151
|
Fürst MA, McMahon DP, Osborne JL, Paxton RJ, Brown MJF. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 2014; 506:364-6. [PMID: 24553241 PMCID: PMC3985068 DOI: 10.1038/nature12977] [Citation(s) in RCA: 392] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/30/2013] [Indexed: 12/30/2022]
Abstract
Emerging infectious diseases (EIDs) pose a risk to human welfare, both directly and indirectly, by affecting managed livestock and wildlife that provide valuable resources and ecosystem services, such as the pollination of crops. Honeybees (Apis mellifera), the prevailing managed insect crop pollinator, suffer from a range of emerging and exotic high-impact pathogens, and population maintenance requires active management by beekeepers to control them. Wild pollinators such as bumblebees (Bombus spp.) are in global decline, one cause of which may be pathogen spillover from managed pollinators like honeybees or commercial colonies of bumblebees. Here we use a combination of infection experiments and landscape-scale field data to show that honeybee EIDs are indeed widespread infectious agents within the pollinator assemblage. The prevalence of deformed wing virus (DWV) and the exotic parasite Nosema ceranae in honeybees and bumblebees is linked; as honeybees have higher DWV prevalence, and sympatric bumblebees and honeybees are infected by the same DWV strains, Apis is the likely source of at least one major EID in wild pollinators. Lessons learned from vertebrates highlight the need for increased pathogen control in managed bee species to maintain wild pollinators, as declines in native pollinators may be caused by interspecies pathogen transmission originating from managed pollinators.
Collapse
Affiliation(s)
- M A Fürst
- 1] Royal Holloway University of London, School of Biological Sciences, Bourne Building, Egham TW20 0EX, UK [2] IST Austria (Institute of Science and Technology Austria), 3400 Klosterneuburg, Austria
| | - D P McMahon
- Queen's University Belfast, School of Biological Sciences, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - J L Osborne
- 1] Rothamsted Research, Department of Agro-Ecology, Harpenden AL5 2JQ, UK [2] University of Exeter, Environment & Sustainability Institute, Penryn TR10 9EZ, UK
| | - R J Paxton
- 1] Queen's University Belfast, School of Biological Sciences, 97 Lisburn Road, Belfast BT9 7BL, UK [2] Martin-Luther-Universität Halle-Wittenberg, Institute for Biology/General Zoology, Hoher Weg 8, 06120 Halle (Saale), Germany [3] German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - M J F Brown
- Royal Holloway University of London, School of Biological Sciences, Bourne Building, Egham TW20 0EX, UK
| |
Collapse
|
152
|
Abstract
Emerging and reemerging diseases that result from pathogen host shifts are a threat to the health of humans and their domesticates. RNA viruses have extremely high mutation rates and thus represent a significant source of these infectious diseases. In the present study, we showed that a plant-pathogenic RNA virus, tobacco ringspot virus (TRSV), could replicate and produce virions in honeybees, Apis mellifera, resulting in infections that were found throughout the entire body. Additionally, we showed that TRSV-infected individuals were continually present in some monitored colonies. While intracellular life cycle, species-level genetic variation, and pathogenesis of the virus in honeybee hosts remain to be determined, the increasing prevalence of TRSV in conjunction with other bee viruses from spring toward winter in infected colonies was associated with gradual decline of host populations and winter colony collapse, suggesting the negative impact of the virus on colony survival. Furthermore, we showed that TRSV was also found in ectoparasitic Varroa mites that feed on bee hemolymph, but in those instances the virus was restricted to the gastric cecum of Varroa mites, suggesting that Varroa mites may facilitate the spread of TRSV in bees but do not experience systemic invasion. Finally, our phylogenetic analysis revealed that TRSV isolates from bees, bee pollen, and Varroa mites clustered together, forming a monophyletic clade. The tree topology indicated that the TRSVs from arthropod hosts shared a common ancestor with those from plant hosts and subsequently evolved as a distinct lineage after transkingdom host alteration. This study represents a unique example of viruses with host ranges spanning both the plant and animal kingdoms. Pathogen host shifts represent a major source of new infectious diseases. Here we provide evidence that a pollen-borne plant virus, tobacco ringspot virus (TRSV), also replicates in honeybees and that the virus systemically invades and replicates in different body parts. In addition, the virus was detected inside the body of parasitic Varroa mites, which consume bee hemolymph, suggesting that Varroa mites may play a role in facilitating the spread of the virus in bee colonies. This study represents the first evidence that honeybees exposed to virus-contaminated pollen could also be infected and raises awareness of potential risks of new viral disease emergence due to host shift events. About 5% of known plant viruses are pollen transmitted, and these are potential sources of future host-jumping viruses. The findings from this study showcase the need for increased surveillance for potential host-jumping events as an integrated part of insect pollinator management programs.
Collapse
|
153
|
Li Z, Chen Y, Zhang S, Chen S, Li W, Yan L, Shi L, Wu L, Sohr A, Su S. Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L. PLoS One 2013; 8:e77354. [PMID: 24130876 PMCID: PMC3795060 DOI: 10.1371/journal.pone.0077354] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 09/01/2013] [Indexed: 11/18/2022] Open
Abstract
Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and radio frequency identification (RFID) systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 107 copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive.
Collapse
Affiliation(s)
- Zhiguo Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanping Chen
- USDA, ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
| | - Shaowu Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- ARC Centre of Excellence in Vision Science, Research School of Biology, College of Medicine, Biology and Environment, the Australian National University, Canberra, Australia
| | - Shenglu Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenfeng Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Limin Yan
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liangen Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lyman Wu
- College of Computer, Math, and Natural Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Alex Sohr
- College of Computer, Math, and Natural Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Songkun Su
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- * E-mail:
| |
Collapse
|
154
|
Levitt AL, Singh R, Cox-Foster DL, Rajotte E, Hoover K, Ostiguy N, Holmes EC. Cross-species transmission of honey bee viruses in associated arthropods. Virus Res 2013; 176:232-40. [DOI: 10.1016/j.virusres.2013.06.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 11/17/2022]
|
155
|
Sguazza GH, Reynaldi FJ, Galosi CM, Pecoraro MR. Simultaneous detection of bee viruses by multiplex PCR. J Virol Methods 2013; 194:102-6. [PMID: 23948157 DOI: 10.1016/j.jviromet.2013.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 10/26/2022]
Abstract
Honey bee mortality is a serious problem that beekeepers in Argentina have had to face during the last 3 years. It is known that the consequence of the complex interactions between environmental and beekeeping parameters added to the effect of different disease agents such as viruses, bacteria, fungi and parasitic mites may result in a sudden collapse of the colony. In addition, multiple viral infections are detected frequently concomitantly in bee colonies. The aim of this study was to establish a multiplex polymerase chain reaction method for rapid and simultaneous detection of the most prevalent bee viruses. This multiplex PCR assay will provide specific, rapid and reliable results and allow for the cost effective detection of a particular virus as well as multiple virus infections in a single reaction tube. This method could be a helpful tool in the surveillance of the most frequently found bee viruses and to study the dynamics and the interactions of the virus populations within colonies.
Collapse
Affiliation(s)
- Guillermo Hernán Sguazza
- Department of Virology, Faculty of Veterinary Sciences, National University of La Plata, 60 & 118, La Plata CP 1900, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
156
|
Strauss U, Human H, Gauthier L, Crewe RM, Dietemann V, Pirk CWW. Seasonal prevalence of pathogens and parasites in the savannah honeybee (Apis mellifera scutellata). J Invertebr Pathol 2013; 114:45-52. [PMID: 23702244 DOI: 10.1016/j.jip.2013.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/04/2013] [Accepted: 05/13/2013] [Indexed: 11/28/2022]
Abstract
The loss of Apis mellifera L. colonies in recent years has, in many regions of the world, been alarmingly high. No single cause has been identified for these losses, but the interactions between several factors (mostly pathogens and parasites) have been held responsible. Work in the Americas on honeybees originating mainly from South Africa indicates that Africanised honeybees are less affected by the interplay of pathogens and parasites. However, little is known about the health status of South African honeybees (A. m. scutellata and A. m. capensis) in relation to pathogens and parasites. We therefore compared the seasonal prevalence of honeybee pathogens (viruses, bacteria, fungi) and parasites (mites, bee lice, wax moth, small hive beetles, A. m. capensis social parasites) between sedentary and migratory A. m. scutellata apiaries situated in the Gauteng region of South Africa. No significant differences were found in the prevalence of pathogens and parasites between sedentary and migratory apiaries. Three (Black queen cell virus, Varroa destructor virus 1 and Israeli acute paralysis virus) of the eight viruses screened were detected, a remarkable difference compared to European honeybees. Even though no bacterial pathogens were detected, Nosema apis and Chalkbrood were confirmed. All of the honeybee parasites were found in the majority of the apiaries with the most common parasite being the Varroa mite. In spite of hosting few pathogens, yet most parasites, A. m. scutellata colonies appeared to be healthy.
Collapse
Affiliation(s)
- Ursula Strauss
- Social Insect Research Group, Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa.
| | | | | | | | | | | |
Collapse
|
157
|
Noh JH, Reddy KE, Choe SE, Yoo MS, Doan HTT, Kweon CH, Ramya M, Yoon BS, Nguyen LTK, Nguyen TTD, Van Quyen D, Jung SC, Chang KY, Kang SW. Phylogenetic analysis of black queen cell virus genotypes in South Korea. Virus Genes 2012; 46:362-8. [PMID: 23239276 DOI: 10.1007/s11262-012-0859-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/28/2012] [Indexed: 11/27/2022]
Abstract
The black queen cell virus (BQCV), a picorna-like honeybee virus, was first isolated from queen larvae and pupae of honeybees found dead in their cells. BQCV is the most common cause of death in queen larvae. Phylogenetic analysis of two Apis cerana and three Apis mellifera BQCV genotypes collected from honeybee colonies in different regions of South Korea, central European BQCV genotypes, and a South African BQCV reference genotype was performed on a partial helicase enzyme coding region (ORF1) and a partial structural polypeptide coding region (ORF2). The phylogeny based on the ORF2 region showed clustering of all the Korean genotypes corresponding to their geographic origin, with the exception of Korean Am str3 which showed more similarity to the central European and the South African reference genotype. However, the ORF1-based tree exhibited a different distribution of the Korean strains, in which A. cerana isolates formed one cluster and all A. mellifera isolates formed a separate cluster. The RT-PCR assay described in this study is a sensitive and reliable method for the detection and classification of BQCV strains from various regions of Korea. BQCV infection is present in both A. cerana and A. mellifera colonies. With this in mind, the present study examined the transmission of honeybee BQCV infections between A. cerana and A. mellifera.
Collapse
Affiliation(s)
- Jin Hyeong Noh
- Parasitology and Insect Disease Research Laboratory, Animal, Plant and Fisheries Quarantine and Inspection Agency, 480 Anyang 6 dong, Anyang 420-480, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Abstract
The well-being of a colony and replenishment of the workers depends on a healthy queen. Diseases in queens are seldom reported, and our knowledge on viral infection in queens is limited. In this study, 86 honey bee queens were collected from beekeepers in Denmark. All queens were tested separately by two real-time PCRs: one for the presence of deformed wing virus (DWV), and one that would detect sequences of acute bee-paralysis virus, Kashmir bee virus and Israeli acute paralysis virus (AKI complex). Worker bees accompanying the queen were also analysed. The queens could be divided into three groups based on the level of infection in their head, thorax, ovary, intestines and spermatheca. Four queens exhibited egg-laying deficiency, but visually all queens appeared healthy. Viral infection was generally at a low level in terms of AKI copy numbers, with 134/430 tissues (31 %) showing the presence of viral infection ranging from 101 to 105 copies. For DWV, 361/340 tissues (84 %) showed presence of viral infection (DWV copies ranging from 102 to 1012), with 50 tissues showing viral titres >107 copies. For both AKI and DWV, the thorax was the most frequently infected tissue and the ovaries were the least frequently infected. Relative to total mass, the spermatheca showed significantly higher DWV titres than the other tissues. The ovaries had the lowest titre of DWV. No significant differences were found among tissues for AKI. A subsample of 14 queens yielded positive results for the presence of negative-sense RNA strands, thus demonstrating active virus replication in all tissues.
Collapse
Affiliation(s)
- Roy Mathew Francis
- Department of Agroecology, Science & Technology, Aarhus University, 4200 Slagelse, Denmark
| | - Steen Lykke Nielsen
- Department of Agroecology, Science & Technology, Aarhus University, 4200 Slagelse, Denmark
| | - Per Kryger
- Department of Agroecology, Science & Technology, Aarhus University, 4200 Slagelse, Denmark
| |
Collapse
|
159
|
Baracchi D, Fadda A, Turillazzi S. Evidence for antiseptic behaviour towards sick adult bees in honey bee colonies. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:1589-1596. [PMID: 23068993 DOI: 10.1016/j.jinsphys.2012.09.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 06/01/2023]
Abstract
Social life is generally associated with an increased risk of disease transmission, but at the same time it allows behavioural defence at both the individual and collective level. Bees infected with deformed-wing virus were introduced into observation hives; through behavioural observations and chemical analysis of cuticular hydrocarbons from healthy and infected bees, we offer the first evidence that honeybee colonies can detect and remove infected adult bees, probably by recognising the cuticular hydrocarbon profiles of sick individuals. We also found that health-compromised colonies were less efficient at defending themselves against infected bees, thus facing an ever increasing risk of epidemics. This work reveals a new antiseptic behaviour that can only be interpreted as an adaptation at colony level and one which should be considered an element of the social immunity system of the beehive, re-enforcing the view of a colony as an integrated organism.
Collapse
Affiliation(s)
- David Baracchi
- Università degli Studi di Firenze, Dipartimento di Biologia Evoluzionistica Leo Pardi, Via Romana 17, 50125 Firenze, Italy.
| | | | | |
Collapse
|
160
|
De Smet L, Ravoet J, de Miranda JR, Wenseleers T, Mueller MY, Moritz RFA, de Graaf DC. BeeDoctor, a versatile MLPA-based diagnostic tool for screening bee viruses. PLoS One 2012; 7:e47953. [PMID: 23144717 PMCID: PMC3483297 DOI: 10.1371/journal.pone.0047953] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/18/2012] [Indexed: 11/19/2022] Open
Abstract
The long-term decline of managed honeybee hives in the world has drawn significant attention to the scientific community and bee-keeping industry. A high pathogen load is believed to play a crucial role in this phenomenon, with the bee viruses being key players. Most of the currently characterized honeybee viruses (around twenty) are positive stranded RNA viruses. Techniques based on RNA signatures are widely used to determine the viral load in honeybee colonies. High throughput screening for viral loads necessitates the development of a multiplex polymerase chain reaction approach in which different viruses can be targeted simultaneously. A new multiparameter assay, called "BeeDoctor", was developed based on multiplex-ligation probe dependent amplification (MLPA) technology. This assay detects 10 honeybee viruses in one reaction. "BeeDoctor" is also able to screen selectively for either the positive strand of the targeted RNA bee viruses or the negative strand, which is indicative for active viral replication. Due to its sensitivity and specificity, the MLPA assay is a useful tool for rapid diagnosis, pathogen characterization, and epidemiology of viruses in honeybee populations. "BeeDoctor" was used for screening 363 samples from apiaries located throughout Flanders; the northern half of Belgium. Using the "BeeDoctor", virus infections were detected in almost eighty percent of the colonies, with deformed wing virus by far the most frequently detected virus and multiple virus infections were found in 26 percent of the colonies.
Collapse
Affiliation(s)
- Lina De Smet
- Laboratory of Zoophysiology, Department of Physiology, Ghent University, Ghent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
161
|
Beckmann JF, Fallon AM. Decapitation improves detection of Wolbachia pipientis (Rickettsiales: Anaplasmataceae) in Culex pipiens (Diptera: Culicidae) mosquitoes by the polymerase chain reaction. JOURNAL OF MEDICAL ENTOMOLOGY 2012; 49:1103-8. [PMID: 23025192 PMCID: PMC3546468 DOI: 10.1603/me12049] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Polymerase chain reaction (PCR) is often used to detect microorganisms, pathogens, or both, including the reproductive parasite Wolbachia pipientis (Rickettsiales: Anaplasmataceae), in mosquitoes. Natural populations of Culex pipiens L. (Diptera: Culicidae) mosquitoes are infected with one or more strains of W. pipientis, and crosses between mosquitoes harboring different Wolbachia strains provide one of the best-known examples of cytoplasmic incompatibililty (CI). When we used PCR to monitor Wolbachia in the Buckeye strain of Culex pipiens, and in a Wolbachia-cured sister colony obtained by tetracycline treatment, we noted false negative PCR reactions with DNA samples from infected mosquitoes; these results were inconsistent with direct microscopic observation of Wolbachia-like particles in gonads dissected from mosquitoes in the same population. Assays with diluted template often improved detection of positive samples, suggesting that DNA prepared from whole mosquitoes contained an inhibitor of the PCR reaction. We reconciled discrepancies between PCR and microscopy by systematic measurement of the PCR reaction in the presence of an internal standard. Mosquito decapitation before DNA extraction restored the reliability of the PCR reaction, allowing accurate determination of Wolbachia infection status in infected and tetracycline-cured mosquito populations, consistent with microscopic examination. Using PCR primers based on the Tr1 gene, we confirmed that the Wolbachia infection in the Buckeye strain of Culex pipiens belongs to the genotype designated wPip1. Finally, to explore more widely the distribution of PCR inhibitors, we demonstrated that DNA isolated from the cricket, Acheta domesticus (L.); the beetle, Tenebrio molitor L.; the honey bee, Apis mellifera L.; and the mosquito, Anopheles punctipennis Say also contained PCR inhibitors. These results underscore the importance of measuring the presence of inhibitors in PCR templates by using a known positive standard, and provide an approach that will facilitate use of PCR to monitor environmental samples of mosquitoes that harbor endosymbionts or pathogenic organisms.
Collapse
Affiliation(s)
- J F Beckmann
- Department of Entomology, University of Minnesota, 1980 Folwell Avenue, St. Paul, MN 55108, USA.
| | | |
Collapse
|
162
|
Desai SD, Eu YJ, Whyard S, Currie RW. Reduction in deformed wing virus infection in larval and adult honey bees (Apis mellifera L.) by double-stranded RNA ingestion. INSECT MOLECULAR BIOLOGY 2012; 21:446-455. [PMID: 22690671 DOI: 10.1111/j.1365-2583.2012.01150.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Deformed wing virus (DWV) is a serious pathogen of the honey bee, Apis mellifera L., vectored by the parasitic mite Varroa destructor. The virus is associated with wing deformity in symptomatic bees, and premature death and reduced colony performance in asymptomatic bees. In the present study we reduced DWV infection by feeding both first instar larvae and adult A. mellifera with a double-stranded (ds) RNA construct, DWV-dsRNA, which is specific to DWV in DWV-inoculated bees, by mixing it with their food. We showed that feeding DWV to larvae causes wing deformity in adult bees in the absence of varroa mites and decreases survival rates of adult bees relative to bees not fed DWV. Feeding larvae with DWV-dsRNA in advance of inoculation with virus reduced the DWV viral level and reduced wing deformity relative to larvae fed DWV or DWV with green fluorescent protein-dsRNA (probably a result of RNA silencing), but did not affect survival to the adult stage. Feeding DWV-dsRNA did not affect larval survival rates, which suggests that dsRNA is non-toxic to larvae. Feeding adult workers with DWV-dsRNA in advance of inoculation with virus increased their longevity and reduced DWV concentration relative to controls.
Collapse
Affiliation(s)
- S D Desai
- Department of Entomology, University of Manitoba, Winnipeg, MB, Canada.
| | | | | | | |
Collapse
|
163
|
Gregorc A, Evans JD, Scharf M, Ellis JD. Gene expression in honey bee (Apis mellifera) larvae exposed to pesticides and Varroa mites (Varroa destructor). JOURNAL OF INSECT PHYSIOLOGY 2012; 58:1042-1049. [PMID: 22497859 DOI: 10.1016/j.jinsphys.2012.03.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/26/2012] [Accepted: 03/27/2012] [Indexed: 05/31/2023]
Abstract
Honey bee (Apis mellifera) larvae reared in vitro were exposed to one of nine pesticides and/or were challenged with the parasitic mite, Varroa destructor. Total RNA was extracted from individual larvae and first strand cDNAs were generated. Gene-expression changes in larvae were measured using quantitative PCR (qPCR) targeting transcripts for pathogens and genes involved in physiological processes, bee health, immunity, and/or xenobiotic detoxification. Transcript levels for Peptidoglycan Recognition Protein (PGRPSC), a pathogen recognition gene, increased in larvae exposed to Varroa mites (P<0.001) and were not changed in pesticide treated larvae. As expected, Varroa-parasitized brood had higher transcripts of Deformed Wing Virus than did control larvae (P<0.001). Varroa parasitism, arguably coupled with virus infection, resulted in significantly higher transcript abundances for the antimicrobial peptides abaecin, hymenoptaecin, and defensin1. Transcript levels for Prophenoloxidase-activating enzyme (PPOact), an immune end product, were elevated in larvae treated with myclobutanil and chlorothalonil (both are fungicides) (P<0.001). Transcript levels for Hexameric storage protein (Hsp70) were significantly upregulated in imidacloprid, fluvalinate, coumaphos, myclobutanil, and amitraz treated larvae. Definitive impacts of pesticides and Varroa parasitism on honey bee larval gene expression were demonstrated. Interactions between larval treatments and gene expression for the targeted genes are discussed.
Collapse
Affiliation(s)
- Aleš Gregorc
- Honey Bee Research and Extension Laboratory, Department of Entomology and Nematology, University of Florida, Natural Area Drive, Gainesville, FL 32611, USA.
| | | | | | | |
Collapse
|
164
|
Neumann P, Yañez O, Fries I, de Miranda JR. Varroa invasion and virus adaptation. Trends Parasitol 2012; 28:353-4. [PMID: 22784564 DOI: 10.1016/j.pt.2012.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 06/18/2012] [Indexed: 11/24/2022]
|
165
|
Aronstein KA, Saldivar E, Vega R, Westmiller S, Douglas AE. How Varroa Parasitism Affects the Immunological and Nutritional Status of the Honey Bee, Apis mellifera. INSECTS 2012; 3:601-15. [PMID: 26466617 PMCID: PMC4553578 DOI: 10.3390/insects3030601] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 05/25/2012] [Accepted: 06/18/2012] [Indexed: 11/16/2022]
Abstract
We investigated the effect of the parasitic mite Varroa destructor on the immunological and nutritional condition of honey bees, Apis mellifera, from the perspective of the individual bee and the colony. Pupae, newly-emerged adults and foraging adults were sampled from honey bee colonies at one site in S. Texas, USA. Varroa‑infested bees displayed elevated titer of Deformed Wing Virus (DWV), suggestive of depressed capacity to limit viral replication. Expression of genes coding three anti-microbial peptides (defensin1, abaecin, hymenoptaecin) was either not significantly different between Varroa-infested and uninfested bees or was significantly elevated in Varroa-infested bees, varying with sampling date and bee developmental age. The effect of Varroa on nutritional indices of the bees was complex, with protein, triglyceride, glycogen and sugar levels strongly influenced by life-stage of the bee and individual colony. Protein content was depressed and free amino acid content elevated in Varroa-infested pupae, suggesting that protein synthesis, and consequently growth, may be limited in these insects. No simple relationship between the values of nutritional and immune-related indices was observed, and colony-scale effects were indicated by the reduced weight of pupae in colonies with high Varroa abundance, irrespective of whether the individual pupa bore Varroa.
Collapse
Affiliation(s)
| | | | - Rodrigo Vega
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA.
| | | | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
166
|
Martin SJ, Highfield AC, Brettell L, Villalobos EM, Budge GE, Powell M, Nikaido S, Schroeder DC. Global honey bee viral landscape altered by a parasitic mite. Science 2012; 336:1304-6. [PMID: 22679096 DOI: 10.1126/science.1220941] [Citation(s) in RCA: 407] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Emerging diseases are among the greatest threats to honey bees. Unfortunately, where and when an emerging disease will appear are almost impossible to predict. The arrival of the parasitic Varroa mite into the Hawaiian honey bee population allowed us to investigate changes in the prevalence, load, and strain diversity of honey bee viruses. The mite increased the prevalence of a single viral species, deformed wing virus (DWV), from ~10 to 100% within honey bee populations, which was accompanied by a millionfold increase in viral titer and a massive reduction in DWV diversity, leading to the predominance of a single DWV strain. Therefore, the global spread of Varroa has selected DWV variants that have emerged to allow it to become one of the most widely distributed and contagious insect viruses on the planet.
Collapse
Affiliation(s)
- Stephen J Martin
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Experimental infection of the honeybee (Apis mellifera L.) with the chronic bee paralysis virus (CBPV): infectivity of naked CBPV RNAs. Virus Res 2012; 167:173-8. [PMID: 22583665 DOI: 10.1016/j.virusres.2012.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 11/23/2022]
Abstract
Chronic paralysis is an infectious and contagious disease of the honeybee (Apis mellifera L.) and is caused by the chronic bee paralysis virus (CBPV). This disease leads to death in adult bees and is therefore a serious threat for colony health. CBPV is a positive single-stranded RNA virus and its genome is composed of two RNA segments, RNA 1 and RNA 2, 3674 nt and 2305 nt, respectively. Although CBPV shares some characteristics with viruses classified into families Nodaviridae and Tombusviridae, it has not been assigned to any viral taxa yet. The characterisation of CBPV proteins and their functions are needed to better understand the mechanisms of CBPV infection. However, since honeybee cell lines are not yet available, experimental infection of adult bees is the only method currently available to propagate the virus. With the objective of studying CBPV proteins using the viral genome, we used experimental infection in adult bees to evaluate the infectivity of naked CBPV RNAs by direct inoculation. Our results demonstrated that an injection of naked RNAs, ranging from 10(9) to 10(10) CBPV copies, caused chronic paralysis. Bees inoculated with naked RNA showed chronic paralysis signs 5 days after inoculation. Moreover, injected RNAs replicated and generated viral particles. We therefore provide an in vivo experimental model that will be useful tool for further studies by using a reverse genetics system.
Collapse
|
168
|
Schöning C, Gisder S, Geiselhardt S, Kretschmann I, Bienefeld K, Hilker M, Genersch E. Evidence for damage-dependent hygienic behaviour towards Varroa destructor-parasitised brood in the western honey bee, Apis mellifera. ACTA ACUST UNITED AC 2012; 215:264-71. [PMID: 22189770 DOI: 10.1242/jeb.062562] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ectoparasitic mite Varroa destructor and honey bee pathogenic viruses have been implicated in the recent demise of honey bee colonies. Several studies have shown that the combination of V. destructor and deformed wing virus (DWV) poses an especially serious threat to honey bee health. Mites transmitting virulent forms of DWV may cause fatal DWV infections in the developing bee, while pupae parasitised by mites not inducing or activating overt DWV infections may develop normally. Adult bees respond to brood diseases by removing affected brood. This hygienic behaviour is an essential part of the bees' immune response repertoire and is also shown towards mite-parasitised brood. However, it is still unclear whether the bees react towards the mite in the brood cell or rather towards the damage done to the brood. We hypothesised that the extent of mite-associated damage rather than the mere presence of parasitising mites triggers hygienic behaviour. Hygienic behaviour assays performed with mites differing in their potential to transmit overt DWV infections revealed that brood parasitised by 'virulent' mites (i.e. mites with a high potential to induce fatal DWV infections in parasitised pupae) were removed significantly more often than brood parasitised by 'less virulent' mites (i.e. mites with a very low potential to induce overt DWV infections) or non-parasitised brood. Chemical analyses of brood odour profiles suggested that the bees recognise severely affected brood by olfactory cues. Our results suggest that bees show selective, damage-dependent hygienic behaviour, which may be an economic way for colonies to cope with mite infestation.
Collapse
Affiliation(s)
- Caspar Schöning
- Institute for Bee Research, Friedrich-Engels-Strasse 32, 16540 Hohen Neuendorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
169
|
Acaricide treatment affects viral dynamics in Varroa destructor-infested honey bee colonies via both host physiology and mite control. Appl Environ Microbiol 2011; 78:227-35. [PMID: 22020517 DOI: 10.1128/aem.06094-11] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Honey bee (Apis mellifera) colonies are declining, and a number of stressors have been identified that affect, alone or in combination, the health of honey bees. The ectoparasitic mite Varroa destructor, honey bee viruses that are often closely associated with the mite, and pesticides used to control the mite population form a complex system of stressors that may affect honey bee health in different ways. During an acaricide treatment using Apistan (plastic strips coated with tau-fluvalinate), we analyzed the infection dynamics of deformed wing virus (DWV), sacbrood virus (SBV), and black queen cell virus (BQCV) in adult bees, mite-infested pupae, their associated Varroa mites, and uninfested pupae, comparing these to similar samples from untreated control colonies. Titers of DWV increased initially with the onset of the acaricide application and then slightly decreased progressively coinciding with the removal of the Varroa mite infestation. This initial increase in DWV titers suggests a physiological effect of tau-fluvalinate on the host's susceptibility to viral infection. DWV titers in adult bees and uninfested pupae remained higher in treated colonies than in untreated colonies. The titers of SBV and BQCV did not show any direct relationship with mite infestation and showed a variety of possible effects of the acaricide treatment. The results indicate that other factors besides Varroa mite infestation may be important to the development and maintenance of damaging DWV titers in colonies. Possible biochemical explanations for the observed synergistic effects between tau-fluvalinate and virus infections are discussed.
Collapse
|
170
|
Hedtke K, Jensen PM, Jensen AB, Genersch E. Evidence for emerging parasites and pathogens influencing outbreaks of stress-related diseases like chalkbrood. J Invertebr Pathol 2011; 108:167-73. [PMID: 21906600 DOI: 10.1016/j.jip.2011.08.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 08/24/2011] [Accepted: 08/25/2011] [Indexed: 11/26/2022]
Abstract
In agriculture, honey bees play a critical role as commercial pollinators of crop monocultures which depend on insect pollination. Hence, the demise of honey bee colonies in Europe, USA, and Asia caused much concern and initiated many studies and research programmes aiming at elucidating the factors negatively affecting honey bee health and survival. Most of these studies look at individual factors related to colony losses. In contrast, we here present our data on the interaction of pathogens and parasites in honey bee colonies. We performed a longitudinal cohort study over 6 years by closely monitoring 220 honey bee colonies kept in 22 apiaries (ten randomly selected colonies per apiary). Observed winter colony losses varied between 4.8% and 22.4%; lost colonies were replaced to ensure a constant number of monitored colonies over the study period. Data on mite infestation levels, infection with viruses, Nosema apis and Nosema ceranae, and recorded outbreaks of chalkbrood were continuously collected. We now provide statistical evidence (i) that Varroa destructor infestation in summer is related to DWV infections in autumn, (ii) that V. destructor infestation in autumn is related to N. apis infection in the following spring, and most importantly (iii) that chalkbrood outbreaks in summer are related to N. ceranae infection in the preceding spring and to V. destructor infestation in the same season. These highly significant links between emerging parasites/pathogens and established pathogens need further experimental proof but they already illustrate the complexity of the host-pathogen-interactions in honey bee colonies.
Collapse
Affiliation(s)
- Kati Hedtke
- Institute for Bee Research, Friedrich-Engels-Str. 32, 16540 Hohen Neuendorf, Germany
| | | | | | | |
Collapse
|
171
|
Zioni N, Soroker V, Chejanovsky N. Replication of Varroa destructor virus 1 (VDV-1) and a Varroa destructor virus 1-deformed wing virus recombinant (VDV-1-DWV) in the head of the honey bee. Virology 2011; 417:106-12. [PMID: 21652054 DOI: 10.1016/j.virol.2011.05.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/16/2011] [Accepted: 05/17/2011] [Indexed: 10/18/2022]
Abstract
A country-wide screen for viral pathogens in Israeli apiaries revealed significant incidence of deformed wing virus (DWV) and Varroa destructor-1 virus (VDV-1). To understand these viruses' possible involvement in deformed wing syndrome of honey bees, we studied their replication in symptomatically and asymptomatically infected bees qualitatively and quantitatively, using RT-PCR, quantitative real-time RT-PCR, and immunodetection of the major viral capsid protein VP1. We found, for the first time, replication of VDV-1 and/or a VDV-1-DWV recombinant virus in the heads of recently emerged symptomatic bees. These viruses replicated to high copy numbers, yielding the major viral capsid VP1 processed for subsequent assembly of viral particles. Our results clearly distinguished between symptomatic and asymptomatic bees infected with VDV-1 and VDV-1-DWV and suggest the hypothesis that VDV-1, in addition to DWV, may be involved in inducing the deformed wing pathology. Thus VDV-1-DWV recombination may yield virulent strains able to cause overt infections in Varroa-infested bee colonies.
Collapse
Affiliation(s)
- Naama Zioni
- Entomology Department, The Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel
| | | | | |
Collapse
|
172
|
Li J, Peng W, Wu J, Strange JP, Boncristiani H, Chen Y. Cross-species infection of deformed wing virus poses a new threat to pollinator conservation. JOURNAL OF ECONOMIC ENTOMOLOGY 2011; 104:732-9. [PMID: 21735887 DOI: 10.1603/ec10355] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The Deformed wing virus (family Iflaviridae, genus Iflavirus, DWV), one of the most prevalent and common viruses in honey bees, Apis mellifera L., is present in both laboratory-reared and wild populations of bumble bees, Bombus huntii Greene. Our studies showed that DWV infection spreads throughout the entire body of B. huntii and that the concentration of DWV is higher in workers than in males both collected in the field and reared in the laboratory, implying a possible association between the virus infection and foraging activities. Further results showed that gut tissue of B. huntii can support the replication of DWV, suggesting that B. huntii is a biological host for DWV, as are honey bees. Bumble bees and honey bees sometimes share nectar and pollen resources in the same field. The geographical proximity of two host species probably plays an important role in host range breadth of the virus.
Collapse
Affiliation(s)
- Jilian Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing 100093, China
| | | | | | | | | | | |
Collapse
|
173
|
Moore J, Jironkin A, Chandler D, Burroughs N, Evans DJ, Ryabov EV. Recombinants between Deformed wing virus and Varroa destructor virus-1 may prevail in Varroa destructor-infested honeybee colonies. J Gen Virol 2011; 92:156-61. [PMID: 20926636 DOI: 10.1099/vir.0.025965-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have used high-throughput Illumina sequencing to identify novel recombinants between Deformed wing virus (DWV) and Varroa destructor virus-1 (VDV-1), which accumulate to higher levels than DWV in both honeybees and Varroa destructor mites. The recombinants, VDV-1(VVD) and VDV-1(DVD), exhibit crossovers between the 5'-UTR and the regions encoding the structural (capsid) and non-structural viral proteins. This implies that the genomes are modular and that each region may evolve independently, as demonstrated in human enteroviruses. Individual honeybee pupae were infected with a mixture of observed recombinants and DWV. A strong correlation was observed between VDV-1(DVD) levels in honeybee pupae and associated mites, suggesting that this recombinant, with a DWV-derived 5'-UTR and non-structural protein region flanking a VDV-1-derived capsid-encoding region, is better adapted to transmission between V. destructor and honeybees than the parental DWV or a recombinant bearing the VDV-1-derived 5'-UTR (VDV-1(VVD)).
Collapse
Affiliation(s)
- Jonathan Moore
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, UK
| | | | | | | | | | | |
Collapse
|
174
|
|
175
|
Mockel N, Gisder S, Genersch E. Horizontal transmission of deformed wing virus: pathological consequences in adult bees (Apis mellifera) depend on the transmission route. J Gen Virol 2010; 92:370-7. [DOI: 10.1099/vir.0.025940-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
176
|
Di Prisco G, Pennacchio F, Caprio E, Boncristiani HF, Evans JD, Chen Y. Varroa destructor is an effective vector of Israeli acute paralysis virus in the honeybee, Apis mellifera. J Gen Virol 2010; 92:151-5. [PMID: 20926637 DOI: 10.1099/vir.0.023853-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Israeli acute paralysis virus (IAPV) is a significant marker of honeybee colony collapse disorder (CCD). In the present work, we provide the first evidence that Varroa destructor is IAPV replication-competent and capable of vectoring IAPV in honeybees. The honeybees became infected with IAPV after exposure to Varroa mites that carried the virus. The copy number of IAPV in bees was positively correlated with the density of Varroa mites and time period of exposure to Varroa mites. Further, we showed that the mite-virus association could possibly reduce host immunity and therefore promote elevated levels of virus replication. This study defines an active role of Varroa mites in IAPV transmission and sheds light on the epidemiology of IAPV infection in honeybees.
Collapse
Affiliation(s)
- Gennaro Di Prisco
- Dipartimento di Entomologia e Zoologia Agraria Filippo Silvestri, Universita' degli Studi di Napoli Federico II, Via Universita' n.100, 80055 Portici, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
177
|
Genersch E, Aubert M. Emerging and re-emerging viruses of the honey bee (Apis mellifera L.). Vet Res 2010; 41:54. [PMID: 20423694 PMCID: PMC2883145 DOI: 10.1051/vetres/2010027] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 04/26/2010] [Indexed: 11/14/2022] Open
Abstract
Until the late 1980s, specific viral infections of the honey bee were generally considered harmless in all countries. Then, with the worldwide introduction of the ectoparasite mite Varroa destructor, beekeepers encountered increasing difficulties in maintaining their colonies. Epidemiological surveys and laboratory experiments have demonstrated that the newly acquired virulence of several viruses belonging to the family Dicistroviridae (acute bee paralysis virus, Kashmir bee virus and Israeli acute paralysis virus) in Europe and the USA had been observed in relation with V. destructor acting as a disseminator of these viruses between and within bee colonies and as an activator of virus multiplication in the infected individuals: bee larvae and adults. Equal emphasis is given to deformed wing virus (DWV) belonging to the Iflaviridae. Overt outbreaks of DWV infections have been shown to be linked to the ability of V. destructor to act not only as a mechanical vector of DWV but also as a biological vector. Its replication in mites prior to its vectoring into pupae seemed to be necessary and sufficient for the induction of a overt infection in pupae developing in non-viable bees with deformed wings. DWV in V. destructor infested colonies is now considered as one of the key players of the final collapse. Various approaches for combating bee viral diseases are described: they include selection of tolerant bees, RNA interference and prevention of new pathogen introduction. None of these approaches are expected to lead to enhanced bee-health in the short term.
Collapse
Affiliation(s)
- Elke Genersch
- Institute for Bee Research, Friedrich-Engels-Str. 32, 16540 Hohen Neuendorf, Germany
| | | |
Collapse
|
178
|
Genersch E. Honey bee pathology: current threats to honey bees and beekeeping. Appl Microbiol Biotechnol 2010; 87:87-97. [PMID: 20401479 DOI: 10.1007/s00253-010-2573-8] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 03/18/2010] [Accepted: 03/18/2010] [Indexed: 11/27/2022]
Abstract
Managed honey bees are the most important commercial pollinators of those crops which depend on animal pollination for reproduction and which account for 35% of the global food production. Hence, they are vital for an economic, sustainable agriculture and for food security. In addition, honey bees also pollinate a variety of wild flowers and, therefore, contribute to the biodiversity of many ecosystems. Honey and other hive products are, at least economically and ecologically rather, by-products of beekeeping. Due to this outstanding role of honey bees, severe and inexplicable honey bee colony losses, which have been reported recently to be steadily increasing, have attracted much attention and stimulated many research activities. Although the phenomenon "decline of honey bees" is far from being finally solved, consensus exists that pests and pathogens are the single most important cause of otherwise inexplicable colony losses. This review will focus on selected bee pathogens and parasites which have been demonstrated to be involved in colony losses in different regions of the world and which, therefore, are considered current threats to honey bees and beekeeping.
Collapse
Affiliation(s)
- Elke Genersch
- Institute for Bee Research, Friedrich-Engels-Str. 32, 16540 Hohen Neuendorf, Germany.
| |
Collapse
|
179
|
Rosenkranz P, Aumeier P, Ziegelmann B. Biology and control of Varroa destructor. J Invertebr Pathol 2010; 103 Suppl 1:S96-119. [PMID: 19909970 DOI: 10.1016/j.jip.2009.07.016] [Citation(s) in RCA: 786] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 07/03/2009] [Indexed: 10/20/2022]
|
180
|
Boncristiani HF, Di Prisco G, Pettis JS, Hamilton M, Chen YP. Molecular approaches to the analysis of deformed wing virus replication and pathogenesis in the honey bee, Apis mellifera. Virol J 2009; 6:221. [PMID: 20003360 PMCID: PMC2797523 DOI: 10.1186/1743-422x-6-221] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 12/11/2009] [Indexed: 12/03/2022] Open
Abstract
Background For years, the understanding of the pathogenetic mechanisms that underlie honey bee viral diseases has been severely hindered because of the lack of a cell culture system for virus propagation. As a result, it is very imperative to develop new methods that would permit the in vitro pathogenesis study of honey bee viruses. The identification of virus replication is an important step towards the understanding of the pathogenesis process of viruses in their respective hosts. In the present study, we developed a strand-specific RT-PCR-based method for analysis of Deformed Wing Virus (DWV) replication in honey bees and in honey bee parasitic mites, Varroa Destructor. Results The results shows that the method developed in our study allows reliable identification of the virus replication and solves the problem of falsely-primed cDNA amplifications that commonly exists in the current system. Using TaqMan real-time quantitative RT-PCR incorporated with biotinylated primers and magnetic beads purification step, we characterized the replication and tissue tropism of DWV infection in honey bees. We provide evidence for DWV replication in the tissues of wings, head, thorax, legs, hemolymph, and gut of honey bees and also in Varroa mites. Conclusion The strategy reported in the present study forms a model system for studying bee virus replication, pathogenesis and immunity. This study should be a significant contribution to the goal of achieving a better understanding of virus pathogenesis in honey bees and to the design of appropriate control measures for bee populations at risk to virus infections.
Collapse
|
181
|
de Miranda JR, Genersch E. Deformed wing virus. J Invertebr Pathol 2009; 103 Suppl 1:S48-61. [PMID: 19909976 DOI: 10.1016/j.jip.2009.06.012] [Citation(s) in RCA: 340] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 06/29/2009] [Indexed: 10/20/2022]
Abstract
Deformed wing virus (DWV; Iflaviridae) is one of many viruses infecting honeybees and one of the most heavily investigated due to its close association with honeybee colony collapse induced by Varroadestructor. In the absence of V.destructor DWV infection does not result in visible symptoms or any apparent negative impact on host fitness. However, for reasons that are still not fully understood, the transmission of DWV by V.destructor to the developing pupae causes clinical symptoms, including pupal death and adult bees emerging with deformed wings, a bloated, shortened abdomen and discolouration. These bees are not viable and die soon after emergence. In this review we will summarize the historical and recent data on DWV and its relatives, covering the genetics, pathobiology, and transmission of this important viral honeybee pathogen, and discuss these within the wider theoretical concepts relating to the genetic variability and population structure of RNA viruses, the evolution of virulence and the development of disease symptoms.
Collapse
Affiliation(s)
- Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden
| | | |
Collapse
|
182
|
Vanengelsdorp D, Meixner MD. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J Invertebr Pathol 2009; 103 Suppl 1:S80-95. [PMID: 19909973 DOI: 10.1016/j.jip.2009.06.011] [Citation(s) in RCA: 581] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 06/30/2009] [Indexed: 11/18/2022]
Abstract
Honey bees are a highly valued resource around the world. They are prized for their honey and wax production and depended upon for pollination of many important crops. While globally honey bee populations have been increasing, the rate of increase is not keeping pace with demand. Further, honey bee populations have not been increasing in all parts of the world, and have declined in many nations in Europe and in North America. Managed honey bee populations are influenced by many factors including diseases, parasites, pesticides, the environment, and socio-economic factors. These factors can act alone or in combination with each other. This review highlights the present day value of honey bees, followed by a detailed description of some of the historical and present day factors that influence honey bee populations, with particular emphasis on colony populations in Europe and the United States.
Collapse
Affiliation(s)
- Dennis Vanengelsdorp
- Department of Entomology, The Pennsylvania State University, 501 ASI Bldg., University Park, PA 16802, USA
| | | |
Collapse
|
183
|
Evans JD, Spivak M. Socialized medicine: individual and communal disease barriers in honey bees. J Invertebr Pathol 2009; 103 Suppl 1:S62-72. [PMID: 19909975 DOI: 10.1016/j.jip.2009.06.019] [Citation(s) in RCA: 231] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 06/30/2009] [Indexed: 11/16/2022]
Abstract
Honey bees are attacked by numerous parasites and pathogens toward which they present a variety of individual and group-level defenses. In this review, we briefly introduce the many pathogens and parasites afflicting honey bees, highlighting the biology of specific taxonomic groups mainly as they relate to virulence and possible defenses. Second, we describe physiological, immunological, and behavioral responses of individual bees toward pathogens and parasites. Third, bees also show behavioral mechanisms for reducing the disease risk of their nestmates. Accordingly, we discuss the dynamics of hygienic behavior and other group-level behaviors that can limit disease. Finally, we conclude with several avenues of research that seem especially promising for understanding host-parasite relationships in bees and for developing breeding or management strategies for enhancing honey bee health. We discuss how human efforts to maintain healthy colonies intersect with similar efforts by the bees, and how bee management and breeding protocols can affect disease traits in the short and long term.
Collapse
Affiliation(s)
- Jay D Evans
- USDA-ARS Bee Research Lab, BARC-East Bldg. 476, Beltsville, MD 20705, USA.
| | | |
Collapse
|
184
|
Shah KS, Evans EC, Pizzorno MC. Localization of deformed wing virus (DWV) in the brains of the honeybee, Apis mellifera Linnaeus. Virol J 2009; 6:182. [PMID: 19878557 PMCID: PMC2779808 DOI: 10.1186/1743-422x-6-182] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 10/30/2009] [Indexed: 05/02/2023] Open
Abstract
Background Deformed wing virus (DWV) is a positive-strand RNA virus that infects European honeybees (Apis mellifera L.) and has been isolated from the brains of aggressive bees in Japan. DWV is known to be transmitted both vertically and horizontally between bees in a colony and can lead to both symptomatic and asymptomatic infections in bees. In environmentally stressful conditions, DWV can contribute to the demise of a honeybee colony. The purpose of the current study is to identify regions within the brains of honeybees where DWV replicates using in-situ hybridization. Results In-situ hybridizations were conducted with both sense and antisense probes on the brains of honeybees that were positive for DWV as measured by real-time RT-PCR. The visual neuropils demonstrated detectable levels of the DWV positive-strand genome. The mushroom bodies and antenna lobe neuropils also showed the presence of the viral genome. Weaker staining with the sense probe in the same regions demonstrates that the antigenome is also present and that the virus is actively replicating in these regions of the brain. Conclusion These results demonstrate that in bees infected with DWV the virus is replicating in critical regions of the brain, including the neuropils responsible for vision and olfaction. Therefore DWV infection of the brain could adversely affect critical sensory functions and alter normal bee behavior.
Collapse
Affiliation(s)
- Karan S Shah
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA.
| | | | | |
Collapse
|
185
|
Deformed wing virus implicated in overwintering honeybee colony losses. Appl Environ Microbiol 2009; 75:7212-20. [PMID: 19783750 DOI: 10.1128/aem.02227-09] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The worldwide decline in honeybee colonies during the past 50 years has often been linked to the spread of the parasitic mite Varroa destructor and its interaction with certain honeybee viruses. Recently in the United States, dramatic honeybee losses (colony collapse disorder) have been reported; however, there remains no clear explanation for these colony losses, with parasitic mites, viruses, bacteria, and fungal diseases all being proposed as possible candidates. Common characteristics that most failing colonies share is a lack of overt disease symptoms and the disappearance of workers from what appears to be normally functioning colonies. In this study, we used quantitative PCR to monitor the presence of three honeybee viruses, deformed wing virus (DWV), acute bee paralysis virus (ABPV), and black queen cell virus (BQCV), during a 1-year period in 15 asymptomatic, varroa mite-positive honeybee colonies in Southern England, and 3 asymptomatic colonies confirmed to be varroa mite free. All colonies with varroa mites underwent control treatments to ensure that mite populations remained low throughout the study. Despite this, multiple virus infections were detected, yet a significant correlation was observed only between DWV viral load and overwintering colony losses. The long-held view has been that DWV is relatively harmless to the overall health status of honeybee colonies unless it is in association with severe varroa mite infestations. Our findings suggest that DWV can potentially act independently of varroa mites to bring about colony losses. Therefore, DWV may be a major factor in overwintering colony losses.
Collapse
|
186
|
Distribution of Kakugo virus and its effects on the gene expression profile in the brain of the worker honeybee Apis mellifera L. J Virol 2009; 83:11560-8. [PMID: 19726502 DOI: 10.1128/jvi.00519-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously identified a novel insect picorna-like virus, termed Kakugo virus (KV), obtained from the brains of aggressive honeybee worker bees that had counterattacked giant hornets. Here we examined the tissue distribution of KV and alterations of gene expression profiles in the brains of KV-infected worker bees to analyze possible effects of KV infection on honeybee neural and physiological states. By use of in situ hybridization, KV was broadly detected in the brains of the naturally KV-infected worker bees. When inoculated experimentally into bees, KV was detected in restricted parts of the brain at the early infectious stage and was later detected in various brain regions, including the mushroom bodies, optic lobes, and ocellar nerve. KV was detected not only in the brain but also in the hypopharyngeal glands and fat bodies, indicating systemic KV infection. Next, we compared the gene expression profiles in the brains of KV-inoculated and noninoculated bees. The expression of 11 genes examined was not significantly affected in KV-infected worker bees. cDNA microarray analysis, however, identified a novel gene whose expression was induced in the periphery of the brains of KV-infected bees, which was commonly observed in naturally infected and experimentally inoculated bees. The gene encoded a novel hypothetical protein with a leucine zipper motif. A gene encoding a similar protein was found in the parasitic wasp Nasonia genome but not in other insect genomes. These findings suggest that KV infection may affect brain functions and/or physiological states in honeybees.
Collapse
|
187
|
Williams GR, Rogers RE, Kalkstein AL, Taylor BA, Shutler D, Ostiguy N. Deformed wing virus in western honey bees (Apis mellifera) from Atlantic Canada and the first description of an overtly-infected emerging queen. J Invertebr Pathol 2009; 101:77-9. [DOI: 10.1016/j.jip.2009.01.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
188
|
Habayeb MS, Cantera R, Casanova G, Ekström JO, Albright S, Hultmark D. The Drosophila Nora virus is an enteric virus, transmitted via feces. J Invertebr Pathol 2009; 101:29-33. [DOI: 10.1016/j.jip.2009.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 02/04/2009] [Accepted: 02/13/2009] [Indexed: 12/01/2022]
|
189
|
Gisder S, Aumeier P, Genersch E. Deformed wing virus: replication and viral load in mites (Varroa destructor). J Gen Virol 2009; 90:463-467. [PMID: 19141457 DOI: 10.1099/vir.0.005579-0] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deformed wing virus (DWV) normally causes covert infections but can have devastating effects on bees by inducing morphological deformity or even death when transmitted by the ectoparasitic mite Varroa destructor. In order to determine the role of V. destructor in the development of crippled wings, we analysed individual mites for the presence and replication of DWV. The results supported the correlation between viral replication in mites and morphologically deformed bees. Quantification of viral genome equivalents revealed that mites capable of inducing an overt DWV infection contained 10(10)-10(12) genome equivalents per mite. In contrast, mites which could not induce crippled wings contained a maximum of only 10(8) viral genome equivalents per mite. We conclude that the development of crippled wings not only depends on DWV transmission by V. destructor but also on viral replication in V. destructor and on the DWV titre in the parasitizing mites.
Collapse
Affiliation(s)
- Sebastian Gisder
- Institute for Bee Research, Friedrich-Engels-Str. 32, D-16540 Hohen Neuendorf, Germany
| | - Pia Aumeier
- Faculty for Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Elke Genersch
- Institute for Bee Research, Friedrich-Engels-Str. 32, D-16540 Hohen Neuendorf, Germany
| |
Collapse
|
190
|
Forsgren E, de Miranda JR, Isaksson M, Wei S, Fries I. Deformed wing virus associated with Tropilaelaps mercedesae infesting European honey bees (Apis mellifera). EXPERIMENTAL & APPLIED ACAROLOGY 2009; 47:87-97. [PMID: 18941909 DOI: 10.1007/s10493-008-9204-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 10/08/2008] [Indexed: 05/26/2023]
Abstract
Mites in the genus Tropilaelaps (Acari: Laelapidae) are ectoparasites of the brood of honey bees (Apis spp.). Different Tropilaelaps subspecies were originally described from Apis dorsata, but a host switch occurred to the Western honey bee, Apis mellifera, for which infestations can rapidly lead to colony death. Tropilaelaps is hence considered more dangerous to A. mellifera than the parasitic mite Varroa destructor. Honey bees are also infected by many different viruses, some of them associated with and vectored by V. destructor. In recent years, deformed wing virus (DWV) has become the most prevalent virus infection in honey bees associated with V. destructor. DWV is distributed world-wide, and found wherever the Varroa mite is found, although low levels of the virus can also be found in Varroa free colonies. The Varroa mite transmits viral particles when feeding on the haemolymph of pupae or adult bees. Both the Tropilaelaps mite and the Varroa mite feed on honey bee brood, but no observations of DWV in Tropilaelaps have so far been reported. In this study, quantitative real-time RT-PCR was used to show the presence of DWV in infested brood and Tropilaelaps mercedesae mites collected in China, and to demonstrate a close quantitative association between mite-infested pupae of A. mellifera and DWV infections. Phylogenetic analysis of the DWV sequences recovered from matching pupae and mites revealed considerable DWV sequence heterogeneity and polymorphism. These polymorphisms appeared to be associated with the individual brood cell, rather than with a particular host.
Collapse
Affiliation(s)
- Eva Forsgren
- Department of Ecology, Swedish University of Agricultural Sciences, PO Box 7044, 75007 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
191
|
Abstract
The fruit fly Drosophila melanogaster is a powerful model to study host-pathogen interactions. Most studies so far have focused on extracellular pathogens such as bacteria and fungi. More recently, viruses have come to the front, and RNA interference was shown to play a critical role in the control of viral infections in drosophila. We review here our current knowledge on drosophila viruses. A diverse set of RNA viruses belonging to several families (Rhabdoviridae, Dicistroviridae, Birnaviridae, Reoviridae, Errantiviridae) has been reported in D. melanogaster. By contrast, no DNA virus has been recovered up to now. The drosophila viruses represent powerful tools to study virus-cell interactions in vivo. Analysis of the literature however reveals that for many of them, important gaps exist in our understanding of their replication cycle, genome organization, morphology or pathogenesis. The data obtained in the past few years on antiviral defense mechanisms in drosophila, which point to evolutionary conserved pathways, highlight the potential of the D. melanogaster model to study antiviral innate immunity and to better understand the complex interaction between arthropod-borne viruses and their insect vectors.
Collapse
|
192
|
Chan QWT, Foster LJ. Changes in protein expression during honey bee larval development. Genome Biol 2008; 9:R156. [PMID: 18959778 PMCID: PMC2760883 DOI: 10.1186/gb-2008-9-10-r156] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 09/23/2008] [Accepted: 10/29/2008] [Indexed: 12/02/2022] Open
Abstract
Background The honey bee (Apis mellifera), besides its role in pollination and honey production, serves as a model for studying the biochemistry of development, metabolism, and immunity in a social organism. Here we use mass spectrometry-based quantitative proteomics to quantify nearly 800 proteins during the 5- to 6-day larval developmental stage, tracking their expression profiles. Results We report that honey bee larval growth is marked by an age-correlated increase of protein transporters and receptors, as well as protein nutrient stores, while opposite trends in protein translation activity and turnover were observed. Levels of the immunity factors prophenoloxidase and apismin are positively correlated with development, while others surprisingly were not significantly age-regulated, suggesting a molecular explanation for why bees are susceptible to major age-associated bee bacterial infections such as American Foulbrood or fungal diseases such as chalkbrood. Previously unreported findings include the reduction of antioxidant and G proteins in aging larvae. Conclusion These data have allowed us to integrate disparate findings in previous studies to build a model of metabolism and maturity of the immune system during larval development. This publicly accessible resource for protein expression trends will help generate new hypotheses in the increasingly important field of honey bee research.
Collapse
Affiliation(s)
- Queenie W T Chan
- Centre for High-Throughput Biology, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| | | |
Collapse
|
193
|
Teixeira EW, Chen Y, Message D, Pettis J, Evans JD. Virus infections in Brazilian honey bees. J Invertebr Pathol 2008; 99:117-9. [DOI: 10.1016/j.jip.2008.03.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 03/27/2008] [Accepted: 03/28/2008] [Indexed: 11/24/2022]
|
194
|
Bessaud M, Autret A, Jegouic S, Balanant J, Joffret ML, Delpeyroux F. Development of a Taqman RT-PCR assay for the detection and quantification of negatively stranded RNA of human enteroviruses: evidence for false-priming and improvement by tagged RT-PCR. J Virol Methods 2008; 153:182-9. [PMID: 18706930 DOI: 10.1016/j.jviromet.2008.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 07/09/2008] [Accepted: 07/17/2008] [Indexed: 11/28/2022]
Abstract
Human enteroviruses are among the most common viruses infecting humans. These viruses are known to be able to infect a wide range of tissues and are believed to establish persistent infections. Enteroviruses are positive-sense single-stranded RNA viruses whose replication involves the synthesis of negative strand intermediates. Therefore, the specific detection of negatively stranded viral RNA in tissues or cells is a reliable marker of active enteroviral replication. The present report presents the development of a real-time RT-PCR allowing the specific detection and quantification of negatively stranded viral RNA. Since it was known that specific amplification of single-stranded RNA can be made difficult by false-priming events leading to false-positive or overestimated results, the assay was developed by using a tagged RT primer. This tagged RT-PCR was shown to be able to amplify specifically negative RNA of enteroviruses grown in cell cultures by preventing the amplification of cDNAs generated by false-priming.
Collapse
Affiliation(s)
- Maël Bessaud
- Unité postulante de biologie des virus entériques, Institut Pasteur, 25 rue du Dr Roux, 75 015 Paris, France.
| | | | | | | | | | | |
Collapse
|
195
|
Santillán-Galicia MT, Carzaniga R, Ball BV, Alderson PG. Immunolocalization of deformed wing virus particles within the mite Varroa destructor. J Gen Virol 2008; 89:1685-1689. [PMID: 18559939 DOI: 10.1099/vir.0.83223-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deformed wing virus (DWV) induces wing deformation when bees are infected during their pupal development. Field observations and laboratory experiments suggest that the mite Varroa destructor is a vector of the virus. Moreover, it has been stated that DWV replicates within this mite. In order to understand the role of V. destructor in the transmission of DWV, the objective of this work was to locate the sites of retention and/or replication of DWV within the mite by immunohistochemistry. There was no evidence that DWV was replicating in the mite as no tissues showed specific antibody binding to DWV. Also, there were no specific structures that could be suggested as retention sites. DWV was found only in the midgut lumen of V. destructor in structures resembling large, dense spheres, which were presumably faecal pellets.
Collapse
Affiliation(s)
- Ma Teresa Santillán-Galicia
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.,Centre for Soils and Ecosystem Function, Department of Plant and Invertebrate Ecology, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Raffaella Carzaniga
- Centre for Bioimaging, Department of Plant Pathology and Microbiology, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Brenda V Ball
- Centre for Soils and Ecosystem Function, Department of Plant and Invertebrate Ecology, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Peter G Alderson
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| |
Collapse
|
196
|
Baker A, Schroeder D. Occurrence and genetic analysis of picorna-like viruses infecting worker bees of Apis mellifera L. populations in Devon, South West England. J Invertebr Pathol 2008; 98:239-42. [DOI: 10.1016/j.jip.2008.02.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 02/04/2008] [Accepted: 02/13/2008] [Indexed: 11/28/2022]
|
197
|
Detection of Chronic bee paralysis virus (CBPV) genome and its replicative RNA form in various hosts and possible ways of spread. Virus Res 2008; 133:280-4. [DOI: 10.1016/j.virusres.2007.12.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 12/17/2007] [Accepted: 12/19/2007] [Indexed: 11/23/2022]
|
198
|
de Miranda JR, Fries I. Venereal and vertical transmission of deformed wing virus in honeybees (Apis mellifera L.). J Invertebr Pathol 2008; 98:184-9. [PMID: 18358488 DOI: 10.1016/j.jip.2008.02.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 02/11/2008] [Accepted: 02/12/2008] [Indexed: 11/24/2022]
Abstract
Deformed wing virus (DWV) infected semen was used for artificial insemination of DWV-free virgin queens. High titres of DWV could subsequently be detected not only in the spermatheca, but also in the ovaries, demonstrating venereal transmission of DWV in honey bees. Subsequent vertical transmission of the virus to the progeny of DWV infected queens was also demonstrated. Neither transmission route is 100% effective. Whether venereal transmission of DWV occurs during natural mating remains to be determined. The implications for the use, sale and transport of semen samples for artificial insemination are discussed.
Collapse
Affiliation(s)
- J R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 750-07, Sweden.
| | | |
Collapse
|
199
|
Gu J, Xie Z, Gao Z, Liu J, Korteweg C, Ye J, Lau LT, Lu J, Gao Z, Zhang B, McNutt MA, Lu M, Anderson VM, Gong E, Yu ACH, Lipkin WI. H5N1 infection of the respiratory tract and beyond: a molecular pathology study. Lancet 2007; 370:1137-45. [PMID: 17905166 PMCID: PMC7159293 DOI: 10.1016/s0140-6736(07)61515-3] [Citation(s) in RCA: 289] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
BACKGROUND Human infection with avian influenza H5N1 is an emerging infectious disease characterised by respiratory symptoms and a high fatality rate. Previous studies have shown that the human infection with avian influenza H5N1 could also target organs apart from the lungs. METHODS We studied post-mortem tissues of two adults (one man and one pregnant woman) infected with H5N1 influenza virus, and a fetus carried by the woman. In-situ hybridisation (with sense and antisense probes to haemagglutinin and nucleoprotein) and immunohistochemistry (with monoclonal antibodies to haemagglutinin and nucleoprotein) were done on selected tissues. Reverse-transcriptase (RT) PCR, real-time RT-PCR, strand-specific RT-PCR, and nucleic acid sequence-based amplification (NASBA) detection assays were also undertaken to detect viral RNA in organ tissue samples. FINDINGS We detected viral genomic sequences and antigens in type II epithelial cells of the lungs, ciliated and non-ciliated epithelial cells of the trachea, T cells of the lymph node, neurons of the brain, and Hofbauer cells and cytotrophoblasts of the placenta. Viral genomic sequences (but no viral antigens) were detected in the intestinal mucosa. In the fetus, we found viral sequences and antigens in the lungs, circulating mononuclear cells, and macrophages of the liver. The presence of viral sequences in the organs and the fetus was also confirmed by RT-PCR, strand-specific RT-PCR, real-time RT-PCR, and NASBA. INTERPRETATION In addition to the lungs, H5N1 influenza virus infects the trachea and disseminates to other organs including the brain. The virus could also be transmitted from mother to fetus across the placenta.
Collapse
Affiliation(s)
- Jiang Gu
- Infectious Disease Centre, Peking University, Beijing, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Ryabov EV. A novel virus isolated from the aphid Brevicoryne brassicae with similarity to Hymenoptera picorna-like viruses. J Gen Virol 2007; 88:2590-2595. [PMID: 17698671 DOI: 10.1099/vir.0.83050-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel virus, Brevicoryne brassicae virus (BrBV), has been identified in the cabbage aphid using a method based on the random amplification of encapsidated RNA. The complete sequence of the RNA genome of BrBV has been determined. The positive-strand genomic RNA is 10 161 nt, excluding the 3' poly(A) tail, and contains a single open reading frame (positions 793-9744) encoding a putative polyprotein of 2983 aa. The N-terminal part of the polyprotein shows similarity with the structural proteins of iflaviruses. The C-terminal part possesses consensus sequences of the helicase, cysteine protease and RNA-dependent RNA polymerase similar to those of iflaviruses and other picorna-like viruses. The highest sequence similarity observed was with iflaviruses from honeybee and an endoparasitic wasp. Replication and transmission of BrBV was not dependent on endoparasitic wasp infestation of the aphids.
Collapse
Affiliation(s)
- Eugene V Ryabov
- Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| |
Collapse
|