abstract
In traumatic brain injury (TBI), the primary, irreversible damage associated with the moment of impact consists of cells dying from necrosis. This contributes to fuelling a chronic central nervous system (CNS) inflammation with increased formation of proinflammatory cytokines, enzymes and reactive oxygen species (ROS). ROS promote oxidative stress, which leads to neurodegeneration and ultimately results in programmed cell death (secondary injury). Since this delayed, secondary tissue loss occurs days to months following the primary injury it provides a therapeutic window where potential neuroprotective treatment could alleviate ongoing neurodegeneration, cell death and neurological impairment following TBI. Various neuroprotective drug candidates have been described, tested and proven effective in pre-clinical studies, including glutamate receptor antagonists, calcium-channel blockers, and caspase inhibitors. However, most of the scientific efforts have failed in translating the experimental results into clinical trials. Despite intensive research, effective neuroprotective therapies are lacking in the clinic, and TBI continues to be a major cause of morbidity and mortality. This paper provides an overview of the TBI pathophysiology leading to cell death and neurological impairment. We also discuss endogenously expressed neuroprotectants and drug candidates, which at this stage may still hold the potential for treating brain injured patients.
Collapse
Affiliation(s)
- Mie Ø Pedersen
- Section of Neuroprotection, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
179
|
de Souza DF, Leite MC, Quincozes-Santos A, Nardin P, Tortorelli LS, Rigo MM, Gottfried C, Leal RB, Gonçalves CA. S100B secretion is stimulated by IL-1beta in glial cultures and hippocampal slices of rats: Likely involvement of MAPK pathway. J Neuroimmunol 2008; 206:52-7. [PMID: 19042033 DOI: 10.1016/j.jneuroim.2008.10.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/29/2008] [Accepted: 10/29/2008] [Indexed: 12/11/2022]
Abstract
S100B is an astrocyte-derived cytokine implicated in the IL-1beta-triggered cytokine cycle in Alzheimer's disease. However, the secretion of S100B following stimulation by IL-1beta has not been directly demonstrated. We investigated S100B secretion in cortical primary astrocyte cultures, C6 glioma cells and acute hippocampal slices exposed to IL-1beta. S100B secretion was induced by IL-1beta in all preparations, involving MAPK pathway and, apparently, NF-small ka, CyrillicB signaling. Astrocytes and C6 cells exhibited different sensitivities to IL-1beta. These results suggest that IL-1beta-induced S100B secretion is a component of the neuroinflammatory response, which would support the involvement of S100B in the genesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniela F de Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Favero-Filho L, Borges A, Grassl C, Lopes A, Sinigaglia-Coimbra R, Coimbra C. Hyperthermia induced after recirculation triggers chronic neurodegeneration in the penumbra zone of focal ischemia in the rat brain. Braz J Med Biol Res 2008; 41:1029-36. [DOI: 10.1590/s0100-879x2008001100014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 11/17/2008] [Indexed: 11/22/2022] Open
Affiliation(s)
- L.A. Favero-Filho
- Universidade Federal de São Paulo; Universidade Federal de São Paulo
| | - A.A. Borges
- Universidade Federal de São Paulo; Universidade Federal de São Paulo
| | - C. Grassl
- Universidade Federal de São Paulo; Universidade Federal de São Paulo
| | - A.C. Lopes
- Universidade Federal de São Paulo; Universidade Federal de São Paulo
| | - R. Sinigaglia-Coimbra
- Universidade Federal de São Paulo; Universidade Federal de São Paulo; Universidade Federal de São Paulo, Brasil
| | - C.G. Coimbra
- Universidade Federal de São Paulo; Universidade Federal de São Paulo
| |
Collapse
|
181
|
James ML, Warner DS, Laskowitz DT. Preclinical models of intracerebral hemorrhage: a translational perspective. Neurocrit Care 2008; 9:139-52. [PMID: 18058257 DOI: 10.1007/s12028-007-9030-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating and relatively common disease affecting as many as 50,000 people annually in the United States alone. ICH remains associated with poor outcome, and approximately 40-50% of afflicted patients will die within 30 days. In reports from the NIH and AHA, the importance of developing clinically relevant models of ICH that will extend our understanding of the pathophysiology of the disease and target new therapeutic approaches was emphasized. Traditionally, preclinical ICH research has most commonly utilized two paradigms: clostridial collagenase-induced hemorrhage and autologous blood injection. In this article, the use of various species is examined in the context of the different model types for ICH, and a mechanistic approach is considered in evaluating the numerous breakthroughs in our current fund of knowledge. Each of the model types has its inherent strengths and weaknesses and has the potential to further our understanding of the pathophysiology and treatment of ICH. In particular, transgenic rodent models may be helpful in addressing genetic influences on recovery from ICH.
Collapse
Affiliation(s)
- Michael Lucas James
- Department of Anesthesiology, Duke University Medical Center, Box 3094, Durham, NC 27710, USA.
| | | | | |
Collapse
|
182
|
Escartin C, Bonvento G. Targeted activation of astrocytes: a potential neuroprotective strategy. Mol Neurobiol 2008; 38:231-41. [PMID: 18931960 DOI: 10.1007/s12035-008-8043-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 09/26/2008] [Indexed: 01/07/2023]
Abstract
Astrocytes are involved in many key physiological processes in the brain, including glutamatergic transmission, energy metabolism, and blood flow control. They become reactive in response to pathological situations, a response that involves well-described morphological alterations and less characterized functional changes. The functional consequences of astrocyte reactivity seem to depend on the molecular pathway involved and may result in the enhancement of several neuroprotective and neurotrophic functions. We propose that a selective and controlled activation of astrocytes may switch these highly pleiotropic cells into therapeutic agents to promote neuron survival and recovery. This may represent a potent therapeutic strategy for many brain diseases in which neurons would benefit from an increased support from activated astrocytes.
Collapse
Affiliation(s)
- Carole Escartin
- CEA, IB2M, MIRCen, CNRS URA2210, 4, place du General Leclerc, 91401, Orsay, France.
| | | |
Collapse
|
183
|
Ajmo CT, Vernon DOL, Collier L, Hall AA, Garbuzova-Davis S, Willing A, Pennypacker KR. The spleen contributes to stroke-induced neurodegeneration. J Neurosci Res 2008; 86:2227-34. [PMID: 18381759 DOI: 10.1002/jnr.21661] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stroke, a cerebrovascular injury, is the leading cause of disability and third leading cause of death in the world. Recent reports indicate that inhibiting the inflammatory response to stroke enhances neurosurvival and limits expansion of the infarction. The immune response that is initiated in the spleen has been linked to the systemic inflammatory response to stroke, contributing to neurodegeneration. Here we show that removal of the spleen significantly reduces neurodegeneration after ischemic insult. Rats splenectomized 2 weeks before permanent middle cerebral artery occlusion had a >80% decrease in infarction volume in the brain compared with those rats that were subjected to the stroke surgery alone. Splenectomy also resulted in decreased numbers of activated microglia, macrophages, and neutrophils present in the brain tissue. Our results demonstrate that the peripheral immune response as mediated by the spleen is a major contributor to the inflammation that enhances neurodegeneration after stroke.
Collapse
Affiliation(s)
- Craig T Ajmo
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida 33216, USA
| | | | | | | | | | | | | |
Collapse
|
184
|
Chadwick W, Magnus T, Martin B, Keselman A, Mattson MP, Maudsley S. Targeting TNF-alpha receptors for neurotherapeutics. Trends Neurosci 2008; 31:504-11. [PMID: 18774186 DOI: 10.1016/j.tins.2008.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 06/30/2008] [Accepted: 07/30/2008] [Indexed: 12/19/2022]
Affiliation(s)
- Wayne Chadwick
- Receptor Pharmacology Unit, Laboratory of Neurosciences, National Institute on Aging, Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
185
|
García-Bueno B, Caso JR, Leza JC. Stress as a neuroinflammatory condition in brain: Damaging and protective mechanisms. Neurosci Biobehav Rev 2008; 32:1136-51. [DOI: 10.1016/j.neubiorev.2008.04.001] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 04/02/2008] [Accepted: 04/02/2008] [Indexed: 01/07/2023]
|
186
|
Offner H, Vandenbark AA, Hurn PD. Effect of experimental stroke on peripheral immunity: CNS ischemia induces profound immunosuppression. Neuroscience 2008; 158:1098-111. [PMID: 18597949 DOI: 10.1016/j.neuroscience.2008.05.033] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 05/12/2008] [Accepted: 05/13/2008] [Indexed: 11/27/2022]
Abstract
The profound damage to the CNS caused by ischemic lesions has been well documented. Yet, relatively little is known about the contribution to and effects on the immune system during stroke. We have focused on both early and late events in the peripheral immune system during stroke in mice and have observed an early activation of splenocytes that conceivably could result in immune-mediated damage in the developing CNS lesion, followed by global immunosuppression that affects the spleen, thymus, lymph nodes and circulation. While this second immunosuppressive phase may not directly enhance infarction size, it without doubt leads to an inability to respond to antigenic challenges, thereby enhancing the risk for crippling systemic infection and septicemia in stroke survivors. These novel findings advocate the need to develop or effectively utilize agents that can block early neural splenic activation and modulate immune cells specific for brain antigens as a means to prevent mobilization of T and B cells carrying a cytokine death warrant to the brain. Equally important for the recovering stroke patient are approaches that can derail the second phase of immune dysfunction and restore the ability to mount a defense against systemic infectious insults.
Collapse
Affiliation(s)
- H Offner
- Neuroimmunology Research R&D-31, Portland Veterans Affairs Medical Center, 3710 Southwest US Veterans Hospital Road, and Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
187
|
Abstract
Spontaneous behavioral recovery is usually limited after stroke, making stroke a leading source of disability. A number of therapies in development aim to improve patient outcomes not by acutely salvaging threatened tissue, but instead by promoting repair and restoration of function in the subacute or chronic phase after stroke. Examples include small molecules, growth factors, cell-based therapies, electromagnetic stimulation, device-based strategies, and task-oriented and repetitive training-based interventions. Stage of development across therapies varies widely, from preclinical to late-phase clinical trials. The optimal methods to prescribe such therapies require further studies, for example, to best identify appropriate patients or to guide features of dosing. Likely, anatomic, functional, and behavioral measures of brain state, as well as measures of injury, will each be useful in this regard. Considerations for clinical trials of restorative therapies are provided, emphasizing both similarities and points of divergence with acute stroke clinical trial design.
Collapse
Affiliation(s)
- Steven C Cramer
- Department of Neurology, University of California, Irvine, CA 92868-4280, USA.
| |
Collapse
|
188
|
Brydon L, Harrison NA, Walker C, Steptoe A, Critchley HD. Peripheral inflammation is associated with altered substantia nigra activity and psychomotor slowing in humans. Biol Psychiatry 2008; 63:1022-9. [PMID: 18242584 PMCID: PMC2885493 DOI: 10.1016/j.biopsych.2007.12.007] [Citation(s) in RCA: 261] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 12/02/2007] [Accepted: 12/18/2007] [Indexed: 12/02/2022]
Abstract
BACKGROUND Systemic infections commonly cause sickness symptoms including psychomotor retardation. Inflammatory cytokines released during the innate immune response are implicated in the communication of peripheral inflammatory signals to the brain. METHODS We used functional magnetic resonance brain imaging (fMRI) to investigate neural effects of peripheral inflammation following typhoid vaccination in 16 healthy men, using a double-blind, randomized, crossover-controlled design. RESULTS Vaccination had no global effect on neurovascular coupling but markedly perturbed neural reactivity within substantia nigra during low-level visual stimulation. During a cognitive task, individuals in whom typhoid vaccination engendered higher levels of circulating interleukin-6 had significantly slower reaction time responses. Prolonged reaction times and larger interleukin-6 responses were associated with evoked neural activity within substantia nigra. CONCLUSIONS Our findings provide mechanistic insights into the interaction between inflammation and neurocognitive performance, specifically implicating circulating cytokines and midbrain dopaminergic nuclei in mediating the psychomotor consequences of systemic infection.
Collapse
Affiliation(s)
- Lena Brydon
- Department of Epidemiology and Public Health, Institute of Neurology at University College London, London, United Kingdom.
| | | | | | | | | |
Collapse
|
189
|
Mulugeta E, Molina-Holgado F, Elliott MS, Hortobagyi T, Perry R, Kalaria RN, Ballard CG, Francis PT. Inflammatory mediators in the frontal lobe of patients with mixed and vascular dementia. Dement Geriatr Cogn Disord 2008; 25:278-86. [PMID: 18303264 DOI: 10.1159/000118633] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2007] [Indexed: 12/16/2022] Open
Abstract
Vascular dementia (VaD) accounts for about 20% of all dementias, and vascular risk is a key factor in more than 40% of people with Alzheimer's disease (AD). Little is known about inflammatory processes in the brains of these individuals. We have examined inflammatory mediators (interleukin (IL)-1beta, IL-1alpha, IL-6 and tumour necrosis factor alpha) and chemokines (macrophage inflammatory protein 1, monocyte chemo-attractant protein (MCP)-1 and granulocyte macrophage colony-stimulating factor) in brain homogenates from grey and white matter of the frontal cortex (Brodmann area 9) from patients with VaD (n = 11), those with concurrent VaD and AD (mixed dementia; n = 8) and from age-matched controls (n = 13) using ELISA assays. We found a dramatic reduction of MCP-1 levels in the grey matter in VaD and mixed dementia in comparison to controls (55 and 66%, respectively). IL-6 decreases were also observed in the grey matter of VaD and mixed dementia (72 and 71%, respectively), with a more modest decrease (30%) in the white matter of patients with VaD or mixed dementia. In the first study to examine the status of inflammatory mediators in a brain region severely affected by white-matter lesions, our findings highlight - in contrast to previous reports in AD - that patients at the later stage of VaD or mixed dementia have a significantly attenuated neuro-inflammatory response.
Collapse
Affiliation(s)
- Ezra Mulugeta
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, King's College London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Abstract
Emerging evidence suggests that dietary phytochemicals, in particular flavonoids, may exert beneficial effects on the central nervous system by protecting neurons against stress-induced injury, by suppressing neuroinflammation and by improving cognitive function. It is likely that flavonoids exert such effects, through selective actions on different components of a number of protein kinase and lipid kinase signalling cascades, such as the phosphatidylinositol-3 kinase (PI3K)/Akt, protein kinase C and mitogen-activated protein kinase (MAPK) pathways. This review explores the potential inhibitory or stimulatory actions of flavonoids within these pathways, and describes how such interactions are likely to underlie neurological effects through their ability to affect the activation state of target molecules and/or by modulating gene expression. Future research directions are outlined in relation to the precise site(s) of action of flavonoids within signalling pathways and the sequence of events that allow them to regulate neuronal function.
Collapse
|
191
|
Cramer SC. Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann Neurol 2008; 63:272-87. [PMID: 18383072 DOI: 10.1002/ana.21393] [Citation(s) in RCA: 556] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stroke remains a leading cause of adult disability. Some degree of spontaneous behavioral recovery is usually seen in the weeks after stroke onset. Variability in recovery is substantial across human patients. Some principles have emerged; for example, recovery occurs slowest in those destined to have less successful outcomes. Animal studies have extended these observations, providing insight into a broad range of underlying molecular and physiological events. Brain mapping studies in human patients have provided observations at the systems level that often parallel findings in animals. In general, the best outcomes are associated with the greatest return toward the normal state of brain functional organization. Reorganization of surviving central nervous system elements supports behavioral recovery, for example, through changes in interhemispheric lateralization, activity of association cortices linked to injured zones, and organization of cortical representational maps. A number of factors influence events supporting stroke recovery, such as demographics, behavioral experience, and perhaps genetics. Such measures gain importance when viewed as covariates in therapeutic trials of restorative agents that target stroke recovery.
Collapse
Affiliation(s)
- Steven C Cramer
- Departments of Neurology and Anatomy & Neurobiology, University of California, Irvine, Irvine, CA 92868-4280, USA.
| |
Collapse
|
192
|
Quintana A, Molinero A, Florit S, Manso Y, Comes G, Carrasco J, Giralt M, Borup R, Nielsen FC, Campbell IL, Penkowa M, Hidalgo J. Diverging mechanisms for TNF-alpha receptors in normal mouse brains and in functional recovery after injury: From gene to behavior. J Neurosci Res 2008; 85:2668-85. [PMID: 17131423 DOI: 10.1002/jnr.21126] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cytokines, such as tumour necrosis factor (TNF)-alpha and lymphotoxin-alpha, have been described widely to play important roles in the brain in physiologic conditions and after traumatic injury. However, the exact mechanisms involved in their function have not been fully elucidated. We give some insight on their role by using animals lacking either Type 1 receptor (TNFR1KO) or Type 2 (TNFR2KO) and their controls (C57Bl/6). Both TNFR1KO and to a greater extent TNFR2KO mice showed increased exploration/activity neurobehavioral traits in the hole board test, such as rearings, head dippings, and ambulations, compared with wild-type mice, suggesting an inhibitory role of TNFR1/TNFR2 signaling. In contrast, no significant differences were observed in the elevated plus maze test, ruling out a major role of these receptors in the control of anxiety. We next evaluated the response to a freeze injury to the somatosensorial cortex. The effect of the cryolesion on motor function was evaluated with the horizontal ladder beam test, and the results showed that both TNFR1KO and TNFR2KO mice made fewer errors, suggesting a detrimental role for TNFR1/TNFR2 signaling for coping with brain damage. Expression of approximately 22600 genes was analyzed using an Affymetrix chip (MOE430A) at 0 (unlesioned), 1, or 4 days post-lesion in the three strains. The results show a unique and major role of both TNF receptors on the pattern of gene expression elicited by the injury but also in normal conditions, and suggest that blocking of TNFR1/TNFR2 receptors may be beneficial after a traumatic brain injury.
Collapse
Affiliation(s)
- Albert Quintana
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Sciences, Autonomous University of Barcelona, Bellaterra, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Gavillet M, Allaman I, Magistretti PJ. Modulation of astrocytic metabolic phenotype by proinflammatory cytokines. Glia 2008; 56:975-89. [DOI: 10.1002/glia.20671] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
194
|
Hutchinson PJ, O'Connell MT, Rothwell NJ, Hopkins SJ, Nortje J, Carpenter KLH, Timofeev I, Al-Rawi PG, Menon DK, Pickard JD. Inflammation in human brain injury: intracerebral concentrations of IL-1alpha, IL-1beta, and their endogenous inhibitor IL-1ra. J Neurotrauma 2007; 24:1545-57. [PMID: 17970618 DOI: 10.1089/neu.2007.0295] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Following traumatic brain injury (TBI), cascades of inflammatory processes occur. Laboratory studies implicate the cytokines interleukin-1alpha (IL-1alpha) and IL-1beta in the pathophysiology of TBI and cerebral ischemia, whilst exogenous and endogenous interleukin-1 receptor antagonist (IL-1ra) is neuroprotective. We analyzed IL-1alpha, IL-1beta, and IL-1ra in brain microdialysates (100-kDa membrane) in 15 TBI patients. We also analyzed energy-related molecules (glucose, lactate, pyruvate, glutamate, and the lactate/pyruvate ratio) in these brain microdialysates. Mean of mean (+/-SD) in vitro microdialysis percentage recoveries (extraction efficiencies) were IL-1alpha 19.7+/-7.6%, IL-1beta 23.9+/-10.5%, and IL-1ra 20.9+/-6.3%. In the patients' brain microdialysates, mean of mean cytokine concentrations (not corrected for percentage recovery) were IL-1alpha 5.6+/-14.8 pg/mL, IL-1beta 10.4+/-14.7 pg/mL, and IL-1ra 2796+/-2918 pg/mL. IL-1ra was consistently much higher than IL-1alpha and IL-1beta. There were no significant relationships between IL-1 family cytokines and energy-related molecules. There was a significant correlation between increasing IL-1beta and increasing IL-1ra (Spearman r=0.59, p=0.028). There was also a significant relationship between increasing IL-1ra and decreasing intracranial pressure (Spearman r=-0.57, p=0.041). High concentrations of IL-1ra, and also high IL-1ra/IL-1beta ratio, were associated with better outcome (Mann Whitney, p=0.018 and p=0.0201, respectively), within these 15 patients. It is unclear whether these IL-1ra concentrations are sufficient to antagonize the effects of IL-1beta in vivo. This study demonstrates feasibility of our microdialysis methodology in recovering IL-1 family cytokines for assessing their inter-relationships in the injured human brain, and suggests a neuroprotective role for IL-1ra. It remains to be seen whether exogenous IL-1ra or other agents can be used to manipulate cytokine levels in the brain, for potential therapeutic effect.
Collapse
Affiliation(s)
- Peter J Hutchinson
- Academic Unit of Neurosurgery, Department of Clinical Neurosciences, Wolfson Brain Imaging Centre, University of Cambridge, and Addenbrooke's Hospital, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Interleukin-1-induced interleukin-6 synthesis is mediated by the neutral sphingomyelinase/Src kinase pathway in neurones. Br J Pharmacol 2007; 153:775-83. [PMID: 18059318 DOI: 10.1038/sj.bjp.0707610] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Interleukin (IL)-1 is a key mediator of inflammatory and host defence responses and its effects in the brain are mediated primarily via effects on glia. IL-1 induces release of inflammatory mediators such as IL-6 from glia via the type-1 receptor (IL-1R1) and established signalling mechanisms including mitogen-activated protein kinases and nuclear factor kappa-B. IL-1 also modifies physiological functions via actions on neurones, through activation of the neutral sphingomyelinase (nSMase)/Src kinase signalling pathway, although the mechanism of IL-1-induced IL-6 synthesis in neurones remains unknown. EXPERIMENTAL APPROACH Primary mouse neuronal cell cultures, ELISA, Western blot and immunocytochemistry techniques were used. KEY RESULTS We show here that IL-1beta induces the synthesis of IL-6 in primary mouse neuronal cultures, and this is dependent on the activation of IL-1R1, nSMase and Src kinase. We demonstrate that IL-1beta-induced Src kinase activation triggers the phosphorylation of the NMDA receptor NR2B subunit, leading to activation of Ca(2+)/calmodulin-dependent protein kinase II (CamKII) and the nuclear transcription factor CREB. We also show that NR2B, CamKII and CREB are essential signalling elements involved in IL-1beta-induced IL-6 synthesis in neurones. CONCLUSIONS AND IMPLICATIONS These results demonstrate that IL-1 interacts with the same receptors on neurones and glia to elicit IL-6 release, but does so via distinct signalling pathways. The mechanism by which IL-1beta induces IL-6 synthesis in neurones could be critical in both physiological and pathophysiological actions of IL-1beta, and may provide a new therapeutic target for the treatment of acute CNS injury.
Collapse
|
196
|
Laskowitz DT, McKenna SE, Song P, Wang H, Durham L, Yeung N, Christensen D, Vitek MP. COG1410, a novel apolipoprotein E-based peptide, improves functional recovery in a murine model of traumatic brain injury. J Neurotrauma 2007; 24:1093-107. [PMID: 17610350 DOI: 10.1089/neu.2006.0192] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is a silent epidemic affecting approximately 1.4 million Americans annually, at an estimated annual cost of $60 billion in the United States alone. Despite an increased understanding of the pathophysiology of closed head injury, there remains no pharmacological intervention proven to improve functional outcomes in this setting. Currently, the existing standard of care for TBI consists primarily of supportive measures. Apolipoprotein E (apoE) is the primary apolipoprotein synthesized in the brain in response to injury, where it modulates several components of the neuroinflammatory cascade associated with TBI. We have previously demonstrated that COG133, an apoE mimetic peptide, improved functional outcomes and attenuated neuronal death when administered as a single intravenous injection at 30 min post-TBI in mice. Using the principles of rational drug design, we developed a more potent analog, COG1410, which expands the therapeutic window for the treatment of TBI by a factor of four, from 30 min to 2 h. Mice that received a single intravenous injection of COG1410 at 120 min post-TBI exhibited significant improvement on a short term test of vestibulomotor function and on a long term test of spatial learning and memory. This was associated with a significant attenuation of microglial activation and neuronal death in the hippocampus, the neuroanatomical substrate for learning and memory. Rationally derived apoE mimetic peptides have been demonstrated to exert neuroprotective and anti-inflammatory effects in vitro and in clinically relevant models of brain injury. This represents a novel therapeutic strategy in the treatment of TBI.
Collapse
Affiliation(s)
- Daniel T Laskowitz
- Division of Neurology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
197
|
Formigari A, Irato P, Santon A. Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: biochemical and cytochemical aspects. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:443-459. [PMID: 17716951 DOI: 10.1016/j.cbpc.2007.07.010] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 07/23/2007] [Accepted: 07/25/2007] [Indexed: 11/19/2022]
Abstract
Copper, zinc and iron are essential metals for different physiological functions, even though their excess can lead to biological damage. This review provides a background of toxicity related to copper, iron and zinc excess, biological mechanisms of their homeostasis and their respective roles in the apoptotic process. The antioxidant action of metallothionein has been highlighted by summarizing the most important findings that confirm the role of zinc in cellular protection in relation to metallothionein expression and apoptotic processes. In particular, we show that a complex and efficient antioxidant system, the induction of metallothionein and the direct action of zinc have protective roles against oxidative damage and the resulting apoptosis induced by metals with redox proprieties. In addition, to emphasize the protective effects of Zn and Zn-MT in Cu and Fe-mediated oxidative stress-dependent apoptosis, some aspects of apoptotic cell death are shown. The most widely used cytochemical techniques also have been examined in order to critically evaluate the available data from a methodological point of view. The observations on the role of Zn and MT could potentially develop new applications for this metal and MT in biomedical research.
Collapse
|
198
|
Spencer JPE. The interactions of flavonoids within neuronal signalling pathways. GENES AND NUTRITION 2007; 2:257-73. [PMID: 18850181 DOI: 10.1007/s12263-007-0056-z] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 03/20/2007] [Indexed: 12/11/2022]
Abstract
Emerging evidence suggests that dietary phytochemicals, in particular flavonoids, may exert beneficial effects in the central nervous system by protecting neurons against stress-induced injury, by suppressing neuroinflammation and by promoting neurocognitive performance, through changes in synaptic plasticity. It is likely that flavonoids exert such effects in neurons, through selective actions on different components within a number of protein kinase and lipid kinase signalling cascades, such as phosphatidylinositol-3 kinase (PI3K)/Akt, protein kinase C and mitogen-activated protein kinase. This review details the potential inhibitory or stimulatory actions of flavonoids within these pathways, and describes how such interactions are likely to affect cellular function through changes in the activation state of target molecules and/or by modulating gene expression. Although, precise sites of action are presently unknown, their abilities to: (1) bind to ATP binding sites on enzymes and receptors; (2) modulate the activity of kinases directly; (3) affect the function of important phosphatases; (4) preserve neuronal Ca(2+) homeostasis; and (5) modulate signalling cascades lying downstream of kinases, are explored. Future research directions are outlined in relation to their precise site(s) of action within the signalling pathways and the sequence of events that allow them to regulate neuronal function in the central nervous system.
Collapse
Affiliation(s)
- Jeremy P E Spencer
- Molecular Nutrition Group, School of Chemistry, Food and Pharmacy, University of Reading, Reading, RG2 6AP, UK,
| |
Collapse
|
199
|
Ross AM, Hurn P, Perrin N, Wood L, Carlini W, Potempa K. Evidence of the peripheral inflammatory response in patients with transient ischemic attack. J Stroke Cerebrovasc Dis 2007; 16:203-7. [PMID: 17845917 PMCID: PMC2570354 DOI: 10.1016/j.jstrokecerebrovasdis.2007.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 05/09/2007] [Accepted: 05/09/2007] [Indexed: 12/20/2022] Open
Abstract
The peripheral inflammatory response, as a proxy for the acute-phase response (a known mechanism for ischemic preconditioning), and non-damage-producing transient ischemia must exist together in humans if this candidate mechanism confers ischemic tolerance. The present study was aimed at determining whether the peripheral inflammatory response (ie, elevated white blood cell, neutrophil, and monocyte counts) exists in transient ischemic attack (TIA) and stroke patients at the time of emergency room admission. The null hypothesis was tested for the variables of the peripheral inflammatory response between the mean of the laboratory normal population versus stroke and TIA patients. A retrospective review of 1041 medical records yielded 12 first-time TIA patients and 34 first-time stroke patients with no confounding evidence of other inflammatory processes. In both groups, neutrophil and monocyte percentages were significantly higher than the laboratory means (in TIA cases: neutrophils, 67.9% [12.67%], P = .001; monocytes, 8.2% [2.7%], P = .020; in stroke cases: neutrophils, 64.9% [9.1%], monocytes, 7.7% [1.6%]; both P < .001). Absolute neutrophil count was significantly higher than the laboratory mean for the stroke cases (5.13 [1.88] K/UL; P = .022). Lymphocyte percentages and absolute lymphocyte count in both groups were significantly and abnormally lower than the laboratory mean (in TIA cases, 21.7% [10.5%] and 1.4 [0.6] K/UL, respectively; in stroke cases, 24.7% [8.4%] and 1.9 [0.7] K/UL, respectively; all P <or= .001). No other absolute counts were significant. These findings suggest that the peripheral inflammatory response exists in transient ischemia, which hypothetically does not damage brain tissue, as well as in stroke (or permanent ischemia), which is known to produce brain tissue damage.
Collapse
Affiliation(s)
- Amy Miner Ross
- School of Nursing, Oregon Health & Science University, Ashland, Oregon 97520, USA.
| | | | | | | | | | | |
Collapse
|
200
|
Gueorguieva I, Clark SR, McMahon CJ, Scarth S, Rothwell NJ, Tyrrell PJ, Tyrell PJ, Hopkins SJ, Rowland M. Pharmacokinetic modelling of interleukin-1 receptor antagonist in plasma and cerebrospinal fluid of patients following subarachnoid haemorrhage. Br J Clin Pharmacol 2007; 65:317-25. [PMID: 17875190 PMCID: PMC2291249 DOI: 10.1111/j.1365-2125.2007.03026.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
UNLABELLED What is already known about this subject? The naturally occurring interlukin-1 receptor antagonist (IL-1RA) markedly protects rodents against ischaemic, excitotoxic and traumatic brain injury, suggesting it may be of therapeutic value. When administered intravenously to patients soon after stroke, IL-1RA is safe and reduces the peripheral inflammatory response. However, IL-1RA is a large protein (17 kDa), which may limit brain penetration, thereby limiting its potential utility in brain injury. What this study adds. The purpose of these experiments was to determine the pharmacokinetics of IL-1RA in cerebrospinal fluid (CSF) of patients, to allow modelling that would aid development of therapeutic regimens. Peripherally administered IL-1RA crosses slowly into and out of the CSF of patients with subarachnoid haemorrhage and, at steady state, CSF IL-1RA concentration (range 115-886 ng ml(-1)) was similar to that found to be neuroprotective in rats (range 91-232 ng ml(-1)), although there was considerable variability among patients. However, there is a large concentration gradient of IL-1RA between plasma and CSF. These CSF:plasma data are consistent with very low permeation of IL-1RA into the CSF and elimination kinetics from it controlled by the volumetric turnover of CSF. AIM The naturally occurring interlukin-1 receptor antagonist (IL-1RA) markedly protects rodents against ischaemic, excitotoxic and traumatic brain injury, suggesting it may be of therapeutic value. The aim was to determine the pharmacokinetics of IL-1RA in cerebrospinal fluid (CSF) of patients, to allow modelling that would aid development of therapeutic regimens. METHODS When administered intravenously to patients soon after stroke, IL-1RA is safe and reduces the peripheral inflammatory response. However, IL-1RA is a large protein (17 kDa), which may limit brain penetration, thereby limiting its potential utility in brain injury. In seven patients with subarchnoid haemorrhage (SAH), IL-1RA was administered by intravenous bolus, then infusion for 24 h, and both blood and CSF, via external ventricular drains, were sampled during and after stopping the infusion. RESULTS Plasma steady-state concentrations were rapidly attained and maintained throughout the infusion, whereas CSF concentrations rose slowly towards a plateau during the 24-h infusion, reaching at best only 4% of that in plasma. Plasma kinetic parameters were within the literature range. Modelling of the combined data yielded rate constants entering and leaving the CSF of 0.0019 h(-1)[relative standard error (RSE) = 19%] and 0.1 h(-1) (RSE = 19%), respectively. CONCLUSIONS Peripherally administered IL-1RA crosses slowly into and out of the CSF of patients with SAH. However, there is a large concentration gradient of IL-1RA between plasma and CSF. These CSF:plasma data are consistent with very low permeation of IL-1RA into the CSF and elimination kinetics from it controlled by the volumetric turnover of CSF.
Collapse
Affiliation(s)
- Ivelina Gueorguieva
- Centre for Applied Pharmacokinetic Research, School of Pharmacy and Pharmaceutical Sciences, University of Manchester, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|