151
|
Lee JW, Helmann JD. Functional specialization within the Fur family of metalloregulators. Biometals 2007; 20:485-99. [PMID: 17216355 DOI: 10.1007/s10534-006-9070-7] [Citation(s) in RCA: 328] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 11/28/2006] [Indexed: 01/01/2023]
Abstract
The ferric uptake regulator (Fur) protein, as originally described in Escherichia coli, is an iron-sensing repressor that controls the expression of genes for siderophore biosynthesis and iron transport. Although Fur is commonly thought of as a metal-dependent repressor, Fur also activates the expression of many genes by either indirect or direct mechanisms. In the best studied model systems, Fur functions as a global regulator of iron homeostasis controlling both the induction of iron uptake functions (under iron limitation) and the expression of iron storage proteins and iron-utilizing enzymes (under iron sufficiency). We now appreciate that there is a tremendous diversity in metal selectivity and biological function within the Fur family which includes sensors of iron (Fur), zinc (Zur), manganese (Mur), and nickel (Nur). Despite numerous studies, the mechanism of metal ion sensing by Fur family proteins is still controversial. Other family members use metal catalyzed oxidation reactions to sense peroxide-stress (PerR) or the availability of heme (Irr).
Collapse
Affiliation(s)
- Jin-Won Lee
- Department of Microbiology, Cornell University, Wing Hall, Ithaca, NY 14853-8101, USA
| | | |
Collapse
|
152
|
Ohsawa T, Tsukahara K, Sato T, Ogura M. Superoxide stress decreases expression of srfA through inhibition of transcription of the comQXP quorum-sensing locus in Bacillus subtilis. J Biochem 2007; 139:203-11. [PMID: 16452308 DOI: 10.1093/jb/mvj023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During the course of screening for competence-deficient mutants in the mutant collection constructed by the Japan Consortium of Bacillus Functional Genomics, a disruption mutant of sodA encoding superoxide dismutase was identified as a mutant with decreased transformation efficiency. In fact, in the sodA mutant we observed a severe decrease in the expression of srfA required for the development of genetic competence. Northern and primer extension analyses revealed inhibition of the transcription of the comQXP quorum-sensing locus in the sodA mutant, thereby preventing srfA expression. Furthermore, an excess amount of superoxide anion induced by the addition of paraquat also resulted in a decrease in comQXP transcription. Thus, it was concluded that high levels of superoxide are able to inhibit specifically the transcription of the comQXP operon. In support of this conclusion, the effect of added paraquat was significantly alleviated in a comX-independent srfA expression system.
Collapse
Affiliation(s)
- Taku Ohsawa
- Department of Marine Science, School of Marine Science and Technology, Tokai University, 3-20-1 Orido, Shimizu, Shizuoka 424-8610, Japan
| | | | | | | |
Collapse
|
153
|
Bandow JE, Hecker M. Proteomic profiling of cellular stresses in Bacillus subtilis reveals cellular networks and assists in elucidating antibiotic mechanisms of action. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2007; 64:79, 81-101. [PMID: 17195472 DOI: 10.1007/978-3-7643-7567-6_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Proteomic profiling provides a global view of the protein composition of the cell. In contrast to the static nature of the genome sequence, which provides the blueprint for all protein-based cellular building blocks, the proteome is highly dynamic. The protein composition is constantly adjusting to facilitate survival, growth, and reproduction in an ever-changing environment. In a quest to understand the regulation of cellular networks in bacteria and the role of individual proteins in the adaptation process, the proteomic response to stress and starvation was analyzed in wild-type and mutant strains. The knowledge derived from these proteomic studies was applied to investigating the bacterial response to antibiotics. It was found that proteomics presents a powerful tool for hypothesis generation regarding antibiotic mechanism of action.
Collapse
Affiliation(s)
- Julia E Bandow
- Pfizer Global Research and Development, Pfizer Inc., Ann Arbor, Michigan, USA.
| | | |
Collapse
|
154
|
Abstract
Plants often grow in soils that contain very low concentrations of the macronutrients nitrogen, phosphorus, potassium, and sulfur. To adapt and grow in nutrient-deprived environments plants must sense changes in external and internal mineral nutrient concentrations and adjust growth to match resource availability. The sensing and signal transduction networks that control plant responses to nutrient deprivation are not well characterized for nitrogen, potassium, and sulfur deprivation. One branch of the signal transduction cascade related to phosphorus-deprivation response has been defined through the identification of a transcription factor that is regulated by sumoylation. Two different microRNAs play roles in regulating gene expression under phosphorus and sulfur deprivation. Reactive oxygen species increase rapidly after mineral nutrient deprivation and may be one upstream mediator of nutrient signaling. A number of molecular analyses suggest that both short-term and longer-term responses will be important in understanding the progression of signaling events when the external, then internal, supplies of nutrients become depleted.
Collapse
|
155
|
Leelakriangsak M, Zuber P. Transcription from the P3 promoter of the Bacillus subtilis spx gene is induced in response to disulfide stress. J Bacteriol 2006; 189:1727-35. [PMID: 17158663 PMCID: PMC1855742 DOI: 10.1128/jb.01519-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The spx gene of Bacillus subtilis encodes a global regulator that controls transcription initiation in response to oxidative stress by interaction with RNA polymerase (RNAP). It is located in a dicistronic operon with the yjbC gene. The spx gene DNA complements an spx null mutation with respect to disulfide stress resistance, suggesting that spx is transcribed from a promoter located in the intergenic region of yjbC and spx. Transcription of the yjbC-spx operon has been reported to be driven by four promoters, three (P(1), P(2), and P(B)) residing upstream of yjbC and one (P(M)) located in the intergenic region between yjbC and spx. Primer extension analysis uncovered a second intergenic promoter, P(3), from which transcription is elevated in cells treated with the thiol-specific oxidant diamide. P(3) is utilized by the sigma(A) form of RNA polymerase in vitro without the involvement of a transcriptional activator. Transcriptional induction from P(3) did not require an Spx-RNAP interaction and was observed in a deletion mutant lacking DNA upstream of position -40 of the P(3) promoter start site. Deletion mutants with endpoints 3' to the P(3) transcriptional start site (positions +5, +15, and +30) showed near-constitutive transcription at the induced level, indicating the presence of a negative control element downstream of the P(3) promoter sequence. Point mutations characterized by bgaB fusion expression and primer extension analyses uncovered evidence for a second cis-acting site in the P(3) promoter sequence itself. The data indicate that spx transcription is under negative transcriptional control that is reversed when disulfide stress is encountered.
Collapse
Affiliation(s)
- Montira Leelakriangsak
- Environmental and Biomolecular Systems, OGI School of Science and Engineering, Oregon Health and Science University, Beaverton, OR 97006, USA
| | | |
Collapse
|
156
|
Krin E, Chakroun N, Turlin E, Givaudan A, Gaboriau F, Bonne I, Rousselle JC, Frangeul L, Lacroix C, Hullo MF, Marisa L, Danchin A, Derzelle S. Pleiotropic role of quorum-sensing autoinducer 2 in Photorhabdus luminescens. Appl Environ Microbiol 2006; 72:6439-51. [PMID: 17021191 PMCID: PMC1610301 DOI: 10.1128/aem.00398-06] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial virulence is an integrative process that may involve quorum sensing. In this work, we compared by global expression profiling the wild-type entomopathogenic Photorhabdus luminescens subsp. laumondii TT01 to a luxS-deficient mutant unable to synthesize the type 2 quorum-sensing inducer AI-2. AI-2 was shown to regulate more than 300 targets involved in most compartments and metabolic pathways of the cell. AI-2 is located high in the hierarchy, as it controls the expression of several transcriptional regulators. The regulatory effect of AI-2 appeared to be dose dependent. The luxS-deficient strain exhibited decreased biofilm formation and increased type IV/V pilus-dependent twitching motility. AI-2 activated its own synthesis and transport. It also modulated bioluminescence by regulating the synthesis of spermidine. AI-2 was further shown to increase oxidative stress resistance, which is necessary to overcome part of the innate immune response of the host insect involving reactive oxygen species. Finally, we showed that the luxS-deficient strain had attenuated virulence against the lepidopteran Spodoptera littoralis. We concluded that AI-2 is involved mainly in early steps of insect invasion in P. luminescens.
Collapse
Affiliation(s)
- Evelyne Krin
- Unité de Génétique des Génomes Bactériens (URA2171), Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Stohl EA, Seifert HS. Neisseria gonorrhoeae DNA recombination and repair enzymes protect against oxidative damage caused by hydrogen peroxide. J Bacteriol 2006; 188:7645-51. [PMID: 16936020 PMCID: PMC1636252 DOI: 10.1128/jb.00801-06] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Accepted: 08/16/2006] [Indexed: 01/18/2023] Open
Abstract
The strict human pathogen Neisseria gonorrhoeae is exposed to oxidative damage during infection. N. gonorrhoeae has many defenses that have been demonstrated to counteract oxidative damage. However, recN is the only DNA repair and recombination gene upregulated in response to hydrogen peroxide (H(2)O(2)) by microarray analysis and subsequently shown to be important for oxidative damage protection. We therefore tested the importance of RecA and DNA recombination and repair enzymes in conferring resistance to H(2)O(2) damage. recA mutants, as well as RecBCD (recB, recC, and recD) and RecF-like pathway mutants (recJ, recO, and recQ), all showed decreased resistance to H(2)O(2). Holliday junction processing mutants (ruvA, ruvC, and recG) showed decreased resistance to H(2)O(2) resistance as well. Finally, we show that RecA protein levels did not increase as a result of H(2)O(2) treatment. We propose that RecA, recombinational DNA repair, and branch migration are all important for H(2)O(2) resistance in N. gonorrhoeae but that constitutive levels of these enzymes are sufficient for providing protection against oxidative damage by H(2)O(2).
Collapse
Affiliation(s)
- Elizabeth A Stohl
- Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA.
| | | |
Collapse
|
158
|
Michel A, Agerer F, Hauck CR, Herrmann M, Ullrich J, Hacker J, Ohlsen K. Global regulatory impact of ClpP protease of Staphylococcus aureus on regulons involved in virulence, oxidative stress response, autolysis, and DNA repair. J Bacteriol 2006; 188:5783-96. [PMID: 16885446 PMCID: PMC1540084 DOI: 10.1128/jb.00074-06] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Staphylococcus aureus is an important pathogen, causing a wide range of infections including sepsis, wound infections, pneumonia, and catheter-related infections. In several pathogens ClpP proteases were identified by in vivo expression technologies to be important for virulence. Clp proteolytic complexes are responsible for adaptation to multiple stresses by degrading accumulated and misfolded proteins. In this report clpP, encoding the proteolytic subunit of the ATP-dependent Clp protease, was deleted, and gene expression of DeltaclpP was determined by global transcriptional analysis using DNA-microarray technology. The transcriptional profile reveals a strong regulatory impact of ClpP on the expression of genes encoding proteins that are involved in the pathogenicity of S. aureus and adaptation of the pathogen to several stresses. Expression of the agr system and agr-dependent extracellular virulence factors was diminished. Moreover, the loss of clpP leads to a complete transcriptional derepression of genes of the CtsR- and HrcA-controlled heat shock regulon and a partial derepression of genes involved in oxidative stress response, metal homeostasis, and SOS DNA repair controlled by PerR, Fur, MntR, and LexA. The levels of transcription of genes encoding proteins involved in adaptation to anaerobic conditions potentially regulated by an Fnr-like regulator were decreased. Furthermore, the expression of genes whose products are involved in autolysis was deregulated, leading to enhanced autolysis in the mutant. Our results indicate a strong impact of ClpP proteolytic activity on virulence, stress response, and physiology in S. aureus.
Collapse
Affiliation(s)
- Antje Michel
- Institut für Molekulare Infektionsbiologie, Röntgenring 11, D-97070 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
159
|
Brockmann-Gretza O, Kalinowski J. Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (p)ppGpp synthase. BMC Genomics 2006; 7:230. [PMID: 16961923 PMCID: PMC1578569 DOI: 10.1186/1471-2164-7-230] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Accepted: 09/08/2006] [Indexed: 12/01/2022] Open
Abstract
Background The stringent response is the initial reaction of microorganisms to nutritional stress. During stringent response the small nucleotides (p)ppGpp act as global regulators and reprogram bacterial transcription. In this work, the genetic network controlled by the stringent response was characterized in the amino acid-producing Corynebacterium glutamicum. Results The transcriptome of a C. glutamicum rel gene deletion mutant, unable to synthesize (p)ppGpp and to induce the stringent response, was compared with that of its rel-proficient parent strain by microarray analysis. A total of 357 genes were found to be transcribed differentially in the rel-deficient mutant strain. In a second experiment, the stringent response was induced by addition of DL-serine hydroxamate (SHX) in early exponential growth phase. The time point of the maximal effect on transcription was determined by real-time RT-PCR using the histidine and serine biosynthetic genes. Transcription of all of these genes reached a maximum at 10 minutes after SHX addition. Microarray experiments were performed comparing the transcriptomes of SHX-induced cultures of the rel-proficient strain and the rel mutant. The differentially expressed genes were grouped into three classes. Class A comprises genes which are differentially regulated only in the presence of an intact rel gene. This class includes the non-essential sigma factor gene sigB which was upregulated and a large number of genes involved in nitrogen metabolism which were downregulated. Class B comprises genes which were differentially regulated in response to SHX in both strains, independent of the rel gene. A large number of genes encoding ribosomal proteins fall into this class, all being downregulated. Class C comprises genes which were differentially regulated in response to SHX only in the rel mutant. This class includes genes encoding putative stress proteins and global transcriptional regulators that might be responsible for the complex transcriptional patterns detected in the rel mutant when compared directly with its rel-proficient parent strain. Conclusion In C. glutamicum the stringent response enfolds a fast answer to an induced amino acid starvation on the transcriptome level. It also showed some significant differences to the transcriptional reactions occuring in Escherichia coli and Bacillus subtilis. Notable are the rel-dependent regulation of the nitrogen metabolism genes and the rel-independent regulation of the genes encoding ribosomal proteins.
Collapse
Affiliation(s)
- Olaf Brockmann-Gretza
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| |
Collapse
|
160
|
Hoi LT, Voigt B, Jürgen B, Ehrenreich A, Gottschalk G, Evers S, Feesche J, Maurer KH, Hecker M, Schweder T. The phosphate-starvation response of Bacillus licheniformis. Proteomics 2006; 6:3582-601. [PMID: 16705752 DOI: 10.1002/pmic.200500842] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The phosphate-starvation stimulon of Bacillus licheniformis was analyzed at the transcriptional and translational level. The comparison of the transcriptome and the proteome demonstrated that this specific starvation response of B. licheniformis is partially similar to that of B. subtilis. However, it is also shown that B. licheniformis has evolved its own strategies to cope with this nutrient limitation. By means of the secretome analysis the phytase was identified as the most abundant protein under phosphate-starvation conditions. Data of this study indicate that, unlike in B. subtilis, phosphate starvation in B. licheniformis does not induce the SigmaB-dependent general stress response.
Collapse
Affiliation(s)
- Le Thi Hoi
- Institut für Pharmazie, Ernst-Moritz-Arndt Universität, Greifswald, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Tam LT, Eymann C, Albrecht D, Sietmann R, Schauer F, Hecker M, Antelmann H. Differential gene expression in response to phenol and catechol reveals different metabolic activities for the degradation of aromatic compounds in Bacillus subtilis. Environ Microbiol 2006; 8:1408-27. [PMID: 16872404 DOI: 10.1111/j.1462-2920.2006.01034.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aromatic organic compounds that are present in the environment can have toxic effects or provide carbon sources for bacteria. We report here the global response of Bacillus subtilis 168 to phenol and catechol using proteome and transcriptome analyses. Phenol induced the HrcA, sigmaB and CtsR heat-shock regulons as well as the Spx disulfide stress regulon. Catechol caused the activation of the HrcA and CtsR heat-shock regulons and a thiol-specific oxidative stress response involving the Spx, PerR and FurR regulons but no induction of the sigmaB regulon. The most surprising result was that several catabolite-controlled genes are derepressed by catechol, even if glucose is taken up under these conditions. This derepression of the carbon catabolite control was dependent on the glucose concentration in the medium, as glucose excess increased the derepression of the CcpA-dependent lichenin utilization licBCAH operon and the ribose metabolism rbsRKDACB operon by catechol. Growth and viability experiments with catechol as sole carbon source suggested that B. subtilis is not able to utilize catechol as a carbon-energy source. In addition, the microarray results revealed the very strong induction of the yfiDE operon by catechol of which the yfiE gene shares similarities to glyoxalases/bleomycin resistance proteins/extradiol dioxygenases. Using recombinant His6-YfiE(Bs) we demonstrate that YfiE shows catechol-2,3-dioxygenase activity in the presence of catechol as the metabolite 2-hydroxymuconic semialdehyde was measured. Furthermore, both genes of the yfiDE operon are essential for the growth and viability of B. subtilis in the presence of catechol. Thus, our studies revealed that the catechol-2,3-dioxygenase YfiE is the key enzyme of a meta cleavage pathway in B. subtilis involved in the catabolism of catechol.
Collapse
Affiliation(s)
- Le Thi Tam
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald, F.-L.-Jahn-Strasse 15, D-17487 Greifswald, Germany
| | | | | | | | | | | | | |
Collapse
|
162
|
Tam LT, Antelmann H, Eymann C, Albrecht D, Bernhardt J, Hecker M. Proteome signatures for stress and starvation inBacillus subtilis as revealed by a 2-D gel image color coding approach. Proteomics 2006; 6:4565-85. [PMID: 16847875 DOI: 10.1002/pmic.200600100] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this paper we have defined proteome signatures of Bacillus subtilis in response to heat, salt, peroxide, and superoxide stress as well as after starvation for ammonium, tryptophan, glucose, and phosphate using the 2-D gel-based approach. In total, 79 stress-induced and 155 starvation-induced marker proteins were identified including 50% that are not expressed in the vegetative proteome. Fused proteome maps and a color coding approach have been used to define stress-specific regulons that are involved in specific adaptative functions (HrcA for heat, PerR and Fur for oxidative stress, RecA for peroxide, CymR and S-box for superoxide stress). In addition, starvation-specific regulons are defined that are involved in the uptake or utilization of alternative nutrient sources (TnrA, sigmaL/BkdR for ammonium; tryptophan-activated RNA-binding attenuation protein for tryptophan; CcpA, CcpN, sigmaL/AcoR for glucose; PhoPR for phosphate starvation). The general stress or starvation proteome signatures include the CtsR, Spx, sigmaL/RocR, sigmaB, sigmaH, CodY, sigmaF, and sigmaE regulons. Among these, the Spx-dependent oxidase NfrA was induced by all stress conditions indicating stress-induced protein damages. Finally, a subset of sigmaH-dependent proteins (sporulation response regulator, YvyD, YtxH, YisK, YuxI, YpiB) and the CodY-dependent aspartyl phosphatase RapA were defined as general starvation proteins that indicate the transition to stationary phase caused by starvation.
Collapse
Affiliation(s)
- Le Thi Tam
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald, Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
163
|
Ollinger J, Song KB, Antelmann H, Hecker M, Helmann JD. Role of the Fur regulon in iron transport in Bacillus subtilis. J Bacteriol 2006; 188:3664-73. [PMID: 16672620 PMCID: PMC1482855 DOI: 10.1128/jb.188.10.3664-3673.2006] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis ferric uptake regulator (Fur) protein mediates the iron-dependent repression of at least 20 operons encoding approximately 40 genes. We investigated the physiological roles of Fur-regulated genes by the construction of null mutations in 14 transcription units known or predicted to function in siderophore biosynthesis or iron uptake. We demonstrate that ywbLMN, encoding an elemental iron uptake system orthologous to the copper oxidase-dependent Fe(III) uptake system of Saccharomyces cerevisiae, is essential for growth in low iron minimal medium lacking citric acid. 2,3-Dihydroxybenzoyl-glycine (Itoic acid), the siderophore precursor produced by laboratory strains of B. subtilis, is of secondary importance. In the presence of citrate, the YfmCDEF ABC transporter is required for optimal growth. B. subtilis is unable to grow in minimal medium containing the iron chelator EDDHA unless the ability to synthesize the intact bacillibactin siderophore is restored (by the introduction of a functional sfp gene) or exogenous siderophores are provided. Utilization of the catecholate siderophores bacillibactin and enterobactin requires the FeuABC importer and the YusV ATPase. Utilization of hydroxamate siderophores requires the FhuBGC ABC transporter together with the FhuD (ferrichrome) or YxeB (ferrioxamine) substrate-binding proteins. Growth with schizokinen or arthrobactin is at least partially dependent on the YfhA YfiYZ importer and the YusV ATPase. We have also investigated the effects of a fur mutation on the proteome and documented the derepression of 11 Fur-regulated proteins, including a newly identified thioredoxin reductase homolog, YcgT.
Collapse
Affiliation(s)
- Juliane Ollinger
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | | | | | | | |
Collapse
|
164
|
Twine SM, Mykytczuk NCS, Petit MD, Shen H, Sjöstedt A, Wayne Conlan J, Kelly JF. In vivo proteomic analysis of the intracellular bacterial pathogen, Francisella tularensis, isolated from mouse spleen. Biochem Biophys Res Commun 2006; 345:1621-33. [PMID: 16730660 DOI: 10.1016/j.bbrc.2006.05.070] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 05/12/2006] [Indexed: 11/23/2022]
Abstract
Understanding the pathogenesis of infectious diseases requires comprehensive knowledge of the proteins expressed by the pathogen during in vivo growth in the host. Proteomics provides the tools for such analyses but the protocols required to purify sufficient quantities of the pathogen from the host organism are currently lacking. Here, we present a rapid immunomagnetic protocol for the separation of Francisella tularensis, a highly virulent bacterium and potential biowarfare agent, from the spleens of infected mice. In less than one hour, bacteria can be isolated in quantities sufficient to carry out meaningful proteomic comparisons with in vitro grown bacteria. Furthermore, the isolates are virtually free from contaminating host proteins. Two-dimensional gel analysis revealed a host induced proteome in which 78 proteins were differentially expressed in comparison to in vitro grown controls. The results obtained clearly demonstrate the complexity of the adaptive response of F. tularensis to the host environment, and the difficulty of mimicking such behavior in vitro.
Collapse
Affiliation(s)
- Susan M Twine
- National Research Council Canada, Institute for Biological Sciences, Ottawa, Ont.
| | | | | | | | | | | | | |
Collapse
|
165
|
Chuchue T, Tanboon W, Prapagdee B, Dubbs JM, Vattanaviboon P, Mongkolsuk S. ohrR and ohr are the primary sensor/regulator and protective genes against organic hydroperoxide stress in Agrobacterium tumefaciens. J Bacteriol 2006; 188:842-51. [PMID: 16428387 PMCID: PMC1347339 DOI: 10.1128/jb.188.3.842-851.2006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genes involved in organic hydroperoxide protection in Agrobacterium tumefaciens were functionally evaluated. Gene inactivation studies and functional analyses have identified ohr, encoding a thiol peroxidase, as the gene primarily responsible for organic hydroperoxide protection in A. tumefaciens. An ohr mutant was sensitive to organic hydroperoxide killing and had a reduced capacity to metabolize organic hydroperoxides. ohr is located next to, and is divergently transcribed from, ohrR, encoding a sensor and transcription regulator of organic hydroperoxide stress. Transcription of both ohr and ohrR was induced by exposure to organic hydroperoxides but not by exposure to other oxidants. This induction required functional ohrR. The results of gel mobility shift and DNase I footprinting assays with purified OhrR, combined with in vivo promoter deletion analyses, confirmed that OhrR regulated both ohrR and ohr by binding to a single OhrR binding box that overlapped the ohrR and ohr promoters. ohrR and ohr are both required for the establishment of a novel cumene hydroperoxide-induced adaptive response. Inactivation or overexpression of other Prx family genes (prx1, prx2, prx3, bcp1, and bcp2) did not affect either the resistance to, or the ability to degrade, organic hydroperoxide. Taken together, the results of biochemical, gene regulation and physiological studies support the role of ohrR and ohr as the primary system in sensing and protecting A. tumefaciens from organic hydroperoxide stress.
Collapse
Affiliation(s)
- Tatsanee Chuchue
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand, Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Weerachai Tanboon
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand, Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Benjaphorn Prapagdee
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand, Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - James M. Dubbs
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand, Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Paiboon Vattanaviboon
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand, Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Corresponding author. Mailing address: Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand. Phone: 662-574-0622, x1402. Fax: 662-574-2027. E-mail for S. Mongkolsuk: . E-mail for P. Vattanaviboon:
| | - Skorn Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand, Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Corresponding author. Mailing address: Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand. Phone: 662-574-0622, x1402. Fax: 662-574-2027. E-mail for S. Mongkolsuk: . E-mail for P. Vattanaviboon:
| |
Collapse
|
166
|
Even S, Burguière P, Auger S, Soutourina O, Danchin A, Martin-Verstraete I. Global control of cysteine metabolism by CymR in Bacillus subtilis. J Bacteriol 2006; 188:2184-97. [PMID: 16513748 PMCID: PMC1428143 DOI: 10.1128/jb.188.6.2184-2197.2006] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
YrzC has previously been identified as a repressor controlling ytmI expression via its regulation of YtlI activator synthesis in Bacillus subtilis. We identified YrzC as a master regulator of sulfur metabolism. Gene expression profiles of B. subtilis delta yrzC mutant and wild-type strains grown in minimal medium with sulfate as the sole sulfur source were compared. In the mutant, increased expression was observed for 24 genes previously identified as repressed in the presence of sulfate. Since several genes involved in the pathways leading to cysteine formation were found, we propose to rename YrzC CymR, for "cysteine metabolism repressor." A CymR-dependent binding to the promoter region of the ytlI, ssuB, tcyP, yrrT, yxeK, cysK, or ydbM gene was demonstrated using gel shift experiments. A potential CymR target site, TAAWNCN2ANTWNAN3ATMGGAATTW, was found in the promoter region of these genes. In a DNase footprint experiment, the protected region in the ytlI promoter region contained this consensus sequence. Partial deletion or introduction of point mutations in this sequence confirmed its involvement in ytlI, yrrT, and yxeK regulation. The addition of O-acetylserine in gel shift experiments prevented CymR-dependent binding to DNA for all of the targets characterized. Transcriptome analysis of a delta cymR mutant and the wild-type strain also brought out significant changes in the expression level of a large set of genes related to stress response or to transition toward anaerobiosis.
Collapse
Affiliation(s)
- Sergine Even
- Unité de Génétique des Génomes Bactériens, Institut Pasteur, URA CNRS 2171, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
167
|
Maalej S, Dammak I, Dukan S. The impairment of superoxide dismutase coordinates the derepression of the PerR regulon in the response of Staphylococcus aureus to HOCl stress. Microbiology (Reading) 2006; 152:855-861. [PMID: 16514164 DOI: 10.1099/mic.0.28385-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The response ofStaphylococcus aureusto hypochlorous acid (HOCl) exposure was investigated. HOCl challenges were performed on cultures interrupted in the exponential phase. Pretreatment with HOCl conferred resistance to hydrogen peroxide in a PerR-dependent manner. Derepression of the PerR regulon was observed at low HOCl concentration (survival >50 %), using several fusions of different stress promoters tolacZreporter genes. At least four members of the PerR regulon (katA,mrgA,bcpandtrxA) encoding proteins with antioxidant properties were strongly induced following exposure to various HOCl concentrations. A striking result was the link between the derepression of the PerR regulon and the decreased superoxide dismutase (SOD) activity following exposure to increased HOCl concentrations. ThesodAmutant was more resistant than the wild-type and also had a higher level of 3-phosphoglycerate dehydrogenase (a measure of PerR regulon activity) without exposure to HOCl. Together, these results imply that derepression of PerR by HOCl is dependent on the level of SOD and protects exponentially arrested cells against HOCl stress.
Collapse
Affiliation(s)
- Sami Maalej
- Laboratoire de chimie bactérienne IBSM, CNRS UPR 9043, 31, chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
- Laboratoire de Microbiologie, Faculté des Sciences de Sfax, 3018 Sfax, Tunisia
| | - Ines Dammak
- Laboratoire de Microbiologie, Faculté des Sciences de Sfax, 3018 Sfax, Tunisia
| | - Sam Dukan
- Laboratoire de chimie bactérienne IBSM, CNRS UPR 9043, 31, chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| |
Collapse
|
168
|
Vemuri GN, Aristidou AA. Metabolic engineering in the -omics era: elucidating and modulating regulatory networks. Microbiol Mol Biol Rev 2006; 69:197-216. [PMID: 15944454 PMCID: PMC1197421 DOI: 10.1128/mmbr.69.2.197-216.2005] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The importance of regulatory control in metabolic processes is widely acknowledged, and several enquiries (both local and global) are being made in understanding regulation at various levels of the metabolic hierarchy. The wealth of biological information has enabled identifying the individual components (genes, proteins, and metabolites) of a biological system, and we are now in a position to understand the interactions between these components. Since phenotype is the net result of these interactions, it is immensely important to elucidate them not only for an integrated understanding of physiology, but also for practical applications of using biological systems as cell factories. We present some of the recent "-omics" approaches that have expanded our understanding of regulation at the gene, protein, and metabolite level, followed by analysis of the impact of this progress on the advancement of metabolic engineering. Although this review is by no means exhaustive, we attempt to convey our ideology that combining global information from various levels of metabolic hierarchy is absolutely essential in understanding and subsequently predicting the relationship between changes in gene expression and the resulting phenotype. The ultimate aim of this review is to provide metabolic engineers with an overview of recent advances in complementary aspects of regulation at the gene, protein, and metabolite level and those involved in fundamental research with potential hurdles in the path to implementing their discoveries in practical applications.
Collapse
Affiliation(s)
- Goutham N Vemuri
- Center for Molecular BioEngineering, Drifmier Engineering Center, University of Georgia, Athens, 30605, USA
| | | |
Collapse
|
169
|
Rea R, Hill C, Gahan CGM. Listeria monocytogenes PerR mutants display a small-colony phenotype, increased sensitivity to hydrogen peroxide, and significantly reduced murine virulence. Appl Environ Microbiol 2006; 71:8314-22. [PMID: 16332818 PMCID: PMC1317367 DOI: 10.1128/aem.71.12.8314-8322.2005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deletion of perR in Listeria monocytogenes results in a small-colony phenotype (DeltaperRsm) that is slow growing and exhibits increased sensitivity to H2O2. At a relatively high frequency, large-colony variants (DeltaperRlg) arise, which are more resistant to H2O2 than the wild-type and ultimately dominate the culture. Transcriptional analysis revealed that the kat gene (catalase) is up-regulated in both types of mutants and that the highest level is apparent in DeltaperRsm mutants, demonstrating PerR regulation of this gene. Overexpression of the catalase gene in the wild-type background resulted in a slower-growing strain with a smaller colony size similar to that of DeltaperRsm. By combining a bioinformatic approach with experimental evidence, other PerR-regulated genes were identified, including fur, lmo0641, fri, lmo1604, hemA, and trxB. The transcriptional profile of these genes in both mutant backgrounds was similar to that of catalase in that a higher level of expression was observed in DeltaperRsm than in the wild type or DeltaperRlg. Murine studies revealed that the virulence potential of the DeltaperRsm mutant is substantially reduced compared to that of the wild-type and DeltaperRlg strains. Collectively, the data demonstrate that the DeltaperRsm mutant represents the true phenotype associated with the absence of PerR, which is linked to overexpression of regulated genes that negatively affect bacterial homeostasis both in vitro and in vivo. A subsequent secondary mutation occurred at a high frequency, which resulted in phenotypic reversion to a large-colony phenotype with increased fitness that may have obstructed the analysis of the role of PerR in the physiology of the bacterial cell.
Collapse
Affiliation(s)
- Rosemarie Rea
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
170
|
Engels S, Ludwig C, Schweitzer JE, Mack C, Bott M, Schaffer S. The transcriptional activator ClgR controls transcription of genes involved in proteolysis and DNA repair in Corynebacterium glutamicum. Mol Microbiol 2005; 57:576-91. [PMID: 15978086 DOI: 10.1111/j.1365-2958.2005.04710.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Expression of the structural genes encoding the ATP-dependent proteases ClpCP and Lon in Corynebacterium glutamicum and Streptomyces lividans is activated by the transcriptional regulator ClgR in response to yet unknown environmental stimuli. As it was not known whether ClgR controls expression of additional genes we used DNA microarrays in order to comprehensively define the ClgR regulon in C. glutamicum. The mRNA levels of 16 genes decreased >/= 2-fold in a DeltaclgRDeltaclpC mutant (ClgR absent) compared with a DeltaclpC mutant (ClgR present). For five genes in four operons (NCgl0748, ptrB, hflX and NCgl0240-recR) regulation by ClgR could be independently verified by primer extension analyses and confirmation of binding of purified ClgR to the regulatory regions of these operons. ptrB encodes an endopeptidase, which is consistent with the proteolytic functions of the genes already known to be under ClgR control. However, RecR is unrelated to proteolysis but required for recombinational repair of UV-induced DNA damage. Possibly ClgR-dependent activation of gene expression is triggered by environmental stresses damaging both proteins and nucleic acids, although DNA damage induced by UV radiation and mitomycin C treatment did not result in ClgR-dependent transcriptional activation of any of the newly identified ClgR regulon members. In order to functionally analyse the NCgl0748 and hflX genes we have constructed C. glutamicum strains with deletions in these genes. The DeltaNCgl0748 mutant displayed reduced growth rates in minimal and rich media. The NCgl0748 protein was shown to be localized in the cytoplasm only, while the HflX pool is equally distributed between cytoplasm and plasma membrane. In order to study the proposed degradation of ClgR by ClpCP we have constructed a conditional clpP1P2 mutant. Depletion of ClpP1 and ClpP2 in that strain resulted in the accumulation of ClgR, indicating that ClgR is in fact a substrate of the ClpCP1 and/or ClpCP2 protease in C. glutamicum.
Collapse
Affiliation(s)
- Sabine Engels
- Institute of Biotechnology 1, Research Centre Jülich, D-52425 Jülich, Germany
| | | | | | | | | | | |
Collapse
|
171
|
Au N, Kuester-Schoeck E, Mandava V, Bothwell LE, Canny SP, Chachu K, Colavito SA, Fuller SN, Groban ES, Hensley LA, O'Brien TC, Shah A, Tierney JT, Tomm LL, O'Gara TM, Goranov AI, Grossman AD, Lovett CM. Genetic composition of the Bacillus subtilis SOS system. J Bacteriol 2005; 187:7655-66. [PMID: 16267290 PMCID: PMC1280312 DOI: 10.1128/jb.187.22.7655-7666.2005] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SOS response in bacteria includes a global transcriptional response to DNA damage. DNA damage is sensed by the highly conserved recombination protein RecA, which facilitates inactivation of the transcriptional repressor LexA. Inactivation of LexA causes induction (derepression) of genes of the LexA regulon, many of which are involved in DNA repair and survival after DNA damage. To identify potential RecA-LexA-regulated genes in Bacillus subtilis, we searched the genome for putative LexA binding sites within 300 bp upstream of the start codons of all annotated open reading frames. We found 62 genes that could be regulated by putative LexA binding sites. Using mobility shift assays, we found that LexA binds specifically to DNA in the regulatory regions of 54 of these genes, which are organized in 34 putative operons. Using DNA microarray analyses, we found that 33 of the genes with LexA binding sites exhibit RecA-dependent induction by both mitomycin C and UV radiation. Among these 33 SOS genes, there are 22 distinct LexA binding sites preceding 18 putative operons. Alignment of the distinct LexA binding sites reveals an expanded consensus sequence for the B. subtilis operator: 5'-CGAACATATGTTCG-3'. Although the number of genes controlled by RecA and LexA in B. subtilis is similar to that of Escherichia coli, only eight B. subtilis RecA-dependent SOS genes have homologous counterparts in E. coli.
Collapse
Affiliation(s)
- Nora Au
- Department of Chemistry, Williams College, Williamstown, MA 01267, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Verneuil N, Rincé A, Sanguinetti M, Posteraro B, Fadda G, Auffray Y, Hartke A, Giard JC. Contribution of a PerR-like regulator to the oxidative-stress response and virulence of Enterococcus faecalis. Microbiology (Reading) 2005; 151:3997-4004. [PMID: 16339944 DOI: 10.1099/mic.0.28325-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PerR is one of the most important transcriptional regulators involved in the oxidative-stress response in Bacillus subtilis. Here, the homologous gene in Enterococcus faecalis, ranked among the leading causes of nosocomial infection, was characterized and analysed. Phenotype analysis showed that the perR mutant was significantly more resistant to H2O2 challenge (P<0·05). Expression of eight genes with potential roles in the oxidative-stress response was determined in the wild-type and perR-mutant strains by real-time quantitative PCR. Surprisingly, low quantitative differences in the transcriptional activity of these genes in the mutant versus wild-type were observed. Likewise, this locus was not involved in survival within murine macrophages, but in the mouse peritonitis model, the perR mutant appeared less lethal than the JH2-2 wild-type strain. The combined results show that PerR affects E. faecalis virulence and that its implication in the transcriptional regulation in this bacterium deviates from the B. subtilis model.
Collapse
Affiliation(s)
- Nicolas Verneuil
- Laboratoire de Microbiologie de l'Environnement, EA 956 soutenue par l'INRA, IRBA, Université de Caen, 14032 Caen Cedex, France
| | - Alain Rincé
- Laboratoire de Microbiologie de l'Environnement, EA 956 soutenue par l'INRA, IRBA, Université de Caen, 14032 Caen Cedex, France
| | - Maurizio Sanguinetti
- Institute of Microbiology, Catholic University of Sacred Heart, L. go F. Vito 1, 00168, Rome, Italy
| | - Brunella Posteraro
- Institute of Microbiology, Catholic University of Sacred Heart, L. go F. Vito 1, 00168, Rome, Italy
| | - Giovanni Fadda
- Institute of Microbiology, Catholic University of Sacred Heart, L. go F. Vito 1, 00168, Rome, Italy
| | - Yanick Auffray
- Laboratoire de Microbiologie de l'Environnement, EA 956 soutenue par l'INRA, IRBA, Université de Caen, 14032 Caen Cedex, France
| | - Axel Hartke
- Laboratoire de Microbiologie de l'Environnement, EA 956 soutenue par l'INRA, IRBA, Université de Caen, 14032 Caen Cedex, France
| | - Jean-Christophe Giard
- Laboratoire de Microbiologie de l'Environnement, EA 956 soutenue par l'INRA, IRBA, Université de Caen, 14032 Caen Cedex, France
| |
Collapse
|
173
|
Burguière P, Fert J, Guillouard I, Auger S, Danchin A, Martin-Verstraete I. Regulation of the Bacillus subtilis ytmI operon, involved in sulfur metabolism. J Bacteriol 2005; 187:6019-30. [PMID: 16109943 PMCID: PMC1196162 DOI: 10.1128/jb.187.17.6019-6030.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The YtlI regulator of Bacillus subtilis activates the transcription of the ytmI operon encoding an l-cystine ABC transporter, a riboflavin kinase, and proteins of unknown function. The expression of the ytlI gene and the ytmI operon was high with methionine and reduced with sulfate. Using deletions and site-directed mutagenesis, a cis-acting DNA sequence important for YtlI-dependent regulation was identified upstream from the -35 box of ytmI. Gel mobility shift assays confirmed that YtlI specifically interacted with this sequence. The replacement of the sulfur-regulated ytlI promoter by the xylA promoter led to constitutive expression of a ytmI'-lacZ fusion in a ytlI mutant, suggesting that the repression of ytmI expression by sulfate was mainly at the level of YtlI synthesis. We further showed that the YrzC regulator negatively controlled ytlI expression while this repressor also acted on ytmI expression via YtlI. The cascade of regulation observed in B. subtilis is conserved in Listeria spp. Both a YtlI-like regulator and a ytmI-type operon are present in Listeria spp. Indeed, the Lmo2352 protein from Listeria monocytogenes was able to replace YtlI for the activation of ytmI expression and a lmo2352'-lacZ fusion was repressed in the presence of sulfate via YrzC in B. subtilis. A common motif, AT(A/T)ATTCCTAT, was found in the promoter region of the ytlI and lmo2352 genes. Deletion of part of this motif or the introduction of point mutations in this sequence confirmed its involvement in ytlI regulation.
Collapse
Affiliation(s)
- Pierre Burguière
- Unité de Génétique des Génomes Bactériens, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
174
|
Hayashi K, Ohsawa T, Kobayashi K, Ogasawara N, Ogura M. The H2O2 stress-responsive regulator PerR positively regulates srfA expression in Bacillus subtilis. J Bacteriol 2005; 187:6659-67. [PMID: 16166527 PMCID: PMC1251593 DOI: 10.1128/jb.187.19.6659-6667.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
srfA is an operon required for the synthesis of surfactin and the development of genetic competence in Bacillus subtilis. We observed that the expression of srfA is downregulated upon treatment with H2O2. Thus, we examined the involvement of several oxidative stress-responsive transcription factors in srfA expression. Our DNA microarray analysis revealed that the H2O2 stress-responsive regulator PerR is required for srfA expression. This was confirmed by lacZ fusion analysis. A ComX feeding assay and epistatic analyses revealed that the role of PerR in srfA expression is independent of other known regulators of srfA expression, namely, comQXP, rapC, and spx. Gel mobility shift and footprint assays revealed that PerR binds directly to two tandemly arranged noncanonical PerR boxes located in the upstream promoter region of srfA. A transcriptional srfA-lacZ fusion lacking both PerR boxes showed diminished and PerR-independent expression, indicating that the PerR boxes we identified function as positive cis elements for srfA transcription.
Collapse
Affiliation(s)
- Kentaro Hayashi
- Department of Marine Science, School of Marine Science and Technology, Tokai University, 3-20-1 Orido, Shimizu, Shizuoka 424-8610, Japan
| | | | | | | | | |
Collapse
|
175
|
Vanderauwera S, Zimmermann P, Rombauts S, Vandenabeele S, Langebartels C, Gruissem W, Inzé D, Van Breusegem F. Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. PLANT PHYSIOLOGY 2005; 139:806-21. [PMID: 16183842 PMCID: PMC1255997 DOI: 10.1104/pp.105.065896] [Citation(s) in RCA: 363] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 07/20/2005] [Accepted: 07/25/2005] [Indexed: 05/04/2023]
Abstract
In plants, reactive oxygen species and, more particularly, hydrogen peroxide (H(2)O(2)) play a dual role as toxic by-products of normal cell metabolism and as regulatory molecules in stress perception and signal transduction. Peroxisomal catalases are an important sink for photorespiratory H(2)O(2). Using ATH1 Affymetrix microarrays, expression profiles were compared between control and catalase-deficient Arabidopsis (Arabidopsis thaliana) plants. Reduced catalase levels already provoked differences in nuclear gene expression under ambient growth conditions, and these effects were amplified by high light exposure in a sun simulator for 3 and 8 h. This genome-wide expression analysis allowed us to reveal the expression characteristics of complete pathways and functional categories during H(2)O(2) stress. In total, 349 transcripts were significantly up-regulated by high light in catalase-deficient plants and 88 were down-regulated. From this data set, H(2)O(2) was inferred to play a key role in the transcriptional up-regulation of small heat shock proteins during high light stress. In addition, several transcription factors and candidate regulatory genes involved in H(2)O(2) transcriptional gene networks were identified. Comparisons with other publicly available transcriptome data sets of abiotically stressed Arabidopsis revealed an important intersection with H(2)O(2)-deregulated genes, positioning elevated H(2)O(2) levels as an important signal within abiotic stress-induced gene expression. Finally, analysis of transcriptional changes in a combination of a genetic (catalase deficiency) and an environmental (high light) perturbation identified a transcriptional cluster that was strongly and rapidly induced by high light in control plants, but impaired in catalase-deficient plants. This cluster comprises the complete known anthocyanin regulatory and biosynthetic pathway, together with genes encoding unknown proteins.
Collapse
Affiliation(s)
- Sandy Vanderauwera
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Stohl EA, Criss AK, Seifert HS. The transcriptome response of Neisseria gonorrhoeae to hydrogen peroxide reveals genes with previously uncharacterized roles in oxidative damage protection. Mol Microbiol 2005; 58:520-32. [PMID: 16194237 PMCID: PMC2612779 DOI: 10.1111/j.1365-2958.2005.04839.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Symptomatic gonococcal infection, caused by the pathogen Neisseria gonorrhoeae (Gc), is characterized by the influx of polymorphonuclear leukocytes (PMNs) to the site of infection. Although PMNs possess several mechanisms of oxidative killing, intact Gc can be found associated with PMNs, suggesting that gonococcal defences against oxidative stress are crucial for its ability to evade killing by PMNs. We used microarrays to identify genes that were differentially expressed after transient exposure of Gc to hydrogen peroxide (H2O2). Of the 75 genes found to be upregulated after H2O2 treatment, over one-quarter, including two of the most highly upregulated genes (NGO1686 and NGO554), were predicted to encode proteins with unknown functions. Further characterization of a subset of these upregulated genes demonstrated that NGO1686, a putative zinc metalloprotease, protects against oxidative damage caused by both H2O2 and cumene hydroperoxide, and that NGO554, a Gc-specific protein, acts to protect against damage caused by high levels of H2O2. Our current study also ascribes a role in H2O2 damage protection to recN, a gene previously characterized for its role in DNA repair. A PMN survival assay demonstrated that the recN and NGO1686 mutants were more susceptible to killing than the parent strain FA1090. These results define for the first time the robust transcriptional response to H2O2 by this strict human pathogen and underscore the importance of this system for survival to host defences.
Collapse
Affiliation(s)
- Elizabeth A Stohl
- Northwestern University, Feinberg School of Medicine, Department of Microbiology-Immunology, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | | | | |
Collapse
|
177
|
Hochgräfe F, Mostertz J, Albrecht D, Hecker M. Fluorescence thiol modification assay: oxidatively modified proteins inBacillus subtilis. Mol Microbiol 2005; 58:409-25. [PMID: 16194229 DOI: 10.1111/j.1365-2958.2005.04845.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Oxidatively modified thiol groups of cysteine residues are known to modulate the activity of a growing number of proteins. In this study, we developed a fluorescence-based thiol modification assay and combined it with two-dimensional gel electrophoresis and mass spectrometry to monitor the in vivo thiol state of cytoplasmic proteins. For the Gram-positive model organism Bacillus subtilis our results show that protein thiols of growing cells are mainly present in the reduced state. Only a few proteins were found to be thiol-modified, e.g. enzymes that include oxidized thiols in their catalytic cycle. To detect proteins that are particularly sensitive to oxidative stress we exposed growing B. subtilis cells to diamide, hydrogen peroxide or to the superoxide generating agent paraquat. Diamide mediated a significant increase of oxidized thiols in a variety of metabolic enzymes, whereas treatment with paraquat affected only a few proteins. Exposure to hydrogen peroxide forced the oxidation especially of proteins with active site cysteines, e.g. of cysteine-based peroxidases and glutamine amidotransferase-like proteins. Moreover, high levels of hydrogen peroxide were observed to influence the isoelectric point of proteins of this group indicating the generation of irreversibly oxidated thiols. From the overlapping set of oxidatively modified proteins, also enzymes necessary for methionine biosynthesis were identified, e.g. cobalamin-independent methionine synthase MetE. Growth experiments revealed a methionine limitation after diamide and hydrogen peroxide stress, which suggests a thiol-oxidation-dependent inactivation of MetE. Finally, evidence is presented that the antibiotic nitrofurantoin mediates the formation of oxidized thiols in B. subtilis.
Collapse
Affiliation(s)
- Falko Hochgräfe
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald, F.-L.-Jahn-Strasse 15, D-17487 Greifswald, Germany
| | | | | | | |
Collapse
|
178
|
Topanurak S, Sinchaikul S, Phutrakul S, Sookkheo B, Chen ST. Proteomics viewed on stress response of thermophilic bacteriumBacillus stearothermophilus TLS33. Proteomics 2005; 5:3722-30. [PMID: 16127733 DOI: 10.1002/pmic.200401254] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Thermophilic bacterium Bacillus stearothermophilus TLS33, isolated from a hot spring in Chiang Mai, Thailand, usually produces many enzymes that are very useful for industrial applications. However, the functional properties and mechanisms of this bacterium under stress conditions are rarely reported and still need more understanding on how the bacterium can survive in stress environments. In this study, we examined the oxidative stress induced proteins of this bacterium by proteomic approach combining two-dimensional electrophoresis and mass spectrometry. When the bacterium encountered oxidative stress, peroxiredoxin, as an antioxidant enzyme, is one of the interesting stressed proteins which appeared to be systematically increased with different pI. There are four isoforms of peroxiredoxin, denoted as Prx I, Prx II, Prx III and Prx IV, which are observed at the same molecular weight of 27 kDa but differ in pI values of 5.0, 4.87, 4.81 and 4.79, respectively. The H2O2 concentration directly increased Prx II, Prx III and Prx IV intensities, but decreased Prx I intensity. These shifting of peroxiredoxin isoforms may occur by a post-translational modification. Otherwise, the longer time of oxidative stress had not affected the expression level of peroxiredoxin isoforms. Therefore, this finding of peroxiredoxin intends to know the bacterial adaptation under oxidative stress. Otherwise, this protein plays an important role in many physiological processes and able to use in the industrial applications.
Collapse
Affiliation(s)
- Supachai Topanurak
- Institute of Biological Chemistry and Genomics, Academia Sinica, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
179
|
Bugrysheva JV, Bryksin AV, Godfrey HP, Cabello FC. Borrelia burgdorferi rel is responsible for generation of guanosine-3'-diphosphate-5'-triphosphate and growth control. Infect Immun 2005; 73:4972-81. [PMID: 16041012 PMCID: PMC1201186 DOI: 10.1128/iai.73.8.4972-4981.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The global transcriptional regulator (p)ppGpp (guanosine-3'-diphosphate-5'-triphosphate and guanosine-3',5'-bisphosphate, collectively) produced by the relA and spoT genes in Escherichia coli allows bacteria to adapt to different environmental stresses. The genome of Borrelia burgdorferi encodes a single chromosomal rel gene (BB0198) (B. burgdorferi rel [rel(Bbu)]) homologous to relA and spoT of E. coli. Its role in (p)ppGpp synthesis, bacterial growth, and modulation of gene expression has not been studied in detail. We constructed a rel(Bbu) deletion mutant in an infectious B. burgdorferi 297 strain and isolated an extrachromosomally complemented derivative of this mutant. The mutant did not synthesize rel(Bbu) mRNA, Rel(Bbu) protein, or (p)ppGpp. This synthesis was restored in the complemented derivative, confirming that rel(Bbu) is necessary and sufficient for (p)ppGpp synthesis and degradation in B. burgdorferi. The rel(Bbu) mutant grew well during log phase in complete BSK-H but reached lower cell concentrations in the stationary phase than the wild-type parent, suggesting that (p)ppGpp may be an important factor in the ability of B. burgdorferi to adapt to stationary phase. Deletion of rel(Bbu) did not eliminate the temperature-elicited OspC shift, nor did it alter bmp gene expression or B. burgdorferi antibiotic susceptibility. Although deletion of rel(Bbu) eliminated B. burgdorferi virulence for mice, which was not restored by complementation, we suggest that rel(Bbu)-dependent accumulation of (p)ppGpp may be important for in vivo survival of this pathogen.
Collapse
Affiliation(s)
- Julia V Bugrysheva
- Department of Microbiology and Immunology, Basic Science Building, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
180
|
Smits WK, Dubois JYF, Bron S, van Dijl JM, Kuipers OP. Tricksy business: transcriptome analysis reveals the involvement of thioredoxin A in redox homeostasis, oxidative stress, sulfur metabolism, and cellular differentiation in Bacillus subtilis. J Bacteriol 2005; 187:3921-30. [PMID: 15937154 PMCID: PMC1151711 DOI: 10.1128/jb.187.12.3921-3930.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Thioredoxins are important thiol-reactive proteins. Most knowledge about this class of proteins is derived from proteome studies, and little is known about the global transcriptional response of cells to various thioredoxin levels. In Bacillus subtilis, thioredoxin A is encoded by trxA and is essential for viability. In this study, we report the effects of minimal induction of a strain carrying an IPTG (isopropyl-beta-D-thiogalactopyranoside)-inducible trxA gene (ItrxA) on transcription levels, as determined by DNA macroarrays. The effective depletion of thioredoxin A leads to the induction of genes involved in the oxidative stress response (but not those dependent on PerR), phage-related functions, and sulfur utilization. Also, several stationary-phase processes, such as sporulation and competence, are affected. The majority of these phenotypes are rescued by a higher induction level of ItrxA, leading to an approximately wild-type level of thioredoxin A protein. A comparison with other studies shows that the effects of thioredoxin depletion are distinct from, but show some similarity to, oxidative stress and disulfide stress. Some of the transcriptional effects may be linked to thioredoxin-interacting proteins. Finally, thioredoxin-linked processes appear to be conserved between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Wiep Klaas Smits
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | |
Collapse
|
181
|
Bandow JE. Proteomic approaches to antibiotic drug discovery. CURRENT PROTOCOLS IN MICROBIOLOGY 2005; Chapter 1:Unit 1F.2. [PMID: 18770548 DOI: 10.1002/9780471729259.mc01f02s00] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The global analysis of changes in the protein composition of bacterial cells in response to treatment with antibiotic agents grants insight into the physiological response of cells to inhibition of vital cellular functions. This unit gives an overview of how these global proteomic studies can impact antibacterial drug discovery by identifying or validating compound mechanism of action and by increasing the confidence in the value of genes with unknown function as potential new targets. It describes the design and function of a reference compendium of proteomic responses to inhibition of vital cellular functions through antibacterial agents or genetic down-regulation of potential target genes. An overview of the workflow for two-dimensional gel electrophoresis-based experiments is also presented.
Collapse
|
182
|
Cao M, Moore CM, Helmann JD. Bacillus subtilis paraquat resistance is directed by sigmaM, an extracytoplasmic function sigma factor, and is conferred by YqjL and BcrC. J Bacteriol 2005; 187:2948-56. [PMID: 15838020 PMCID: PMC1082808 DOI: 10.1128/jb.187.9.2948-2956.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Bacillus subtilis sigM null mutant, lacking the extracytoplasmic function sigma(M) protein, was sensitive to paraquat (PQ), a superoxide-generating reagent, but not to the redox stress-inducing compounds hydrogen peroxide, cumene hydroperoxide, t-butyl hydroperoxide, or diamide. Surprisingly, a sigM mutant was only sensitive to superoxide-generating compounds with a dipyridyl ring such as PQ, ethyl viologen, benzyl viologen, and diquat but not to menadione, plumbagin, pyrogallol, or nitrofurantoin. Mutational analysis of candidate sigma(M)-regulated genes revealed that both YqjL, a putative hydrolase, and BcrC, a bacitracin resistance protein, were involved in PQ resistance. Expression of yqjL, but not bcrC, from a xylose-inducible promoter restored PQ resistance to the sigM mutant.
Collapse
Affiliation(s)
- Min Cao
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | | | |
Collapse
|
183
|
Rediers H, Rainey PB, Vanderleyden J, De Mot R. Unraveling the secret lives of bacteria: use of in vivo expression technology and differential fluorescence induction promoter traps as tools for exploring niche-specific gene expression. Microbiol Mol Biol Rev 2005; 69:217-61. [PMID: 15944455 PMCID: PMC1197422 DOI: 10.1128/mmbr.69.2.217-261.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major challenge for microbiologists is to elucidate the strategies deployed by microorganisms to adapt to and thrive in highly complex and dynamic environments. In vitro studies, including those monitoring genomewide changes, have proven their value, but they can, at best, mimic only a subset of the ensemble of abiotic and biotic stimuli that microorganisms experience in their natural habitats. The widely used gene-to-phenotype approach involves the identification of altered niche-related phenotypes on the basis of gene inactivation. However, many traits contributing to ecological performance that, upon inactivation, result in only subtle or difficult to score phenotypic changes are likely to be overlooked by this otherwise powerful approach. Based on the premise that many, if not most, of the corresponding genes will be induced or upregulated in the environment under study, ecologically significant genes can alternatively be traced using the promoter trap techniques differential fluorescence induction and in vivo expression technology (IVET). The potential and limitations are discussed for the different IVET selection strategies and system-specific variants thereof. Based on a compendium of genes that have emerged from these promoter-trapping studies, several functional groups have been distinguished, and their physiological relevance is illustrated with follow-up studies of selected genes. In addition to confirming results from largely complementary approaches such as signature-tagged mutagenesis, some unexpected parallels as well as distinguishing features of microbial phenotypic acclimation in diverse environmental niches have surfaced. On the other hand, by the identification of a large proportion of genes with unknown function, these promoter-trapping studies underscore how little we know about the secret lives of bacteria and other microorganisms.
Collapse
Affiliation(s)
- Hans Rediers
- Centre of Microbial and Plant Genetics, Heverlee, Belgium
| | | | | | | |
Collapse
|
184
|
Streker K, Freiberg C, Labischinski H, Hacker J, Ohlsen K. Staphylococcus aureus NfrA (SA0367) is a flavin mononucleotide-dependent NADPH oxidase involved in oxidative stress response. J Bacteriol 2005; 187:2249-56. [PMID: 15774866 PMCID: PMC1065224 DOI: 10.1128/jb.187.7.2249-2256.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The NfrA protein, a putative essential oxidoreductase in the soil bacterium Bacillus subtilis, is induced under heat shock and oxidative stress conditions. In order to characterize the function of an homologous NfrA protein in Staphylococcus aureus, an nfrA deletion strain was constructed, the protein was purified, the enzymatic activity was determined, and the transcriptional regulation was investigated. The experiments revealed that NfrA is not essential in S. aureus. The purified protein oxidized NADPH but not NADH, producing NADP in the presence of flavin mononucleotide, suggesting that NfrA is an NADPH oxidase in S. aureus. In addition, the NfrA enzyme showed nitroreductase activity and weak disulfide reductase activity. Transcription was strongly induced by ethanol, diamide, and nitrofurantoin. Hydrogen peroxide induced nfrA transcription only at high concentrations. The expression of nfrA was independent of the alternative sigma factor sigma(B). Furthermore, the transcriptional start site was determined, which allowed identification of a PerR box homologous sequence upstream of the nfrA promoter. The observations presented here suggest that NfrA is a nonessential NADPH oxidoreductase which may play a role in the oxidative stress response of S. aureus, especially in keeping thiol-disulfide stress in balance.
Collapse
Affiliation(s)
- Karin Streker
- Institut für Molekulare Infektionsbiologie, Röntgenring 11, D-97070 Würzburg, Germany
| | | | | | | | | |
Collapse
|
185
|
Barreiro C, González-Lavado E, Brand S, Tauch A, Martín JF. Heat shock proteome analysis of wild-type Corynebacterium glutamicum ATCC 13032 and a spontaneous mutant lacking GroEL1, a dispensable chaperone. J Bacteriol 2005; 187:884-9. [PMID: 15659666 PMCID: PMC545734 DOI: 10.1128/jb.187.3.884-889.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Accepted: 10/26/2004] [Indexed: 11/20/2022] Open
Abstract
Proteome analysis of Corynebacterium glutamicum ATCC 13032 showed that levels of several proteins increased drastically in response to heat shock. These proteins were identified as DnaK, GroEL1, GroEL2, ClpB, GrpE, and PoxB, and their heat response was in agreement with previous transcriptomic results. A major heat-induced protein was absent in the proteome of strain 13032B of C. glutamicum, used for genome sequencing in Germany, compared with the wild-type ATCC 13032 strain. The missing protein was identified as GroEL1 by matrix-assisted laser desorption ionization-time of flight peptide mass fingerprinting, and the mutation was found to be due to an insertion sequence, IsCg1, that was integrated at position 327 downstream of the translation start codon of the groEL1 gene, resulting in a truncated transcript of this gene, as shown by Northern analysis. The GroEL1 chaperone is, therefore, dispensable in C. glutamicum. On the other hand, GroEL2 appears to be essential for growth. Based on these results, the role of the duplicate groEL1 and groEL2 genes is analyzed.
Collapse
Affiliation(s)
- Carlos Barreiro
- Institute of Biotechnology of León, INBIOTEC, Parque Científico de León, Av. Real, 1, 24006 León, Spain
| | | | | | | | | |
Collapse
|
186
|
Jürgen B, Tobisch S, Wümpelmann M, Gördes D, Koch A, Thurow K, Albrecht D, Hecker M, Schweder T. Global expression profiling ofBacillus subtilis cells during industrial-close fed-batch fermentations with different nitrogen sources. Biotechnol Bioeng 2005; 92:277-98. [PMID: 16178035 DOI: 10.1002/bit.20579] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A detailed gene expression analysis of industrial-close Bacillus subtilis fed-batch fermentation processes with casamino acids as the only nitrogen source and with a reduced casamino acid concentration but supplemented by ammonia was carried out. Although glutamine and arginine are supposed to be the preferred nitrogen sources of B. subtilis, we demonstrate that a combined feeding of ammonia and casamino acids supports cell growth under fed-batch fermentation conditions. The transcriptome and proteome analyses revealed that the additional feeding of ammonia in combination with a reduced amino acid concentration results in a significantly lower expression level of the glnAR or tnrA genes, coding for proteins, which are mainly involved in the nitrogen metabolism of B. subtilis. However, the mRNA levels of the genes of the ilvBHC-leuABD and hom-thrCB operons were significantly increased, indicating a valine, leucine, isoleucine, and threonine limitation under these fermentation conditions. In contrast, during the fermentation with casamino acids as the only nitrogen source, several genes, which play a crucial role in nitrogen metabolism of B. subtilis (e.g., glnAR, nasCDE, nrgAB, and ureABC), were up-regulated, indicating a nitrogen limitation under these conditions. Furthermore, increased expression of genes, which are involved in motility and chemotaxis (e.g., hag, fliT) and in acetoin metabolism (e.g., acoABCL), was determined during the fermentation with the mixed nitrogen source of casamino acids and ammonia, indicating a carbon limitation under these fermentation conditions. Under high cell density and slow growth rate conditions a weak up-regulation of autolysis genes could be observed as well as the induction of a number of genes involved in motility, chemotaxis and general stress response. Results of this study allowed the selection of marker genes, which could be used for the monitoring of B. subtilis fermentation processes. The data suggest for example acoA as a marker gene for glucose limitation or glnA as an indicator for nitrogen limitation.
Collapse
Affiliation(s)
- Britta Jürgen
- Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, F.L. Jahnstrasse 15, D-17487 Greifswald, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Erill I, Jara M, Salvador N, Escribano M, Campoy S, Barbé J. Differences in LexA regulon structure among Proteobacteria through in vivo assisted comparative genomics. Nucleic Acids Res 2004; 32:6617-26. [PMID: 15604457 PMCID: PMC545464 DOI: 10.1093/nar/gkh996] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The LexA regulon encompasses an ensemble of genes involved in preserving cell viability under massive DNA damage and is present in most bacterial phyla. Up to date, however, the scope of this network had only been assessed in the Gamma Proteobacteria. Here, we report the structure of the LexA regulon in the Alpha Proteobacteria, using a combined approach that makes use of in vitro and in vivo techniques to assist and validate the comparative genomics in silico methodology. This leads to the first experimentally validated description of the LexA regulon in the Alpha Proteobacteria, and comparison of regulon core structures in both classes suggests that a least common multiple set of genes (recA, ssb, uvrA and ruvCAB) might be a defining property of the Proteobacteria LexA network.
Collapse
Affiliation(s)
- Ivan Erill
- Biomedical Applications Group, Centro Nacional de Microelectrónica, 08193 Bellaterra, Spain
| | | | | | | | | | | |
Collapse
|
188
|
Hecker M, Völker U. Towards a comprehensive understanding ofBacillus subtiliscell physiology by physiological proteomics. Proteomics 2004; 4:3727-50. [PMID: 15540212 DOI: 10.1002/pmic.200401017] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Using Bacillus subtilis as a model system for functional genomics, this review will provide insights how proteomics can be used to bring the virtual life of genes to the real life of proteins. Physiological proteomics will generate a new and broad understanding of cellular physiology because the majority of proteins synthesized in the cell can be visualized. From a physiological point of view two major proteome fractions can be distinguished: proteomes of growing cells and proteomes of nongrowing cells. In the main analytical window almost 50% of the vegetative proteome expressed in growing cells of B. subtilis were identified. This proteomic view of growing cells can be employed for analyzing the regulation of entire metabolic pathways and thus opens the chance for a comprehensive understanding of metabolism and growth processes of bacteria. Proteomics, on the other hand, is also a useful tool for analyzing the adaptational network of nongrowing cells that consists of several partially overlapping regulation groups induced by stress/starvation stimuli. Furthermore, proteomic signatures for environmental stimuli can not only be applied to predict the physiological state of cells, but also offer various industrial applications from fermentation monitoring up to the analysis of the mode of action of drugs. Even if DNA array technologies currently provide a better overview of the gene expression profile than proteome approaches, the latter address biological problems in which they can not be replaced by mRNA profiling procedures. This proteomics of the second generation is a powerful tool for analyzing global control of protein stability, the protein interaction network, protein secretion or post-translational modifications of proteins on the way towards the elucidation of the mystery of life.
Collapse
Affiliation(s)
- Michael Hecker
- Institute for Microbiology, Erst-Moritz-Arndt-University, Greifswald, Germany.
| | | |
Collapse
|