151
|
Brüssow H. Pandemic potential of poxviruses: From an ancient killer causing smallpox to the surge of monkeypox. Microb Biotechnol 2023; 16:1723-1735. [PMID: 37335284 PMCID: PMC10443337 DOI: 10.1111/1751-7915.14294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/04/2023] [Indexed: 06/21/2023] Open
Abstract
Smallpox caused by the variola virus (VARV) was one of the greatest infectious killers of mankind. Historical records trace back smallpox for at least a millennium while phylogenetic analysis dated the ancestor of VARV circulating in the 20th century into the 19th century. The discrepancy was solved by the detection of distinct VARV sequences first in 17th-century mummies and then in human skeletons dated to the 7th century. The historical records noted marked variability in VARV virulence which scientists tentatively associated with gene losses occurring when broad-host poxviruses narrow their host range to a single host. VARV split from camel and gerbil poxviruses and had no animal reservoir, a prerequisite for its eradication led by WHO. The search for residual pockets of VARV led to the discovery of the monkeypox virus (MPXV); followed by the detection of endemic smallpox-like monkeypox (mpox) disease in Africa. Mpox is caused by less virulent clade 2 MPXV in West Africa and more virulent clade 1 MPXV in Central Africa. Exported clade 2 mpox cases associated with the pet animal trade were observed in 2003 in the USA. In 2022 a world-wide mpox epidemic infecting more than 80,000 people was noted, peaking in August 2022 although waning rapidly. The cases displayed particular epidemiological characteristics affecting nearly exclusively young men having sex with men (MSM). In contrast, mpox in Africa mostly affects children by non-sexual transmission routes possibly from uncharacterized animal reservoirs. While African children show a classical smallpox picture, MSM mpox cases show few mostly anogenital lesions, low-hospitalization rates and 140 fatal cases worldwide. MPXV strains from North America and Europe are closely related, derived from clade 2 African MPXV. Distinct transmission mechanisms are more likely causes for the epidemiological and clinical differences between endemic African cases and the 2022 epidemic cases than viral traits.
Collapse
Affiliation(s)
- Harald Brüssow
- Laboratory of Gene Technology, Department of BiosystemsKU LeuvenLeuvenBelgium
| |
Collapse
|
152
|
Molina IS, Jimenez-Vasquez V, Lizarraga W, Sevilla N, Hurtado V, Padilla-Rojas C. Sub-lineage B.1.6 of hMPXV in a global context: Phylogeny and epidemiology. J Med Virol 2023; 95:e29056. [PMID: 37671858 DOI: 10.1002/jmv.29056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/26/2023] [Accepted: 08/14/2023] [Indexed: 09/07/2023]
Abstract
During the 2022 COVID-19 pandemic, monkeypox emerged as a significant threat to global health. The virus responsible for the disease, the human monkeypox virus (hMPXV), underwent various genetic changes, resulting in the emergence of over a dozen distinct lineages, which could be identified by only a small number of unique mutations. As of January 25, 2023, genomic information of hMPXV generated had reached 4632 accessions in the GISAID database. In this study, we aimed to investigate the epidemiological and phylogenetic characteristics of the B.1.6 sub-lineage of hMPXV in Peru, compared with other circulating sub-lineages during the global outbreak. The B.1.6 sub-lineage, characterized by the 111029G>A mutation, was estimated to have emerged in June 2022 and was found mainly in Peru. Most cases (95.8%) were men with an average age of 33 years, and nearly half of the patients had HIV, of whom only 77.35% received antiretroviral therapy. Our findings revealed that the B.1.6, B.1.4, and B.1.2 sub-lineages were well represented and had a higher number of mutations despite having the lowest media substitution rates per site per year. Moreover, it was estimated that B.1.2 and B.1.4 appeared in February 2022 and were the first two sub-lineages to emerge. A mutation profile was also obtained for each sub-lineage, reflecting that several mutations had a pattern similar to the characteristic mutation. This study provides the first estimation of the substitution rate and ancestry of each monkeypox sub-lineage belonging to the 2022 outbreak. Based on our findings, continued genomic surveillance of monkeypox is necessary to understand better and track the evolution of the virus.
Collapse
Affiliation(s)
- Iris S Molina
- Area de Innovacion y Desarrollo Tecnológico, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
| | - Victor Jimenez-Vasquez
- Area de Innovacion y Desarrollo Tecnológico, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
| | - Wendy Lizarraga
- Area de Innovacion y Desarrollo Tecnológico, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
| | - Nieves Sevilla
- Area de Innovacion y Desarrollo Tecnológico, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
| | - Veronica Hurtado
- Area de Innovacion y Desarrollo Tecnológico, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
| | - Carlos Padilla-Rojas
- Area de Innovacion y Desarrollo Tecnológico, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
| |
Collapse
|
153
|
Di Bari S, Mondi A, Pinnetti C, Mazzotta V, Carletti F, Matusali G, Vincenti D, Gagliardini R, Santoro R, Fontana C, Maggi F, Girardi E, Vaia F, Antinori A. A Case of Severe Mpox Complicated with Streptococcus pyogenes Sepsis in a Patient with HIV Infection. Pathogens 2023; 12:1073. [PMID: 37764881 PMCID: PMC10534985 DOI: 10.3390/pathogens12091073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Since May 2022, a global outbreak of human Mpox has rapidly spread in non-endemic countries. We report a case of a 34-year-old man admitted to hospital for a six-day history of fever associated with vesiculo-pustular rash involving the face, limbs, trunk and perianal region, lymphadenopathy and severe proctitis and pharyngitis. He was HIV-positive and virologically suppressed by stable antiretroviral therapy. On admission, Mpox virus-specific RT-PCR was positive from multiple samples. Additionally, blood cultures yielded Streptococcus pyogenes, prompting a 14-day-course of penicillin G and clindamycin. Due to the worsening of proctitis along with right ocular mucosa involvement, tecovirimat treatment was started with a rapid improvement in both skin and mucosal involvement. The patient was discharged after 21 days of hospitalization and the complete clinical resolution occurred 38 days after symptom onset. This is a case of Mpox with extensive multi-mucosal (ocular, pharyngeal and rectal) and cutaneous extension and S. pyogenes bacteraemia probably related to bacterial translocation from the skin or oral cavity that was eased by Mpox lesions/inflammation. The HIVinfection, although well controlled by antiretroviral therapy, could have played a role in the severe course of Mpox, suggesting the importance of a prompt antiviral treatment in HIV-positive patients.
Collapse
|
154
|
Precious ND, Agboola P, Oluwatimilehin O, Olakunle OK, Olaniyi P, Adiatu AI, Olusogo AP, Obiwulu DJ, Adeola OA, Ebubechukwu ES, Oluwakayode AM, Akano OS, Kolawole QO. Re-emergence of monkeypox virus outbreak in Nigeria: epidemic preparedness and response (Review-Commentary). Ann Med Surg (Lond) 2023; 85:3990-3996. [PMID: 37554898 PMCID: PMC10406091 DOI: 10.1097/ms9.0000000000001069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/02/2023] [Indexed: 08/10/2023] Open
Abstract
The re-emergence of the monkeypox virus has come with many burdens on nations. This is partly after the effects of the coronavirus disease 2019 virus is subsiding. The burden of the monkeypox virus is seen even more in developing and third-world countries. Beyond the monkeypox virus re-emergence, there have also been several other viruses within the world and in Nigeria. This study assessed Nigeria's preparedness and response to the re-emergence of the monkeypox virus. The Nigerian Government showed its preparedness in the fight against the monkeypox virus by bringing together both Human and Animal Health Sectors. It ensured interventions and programs were created. Among these is Surveillance Outbreak, Response, Management, and Analysis System, a Surveillance and monitoring intervention to manage any outbreak. A second intervention is the Emergency Operation Center. It is recommended that vaccines should be made available, personnel should be adequately trained, and improved diagnostics equipment be made available. Nigeria has had cases of the monkeypox virus, and we wanted to see how far it has come in its preparedness and how it will respond if the need arises. This study reviewed existing literature on Nigeria's battle against the monkeypox virus in times past, the actions taken, and the programs developed.
Collapse
|
155
|
Elhusseiny SM, Bebawy AS, Saad BT, Aboshanab KM. Insights on monkeypox disease and its recent outbreak with evidence of nonsynonymous missense mutation. Future Sci OA 2023; 9:FSO877. [PMID: 37485445 PMCID: PMC10357398 DOI: 10.2144/fsoa-2023-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
The 2022 monkeypox outbreak has created a new global health threat and pandemic. Monkeypox virus is a descendant of the genus Orthopoxvirus, producing a febrile skin rash disease in humans. Monkeypox is zoonotic transmitted and transmitted from human to human in several ways. Even though this disease is self-limited, it creates important community health worries due to its inconvenience and widespread complications. Herein, we discussed the up-to-date current situation of monkeypox regarding its epidemiology, clinical manifestations, current in-use therapeutics, necessary protective measures, and response to potential occurrences considering the recent pandemic. Also, in this review, a comparative genomic analysis of the recent circulating strains that have been recovered from various countries including, Egypt, USA, Spain, Japan and South Africa has been investigated.
Collapse
Affiliation(s)
- Shaza M Elhusseiny
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), 4th Industrial Area, 6th of October City, Cairo, 12566, Egypt
| | - Abraam S Bebawy
- Department of Genomics, HITS Solutions Co., Cairo, 11765, Egypt
| | - Bishoy T Saad
- Department of Bioinformatics, HITS Solutions Co., Cairo, 11765, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Cairo, Abbassia, 11566, Egypt
| |
Collapse
|
156
|
Khamees A, Awadi S, Al-Shami K, Alkhoun HA, Al-Eitan SF, Alsheikh AM, Saeed A, Al-Zoubi RM, Zoubi MSA. Human monkeypox virus in the shadow of the COVID-19 pandemic. J Infect Public Health 2023; 16:1149-1157. [PMID: 37269693 PMCID: PMC10182868 DOI: 10.1016/j.jiph.2023.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/31/2023] [Accepted: 05/10/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND The end of smallpox in 1980 and the subsequent stopping of vaccination against smallpox was followed by the emergence of monkeypox (mpox), a viral disease of animal origin, meaning that it is transmitted from animal to human. The symptoms of mpox are similar to smallpox, except that they are less severe in terms of clinical features. In the case of public health, the mpox virus is one of the most important orthopoxviruses (such as variola, cowpox, and vaccinia) that come from the family Poxviridae. Mpox occurs mostly in central Africa and sometimes in tropical rainforests or some urban areas. Also, there are threats other than COVID-19, that must be addressed and prevented from spreading, as there has been an outbreak of mpox cases since May 7, 2022, throughout the USA, Europe, Australia, and part of Africa. OBJECTIVES In this review, we will discuss mpox between the past, the present and during the COVID-19 pandemic. Also, it offers an updated summary of the taxonomy, etiology, transmission, and epidemiology of mpox illness. In addition, the current review aims to highlight the importance of emerging pandemics in the same era such as mpox and COVID-19. METHODS A literature search was done for the study using online sources like PubMed and Google Scholar. Publications in English were included. Data for study variables were extracted. After the duplicate articles were eliminated, full-text screening was performed on the papers' titles and abstracts. RESULTS The evaluation included a series documenting mpox virus outbreaks, and both prospective and retrospectiveinvestigations. CONCLUSIONS monkeypox is a viral disease caused by the monkeypox virus (MPXV), which is primarily found in central and western Africa. The disease is transmitted from animals to humans and presents symptoms similar to those of smallpox, including fever, headache, muscle aches, and a rash. Monkeypox can lead to complications such as secondary integument infection, bronchopneumonia, sepsis, and encephalitis, as well as corneal infection that can result in blindness. There is no specific clinically proven treatment for monkeypox, and treatment is primarily supportive. However, antiviral drugs and vaccines are available for cross-protection against the virus, and strict infection control measures and vaccination of close contacts of affected individuals can help prevent and control outbreaks.
Collapse
Affiliation(s)
- Almu'atasim Khamees
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163 Irbid, Jordan; Department of General Surgery, King Hussein Cancer Center, Amman, 11941, Jordan.
| | - Sajeda Awadi
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163 Irbid, Jordan.
| | - Khayry Al-Shami
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163 Irbid, Jordan.
| | - Hayat Abu Alkhoun
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163 Irbid, Jordan.
| | - Sharaf F Al-Eitan
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163 Irbid, Jordan.
| | | | - Ahmad Saeed
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163 Irbid, Jordan.
| | - Raed M Al-Zoubi
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar; Department of Biomedical Sciences, College of Health Sciences, QU-Health, Qatar University, Doha 2713, Qatar; Department of Chemistry, Jordan University of Science and Technology, P.O.Box 3030, Irbid 22110, Jordan.
| | | |
Collapse
|
157
|
Schwartz DA, Pittman PR. Mpox (Monkeypox) in Pregnancy: Viral Clade Differences and Their Associations with Varying Obstetrical and Fetal Outcomes. Viruses 2023; 15:1649. [PMID: 37631992 PMCID: PMC10458075 DOI: 10.3390/v15081649] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
In African countries where mpox (monkeypox) is endemic, infection is caused by two genetically related clades-Clade I (formerly Congo Basin), and Clade IIa (formerly West Africa), both of which are potentially life-threatening infections. Prior to the 2022-2023 global outbreak, mpox infections among pregnant women caused by Clade I were reported to have a 75% perinatal case fatality rate in the Democratic Republic of Congo, including the only documented case of placental infection and stillbirth from the Congenital Mpox Syndrome, and the Clade IIa mpox infection was associated with stillbirths in Nigeria. The 2022-2023 global mpox outbreak, caused by a genetically distinct strain, Clade IIb, has focused attention on the effects of mpox on pregnant women and fetal outcomes. There have been at least 58 cases of mpox infection occurring in pregnant women during the 2022-2023 outbreak. No confirmed cases of adverse perinatal outcome, including stillbirth, have been reported. The absence of perinatal morbidity and mortality from Clade IIb corresponds to the overall case fatality rate among non-pregnant women of <0.1%, as this clade has been demonstrated to produce a less-severe disease than the mpox Clade I or IIa variants. Thus, there are apparently important differences between mpox clades affecting pregnant women and perinatal outcomes.
Collapse
Affiliation(s)
| | - Phillip R. Pittman
- Division of Medicine, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD 21702, USA;
| |
Collapse
|
158
|
Zahmatyar M, Fazlollahi A, Motamedi A, Zolfi M, Seyedi F, Nejadghaderi SA, Sullman MJM, Mohammadinasab R, Kolahi AA, Arshi S, Safiri S. Human monkeypox: history, presentations, transmission, epidemiology, diagnosis, treatment, and prevention. Front Med (Lausanne) 2023; 10:1157670. [PMID: 37547598 PMCID: PMC10397518 DOI: 10.3389/fmed.2023.1157670] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Human monkeypox is a zoonotic infection that is similar to the diseases caused by other poxviruses. It is endemic among wild rodents in the rainforests of Central and Western Africa, and can be transmitted via direct skin contact or mucosal exposure to infected animals. The initial symptoms include fever, headache, myalgia, fatigue, and lymphadenopathy, the last of which is the main symptom that distinguishes it from smallpox. In order to prevent and manage the disease, those who are infected must be rapidly diagnosed and isolated. Several vaccines have already been developed (e.g., JYNNEOS, ACAM2000 and ACAM3000) and antiviral drugs (e.g., cidofovir and tecovirimat) can also be used to treat the disease. In the present study, we reviewed the history, morphology, clinical presentations, transmission routes, diagnosis, prevention, and potential treatment strategies for monkeypox, in order to enable health authorities and physicians to better deal with this emerging crisis.
Collapse
Affiliation(s)
- Mahdi Zahmatyar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asra Fazlollahi
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Motamedi
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maedeh Zolfi
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Seyedi
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Aria Nejadghaderi
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mark J. M. Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Reza Mohammadinasab
- Department of History of Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali-Asghar Kolahi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahnam Arshi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Safiri
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
159
|
Martínez-Fernández DE, Fernández-Quezada D, Casillas-Muñoz FAG, Carrillo-Ballesteros FJ, Ortega-Prieto AM, Jimenez-Guardeño JM, Regla-Nava JA. Human Monkeypox: A Comprehensive Overview of Epidemiology, Pathogenesis, Diagnosis, Treatment, and Prevention Strategies. Pathogens 2023; 12:947. [PMID: 37513794 PMCID: PMC10384102 DOI: 10.3390/pathogens12070947] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Monkeypox virus (MPXV) is an emerging zoonotic virus that belongs to the Orthopoxvirus genus and presents clinical symptoms similar to those of smallpox, such as fever and vesicular-pustular skin lesions. However, the differential diagnosis between smallpox and monkeypox is that smallpox does not cause lymphadenopathy but monkeypox generates swelling in the lymph nodes. Since the eradication of smallpox, MPXV has been identified as the most common Orthopoxvirus to cause human disease. Despite MPXV being endemic to certain regions of Africa, the current MPXV outbreak, which began in early 2022, has spread to numerous countries worldwide, raising global concern. As of the end of May 2023, over 87,545 cases and 141 deaths have been reported, with most cases identified in non-endemic countries, primarily due to human-to-human transmission. To better understand this emerging threat, this review presents an overview of key aspects of MPXV infection, including its animal reservoirs, modes of transmission, animal models, epidemiology, clinical and immunological features, diagnosis, treatments, vaccines, and prevention strategies. The material presented here provides a comprehensive understanding of MPXV as a disease, while emphasizing the significance and unique characteristics of the 2022 outbreak. This offers valuable information that can inform future research and aid in the development of effective interventions.
Collapse
Affiliation(s)
| | - David Fernández-Quezada
- Department of Neurosciences, University Center for Health Science (CUCS), University of Guadalajara, Guadalajara 44340, Mexico
| | | | | | - Ana Maria Ortega-Prieto
- Department of Microbiology, University of Málaga, 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
| | - Jose M Jimenez-Guardeño
- Department of Microbiology, University of Málaga, 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
| | - Jose Angel Regla-Nava
- Department of Microbiology and Pathology, University Center for Health Science (CUCS), University of Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
160
|
Qudus MS, Cui X, Tian M, Afaq U, Sajid M, Qureshi S, Liu S, Ma J, Wang G, Faraz M, Sadia H, Wu K, Zhu C. The prospective outcome of the monkeypox outbreak in 2022 and characterization of monkeypox disease immunobiology. Front Cell Infect Microbiol 2023; 13:1196699. [PMID: 37533932 PMCID: PMC10391643 DOI: 10.3389/fcimb.2023.1196699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/21/2023] [Indexed: 08/04/2023] Open
Abstract
A new threat to global health re-emerged with monkeypox's advent in early 2022. As of November 10, 2022, nearly 80,000 confirmed cases had been reported worldwide, with most of them coming from places where the disease is not common. There were 53 fatalities, with 40 occurring in areas that had never before recorded monkeypox and the remaining 13 appearing in the regions that had previously reported the disease. Preliminary genetic data suggest that the 2022 monkeypox virus is part of the West African clade; the virus can be transmitted from person to person through direct interaction with lesions during sexual activity. It is still unknown if monkeypox can be transmitted via sexual contact or, more particularly, through infected body fluids. This most recent epidemic's reservoir host, or principal carrier, is still a mystery. Rodents found in Africa can be the possible intermediate host. Instead, the CDC has confirmed that there are currently no particular treatments for monkeypox virus infection in 2022; however, antivirals already in the market that are successful against smallpox may mitigate the spread of monkeypox. To protect against the disease, the JYNNEOS (Imvamune or Imvanex) smallpox vaccine can be given. The spread of monkeypox can be slowed through measures such as post-exposure immunization, contact tracing, and improved case diagnosis and isolation. Final Thoughts: The latest monkeypox epidemic is a new hazard during the COVID-19 epidemic. The prevailing condition of the monkeypox epidemic along with coinfection with COVID-19 could pose a serious condition for clinicians that could lead to the global epidemic community in the form of coinfection.
Collapse
Affiliation(s)
- Muhammad Suhaib Qudus
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xianghua Cui
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Uzair Afaq
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muhammad Sajid
- RNA Therapeutics Institute, Chan Medical School, University of Massachusetts Worcester, Worcester, MA, United States
| | - Sonia Qureshi
- Krembil Research Institute, University of Health Network, Toronto, ON, Canada
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - June Ma
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Guolei Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Muhammad Faraz
- Department of Microbiology, Quaid-I- Azam University, Islamabad, Pakistan
| | - Haleema Sadia
- Department of Biotechnology, Baluchistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
161
|
Schwartz DA, Ha S, Dashraath P, Baud D, Pittman PR, Adams Waldorf K. Mpox Virus in Pregnancy, the Placenta, and Newborn. Arch Pathol Lab Med 2023; 147:746-757. [PMID: 36857117 DOI: 10.5858/arpa.2022-0520-sa] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 03/02/2023]
Abstract
CONTEXT.— Before its eradication, the smallpox virus was a significant cause of poor obstetric outcomes, including maternal and fetal morbidity and mortality. The mpox (monkeypox) virus is now the most pathogenic member of the Orthopoxvirus genus infecting humans. The 2022 global mpox outbreak has focused attention on its potential effects during pregnancy. OBJECTIVE.— To understand the comparative effects of different poxvirus infections on pregnancy, including mpox virus, variola virus, vaccinia virus, and cowpox virus. The impact on the pregnant individual, fetus, and placenta will be examined, with particular attention to the occurrence of intrauterine vertical transmission and congenital infection. DATA SOURCES.— The data are obtained from the authors' cases and from various published sources, including early historical information and contemporary publications. CONCLUSIONS.— Smallpox caused maternal and perinatal death, with numerous cases reported of intrauterine transmission. In endemic African countries, mpox has also affected pregnant individuals, with up to a 75% perinatal case fatality rate. Since the start of the 2022 mpox outbreak, increasing numbers of pregnant women have been infected with the virus. A detailed description is given of the congenital mpox syndrome in a stillborn fetus, resulting from maternal-fetal transmission and placental infection, and the potential mechanisms of intrauterine infection are discussed. Other poxviruses, notably vaccinia virus and, in 1 case, cowpox virus, can also cause perinatal infection. Based on the historical evidence of poxvirus infections, mpox remains a threat to the pregnant population, and it can be expected that additional cases will occur in the future.
Collapse
Affiliation(s)
- David A Schwartz
- From Perinatal Pathology Consulting, Atlanta, Georgia (Schwartz)
| | - Sandy Ha
- The Department of Obstetrics and Gynecology, University of Washington, Seattle (Ha)
| | - Pradip Dashraath
- The Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Dashraath)
| | - David Baud
- Materno-Fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland (Baud)
| | - Phillip R Pittman
- The Department of Clinical Research, US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland (Pittman)
| | - Kristina Adams Waldorf
- The Departments of Obstetrics and Gynecology and Global Health, University of Washington School of Medicine, Seattle (Adams Waldorf)
| |
Collapse
|
162
|
Mellou K, Tryfinopoulou K, Pappa S, Gkolfinopoulou K, Papanikou S, Papadopoulou G, Vassou E, Kostaki EG, Papadima K, Mouratidou E, Tsintziloni M, Siafakas N, Florou Z, Katsoulidou A, Sapounas S, Sourvinos G, Pournaras S, Petinaki E, Goula M, Paparizos V, Papa A, Zaoutis T, Paraskevis D. Overview of Mpox Outbreak in Greece in 2022-2023: Is It Over? Viruses 2023; 15:1384. [PMID: 37376683 PMCID: PMC10303940 DOI: 10.3390/v15061384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
In May 2022, for the first time, multiple cases of mpox were reported in several non-endemic countries. The first ever case of the disease in Greece was confirmed on 8 June 2022, and a total of 88 cases were reported in the country until the end of April 2023. A multidisciplinary response team was established by the Greek National Public Health Organization (EODY) to monitor and manage the situation. EODY's emergency response focused on enhanced surveillance, laboratory testing, contact tracing, medical countermeasures, and the education of health care providers and the public. Even though management of cases was considered successful and the risk from the disease was downgraded, sporadic cases continue to occur. Here, we provide epidemiological and laboratory features of the reported cases to depict the course of the disease notification rate. Our results suggest that measures for raising awareness as well as vaccination of high-risk groups of the population should be continued.
Collapse
Affiliation(s)
| | - Kyriaki Tryfinopoulou
- National Public Health Organization, 15123 Athens, Greece
- Central Public Health Laboratory, 16672 Athens, Greece
| | - Styliani Pappa
- Department of Microbiology, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | | | | | - Evangelia Vassou
- National Public Health Organization, 15123 Athens, Greece
- Central Public Health Laboratory, 16672 Athens, Greece
| | - Evangelia-Georgia Kostaki
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, Kapodistrian University of Athens, 11527 Athens, Greece
| | | | | | | | - Nikolaos Siafakas
- Clinical Microbiology Laboratory, Attikon General University Hospital of Athens, 12462 Athens, Greece
| | - Zoi Florou
- Department of Medical Biopathology, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
| | - Antigoni Katsoulidou
- National Public Health Organization, 15123 Athens, Greece
- Central Public Health Laboratory, 16672 Athens, Greece
| | | | - George Sourvinos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Spyridon Pournaras
- Clinical Microbiology Laboratory, Attikon General University Hospital of Athens, 12462 Athens, Greece
| | - Efthymia Petinaki
- Department of Medical Biopathology, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
| | - Maria Goula
- State Dermatology Department, Hospital of Skin and Venereal Diseases, 54643 Thessaloniki, Greece
| | - Vassilios Paparizos
- 1st Department of Dermatology and Venereology, National and Kapodistrian University of Athens Medical School, "Andreas Syggros" Hospital for Skin and Venereal Diseases, 16121 Athens, Greece
| | - Anna Papa
- Department of Microbiology, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | | |
Collapse
|
163
|
Jin Y, Fayyaz A, Liaqat A, Khan A, Alshammari A, Wang Y, Gu RX, Wei DQ. Proteomics-based vaccine targets annotation and design of subunit and mRNA-based vaccines for Monkeypox virus (MPXV) against the recent outbreak. Comput Biol Med 2023; 159:106893. [PMID: 37116237 PMCID: PMC10083144 DOI: 10.1016/j.compbiomed.2023.106893] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 04/09/2023] [Indexed: 04/30/2023]
Abstract
Monkeypox Virus (MPXV) is a growing public health threat with increasing cases and fatalities globally. To date, no specific vaccine or small molecule therapeutic choices are available for the treatment of MPXV disease. In this work, we employed proteomics and structural vaccinology approaches to design mRNA and multi-epitopes-based vaccines (MVC) against MPXV. We first identified ten proteins from the whole proteome of MPXV as potential vaccine targets. We then employed structural vaccinology approaches to map potential epitopes of these proteins for B cell, cytotoxic T lymphocytes (CTL), and Helper T lymphocytes (HTL). Finally, 9 CTL, 6 B cell, and 5 HTL epitopes were joined together through suitable linkers to construct MVC (multi-epitope vaccine) and mRNA-based vaccines. Molecular docking, binding free energy calculation, and in silico cloning revealed robust interaction of the designed MVC with toll-like receptor 2 (TLR2) and efficient expression in E. Coli K12 strain. The immune simulation results revealed that the antigen titer after the injection reached to the maximum level on the 5th day and an abrupt decline in the antigen titer was observed upon the production of IgM, IgG and IgM + IgG, dendritic cells, IFN-gamma, and IL (interleukins), which suggested the potential of our designed vaccine candidate for inducing an immune response against MPXV.
Collapse
Affiliation(s)
- Yifan Jin
- College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Addeela Fayyaz
- Fatima Jinnah Medical University, Lahore, Punjab, Pakistan
| | - Ayesha Liaqat
- King Edward Medical University, Lahore, Punjab, Pakistan
| | - Abbas Khan
- College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang, Henan, 473006, PR China
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Yanjing Wang
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Ruo-Xu Gu
- College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Dong-Qing Wei
- College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang, Henan, 473006, PR China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, PR China; Centre for Research in Molecular Modeling, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada.
| |
Collapse
|
164
|
Dsouza L, Pant A, Offei S, Priyamvada L, Pope B, Satheshkumar PS, Wang Z, Yang Z. Antiviral activities of two nucleos(t)ide analogs against vaccinia, mpox, and cowpox viruses in primary human fibroblasts. Antiviral Res 2023:105651. [PMID: 37270160 PMCID: PMC10234405 DOI: 10.1016/j.antiviral.2023.105651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/21/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Many poxviruses are significant human and animal pathogens, including viruses that cause smallpox and mpox (formerly monkeypox). Identifying novel and potent antiviral compounds is critical to successful drug development targeting poxviruses. Here we tested two compounds, nucleoside trifluridine, and nucleotide adefovir dipivoxil, for antiviral activities against vaccinia virus (VACV), mpox virus (MPXV), and cowpox virus (CPXV) in physiologically relevant primary human fibroblasts. Both compounds potently inhibited the replication of VACV, CPXV, and MPXV (MA001 2022 isolate) in plaque assays. In our recently developed assay based on a recombinant VACV expressing secreted Gaussia luciferase, they both exhibited high potency in inhibiting VACV replication with EC50s in the low nanomolar range. In addition, both trifluridine and adefovir dipivoxil inhibited VACV DNA replication and downstream viral gene expression. Our results characterized trifluridine and adefovir dipivoxil as strong poxvirus antiviral compounds and further validate the VACV Gaussia luciferase assay as a highly efficient and reliable reporter tool for identifying poxvirus inhibitors. Given that both compounds are FDA-approved drugs, and trifluridine is already used to treat ocular vaccinia, further development of trifluridine and adefovir dipivoxil holds great promise in treating poxvirus infections, including mpox.
Collapse
Affiliation(s)
- Lara Dsouza
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Anil Pant
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Samuel Offei
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Lalita Priyamvada
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Blake Pope
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | | | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Zhilong Yang
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
165
|
Elsheikh R, Makram AM, Vasanthakumaran T, Tomar S, Shamim K, Tranh ND, Elsheikh SS, Van NT, Huy NT. Monkeypox: A comprehensive review of a multifaceted virus. INFECTIOUS MEDICINE 2023; 2:74-88. [PMID: 38077831 PMCID: PMC10699692 DOI: 10.1016/j.imj.2023.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/23/2023] [Accepted: 04/29/2023] [Indexed: 03/11/2024]
Abstract
In May 2022, the world witnessed the re-emergence of the zoonotic disease monkeypox. While this was not the first epidemic of this disease, what differentiated the outbreak was the rapid global spread and increase of cases, which led the WHO to declare monkeypox a global health emergency. Although the disease spreads mainly through inadequately cooked meat of various rodent species, this virus also shows droplet, respiratory, sexual, and even vertical transmission. Monkeypox further multiplies in lymphoproliferative organs and presents with a classical smallpox-like rash, fever, headache, and muscle aches. Diagnosis is confirmed with a polymerase-chain-reaction test and is managed largely supportively with possible usage of some antivirals and immunoglobulins. Moreover, some pre-exposure and postexposure prophylactic vaccines have been developed. This paper aims to conduct an in-depth review of the historical epidemics, transmission, pathophysiology, clinical presentation, and management of the monkeypox disease.
Collapse
Affiliation(s)
- Randa Elsheikh
- Deanery of Biomedical Sciences at Edinburgh Medical School, University of Edinburgh, Edinburgh EH10 5HF, United Kingdom
- Online Research Club (http://www.onlineresearchclub.org), Nagasaki 852-8523, Japan
| | - Abdelrahman M. Makram
- Online Research Club (http://www.onlineresearchclub.org), Nagasaki 852-8523, Japan
- School of Public Health, Imperial College London, London SW7 2BX, United Kingdom
| | - Tamilarasy Vasanthakumaran
- Online Research Club (http://www.onlineresearchclub.org), Nagasaki 852-8523, Japan
- Global Clinical Scholars Research Training, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Nguyen Dong Tranh
- Online Research Club (http://www.onlineresearchclub.org), Nagasaki 852-8523, Japan
- Department of Infection Control, Binh Dinh Provincial General Hospital, Binh Dinh 55000, Vietnam
| | | | - Nguyen Thanh Van
- Online Research Club (http://www.onlineresearchclub.org), Nagasaki 852-8523, Japan
- Global Clinical Scholars Research Training, Harvard Medical School, Boston, MA 02115, USA
| | - Nguyen Tien Huy
- Online Research Club (http://www.onlineresearchclub.org), Nagasaki 852-8523, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
166
|
Besombes C, Mbrenga F, Malaka C, Gonofio E, Schaeffer L, Konamna X, Selekon B, Namsenei-Dankpea J, Gildas Lemon C, Landier J, von Platen C, Gessain A, Manuguerra JC, Fontanet A, Nakouné E. Investigation of a mpox outbreak in Central African Republic, 2021-2022. One Health 2023; 16:100523. [PMID: 36950196 PMCID: PMC9988319 DOI: 10.1016/j.onehlt.2023.100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Human monkeypox virus is spreading globally, and more information is required about its epidemiological and clinical disease characteristics in endemic countries. We report the investigation of an outbreak in November 2021 in Central African Republic (CAR). The primary case, a hunter, fell ill after contact with a non-human primate at the frontier between forest and savannah. The ensuing investigation in a small nearby town concerned two families and four waves of inter-human transmission, with 14 confirmed cases, 11 suspected cases and 17 non-infected contacts, and a secondary attack rate of 59.5% (25/42). Complications were observed in 12 of the 19 (63.2%) confirmed and suspected cases with available clinical follow-up data: eight cases of bronchopneumonia, two of severe dehydration, one corneal ulcer, one abscess, two cutaneous superinfections, and six cutaneous sequelae (cheloid scars, or depigmentation). There was one death, giving a case fatality ratio of 1/25 (4.0%) for confirmed and suspected cases. This outbreak, with the largest number of confirmed cases ever described in CAR, confirms the potential severity of the disease associated with clade I monkeypox viruses, and highlights the need for rapid control over virus circulation to prevent the further national and international spread of infection.
Collapse
Affiliation(s)
- C Besombes
- Institut Pasteur, Université Paris Cité, Epidemiology of Emerging Diseases, 75015 Paris, France
- Sorbonne Université, Paris, France
| | - F Mbrenga
- Institut Pasteur, Bangui, République Centrafricaine - Department of Arboviruses, Emerging Viruses and zoonosis, Central African Republic
| | - C Malaka
- Institut Pasteur, Bangui, République Centrafricaine - Department of Arboviruses, Emerging Viruses and zoonosis, Central African Republic
| | - E Gonofio
- Institut Pasteur, Bangui, République Centrafricaine - Department of Arboviruses, Emerging Viruses and zoonosis, Central African Republic
| | - L Schaeffer
- Institut Pasteur, Université Paris Cité, Epidemiology of Emerging Diseases, 75015 Paris, France
| | - X Konamna
- Institut Pasteur, Bangui, République Centrafricaine - Department of Arboviruses, Emerging Viruses and zoonosis, Central African Republic
| | - B Selekon
- Institut Pasteur, Bangui, République Centrafricaine - Department of Arboviruses, Emerging Viruses and zoonosis, Central African Republic
| | - J Namsenei-Dankpea
- Institut Pasteur, Bangui, République Centrafricaine - Department of Arboviruses, Emerging Viruses and zoonosis, Central African Republic
| | - C Gildas Lemon
- Institut Pasteur, Bangui, République Centrafricaine - Department of Arboviruses, Emerging Viruses and zoonosis, Central African Republic
| | - J Landier
- IRD, Aix Marseille Université, INSERM - SESSTIM, Aix Marseille Institute of Public Health, ISSPAM, Marseille, France
| | - C von Platen
- Institut Pasteur Paris- Centre de Recherche Translationnelle- CC, France
| | - A Gessain
- Institut Pasteur, Université Paris Cité, Epidemiology of Emerging Diseases, 75015 Paris, France
- Université Paris Cité, CNRS UMR 3569 - Unité Épidémiologie et Physiopathologie des Virus Oncogènes, France
| | - J C Manuguerra
- Environment and Infectious Risk Research Unit, Laboratory for Urgent Response to Biological Threats (ERI-CIBU), France
| | - A Fontanet
- Institut Pasteur, Université Paris Cité, Epidemiology of Emerging Diseases, 75015 Paris, France
- Conservatoire National des Arts et Métiers, PACRI Unit, Paris, France
| | - E Nakouné
- Institut Pasteur, Bangui, République Centrafricaine - Department of Arboviruses, Emerging Viruses and zoonosis, Central African Republic
| |
Collapse
|
167
|
Brinkmann A, Kohl C, Pape K, Bourquain D, Thürmer A, Michel J, Schaade L, Nitsche A. Extensive ITR expansion of the 2022 Mpox virus genome through gene duplication and gene loss. Virus Genes 2023:10.1007/s11262-023-02002-1. [PMID: 37256469 DOI: 10.1007/s11262-023-02002-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/29/2023] [Indexed: 06/01/2023]
Abstract
Poxviruses are known to evolve slower than RNA viruses with only 1-2 mutations/genome/year. Rather than single mutations, rearrangements such as gene gain and loss, which have been discussed as a possible driver for host adaption, were described in poxviruses. In 2022 and 2023 the world is being challenged by the largest global outbreak so far of Mpox virus, and the virus seems to have established itself in the human community for an extended period of time. Here, we report five Mpox virus genomes from Germany with extensive gene duplication and loss, leading to the expansion of the ITR regions from 6400 to up to 24,600 bp. We describe duplications of up to 18,200 bp to the opposed genome end, and deletions at the site of insertion of up to 16,900 bp. Deletions and duplications of genes with functions of supposed immune modulation, virulence and host adaption as B19R, B21R, B22R and D10L are described. In summary, we highlight the need for monitoring rearrangements of the Mpox virus genome rather than for monitoring single mutations only.
Collapse
Affiliation(s)
- Annika Brinkmann
- Centre for Biological Threats and Special Pathogens, WHO Collaborating Centre for Emerging Infections and Biological Threats, Highly Pathogenic Viruses, German Consultant Laboratory for Poxviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany.
| | - Claudia Kohl
- Centre for Biological Threats and Special Pathogens, WHO Collaborating Centre for Emerging Infections and Biological Threats, Highly Pathogenic Viruses, German Consultant Laboratory for Poxviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Katharina Pape
- Centre for Biological Threats and Special Pathogens, WHO Collaborating Centre for Emerging Infections and Biological Threats, Highly Pathogenic Viruses, German Consultant Laboratory for Poxviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Daniel Bourquain
- Centre for Biological Threats and Special Pathogens, WHO Collaborating Centre for Emerging Infections and Biological Threats, Highly Pathogenic Viruses, German Consultant Laboratory for Poxviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Andrea Thürmer
- Genome Sequencing and Genomic Epidemiology, Methodology and Research Infrastructure, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Janine Michel
- Centre for Biological Threats and Special Pathogens, WHO Collaborating Centre for Emerging Infections and Biological Threats, Highly Pathogenic Viruses, German Consultant Laboratory for Poxviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Lars Schaade
- Centre for Biological Threats and Special Pathogens, WHO Collaborating Centre for Emerging Infections and Biological Threats, Highly Pathogenic Viruses, German Consultant Laboratory for Poxviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens, WHO Collaborating Centre for Emerging Infections and Biological Threats, Highly Pathogenic Viruses, German Consultant Laboratory for Poxviruses, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| |
Collapse
|
168
|
Boora S, Yadav S, Soniya K, Kaushik S, Yadav JP, Seth M, Kaushik S. Monkeypox virus is nature's wake-up call: a bird's-eye view. Virusdisease 2023:1-13. [PMID: 37363364 PMCID: PMC10214339 DOI: 10.1007/s13337-023-00826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/08/2023] [Indexed: 06/28/2023] Open
Abstract
Several infections have emerged in humans, domestic animals, wildlife, and plant populations, causing a severe problem for humanity. Since the discovery of the Monkeypox virus (Mpox) in 1958 in Copenhagen, Denmark, it has resurfaced several times, producing severe infections in humans and resulting in a significant fatality rate. Mpox is an Orthopoxvirus of the Poxviridae family. This family contains various medically important viruses. The natural reservoir of Mpox is unknown yet. Mpox might be carried by African rodents and nonhuman primates (such as monkeys). The role of monkeys has been confirmed by its various outbreaks. The infection may be transferred from unidentified wild animals to monkeys, who can then spread it to humans by crossing species barriers. In close contact, human-to-human transmission is also possible. Mpox outbreaks have been documented regularly in Central and Western Africa, but recently in 2022, it has spread to over one hundred-six countries. There is no specific treatment for it, although the smallpox vaccine, antivirals, and vaccinia immune globulin help in the effective management of Mpox. In conclusion: Monkeypox poses a severe threat to public health due to the lack of specific vaccinations and effective antivirals. Surveillance studies in affected regions can assist in the early diagnosis of disease and help to control significant outbreaks. The present review provides information on epidemiology, clinical symptoms, risk factors, diagnosis, and preventive measures of Mpox.
Collapse
Affiliation(s)
- Sanjit Boora
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Suman Yadav
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Kumari Soniya
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Sulochana Kaushik
- Department of Genetics, Maharshi Dayanand University, Rohtak, Hr India
| | | | - Mihir Seth
- Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, Hr India
| | - Samander Kaushik
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|
169
|
Molteni C, Forni D, Cagliani R, Arrigoni F, Pozzoli U, De Gioia L, Sironi M. Selective events at individual sites underlie the evolution of monkeypox virus clades. Virus Evol 2023; 9:vead031. [PMID: 37305708 PMCID: PMC10256197 DOI: 10.1093/ve/vead031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/31/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
In endemic regions (West Africa and the Congo Basin), the genetic diversity of monkeypox virus (MPXV) is geographically structured into two major clades (Clades I and II) that differ in virulence and host associations. Clade IIb is closely related to the B.1 lineage, which is dominating a worldwide outbreak initiated in 2022. Lineage B.1 has however accumulated mutations of unknown significance that most likely result from apolipoprotein B mRNA editing catalytic polypeptide-like 3 (APOBEC3) editing. We applied a population genetics-phylogenetics approach to investigate the evolution of MPXV during historical viral spread in Africa and to infer the distribution of fitness effects. We observed a high preponderance of codons evolving under strong purifying selection, particularly in viral genes involved in morphogenesis and replication or transcription. However, signals of positive selection were also detected and were enriched in genes involved in immunomodulation and/or virulence. In particular, several genes showing evidence of positive selection were found to hijack different steps of the cellular pathway that senses cytosolic DNA. Also, a few selected sites in genes that are not directly involved in immunomodulation are suggestive of antibody escape or other immune-mediated pressures. Because orthopoxvirus host range is primarily determined by the interaction with the host immune system, we suggest that the positive selection signals represent signatures of host adaptation and contribute to the different virulence of Clade I and II MPXVs. We also used the calculated selection coefficients to infer the effects of mutations that define the predominant human MPXV1 (hMPXV1) lineage B.1, as well as the changes that have been accumulating during the worldwide outbreak. Results indicated that a proportion of deleterious mutations were purged from the predominant outbreak lineage, whose spread was not driven by the presence of beneficial changes. Polymorphic mutations with a predicted beneficial effect on fitness are few and have a low frequency. It remains to be determined whether they have any significance for ongoing virus evolution.
Collapse
Affiliation(s)
- Cristian Molteni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Via don Luigi Monza, Bosisio Parini 23842, Italy
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Via don Luigi Monza, Bosisio Parini 23842, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Via don Luigi Monza, Bosisio Parini 23842, Italy
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della scienza, Milan 20126, Italy
| | - Uberto Pozzoli
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Via don Luigi Monza, Bosisio Parini 23842, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della scienza, Milan 20126, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Via don Luigi Monza, Bosisio Parini 23842, Italy
| |
Collapse
|
170
|
Feng Y, Zhang Y, Liu S, Guo M, Huang H, Guo C, Wang W, Zhang W, Tang H, Wan Y. Unexpectedly higher levels of anti-orthopoxvirus neutralizing antibodies are observed among gay men than general adult population. BMC Med 2023; 21:183. [PMID: 37189197 DOI: 10.1186/s12916-023-02872-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND The confirmed cases in the current outbreak of Monkeypox are predominantly identified in the networks of men who have sex with men (MSM). The preexisting antibodies may profoundly impact the transmission of monkeypox virus (MPXV), however the current-day prevalence of antibodies against MPXV among gay men is not well characterized. METHODS A cohort of gay men (n = 326) and a cohort of the general adult population (n = 295) were enrolled in this study. Binding antibodies responses against MPXV/vaccinia and neutralizing antibody responses against vaccinia virus (Tiantan strain) were measured. The antibody responses of these two cohorts were then compared, as well as the responses of individuals born before and in/after 1981 (when the smallpox vaccination ceased in China). Finally, the correlation between the anti-MPXV antibody responses and the anti-vaccinia antibody responses, and the associations between preexisting anti-orthopoxvirus antibody responses and the diagnosed sexually transmitted infections (STIs) in the MSM cohort were analyzed separately. RESULTS Our data showed that binding antibodies against MPXV H3, A29, A35, E8, B6, M1 proteins and vaccinia whole-virus lysate could be detected in individuals born both before and in/after 1981, of which the prevalence of anti-vaccinia binding antibodies was significantly higher among individuals born before 1981 in the general population cohort. Moreover, we unexpectedly found that the positive rates of binding antibody responses against MPXV H3, A29, A35, E8 and M1 proteins were significantly lower among individuals of the MSM cohort born in/after 1981, but the positive rates of anti-MPXV B6 and anti-vaccinia neutralizing antibody responses were significantly higher among these individuals compared to those of age-matched participants in the general population cohort. Additionally, we demonstrated that the positive and negative rates of anti-MPXV antibody responses were associated with the anti-vaccinia antibody responses among individuals born before 1981 in the general population cohort, but no significant association was observed among individuals born in/after 1981 in both cohorts. The positive rates of both the binding and the neutralizing antibody responses were comparable between individuals with and without diagnosed STIs in the MSM cohort. CONCLUSIONS Anti-MPXV and anti-vaccinia antibodies could be readily detected in an MSM cohort and a general population cohort. And a higher level of anti-vaccinia neutralizing antibody responses was observed among individuals who did not get vaccinated against smallpox in the MSM cohort compared to age-matched individuals in the general population cohort.
Collapse
Affiliation(s)
- Yanmeng Feng
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430065, China
| | - Yifan Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, 450052, China
| | - Shengya Liu
- Shenzhen International Travel Health Care Center (Shenzhen Customs District Port Outpatient Clinics), Shenzhen Customs District, Shenzhen, 518033, China
| | - Meng Guo
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430065, China
| | - Haojie Huang
- Wuhan Pioneer Social Work Service Center, Wuhan, 430071, China
| | - Cuiyuan Guo
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, 450052, China
| | - Wanhai Wang
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, 450052, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
- Shanghai Huashen Institute of Microbes and Infections, 6 Lane 1220 Huashan Rd., Shanghai, 200052, NO, China.
| | - Heng Tang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430065, China.
| | - Yanmin Wan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
- Shanghai Huashen Institute of Microbes and Infections, 6 Lane 1220 Huashan Rd., Shanghai, 200052, NO, China.
- Department of Radiology, Shanghai Public Health Clinical Center, Shanghai, 201508, China.
| |
Collapse
|
171
|
Vardhan S, Sahoo SK. Computational studies on searching potential phytochemicals against DNA polymerase activity of the monkeypox virus. J Tradit Complement Med 2023; 13:S2225-4110(23)00055-X. [PMID: 37360910 PMCID: PMC10165885 DOI: 10.1016/j.jtcme.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 06/28/2023] Open
Abstract
Objectives The outbreak of monkeypox virus (MPXV) is an emerging epidemic of medical concern with 65353 confirmed cases of infection and a fatality of 115 worldwide. Since May 2022, MPXV has been rapidly disseminating across the globe through various modes of transmission, including direct contact, respiratory droplets, and consensual sex. Because of the limited medical countermeasures available to treat MPXV, the present study aimed to identify potential phytochemicals (limonoids, triterpenoids, and polyphenols) as antagonists to target the DNA polymerase protein of MPXV with the ultimate goal to inhibit the viral DNA replication mechanism and immune-mediated responses. Methods The protein-DNA and protein-ligand molecular docking were performed with the help of computational programs AutoDock Vina, iGEMDOCK and HDOCK server. The BIOVIA Discovery studio and ChimeraX were used to evaluate the protein-ligand interactions. The GROMACS 2021 was used for the molecular dynamics simulations. The ADME and toxicity properties were computed by using online servers SwissADME and pKCSM. Results Molecular docking of 609 phytochemicals and molecular dynamics simulations of lead phytochemicals glycyrrhizinic acid and apigenin-7-O-glucuronide generated useful data that supported the ability of phytochemicals to obstruct the DNA polymerase activity of the monkeypox virus. Conclusions The computational results supported that appropriate phytochemicals can be used to formulate an adjuvant therapy for the monkeypox virus.
Collapse
Affiliation(s)
- Seshu Vardhan
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, 395007, Gujarat, India
| | - Suban K. Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, 395007, Gujarat, India
| |
Collapse
|
172
|
Roshdy WH, El-Shesheny R, Moatasim Y, Kamel MN, Showky S, Gomaa M, Naguib A, El Guindy N, Fahim M, Khalifa M, Galal R, Hassany M, Kandeil A, Ali MA, Kandeel A. Whole-Genome Sequence of a Human Monkeypox Virus Strain Detected in Egypt. Microbiol Resour Announc 2023:e0000623. [PMID: 37154755 DOI: 10.1128/mra.00006-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Monkeypox virus has recently been detected in multiple countries. Two cases of monkeypox virus were reported in Egypt as part of an ongoing international outbreak. We report the whole-genome sequence of a monkeypox virus that was retrieved from the first confirmed case in Egypt. The virus was fully sequenced on the Illumina platform, and phylogenetic analysis demonstrated that the current monkeypox strain is closely related to clade IIb, which caused recent multicountry outbreaks.
Collapse
Affiliation(s)
- Wael H Roshdy
- Central Public Health Laboratory, Ministry of Health and Population, Cairo, Egypt
| | - Rabeh El-Shesheny
- Centre of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Yassmin Moatasim
- Centre of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Mina N Kamel
- Centre of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Shaymaa Showky
- Central Public Health Laboratory, Ministry of Health and Population, Cairo, Egypt
| | - Mokhtar Gomaa
- Centre of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Amel Naguib
- Central Public Health Laboratory, Ministry of Health and Population, Cairo, Egypt
| | - Nancy El Guindy
- Central Public Health Laboratory, Ministry of Health and Population, Cairo, Egypt
| | - Manal Fahim
- Department of Epidemiology and Surveillance, Preventive Sector, Ministry of Health and Population, Cairo, Egypt
| | - Mohamed Khalifa
- Central Public Health Laboratory, Ministry of Health and Population, Cairo, Egypt
| | | | - Mohamed Hassany
- National Hepatology and Tropical Medicine Research Institute, Ministry of Health and Population, Cairo, Egypt
| | - Ahmed Kandeil
- Centre of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Mohamed A Ali
- Centre of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Amr Kandeel
- Preventive Sector, Ministry of Health and Population, Cairo, Egypt
| |
Collapse
|
173
|
Ullah M, Li Y, Munib K, Zhang Z. Epidemiology, host range, and associated risk factors of monkeypox: an emerging global public health threat. Front Microbiol 2023; 14:1160984. [PMID: 37213509 PMCID: PMC10196482 DOI: 10.3389/fmicb.2023.1160984] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/27/2023] [Indexed: 05/23/2023] Open
Abstract
Based on recent multiregional epidemiological investigations of Monkeypox (MPX), on 24 July 2022, the World Health Organization declared it a global public health threat. Retrospectively MPX was an ignored zoonotic endemic infection to tropical rainforest regions of Western and Central African rural communities until a worldwide epidemic in May 2022 verified the potential threat of monkeypox virus (MPXV) to be propagated across the contemporary world via transnational tourism and animal movements. During 2018-2022, different cases of MPX diagnosed in Nigerian travelers have been documented in Israel, the United Kingdom, Singapore, and the United States. More recently, on 27 September 2022, 66,000 MPX cases have been confirmed in more than 100 non-endemic countries, with fluctuating epidemiological footprinting from retrospective epidemics. Particular disease-associated risk factors fluctuate among different epidemics. The unpredicted appearance of MPX in non-endemic regions suggests some invisible transmission dynamic. Hence, broad-minded and vigilant epidemiological attention to the current MPX epidemic is mandatory. Therefore, this review was compiled to highlight the epidemiological dynamic, global host ranges, and associated risk factors of MPX, concentrating on its epidemic potential and global public health threat.
Collapse
Affiliation(s)
- Munib Ullah
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Clinical Studies, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Yanmin Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Kainat Munib
- Department of Sociology, Allama Iqbal Open University Islamabad, Islamabad, Pakistan
| | - Zhidong Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| |
Collapse
|
174
|
Wang Y, Leng P, Zhou H. Global transmission of monkeypox virus-a potential threat under the COVID-19 pandemic. Front Immunol 2023; 14:1174223. [PMID: 37215147 PMCID: PMC10198437 DOI: 10.3389/fimmu.2023.1174223] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Monkeypox virus (MPXV) cases have increased dramatically worldwide since May 2022. The Atlanta Center for Disease Control and Prevention (Atlanta CDC) had reported a total of 85,922 cases as of February 20th, 2023. During the COVID-19 pandemic, MPXV has emerged as a potential public threat. MPXV transmission and prevalence must be closely monitored. In this comprehensive review, we explained the basic characteristics and transmission routes of MPXV, individuals susceptible to it, as well as highlight the impact of the behavior of men who have sex with men (MSM) and airline traveling on recent outbreaks of MPXV. We also describe the clinical implications, the prevention of MPXV, and clinical measures of viral detection.
Collapse
Affiliation(s)
| | | | - Hao Zhou
- College of Medical Technology, Chengdu University of Traditional Chinese
Medicine, Chengdu, China
| |
Collapse
|
175
|
Adetifa I, Muyembe JJ, Bausch DG, Heymann DL. Mpox neglect and the smallpox niche: a problem for Africa, a problem for the world. Lancet 2023; 401:1822-1824. [PMID: 37146622 PMCID: PMC10154003 DOI: 10.1016/s0140-6736(23)00588-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 05/07/2023]
Abstract
Mpox (formerly known as monkeypox) is a zoonotic viral disease endemic in parts of Africa. In May, 2022, the world was alerted to circulation of monkeypox virus in many high-income countries outside of Africa. Continued spread resulted in a WHO declaration of a Public Health Emergency of International Concern. Although there has been much attention on the global outbreak, most of the focus has been on high-income countries outside of Africa, despite the fact that monkeypox virus has been causing disease in parts of Africa for at least 50 years. Furthermore, the long-term consequences of this event, especially the risk that mpox fills the niche vacated through smallpox eradication, have not been sufficiently considered. The heart of the problem is the historical neglect of mpox in Africa where the disease is endemic, and the actual and potential consequences if this neglect is left uncorrected.
Collapse
Affiliation(s)
| | - Jean-Jacques Muyembe
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | - Daniel G Bausch
- FIND, Geneva, Switzerland; Global Health Security Department, London School of Hygiene & Tropical Medicine, London, UK.
| | - David L Heymann
- Global Health Security Department, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
176
|
Dutt M, Kumar A, Rout M, Dehury B, Martinez G, Ndishimye P, Kelvin AA, Kelvin DJ. Drug repurposing for Mpox: Discovery of small molecules as potential inhibitors against DNA-dependent RNA polymerase using molecular modeling approach. J Cell Biochem 2023; 124:701-715. [PMID: 36946432 PMCID: PMC10473176 DOI: 10.1002/jcb.30397] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
Mpox (formerly Monkeypox), a zoonotic illness caused by the Mpox virus, belongs to the Orthopoxvirus genus in the family Poxviridae. To design and develop effective antiviral therapeutics against DNA viruses, the DNA-dependent RNA polymerase (DdRp) of poxviruses has emerged as a promising drug target. In the present study, we modeled the three-dimensional (3D) structure of DdRp using a template-based homology approach. After modeling, virtual screening was performed to probe the molecular interactions between 1755 Food and Drug Administration-approved small molecule drugs (≤500 molecular weight) and the DdRp of Mpox. Based on the binding affinity and molecular interaction patterns, five drugs, lumacaftor (-11.7 kcal/mol), conivaptan (-11.7 kcal/mol), betulinic acid (-11.6 kcal/mol), fluspirilene (-11.3 kcal/mol), and imatinib (-11.2 kcal/mol), have been ranked as the top drug compounds interacting with Mpox DdRp. Complexes of these shortlisted drugs with DdRp were further evaluated using state-of-the-art all-atoms molecular dynamics (MD) simulations on 200 nanoseconds followed by principal component analysis (PCA). MD simulations and PCA results revealed highly stable interactions of these small drugs with DdRp. After due validation in wet-lab using available in vitro and in vivo experiments, these repurposed drugs can be further utilized for the treatment of contagious Mpox virus. The outcome of this study may establish a solid foundation to screen repurposed and natural compounds as potential antiviral therapeutics against different highly pathogenic viruses.
Collapse
Affiliation(s)
- Mansi Dutt
- Department of Microbiology and Immunology, Department of Paediatrics, IWK Health Center, Canadian Centre for Vaccinology (CCfV), Faculty of MedicineDalhousie UniversityHalifaxCanada
| | - Anuj Kumar
- Department of Microbiology and Immunology, Department of Paediatrics, IWK Health Center, Canadian Centre for Vaccinology (CCfV), Faculty of MedicineDalhousie UniversityHalifaxCanada
- European Virus Bioinformatics CenterJenaGermany
| | - Madhusmita Rout
- Bioinformatics DivisionICMR‐Regional Medical Research CentreBhubaneswarOdishaIndia
| | - Budheswar Dehury
- Bioinformatics DivisionICMR‐Regional Medical Research CentreBhubaneswarOdishaIndia
| | - Gustavo Martinez
- Department of Microbiology and Immunology, Department of Paediatrics, IWK Health Center, Canadian Centre for Vaccinology (CCfV), Faculty of MedicineDalhousie UniversityHalifaxCanada
| | - Pacifique Ndishimye
- Department of Microbiology and Immunology, Department of Paediatrics, IWK Health Center, Canadian Centre for Vaccinology (CCfV), Faculty of MedicineDalhousie UniversityHalifaxCanada
| | - Alyson A. Kelvin
- Vaccine and Infectious Disease Organization (VIDO)University of SaskatchewanSaskatoonSaskatchewanCanada
- Department of Biochemistry, Microbiology, and ImmunologyUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - David J. Kelvin
- Department of Microbiology and Immunology, Department of Paediatrics, IWK Health Center, Canadian Centre for Vaccinology (CCfV), Faculty of MedicineDalhousie UniversityHalifaxCanada
| |
Collapse
|
177
|
Saied AA. Mpox virus Clade IIb detection in the air. J Med Virol 2023; 95:e28775. [PMID: 37212310 DOI: 10.1002/jmv.28775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 05/23/2023]
Abstract
Mpox is a viral zoonotic disease endemic in Central and West Africa that is caused by the Mpox virus, which belongs to the Orthopoxvirus genus and Poxviridae family. The clinical manifestations of mpox infection are milder than those of smallpox, and the incubation time of mpox varies from 5 to 21 days. Since May 2022, the mpox outbreak (formerly known as monkeypox) has suddenly and unexpectedly spread in non-endemic countries, suggesting that there may have been some undetected transmissions. Based on molecular analysis, there are two major genetic clades that represent the mpox virus: Clade I (formerly the Congo Basin clade OR the Central African clade) and Clade II (formerly the West African clade). It is believed that people who are asymptomatic or paucisymptomatic may spread the mpox virus. Infectious viruses cannot be distinguished by PCR testing; therefore, virus culture should be carried out. Recent evidence regarding the detection of the mpox virus (Clade IIb) in air samples collected from the patient's environment during the 2022 mpox outbreak was reviewed. Further studies are needed to evaluate the extent to which the presence of mpox virus DNA in the air could affect immunocompromised patients in healthcare facilities, and further epidemiological studies are crucial, especially in Africa.
Collapse
Affiliation(s)
- AbdulRahman A Saied
- National Food Safety Authority (NFSA), Aswan Branch, Aswan, Egypt
- Ministry of Tourism and Antiquities, Aswan Office, Aswan, Egypt
| |
Collapse
|
178
|
Chauhan RP, Fogel R, Limson J. Overview of Diagnostic Methods, Disease Prevalence and Transmission of Mpox (Formerly Monkeypox) in Humans and Animal Reservoirs. Microorganisms 2023; 11:1186. [PMID: 37317160 DOI: 10.3390/microorganisms11051186] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
Mpox-formerly monkeypox-is a re-emerging zoonotic virus disease, with large numbers of human cases reported during multi-country outbreaks in 2022. The close similarities in clinical symptoms that Mpox shares with many orthopoxvirus (OPXV) diseases make its diagnosis challenging, requiring laboratory testing for confirmation. This review focuses on the diagnostic methods used for Mpox detection in naturally infected humans and animal reservoirs, disease prevalence and transmission, clinical symptoms and signs, and currently known host ranges. Using specific search terms, up to 2 September 2022, we identified 104 relevant original research articles and case reports from NCBI-PubMed and Google Scholar databases for inclusion in the study. Our analyses observed that molecular identification techniques are overwhelmingly being used in current diagnoses, especially real-time PCR (3982/7059 cases; n = 41 studies) and conventional PCR (430/1830 cases; n = 30 studies) approaches being most-frequently-used to diagnose Mpox cases in humans. Additionally, detection of Mpox genomes, using qPCR and/or conventional PCR coupled to genome sequencing methods, offered both reliable detection and epidemiological analyses of evolving Mpox strains; identified the emergence and transmission of a novel clade 'hMPXV-1A' lineage B.1 during 2022 outbreaks globally. While a few current serologic assays, such as ELISA, reported on the detection of OPXV- and Mpox-specific IgG (891/2801 cases; n = 17 studies) and IgM antibodies (241/2688 cases; n = 11 studies), hemagglutination inhibition (HI) detected Mpox antibodies in human samples (88/430 cases; n = 6 studies), most other serologic and immunographic assays used were OPXV-specific. Interestingly, virus isolation (228/1259 cases; n = 24 studies), electron microscopy (216/1226 cases; n = 18 studies), and immunohistochemistry (28/40; n = 7 studies) remain useful methods of Mpox detection in humans in select instances using clinical and tissue samples. In animals, OPXV- and Mpox-DNA and antibodies were detected in various species of nonhuman primates, rodents, shrews, opossums, a dog, and a pig. With evolving transmission dynamics of Mpox, information on reliable and rapid detection methods and clinical symptoms of disease is critical for disease management.
Collapse
Affiliation(s)
- Ravendra P Chauhan
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, Eastern Cape, South Africa
| | - Ronen Fogel
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, Eastern Cape, South Africa
| | - Janice Limson
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, Eastern Cape, South Africa
| |
Collapse
|
179
|
Tajudeen YA, Oladipo HJ, Muili AO, Ikebuaso JG. Monkeypox: A review of a zoonotic disease of global public health concern. Health Promot Perspect 2023; 13:1-9. [PMID: 37309433 PMCID: PMC10257565 DOI: 10.34172/hpp.2023.01] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/03/2023] [Indexed: 06/14/2023] Open
Abstract
Background: The rising circulation of the monkeypox virus while the COVID-19 is still ongoing in non-endemic countries is a significant global health threat. In this article, we have discussed the epidemiology, aetiology, and pathogenesis of the monkeypox virus to provide our current knowledge of the disease. Also, we discussed the ongoing efforts of the international health organizations to curtail the present epidemic and we finally provide recommendations for early detection and response. Methods: We did a rapid literature search on PubMed, EMBASE, World Health Organization (WHO), the Centers for Disease Control and Prevention (CDC), and other trusted databases for recent articles (1958-2022) published in English-focusing on the outbreaks of monkeypox disease, epidemiology, pathogenesis, aetiology, prevention, and control in endemic and non-endemic countries. Keywords such as "Monkeypox", "Monkeypox virus", "Poxviridae", "Orthopoxvirus", "Smallpox", and "Smallpox Vaccine" were considered in our search based on MESH medical subject headings. Results: Our review highlights four important findings. First, a cumulative of 1285 monkeypox cases have been documented and reported by the WHO in non-endemic countries as of June 8, 2022. Second, international travel contributes to the increase in cases in non-endemic countries. Third, the origin of the outbreak, the pattern of transmission, and the risk of infections is not fully understood. Fourth, there is an ongoing effort by the WHO, CDC, and other international health organization to control the spread of the monkeypox disease. Conclusion: Our findings underline the need to reassess research priorities on the origin, transmission pattern, and risk factors for infection of monkeypox. Also, we provide recommendations under the One Health spectrum to prevent further spread of the disease.
Collapse
Affiliation(s)
- Yusuf Amuda Tajudeen
- Department of Microbiology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin 240003, Nigeria
- Department of Epidemiology and Medical Statistics, Faculty of Public Health, College of Medicine, University of Ibadan, P.M.B. 5017 G.P.O. Ibadan, Oyo State, Nigeria
| | - Habeebullah Jayeola Oladipo
- Department of Microbiology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin 240003, Nigeria
- Faculty of Pharmaceutical Sciences, University of Ilorin, P.M.B. 1515, Ilorin 240003, Nigeria
| | - Abdulbasit Opeyemi Muili
- Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, P.M.B 4000, Ogbomosho, Oyo State, Nigeria
| | - Joy Ginika Ikebuaso
- Department of Microbiology, Faculty of Natural Sciences, Chukwuemeka Odumegwu Ojukwu University, P.M.B. 02, Uli, Anambra, Nigeria
| |
Collapse
|
180
|
Sang Y, Zhang Z, Liu F, Lu H, Yu C, Sun H, Long J, Cao Y, Mai J, Miao Y, Wang X, Fang J, Wang Y, Huang W, Yang J, Wang S. Monkeypox virus quadrivalent mRNA vaccine induces immune response and protects against vaccinia virus. Signal Transduct Target Ther 2023; 8:172. [PMID: 37117161 PMCID: PMC10144886 DOI: 10.1038/s41392-023-01432-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 04/30/2023] Open
Abstract
Monkeypox has been declared a public health emergency by the World Health Organization. There is an urgent need for efficient and safe vaccines against the monkeypox virus (MPXV) in response to the rapidly spreading monkeypox epidemic. In the age of COVID-19, mRNA vaccines have been highly successful and emerged as platforms enabling rapid development and large-scale preparation. Here, we develop two MPXV quadrivalent mRNA vaccines, named mRNA-A-LNP and mRNA-B-LNP, based on two intracellular mature virus specific proteins (A29L and M1R) and two extracellular enveloped virus specific proteins (A35R and B6R). By administering mRNA-A-LNP and mRNA-B-LNP intramuscularly twice, mice induce MPXV specific IgG antibodies and potent vaccinia virus (VACV) specific neutralizing antibodies. Further, it elicits efficient MPXV specific Th-1 biased cellular immunity, as well as durable effector memory T and germinal center B cell responses in mice. In addition, two doses of mRNA-A-LNP and mRNA-B-LNP are protective against the VACV challenge in mice. And, the passive transfer of sera from mRNA-A-LNP and mRNA-B-LNP-immunized mice protects nude mice against the VACV challenge. Overall, our results demonstrate that mRNA-A-LNP and mRNA-B-LNP appear to be safe and effective vaccine candidates against monkeypox epidemics, as well as against outbreaks caused by other orthopoxviruses, including the smallpox virus.
Collapse
Affiliation(s)
- Ye Sang
- Bioinformatics center of AMMS, Beijing, 100850, P. R. China
| | - Zhen Zhang
- Bioinformatics center of AMMS, Beijing, 100850, P. R. China
| | - Fan Liu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, 102629, P. R. China
| | - Haitao Lu
- Bioinformatics center of AMMS, Beijing, 100850, P. R. China
| | - Changxiao Yu
- Bioinformatics center of AMMS, Beijing, 100850, P. R. China
| | - Huisheng Sun
- Bioinformatics center of AMMS, Beijing, 100850, P. R. China
| | - Jinrong Long
- Bioinformatics center of AMMS, Beijing, 100850, P. R. China
| | - Yiming Cao
- Bioinformatics center of AMMS, Beijing, 100850, P. R. China
| | - Jierui Mai
- Bioinformatics center of AMMS, Beijing, 100850, P. R. China
| | - Yiqi Miao
- Bioinformatics center of AMMS, Beijing, 100850, P. R. China
| | - Xin Wang
- Bioinformatics center of AMMS, Beijing, 100850, P. R. China
| | - Jiaxin Fang
- Bioinformatics center of AMMS, Beijing, 100850, P. R. China
| | - Youchun Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650031, P. R. China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, 102629, P. R. China.
| | - Jing Yang
- Bioinformatics center of AMMS, Beijing, 100850, P. R. China.
| | - Shengqi Wang
- Bioinformatics center of AMMS, Beijing, 100850, P. R. China.
| |
Collapse
|
181
|
Gupta AK, Talukder M, Rosen T, Piguet V. Differential Diagnosis, Prevention, and Treatment of mpox (Monkeypox): A Review for Dermatologists. Am J Clin Dermatol 2023:10.1007/s40257-023-00778-4. [PMID: 37106278 PMCID: PMC10136400 DOI: 10.1007/s40257-023-00778-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 04/29/2023]
Abstract
The current 2022 mpox (monkeypox) outbreak has been officially recognized as a public health emergency. The mpox clinical symptoms include high fever, fatigue, chills, headache, swollen lymph nodes, muscle aches, and a disseminated painful rash. However, recent cases of mpox have shown a shift in clinical symptoms, with anogenital skin lesions emerging as the predominant feature. Due to the predominant skin manifestations of mpox, dermatologists could be crucial in detecting new mpox cases and educating frontline healthcare professionals about mpox. The mpox virus is continuously evolving and has several variants. Genome sequencing has revealed that the Clade IIb variant is responsible for the 2022 mpox outbreak. Mpox spread may occur through animal-to-human and human-to-human transmission; however, unlike coronavirus disease 2019 (COVID-19), long-range airborne transmission has not been reported. Healthcare professionals are at higher risk of becoming infected since they are usually in close contact with both the patients and potentially contaminated fomites (e.g., examination table, gowns, gloves). Both public and healthcare professionals should take preventive and avoidance measures to limit the spread. Mpox is usually self-limiting and may require only symptomatic treatment; however, it may cause severe complications in special populations such as immunocompromised individuals. For severe infection, clinicians may consider antiviral drugs (off-label), tecovirimat and brincidofovir, originally approved for smallpox treatment. Two smallpox vaccines, ACAM2000® and JYNNEOSTM, can be used as pre-exposure prophylaxis against mpox. JYNNEOSTM, which carries approval for mpox use, has less adverse effect potential than ACAM2000®, and may also be used as post-exposure prophylaxis, preferably within 4 days of exposure.
Collapse
Affiliation(s)
- Aditya K Gupta
- Mediprobe Research Inc., 645 Windermere Road, London, ON, N5X 2P1, Canada.
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Mesbah Talukder
- Mediprobe Research Inc., 645 Windermere Road, London, ON, N5X 2P1, Canada
- School of Pharmacy, BRAC University, Dhaka, Bangladesh
| | - Ted Rosen
- Baylor College of Medicine, Houston, TX, USA
| | - Vincent Piguet
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Dermatology, Women's College Hospital, Toronto, ON, Canada
| |
Collapse
|
182
|
Stilpeanu RI, Stercu AM, Stancu AL, Tanca A, Bucur O. Monkeypox: a global health emergency. Front Microbiol 2023; 14:1094794. [PMID: 37180247 PMCID: PMC10169603 DOI: 10.3389/fmicb.2023.1094794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/20/2023] [Indexed: 05/16/2023] Open
Abstract
Over the past 2 years, the world has faced the impactful Coronavirus Disease-2019 (COVID-19) pandemic, with a visible shift in economy, medicine, and beyond. As of recent times, the emergence of the monkeypox (mpox) virus infections and the growing number of infected cases have raised panic and fear among people, not only due to its resemblance to the now eradicated smallpox virus, but also because another potential pandemic could have catastrophic consequences, globally. However, studies of the smallpox virus performed in the past and wisdom gained from the COVID-19 pandemic are the two most helpful tools for humanity that can prevent major outbreaks of the mpox virus, thus warding off another pandemic. Because smallpox and mpox are part of the same virus genus, the Orthopoxvirus genus, the structure and pathogenesis, as well as the transmission of both these two viruses are highly similar. Because of these similarities, antivirals and vaccines approved and licensed in the past for the smallpox virus are effective and could successfully treat and prevent an mpox virus infection. This review discusses the main components that outline this current global health issue raised by the mpox virus, by presenting it as a whole, and integrating aspects such as its structure, pathogenesis, clinical aspects, prevention, and treatment options, and how this ongoing phenomenon is being globally approached.
Collapse
Affiliation(s)
- Ruxandra Ilinca Stilpeanu
- Victor Babes National Institute of Pathology, Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana Maria Stercu
- Victor Babes National Institute of Pathology, Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Andreea Lucia Stancu
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Antoanela Tanca
- Victor Babes National Institute of Pathology, Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Octavian Bucur
- Victor Babes National Institute of Pathology, Bucharest, Romania
- Viron Molecular Medicine Institute, Boston, MA, United States
- Genomics Research and Development Institute, Bucharest, Romania
| |
Collapse
|
183
|
Li Y, Shen Y, Hu Z, Yan R. Structural basis for the assembly of the DNA polymerase holoenzyme from a monkeypox virus variant. SCIENCE ADVANCES 2023; 9:eadg2331. [PMID: 37075110 PMCID: PMC10115419 DOI: 10.1126/sciadv.adg2331] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ongoing global pandemic caused by a variant of the monkeypox (or mpox) virus (MPXV) has prompted widespread concern. The MPXV DNA polymerase holoenzyme, consisting of F8, A22, and E4, is vital for replicating the viral genome and represents a crucial target for the development of antiviral drugs. However, the assembly and working mechanism for the DNA polymerase holoenzyme of MPXV remains elusive. Here, we present the cryo-electron microscopy (cryo-EM) structure of the DNA polymerase holoenzyme at an overall resolution of 3.5 Å. Unexpectedly, the holoenzyme is assembled as a dimer of heterotrimers, of which the extra interface between the thumb domain of F8 and A22 shows a clash between A22 and substrate DNA, suggesting an autoinhibition state. Addition of exogenous double-stranded DNA shifts the hexamer into trimer exposing DNA binding sites, potentially representing a more active state. Our findings provide crucial steps toward developing targeted antiviral therapies for MPXV and related viruses.
Collapse
Affiliation(s)
- Yaning Li
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province 310024, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yaping Shen
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province 310024, China
| | - Ziwei Hu
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
| | - Renhong Yan
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
- Corresponding author.
| |
Collapse
|
184
|
Sharma R, Chen KT, Sharma R. Emerging evidence on Monkeypox: resurgence, global burden, molecular insights, genomics and possible management. Front Cell Infect Microbiol 2023; 13:1134712. [PMID: 37153147 PMCID: PMC10154632 DOI: 10.3389/fcimb.2023.1134712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/20/2023] [Indexed: 05/09/2023] Open
Abstract
An outbreak of monkeypox (encoded enveloped double stranded DNA), resurgence and expansion has emerged in early 2022, posing a new threat to global health. Even though, many reports are available on monkeypox, still a comprehensive updated review is needed. Present updated review is focused to fill the research gaps pertaining to the monkeypox, and an extensive search was conducted in a number of databases, including Google Scholar, Scopus, Web of Science, and Science Direct. Although the disease usually progresses self-limiting, some patients require admission for kidney injury, pharyngitis, myocarditis, and soft tissue super infections. There is no well-known treatment available yet; still there has been a push for the use of antiviral therapy and tecovirimat as a promising option when dealing with co-morbidities. In this study, we mapped and discussed the updates and scientific developments surrounding monkeypox, including its potential molecular mechanisms, genomics, transmission, risk factors, diagnosis, prevention, vaccines, treatment, possible plant-based treatment along with their proposed mechanisms. Each day, a growing number of monkeypox cases are reported, and more cases are expected in the near future. As of now, monkeypox does not have a well-established and proven treatment, and several investigations are underway to find the best possible treatment from natural or synthetic drug sources. Multiple molecular mechanisms on pathophysiological cascades of monkeypox virus infection are discussed here along with updates on genomics, and possible preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Ruchi Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| | - Kow-Tong Chen
- Department of Occupational Medicine, Tainan Municipal Hospital (managed by Show Chwan Medical Care Corporation), Tainan, Taiwan
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| |
Collapse
|
185
|
Yu X, Shi H, Cheng G. Mpox Virus: Its Molecular Evolution and Potential Impact on Viral Epidemiology. Viruses 2023; 15:v15040995. [PMID: 37112975 PMCID: PMC10142743 DOI: 10.3390/v15040995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Mpox (previously known as monkeypox) is an infectious viral illness caused by the mpox virus (MPXV), an orthopoxvirus that belongs to the family Poxviridae. The symptoms of mpox in humans are similar to those of smallpox, although the mortality rate is lower. In recent years, the concern over a potential global pandemic has increased due to reports of mpox spreading across Africa and other parts of the world. Prior to this discovery, mpox was a rare zoonotic disease restricted to endemic regions of Western and Central Africa. The sudden emergence of MPXV cases in multiple regions has raised concerns about its natural evolution. This review aims to provide an overview of previously available information about MPXV, including its genome, morphology, hosts and reservoirs, and virus-host interaction and immunology, as well as to perform phylogenetic analysis on available MPXV genomes, with an emphasis on the evolution of the genome in humans as new cases emerge.
Collapse
Affiliation(s)
- Xi Yu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Huicheng Shi
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| |
Collapse
|
186
|
Kumar P, Chaudhary B, Yadav N, Devi S, Pareek A, Alla S, Kajal F, Nowrouzi-Kia B, Chattu VK, Gupta MM. Recent Advances in Research and Management of Human Monkeypox Virus: An Emerging Global Health Threat. Viruses 2023; 15:v15040937. [PMID: 37112916 PMCID: PMC10146223 DOI: 10.3390/v15040937] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
In 2003, the United States saw an epidemic of monkeypox that was later traced back to rodents of West Africa infected with the monkeypox virus (MPXV). Disease in the United States seemed less severe than the smallpox-like disease in the Democratic Republic of the Congo (DRC). In this study, researchers analyzed data from Central Africa: two distinct MPXV clades were confirmed by sequencing the genomes of MPXV isolates from Western Africa, the United States, and Central Africa. By comparing open reading frames across MPXV clades, scientists can infer which virus proteins might account for the observed variation in pathogenicity in humans. Monkeypox can be prevented and controlled with a better understanding of MPXV's molecular etiology and epidemiological and clinical features. In light of the current outbreaks worldwide, we provide updated information on monkeypox for medical professionals in this review.
Collapse
Affiliation(s)
- Parveen Kumar
- Shri Ram College of Pharmacy, Karnal 132116, Haryana, India
| | - Benu Chaudhary
- Guru Gobind Singh College of Pharmacy, Yamunanagar 135001, Haryana, India
| | - Nishant Yadav
- B.S. Anangpuria Institute of Pharmacy, Faridabad 121004, Haryana, India
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Sujatha Alla
- Department of Engineering Management & Systems Engineering, Frank Batten College of Engineering, Old Dominion University, Norfolk, VA 23529, USA
- Center for Technology and Innovations, Global Health Research and Innovations Canada, Toronto, ON M1J 2W8, Canada
| | - Fnu Kajal
- Department of Health Promotion Sciences, University of Arizona, Tucson, AZ 85719, USA
| | - Behdin Nowrouzi-Kia
- Department of Occupational Science and Occupational Therapy, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada
| | - Vijay Kumar Chattu
- Department of Occupational Science and Occupational Therapy, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada
- Department of Community Medicine, Faculty of Medicine, Datta Meghe Institute of Medical Sciences, Wardha 442107, Maharashtra, India
- Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine 3303, Trinidad and Tobago
| |
Collapse
|
187
|
Pomari E, Mori A, Accordini S, Donini A, Cordioli M, Tacconelli E, Castilletti C. Evaluation of a ddPCR Commercial Assay for the Absolute Quantification of the Monkeypox Virus West Africa in Clinical Samples. Diagnostics (Basel) 2023; 13:diagnostics13071349. [PMID: 37046567 PMCID: PMC10093040 DOI: 10.3390/diagnostics13071349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Monkeypox virus (MPXV) is a double-stranded DNA virus belonging to the orthopoxvirus genus in the family Poxviridae. Distinct clades are identified: the clade I belonging to the Central African (or Congo Basin) clade and the subclades IIa and IIb belonging to the West African clade. Here, a commercial droplet digital PCR (ddPCR) assay was evaluated for the quantification of the MPXV West Africa clade in clinical samples. METHODS The ddPCR reaction was assessed as a duplex assay using RPP30 as an internal amplification control. A total of 60 clinical specimens were tested, 40 positives (skin lesions, n=10; rectal swabs, n = 10; pharyngeal swabs, n = 10; and whole blood, n = 10), and 20 negatives (n = 5 for each biological matrix) were found at the routine molecular diagnostics (orthopoxvirus qPCR followed by confirmation with Sanger sequencing). To evaluate the analytical sensitivity, the ddPCR reaction was first analyzed on serial dilutions of synthetic DNA spiked in water and in negative biological matrices, achieving a limit of detection of 3.5 copy/µL. RESULTS Regarding the clinical samples, compared to routine molecular diagnostics, the ddPCR duplex assay showed 100% of specificity for all biological matrices and 100% sensitivity (10/10) for lesions, 100% (10/10) for rectal swabs, 90% (9/10) for pharyngeal swabs, and 60% (6/10) for whole blood. CONCLUSION Overall, our data showed that the commercial ddPCR assay allowed the DNA detection of MPXV in 87.5% (35/40) of our cohort, highlighting useful technical indications for the different specimens with a potential greatest performance for skin lesions and rectal swabs.
Collapse
Affiliation(s)
- Elena Pomari
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Antonio Mori
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Silvia Accordini
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Annalisa Donini
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Maddalena Cordioli
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, 37100 Verona, Italy
- Division of Infectious Diseases, Department of Medicine, Verona University Hospital, 37100 Verona, Italy
| | - Evelina Tacconelli
- Division of Infectious Diseases, Department of Medicine, Verona University Hospital, 37100 Verona, Italy
| | - Concetta Castilletti
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| |
Collapse
|
188
|
Beeson A, Styczynski A, Hutson CL, Whitehill F, Angelo KM, Minhaj FS, Morgan C, Ciampaglio K, Reynolds MG, McCollum AM, Guagliardo SAJ. Mpox respiratory transmission: the state of the evidence. THE LANCET. MICROBE 2023; 4:e277-e283. [PMID: 36898398 PMCID: PMC9991082 DOI: 10.1016/s2666-5247(23)00034-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 03/09/2023]
Abstract
The relative contribution of the respiratory route to transmission of mpox (formerly known as monkeypox) is unclear. We review the evidence for respiratory transmission of monkeypox virus (MPXV), examining key works from animal models, human outbreaks and case reports, and environmental studies. Laboratory experiments have initiated MPXV infection in animals via respiratory routes. Some animal-to-animal respiratory transmission has been shown in controlled studies, and environmental sampling studies have detected airborne MPXV. Reports from real-life outbreaks demonstrate that transmission is associated with close contact, and although it is difficult to infer the route of MPXV acquisition in individual case reports, so far respiratory transmission has not been specifically implicated. Based on the available evidence, the likelihood of human-to-human MPXV respiratory transmission appears to be low; however, studies should continue to assess this possibility.
Collapse
Affiliation(s)
- Amy Beeson
- Mpox Response Team, Centers for Disease Control and Prevention, Atlanta, GA, USA; Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ashley Styczynski
- Mpox Response Team, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christina L Hutson
- Mpox Response Team, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Florence Whitehill
- Mpox Response Team, Centers for Disease Control and Prevention, Atlanta, GA, USA; Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kristina M Angelo
- Mpox Response Team, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Faisal S Minhaj
- Mpox Response Team, Centers for Disease Control and Prevention, Atlanta, GA, USA; Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Clint Morgan
- Mpox Response Team, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kaitlyn Ciampaglio
- Mpox Response Team, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mary G Reynolds
- Mpox Response Team, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Andrea M McCollum
- Mpox Response Team, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
189
|
Abstract
The 2022 mpox outbreak has rapidly emerged onto the global medical scene while the world continues to grapple with the COVID-19 pandemic. Unlike COVID-19, however, most patients with mpox present with skin findings, the evolving clinical presentation of which may be mistaken for other common skin diseases, particularly sexually transmitted infections. This Special Communication provides an overview of the evolution of mpox skin findings from its initial description in humans in 1970 to the present-day multinational outbreak.
Collapse
Affiliation(s)
- Edward W. Cowen
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Eric R. Tkaczyk
- Dermatology Service and Research Service, Department of Veteran Affairs, Nashville, TN
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN
| | - Scott A. Norton
- Department of Dermatology, George Washington University, Washington, DC
| | - Kieron S. Leslie
- Department of Dermatology, University of California San Francisco, San Francisco, CA
| |
Collapse
|
190
|
Chandra Das R, Ratan ZA, Rahman MM, Runa NJ, Mondal S, Konstantinov K, Hosseinzadeh H, Cho JY. Antiviral activities of ginseng and its potential and putative benefits against monkeypox virus: A mini review. J Ginseng Res 2023; 47:S1226-8453(23)00028-3. [PMID: 37362081 PMCID: PMC10065872 DOI: 10.1016/j.jgr.2023.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Due to the Covid-19 pandemic more than 6 million people have died, and it has bought unprecedented challenges to our lives. The recent outbreak of monkeypox virus (MPXV) has brought out new tensions among the scientific community. Currently, there is no specific treatment protocol for MPXV. Several antivirals, vaccinia immune globulin (VIG) and smallpox vaccines have been used to treat MPXV. Ginseng, one of the more famous among traditional medicines, has been used for infectious disease for thousands of years. It has shown promising antiviral effects. Ginseng could be used as a potential adaptogenic agent to help prevent infection by MPXV along with other drugs and vaccines. In this mini review, we explore the possible use of ginseng in MPXV prevention based on its antiviral activity.
Collapse
Affiliation(s)
- Rajib Chandra Das
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW, Australia
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Zubair Ahmed Ratan
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna, Bangladesh
- School of Health and Society, University of Wollongong, NSW, Australia
| | - Md Mustafizur Rahman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh
| | | | - Susmita Mondal
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW, Australia
| | - Konstantin Konstantinov
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW, Australia
| | | | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Republic of Korea
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU, Suwon, Republic of Korea
| |
Collapse
|
191
|
Karagoz A, Tombuloglu H, Alsaeed M, Tombuloglu G, AlRubaish AA, Mahmoud A, Smajlović S, Ćordić S, Rabaan AA, Alsuhaimi E. Monkeypox (mpox) virus: Classification, origin, transmission, genome organization, antiviral drugs, and molecular diagnosis. J Infect Public Health 2023; 16:531-541. [PMID: 36801633 PMCID: PMC9908738 DOI: 10.1016/j.jiph.2023.02.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/22/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Monkeypox virus (MPXV) is a double-stranded DNA virus belonging to the Poxviridae family of the genus Orthopoxvirus with two different clades known as West African and Congo Basin. Monkeypox (MPX) is a zoonosis that arises from the MPXV and causes a smallpox-like disease. The endemic disease status of MPX was updated to an outbreak worldwide in 2022. Thus, the condition was declared a global health emergency independent of travel issues, accounting for the primary reason for its prevalence outside Africa. In addition to identified transmission mediators through animal-to-human and human-to-human, especially sexual transmission among men who have sex with men came to prominence in the 2022 global outbreak. Although the severity and prevalence of the disease differ depending on age and gender, some symptoms are commonly observed. Clinical signs such as fever, muscle and headache pain, swollen lymph nodes, and skin rashes in defined body regions are standard and an indicator for the first step of diagnosis. By following the clinical signs, laboratory diagnostic tests like conventional polymerase chain reaction (PCR) or real-time PCR (RT-PCR) are the most common and accurate diagnostic methods. Antiviral drugs such as tecovirimat, cidofovir, and brincidofovir are used for symptomatic treatment. There is no MPXV-specific vaccine; however, currently available vaccines against smallpox enhance the immunization rate. This comprehensive review covers the MPX disease history and the current state of knowledge by assessing broad topics and views related to disease origin, transmission, epidemiology, severity, genome organization and evolution, diagnosis, treatment, and prevention.
Collapse
Affiliation(s)
- Aysel Karagoz
- Quality Assurance Department, Turk Pharmaceutical and Serum Ind. Inc., Ankara, Turkey
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34221, Saudi Arabia.
| | - Moneerah Alsaeed
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34221, Saudi Arabia
| | - Guzin Tombuloglu
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34221, Saudi Arabia
| | - Abdullah A AlRubaish
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Amal Mahmoud
- Department of Bioinformatics, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Egypt
| | - Samira Smajlović
- Laboratory Diagnostics Institute Dr. Dedić, Bihać 77000, Bosnia and Herzegovina
| | - Sabahudin Ćordić
- Cantonal hospital "Dr. Irfan Ljubijankić", Microbiological laboratory, Bihać 77000, Bosnia and Herzegovina
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Public Health and Nutrition. The University of Haripur, Haripur 22610, Pakistan
| | - Ebtesam Alsuhaimi
- Biology Department, College of Science and Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
192
|
Falendysz EA, Lopera JG, Rocke TE, Osorio JE. Monkeypox Virus in Animals: Current Knowledge of Viral Transmission and Pathogenesis in Wild Animal Reservoirs and Captive Animal Models. Viruses 2023; 15:905. [PMID: 37112885 PMCID: PMC10142277 DOI: 10.3390/v15040905] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Mpox, formerly called monkeypox, is now the most serious orthopoxvirus (OPXV) infection in humans. This zoonotic disease has been gradually re-emerging in humans with an increasing frequency of cases found in endemic areas, as well as an escalating frequency and size of epidemics outside of endemic areas in Africa. Currently, the largest known mpox epidemic is spreading throughout the world, with over 85,650 cases to date, mostly in Europe and North America. These increased endemic cases and epidemics are likely driven primarily by decreasing global immunity to OPXVs, along with other possible causes. The current unprecedented global outbreak of mpox has demonstrated higher numbers of human cases and greater human-to-human transmission than previously documented, necessitating an urgent need to better understand this disease in humans and animals. Monkeypox virus (MPXV) infections in animals, both naturally occurring and experimental, have provided critical information about the routes of transmission; the viral pathogenicity factors; the methods of control, such as vaccination and antivirals; the disease ecology in reservoir host species; and the conservation impacts on wildlife species. This review briefly described the epidemiology and transmission of MPXV between animals and humans and summarizes past studies on the ecology of MPXV in wild animals and experimental studies in captive animal models, with a focus on how animal infections have informed knowledge concerning various aspects of this pathogen. Knowledge gaps were highlighted in areas where future research, both in captive and free-ranging animals, could inform efforts to understand and control this disease in both humans and animals.
Collapse
Affiliation(s)
| | | | - Tonie E. Rocke
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711, USA
| | - Jorge E. Osorio
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
- Global Health Institute, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
193
|
Awoyomi OJ, Njoga EO, Jaja IF, Oyeleye FA, Awoyomi PO, Ibrahim MA, Saulawa MA, Galadima HB, Rowaiye AB, Olasoju TI, Idrisa JA, Olalere FDH, Olasoju MI, Adisa OH, Adetunji VE, Idemudia OO, Ezenduka EV, Oguttu JW. Mpox in Nigeria: Perceptions and knowledge of the disease among critical stakeholders-Global public health consequences. PLoS One 2023; 18:e0283571. [PMID: 36996122 PMCID: PMC10062623 DOI: 10.1371/journal.pone.0283571] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/09/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND The mpox (monkeypox) disease is a re-emerging viral zoonosis of international concern that is endemic in parts of Africa. The mpox virus (MPXV), which was hitherto largely limited to some Central and West African countries, was declared a public health emergency of international concern by the WHO on July 23, 2022 following the rapid spread of the virus to non-endemic countries. Globally, as of March 16, 2023, the WHO had reported 86,496 laboratory-confirmed cases of mpox and 111 deaths in 110 countries. Of the 1,420 cases of mpox reported in Africa as of March 16, 2023, Nigeria alone recorded 57.1% (812) of the confirmed cases and eight fatalities recorded in the continent. To help improve on the understanding of the current situation in Nigeria, the present study assessed the perception and knowledge of mpox among Nigerian healthcare workers, academics and tertiary students. The study also sought to highlight the global public health significance of the MPXV, and recommend a One Health approach to limit exporting of the virus beyond the borders of Nigeria. METHODS A web-based cross-sectional survey was conducted between 24 July 2022 and 12 August 2022 to evaluate the perception and knowledge of mpox among 1544 Nigerians, consisted of healthcare workers (n = 832), academics (n = 306) and tertiary students (n = 462). Data on the respondents' socio demographics and their information sources on mpox were also collected. Each correct response was allotted one point while an incorrect response was scored zero. The scores for perception and knowledge were dichotomized into positive (>5.5) and negative (≤5.5) and adequate (>5.8) and inadequate (≤5.8), respectively; using the average scores for perception and knowledge. The average score for perception and knowledge were summarised and presented as the mean and standard deviation (SD). Chi-square tests of association and binary logistic regression were carried out to determine factors associated with the outcome variables. RESULTS Of the 1452 respondents that had heard of mpox, 878 (60.5%) and 419 (28.9%) had adequate knowledge and positive perception concerning MPXV infection respectively. Average perception score was 5.5. Mean perception and knowledge scores were 4.5(SD: 2.0) and 5.8 (SD: 1.9), respectively. Factors that were significantly associated with knowledge level were age (p = 0.020) educational qualification attained (p = 0.004), occupation (p<0.001), and geopolitical zone of residency (p = 0.001). There was a positive correlation between perception and knowledge scores (r = 0.4, p<0.001). Positive perceptions were likely among respondents who had tertiary education, and residing in North-west Nigeria. Likewise, adequate knowledge scores were likely among respondents under 30 years of age, with tertiary education or reside in North-west Nigeria. Sources of information were significantly associated with perception (p = 0.004) and knowledge (p<0.001) of the respondents. CONCLUSION The findings of this study show that there is disparity in the knowledge and perception of mpox in the study population, and as a result, there is a need to intensify awareness about MPXV infection to enhance positive perception among the respondents. This has potential to safeguard public health and contain the disease thus preventing it from spreading to the global community. A One Health approach involving animal and human health workers is imperative for improved knowledge and a good perception towards the disease among respondents, and enhanced active surveillance and early detection of MPXV in reservoir hosts (rodents and non-human primates); to prevent reverse zoonotic transmission of the virus at the human-animal interface.
Collapse
Affiliation(s)
- Olajoju J. Awoyomi
- Department of Veterinary Public Health and Preventive Medicine, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Nigeria
| | - Emmanuel O. Njoga
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Ishmael F. Jaja
- Department of Agriculture and Animal Health, Florida Campus, University of South Africa, Johannesburg, South Africa
| | - Felix A. Oyeleye
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Priscilla O. Awoyomi
- Department of Medicine and Surgery, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Musawa A. Ibrahim
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - M. A. Saulawa
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Bayero University Kano, Kano State, Nigeria
| | - Haruna B. Galadima
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria
| | - Adekunle B. Rowaiye
- Depatment of Agricultural Biotechnology, National Biotechnology Development Agency, Abuja, Nigeria
| | - Taiwo I. Olasoju
- Federal Ministry of Agriculture and Rural Development, Department of Veterinary and Pest Control Services, Epidemiology Division, Garki, Abuja, Nigeria
| | - Jamila A. Idrisa
- Department of Medicine, College of Medical Sciences, University of Maiduguri Teaching Hospital, Maiduguri, Nigeria
- Department of Internal Medicine, College of Medical Sciences, University of Maiduguri Teaching Hospital, Maiduguri, Nigeria
| | - Folasade D. H. Olalere
- Lagos State University College of Medicine/Lagos State University Teaching Hospital, Ikeja, Lagos, Nigeria
| | - Mary I. Olasoju
- Department of Veterinary Public Health and Preventive Medicine, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Nigeria
| | - Oluwatosin H. Adisa
- Department of Family Medicine, Sacred Heart Hospital, Lantoro, Abeokuta, Nigeria
| | - Veronica E. Adetunji
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Ekene V. Ezenduka
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - James W. Oguttu
- Department of Agriculture and Animal Health, Florida Campus, University of South Africa, Johannesburg, South Africa
| |
Collapse
|
194
|
Forni D, Molteni C, Cagliani R, Sironi M. Geographic Structuring and Divergence Time Frame of Monkeypox Virus in the Endemic Region. J Infect Dis 2023; 227:742-751. [PMID: 35831941 PMCID: PMC10044091 DOI: 10.1093/infdis/jiac298] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Monkeypox is an emerging zoonosis endemic to Central and West Africa. Monkeypox virus (MPXV) is genetically structured in 2 major clades (clades 1 and 2/3), but its evolution is poorly explored. METHODS We retrieved MPXV genomes from public repositories and we analyzed geographic patterns using STRUCTURE. Molecular dating was performed using a using a Bayesian approach. RESULTS We show that the population transmitted in West Africa (clades 2/3) experienced limited drift. Conversely, clade 1 (transmitted in the Congo Basin) possibly underwent a bottleneck or founder effect. Depending on the model used, we estimated that the 2 clades separated ∼560-860 (highest posterior density: 450-960) years ago, a period characterized by expansions and contractions of rainforest areas, possibly creating the ecological conditions for the MPXV reservoir(s) to migrate. In the Congo Basin, MPXV diversity is characterized by 4 subpopulations that show no geographic structuring. Conversely, clades 2/3 are spatially structured with 2 populations located West and East of the Dahomey Gap. CONCLUSIONS The distinct histories of the 2 clades may derive from differences in MPXV ecology in West and Central Africa.
Collapse
Affiliation(s)
- Diego Forni
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Cristian Molteni
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| |
Collapse
|
195
|
Wang J, Shahed-Ai-Mahmud M, Chen A, Li K, Tan H, Joyce R. An Overview of Antivirals against Monkeypox Virus and Other Orthopoxviruses. J Med Chem 2023; 66:4468-4490. [PMID: 36961984 DOI: 10.1021/acs.jmedchem.3c00069] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The current monkeypox outbreaks during the COVID-19 pandemic have reignited interest in orthopoxvirus antivirals. Monkeypox belongs to the Orthopoxvirus genus of the Poxviridae family, which also includes the variola virus, vaccinia virus, and cowpox virus. Two orally bioavailable drugs, tecovirimat and brincidofovir, have been approved for treating smallpox infections. Given their human safety profiles and in vivo antiviral efficacy in animal models, both drugs have also been recommended to treat monkeypox infection. To facilitate the development of additional orthopoxvirus antivirals, we summarize the antiviral activity, mechanism of action, and mechanism of resistance of orthopoxvirus antivirals. This perspective covers both direct-acting and host-targeting antivirals with an emphasis on drug candidates showing in vivo antiviral efficacy in animal models. We hope to speed the orthopoxvirus antiviral drug discovery by providing medicinal chemists with insights into prioritizing proper drug targets and hits for further development.
Collapse
Affiliation(s)
- Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Md Shahed-Ai-Mahmud
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Angelo Chen
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Kan Li
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Ryan Joyce
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
196
|
Hatami H, Jamshidi P, Arbabi M, Safavi-Naini SAA, Farokh P, Izadi-Jorshari G, Mohammadzadeh B, Nasiri MJ, Zandi M, Nayebzade A, Sechi LA. Demographic, Epidemiologic, and Clinical Characteristics of Human Monkeypox Disease Pre- and Post-2022 Outbreaks: A Systematic Review and Meta-Analysis. Biomedicines 2023; 11:957. [PMID: 36979936 PMCID: PMC10045775 DOI: 10.3390/biomedicines11030957] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
(1) Background: In early May 2022, an increasing number of human monkeypox (mpox) cases were reported in non-endemic disparate regions of the world, which raised concerns. Here, we provide a systematic review and meta-analysis of mpox-confirmed patients presented in peer-reviewed publications over the 10 years before and during the 2022 outbreak from demographic, epidemiological, and clinical perspectives. (2) Methods: A systematic search was performed for relevant studies published in Pubmed/Medline, Embase, Scopus, and Google Scholar from 1 January 2012 up to 15 February 2023. Pooled frequencies with 95% confidence intervals (CIs) were assessed using the random or fixed effect model due to the estimated heterogeneity of the true effect sizes. (3) Results: Out of 10,163 articles, 67 met the inclusion criteria, and 31 cross-sectional studies were included for meta-analysis. Animal-to-human transmission was dominant in pre-2022 cases (61.64%), but almost all post-2022 reported cases had a history of human contact, especially sexual contact. The pooled frequency of MSM individuals was 93.5% (95% CI 91.0-95.4, I2: 86.60%) and was reported only in post-2022 included studies. The male gender was predominant in both pre- and post-2022 outbreaks, and the mean age of confirmed cases was 29.92 years (5.77-41, SD: 9.38). The most common clinical manifestations were rash, fever, lymphadenopathy, and malaise/fatigue. Proctalgia/proctitis (16.6%, 95% CI 10.3-25.6, I2: 97.76) and anal/perianal lesions (39.8%, 95% CI 30.4-49.9, I2: 98.10) were the unprecedented clinical manifestations during the 2022 outbreak, which were not described before. Genitalia involvement was more common in post-2022 mpox patients (55.6%, 95% CI 51.7-59.4, I2: 88.11). (4) Conclusions: There are speculations about the possibility of changes in the pathogenic properties of the virus. It seems that post-2022 mpox cases experience a milder disease with fewer rashes and lower mortality rates. Moreover, the vast majority of post-2022 cases are managed on an outpatient basis. Our study could serve as a basis for ongoing investigations to identify the different aspects of previous mpox outbreaks and compare them with the current ones.
Collapse
Affiliation(s)
- Hossein Hatami
- Department of Public Health, School of Public Health and Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | - Parnian Jamshidi
- Department of Public Health, School of Public Health and Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.A.); (P.F.); (B.M.); (M.J.N.)
| | - Mahta Arbabi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.A.); (P.F.); (B.M.); (M.J.N.)
| | - Seyed Amir Ahmad Safavi-Naini
- Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | - Parisa Farokh
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.A.); (P.F.); (B.M.); (M.J.N.)
| | - Ghazal Izadi-Jorshari
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | - Benyamin Mohammadzadeh
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.A.); (P.F.); (B.M.); (M.J.N.)
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.A.); (P.F.); (B.M.); (M.J.N.)
| | - Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran 1417613151, Iran;
| | - Amirhossein Nayebzade
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- SC Microbiologia e Virologia, Azienda Ospedaliera Universitaria, 07100 Sassari, Italy
| |
Collapse
|
197
|
Sharma A, Prasad H, Kaeley N, Bondalapati A, Edara L, Kumar YA. Monkeypox epidemiology, clinical presentation, and transmission: a systematic review. Int J Emerg Med 2023; 16:20. [PMID: 36932335 PMCID: PMC10021050 DOI: 10.1186/s12245-023-00491-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/22/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND The new zoonotic viral infection, monkeypox, is a global health issue. Our study aimed at studying the epidemiology, clinical presentation, complications, case fatality rate, and transmission among the present cases of monkeypox infection. METHODS Articles were searched in PubMed, Google Scholar, and Science Direct databases using the keywords "Monkeypox" [MeSH] or "Monkeypox virus" (MeSH). Narrative reviews, conference abstracts, commentaries, and articles in languages other than English were excluded. RESULTS From three databases, 1442 studies were identified. Seven hundred ten articles were excluded because they included data before 2022, leaving 732 items for screening. After filtering 320 data due to data duplication, 412 remained. Due to the inclusion of systematic reviews, meta-analyses, reviews, comments, and articles in languages other than English, 257 were excluded. Eligibility based on full-text review was applied to the remaining 155, excluding 129. So, the study covered a total of remaining 26 articles. We studied 2352 confirmed cases from published literature, accounting for approximately 4% of infected cases worldwide. Around 81.71% of patients have a bisexual or men having sex with men (MSM) preference. Approximately 30.18% of confirmed cases were HIV positive. Male sex was also identified as a risk factor in our review. CONCLUSION Monkeypox human-to-human and human-to-animal transmission are rising. Thus, it is essential to do research on the prevention, clinicodemographic trends, and treatment of monkeypox. Understanding this will enable us to treat monkeypox patients with a targeted and focused approach.
Collapse
Affiliation(s)
- Ashima Sharma
- Department of Emergency Medicine, Nizam’s Institute of Medical Sciences, Hyderabad, Telangana 500082 India
| | - Hari Prasad
- Department of Emergency Medicine, All India Institute of Medical Sciences Rishikesh, Rishikesh, Uttarakhand 249203 India
| | - Nidhi Kaeley
- Department of Emergency Medicine, All India Institute of Medical Sciences Rishikesh, Rishikesh, Uttarakhand 249203 India
| | - Aparna Bondalapati
- Department of Emergency Medicine, Nizam’s Institute of Medical Sciences, Hyderabad, Telangana 500082 India
| | - Lokesh Edara
- Department of Internal Medicine, Western Michigan University School of Medicine, Kalamazoo, MI USA
| | - Y. Ajay Kumar
- Department of Emergency Medicine, Nizam’s Institute of Medical Sciences, Hyderabad, Telangana 500082 India
| |
Collapse
|
198
|
Identifying the Most Probable Mammal Reservoir Hosts for Monkeypox Virus Based on Ecological Niche Comparisons. Viruses 2023; 15:v15030727. [PMID: 36992436 PMCID: PMC10057484 DOI: 10.3390/v15030727] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Previous human cases or epidemics have suggested that Monkeypox virus (MPXV) can be transmitted through contact with animals of African rainforests. Although MPXV has been identified in many mammal species, most are likely secondary hosts, and the reservoir host has yet to be discovered. In this study, we provide the full list of African mammal genera (and species) in which MPXV was previously detected, and predict the geographic distributions of all species of these genera based on museum specimens and an ecological niche modelling (ENM) method. Then, we reconstruct the ecological niche of MPXV using georeferenced data on animal MPXV sequences and human index cases, and conduct overlap analyses with the ecological niches inferred for 99 mammal species, in order to identify the most probable animal reservoir. Our results show that the MPXV niche covers three African rainforests: the Congo Basin, and Upper and Lower Guinean forests. The four mammal species showing the best niche overlap with MPXV are all arboreal rodents, including three squirrels: Funisciurus anerythrus, Funisciurus pyrropus, Heliosciurus rufobrachium, and Graphiurus lorraineus. We conclude that the most probable MPXV reservoir is F. anerythrus based on two niche overlap metrics, the areas of higher probabilities of occurrence, and available data on MPXV detection.
Collapse
|
199
|
Tang H, Zhang A. Human mpox: Biology, epidemiology, therapeutic options, and development of small molecule inhibitors. Med Res Rev 2023. [PMID: 36891882 DOI: 10.1002/med.21943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/22/2023] [Accepted: 02/26/2023] [Indexed: 03/10/2023]
Abstract
Although monkeypox (mpox) has been endemic in Western and Central Africa for 50 years, it has not received sufficient prophylactic and therapeutical attention to avoid evolving into an epidemic. From January 2022 to January 2023, more than 84,000 of mpox cases were reported from 110 countries worldwide. Case numbers appear to be rising every day, making mpox an increasing global public health threat for the foreseeable future. In this perspective, we review the known biology and epidemiology of mpox virus, together with the latest therapeutic options available for mpox treatment. Further, small molecule inhibitors against mpox virus and the future directions in this field are discussed as well.
Collapse
Affiliation(s)
- Hairong Tang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ao Zhang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Lingang Laboratory, Shanghai, China
| |
Collapse
|
200
|
Youssef D, Abboud E, Kawtharani M, Zheim Z, Abou Arrage N, Youssef J. When a neglected tropical zoonotic disease emerges in non-endemic countries: need to proactively fill the unveiled knowledge gaps towards human monkeypox among the Lebanese population. J Pharm Policy Pract 2023; 16:39. [PMID: 36882801 PMCID: PMC9990574 DOI: 10.1186/s40545-023-00544-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/18/2023] [Indexed: 03/09/2023] Open
Abstract
INTRODUCTION The ongoing multi-country outbreak of monkeypox (MPX) that emerges in non-endemic areas is a rare and unprecedented event that has sparked a widespread public health concern. Lebanon has reported four confirmed cases of MPX so far. Since good knowledge about the MPX virus and its associated disease is paramount for helping the Lebanese population prepare for a possible outbreak, therefore, it is important to assess their current level of knowledge regarding MPX and to identify its associated factors to highlight any knowledge gaps that need to be filled. METHODS An online cross-sectional study was conducted over the first 2 weeks of August 2022 among adults aged 18 years and above recruited from all Lebanese provinces using a convenience sampling technique. An anonymous, Arabic, self-reported questionnaire covering all main aspects of knowledge regarding MPX was developed and adapted based on the available literature. The Chi-square test was used to determine the associations between knowledge levels and independent variables including baseline characteristics. Multivariable logistic regression was also carried out on the significant variables in the bivariate analyses to identify the factors associated with the good knowledge level. RESULTS A total of 793 Lebanese adults participated in the study. The overall level of knowledge level regarding human MPX was poor among the Lebanese population; with only 33.04% of them having a good knowledge level ≥ 60%. Knowledge gaps and a substantial poor knowledge level were found in the majority of MPX knowledge domains especially those related to the routes of transmission (76.67%), clinical presentation and symptoms (71.63%), treatment (86.25%), and severity of the disease (91.3%). Interestingly, participants have a good knowledge level of the precautionary measures (80.45%), and the response to a suspected infection (65.20%). Female gender [(aOR = 0.870, CI 95% (0.613-0.941)], increased age 49 [aOR = 0.743, CI 95% (0.381-0.908)], and living in rural areas [aOR = 0.412, CI 95% (0.227-0.861)] were found negatively associated with a good level of knowledge. However, participants with higher educational levels [aOR = 1.243, CI 95% (1.032-3.801)], those working in the medical field [aOR = 1.932, CI 95% (1.331-3.419)], those suffering from chronic disease/immunodeficiency [aOR = 1.231, CI 95% (1.128-2.002)], and participants with moderate/high economic situations [aOR = 2.131, CI 95% (1.431-4.221)] were more likely to have a good knowledge score compared to their counterparts. CONCLUSIONS The current study pointed out to poor knowledge level regarding MPX among the Lebanese population with substantial knowledge gaps in most aspects of MPX knowledge. The findings stress the urgent need to raise awareness and proactively fill the unveiled gaps, especially among less informed groups.
Collapse
Affiliation(s)
- Dalal Youssef
- Institut de Santé Publique, d'épidémiologie et de Développement (ISPED) School of Public Health, UMR_S 1219, Research Center Bordeaux Population Health (BPH), Bordeaux University, Bordeaux, France.
- Clinical Trial Program, Ministry of Public Health, Beirut, Lebanon.
- Lebanese Higher Institute of Technical and Professional (IPNET), Bir Hassan, Ministry of Education, Beirut, Lebanon.
| | | | | | | | | | | |
Collapse
|