151
|
Ajuh P, Kuster B, Panov K, Zomerdijk JC, Mann M, Lamond AI. Functional analysis of the human CDC5L complex and identification of its components by mass spectrometry. EMBO J 2000; 19:6569-81. [PMID: 11101529 PMCID: PMC305846 DOI: 10.1093/emboj/19.23.6569] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2000] [Revised: 10/03/2000] [Accepted: 10/03/2000] [Indexed: 11/12/2022] Open
Abstract
Recently, we identified proteins that co-purify with the human spliceosome using mass spectrometry. One of the identified proteins, CDC5L, corresponds to the human homologue of the Schizosaccharomyces pombe CDC5(+) gene product. Here we show that CDC5L is part of a larger multiprotein complex in HeLa nuclear extract that incorporates into the spliceosome in an ATP-dependent step. We also show that this complex is required for the second catalytic step of pre-mRNA splicing. Immunodepletion of the CDC5L complex from HeLa nuclear extract inhibits the formation of pre-mRNA splicing products in vitro but does not prevent spliceosome assembly. The first catalytic step of pre-mRNA splicing is less affected by immunodepleting the complex. The purified CDC5L complex in HeLa nuclear extract restores pre-mRNA splicing activity when added to extracts that have been immunodepleted using anti-CDC5L antibodies. Using mass spectrometry and database searches, the major protein components of the CDC5L complex have been identified. This work reports a first purification and characterization of a functional, human non-snRNA spliceosome subunit containing CDC5L and at least five additional protein factors.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Amino Acid Sequence
- Blotting, Western
- Catalysis
- Cell Cycle Proteins/chemistry
- Cell Cycle Proteins/isolation & purification
- Cell Nucleus/metabolism
- Chromatography, Affinity
- Cloning, Molecular
- DNA, Complementary/metabolism
- Databases, Factual
- Electrophoresis, Polyacrylamide Gel
- HeLa Cells
- Humans
- Models, Biological
- Molecular Sequence Data
- Precipitin Tests
- RNA Splicing
- RNA, Messenger/metabolism
- Recombinant Proteins/chemistry
- Ribosomes/metabolism
- Schizosaccharomyces
- Schizosaccharomyces pombe Proteins
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Spliceosomes/metabolism
Collapse
Affiliation(s)
- P Ajuh
- Department of Biochemistry, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
152
|
Gotzmann J, Gerner C, Meissner M, Holzmann K, Grimm R, Mikulits W, Sauermann G. hNMP 200: a novel human common nuclear matrix protein combining structural and regulatory functions. Exp Cell Res 2000; 261:166-79. [PMID: 11082287 DOI: 10.1006/excr.2000.5025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Previously we have reported about human nuclear matrix proteins (hNMPs) with increased reassembling and potential filament-forming capability [C. Gerner et al., 1999, J. Cell. Biochem. 74, 145-151]. Here, we cloned the cDNA of one of these proteins, hNMP 200, following partial amino acid sequencing of the novel 56-kDa nuclear protein. Sequence alignments show hNMP 200-related proteins in metazoans, plants, and yeast, the homologous Saccharomyces cerevisiae protein prp19 being an accessory, but essential, factor for pre-mRNA processing. Evidence for any enzymatic activity was not detected. However, the hNMP 200 primary sequence contained five consensus WD-repeat sequences, indicative of participation and regulatory function in larger protein assemblies. Northern blot analysis and 2D protein electrophoresis showed ubiquitous expression of hNMP 200 in a variety of cell types. (35)S labeling studies indicated a high metabolic stability of the protein. The hNMP 200 gene was assigned to chromosomal region 11q12.2. Confocal laser scanning microscopy revealed that the intracellular localization conformed with that reported for other structural nuclear proteins. In interphase cells, green fluorescent protein-tagged hNMP 200 was predominantly nucleoplasmic. Structures with speckled appearance extended through several sections of in situ-isolated nuclear matrices. During cell division hNMP 200 became irregularly distributed in prophase, sparing regions of condensing chromatin. In anaphase it was concentrated in the spindle midzone. The putative dual function of the novel NMP is discussed. Being a component of the nuclear framework, it may provide structural support for components of the RNA-processing machinery, thereby also modulating splicing activities.
Collapse
Affiliation(s)
- J Gotzmann
- Institute of Cancer Research, University of Vienna, Borschkegasse 8a, Vienna, A-1090, Austria.
| | | | | | | | | | | | | |
Collapse
|
153
|
Chou MY, Underwood JG, Nikolic J, Luu MH, Black DL. Multisite RNA binding and release of polypyrimidine tract binding protein during the regulation of c-src neural-specific splicing. Mol Cell 2000; 5:949-57. [PMID: 10911989 DOI: 10.1016/s1097-2765(00)80260-9] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We studied the role of polypyrimidine tract binding protein in repressing splicing of the c-src neuron-specific N1 exon. Immunodepletion/add-back experiments demonstrate that PTB is essential for splicing repression in HeLa extract. When splicing is repressed, PTB cross-links to intronic CUCUCU elements flanking the N1 exon. Mutation of the downstream CU elements causes dissociation of PTB from the intact upstream CU elements and allows splicing. Thus, PTB molecules bound to multiple elements cooperate to repress splicing. Interestingly, in neuronal WERI-1 cell extract where N1 is spliced, PTB also binds to the upstream CU elements but is dissociated in the presence of ATP. We conclude that splicing repression by PTB is modulated in different cells by a combination of cooperative binding and ATP-dependent dissociation.
Collapse
Affiliation(s)
- M Y Chou
- Howard Hughes Medical Institute, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
154
|
Abstract
In the current model for spliceosome assembly, U1 snRNP binds to the 5' splice site in the E complex followed by ATP-dependent binding of U2 snRNP to the branchpoint sequence (BPS) in the A complex. Here we report the characterization of highly purified, functional E complex. We provide evidence that this complex contains functional U2 snRNP and that this snRNP is required for E complex assembly. The BPS is not required for U2 snRNP binding in the E complex. These data suggest a model for spliceosome assembly in which U1 and U2 snRNPs first associate with the spliceosome in the E complex and then an ATP-dependent step results in highly stable U2 snRNP binding to the BPS in the A complex.
Collapse
Affiliation(s)
- R Das
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
155
|
Pauling MH, McPheeters DS, Ares M. Functional Cus1p is found with Hsh155p in a multiprotein splicing factor associated with U2 snRNA. Mol Cell Biol 2000; 20:2176-85. [PMID: 10688664 PMCID: PMC110834 DOI: 10.1128/mcb.20.6.2176-2185.2000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To explore the dynamics of snRNP structure and function, we have studied Cus1p, identified as a suppressor of U2 snRNA mutations in budding yeast. Cus1p is homologous to human SAP145, a protein present in the 17S form of the human U2 snRNP. Here, we define the Cus1p amino acids required for function in yeast. The segment of Cus1p required for binding to Hsh49p, a homolog of human SAP49, is contained within an essential region of Cus1p. Antibodies against Cus1p coimmunoprecipitate U2 snRNA, as well as Hsh155p, a protein homologous to human SAP155. Biochemical fractionation of splicing extracts and reconstitution of heat-inactivated splicing extracts from strains carrying a temperature-sensitive allele of CUS1 indicate that Cus1p and Hsh155p reside in a functional, high-salt-stable complex that is salt-dissociable from U2 snRNA. We propose that Cus1p, Hsh49p, and Hsh155p exist in a stable protein complex which can exchange with a core U2 snRNP and which is necessary for U2 snRNP function in prespliceosome assembly. The Cus1p complex shares functional as well as structural similarities with human SF3b.
Collapse
Affiliation(s)
- M H Pauling
- Department of Biology, Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | | | | |
Collapse
|
156
|
Abstract
The first ATP-dependent step in pre-mRNA splicing involves the stable binding of U2 snRNP to form the prespliceosome. We show that a prespliceosome-like complex forms in the absence of ATP in yeast extracts lacking the U2 suppressor protein CUS2. These complexes display the same pre-mRNA and U snRNA requirements as authentic prespliceosomes and can be chased through the splicing pathway, indicating that they are a functional intermediate in the spliceosome assembly pathway. ATP-independent prespliceosome-like complexes are also observed in extracts containing a mutant U2 snRNA. Loss of CUS2 does not bypass the role of PRP5, an RNA helicase family member required for ATP-dependent prespliceosome formation. Genetic interactions between CUS2 and a heat-sensitive prp5allele parallel those observed between CUS2 and U2, and suggest that CUS2 mediates functional interactions between U2 RNA and PRP5. We propose that CUS2 enforces ATP dependence during formation of the prespliceosome by brokering an interaction between PRP5 and the U2 snRNP that depends on correct U2 RNA structure.
Collapse
|
157
|
Das BK, Xia L, Palandjian L, Gozani O, Chyung Y, Reed R. Characterization of a protein complex containing spliceosomal proteins SAPs 49, 130, 145, and 155. Mol Cell Biol 1999; 19:6796-802. [PMID: 10490618 PMCID: PMC84676 DOI: 10.1128/mcb.19.10.6796] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SF3b is a U2 snRNP-associated protein complex essential for spliceosome assembly. Although evidence that SF3b contains the spliceosomal proteins SAPs 49, 130, 145, and 155 has accumulated, a protein-mediated association between all of these proteins has yet to be directly demonstrated. Here we report the isolation of a cDNA encoding SAP 130, which completes the cloning of the putative SF3b complex proteins. Using antibodies to SAP 130 and other putative SF3b components, we showed that SAPs 130, 145, and 155 are present in a protein complex in nuclear extracts and that these proteins associate with one another in purified U2 snRNP. Moreover, SAPs 155 and 130 interact with each other (directly or indirectly) within this complex, and SAPs 49 and 145 are known to interact directly with each other. Thus, together with prior work, our studies indicate that SAPs 49, 130, 145, and 155 are indeed components of SF3b. The Saccharomyces cerevisiae homologs of SAPs 49 and 145 are encoded by essential genes. We show here that the S. cerevisiae homologs of SAPs 130 and 155 (scSAP 130/RSE1 and scSAP 155, respectively) are also essential. Recently, the SF3b proteins were found in purified U12 snRNP, which functionally substitutes for U2 snRNP in the minor spliceosome. This high level of conservation, together with the prior observation that the SF3b proteins interact with pre-mRNA very close to the branch site, suggest that the SF3b complex plays a critical role near or at the spliceosome catalytic core.
Collapse
Affiliation(s)
- B K Das
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
158
|
Krämer A, Grüter P, Gröning K, Kastner B. Combined biochemical and electron microscopic analyses reveal the architecture of the mammalian U2 snRNP. J Cell Biol 1999; 145:1355-68. [PMID: 10385517 PMCID: PMC2133165 DOI: 10.1083/jcb.145.7.1355] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The 17S U2 small nuclear ribonucleoprotein particle (snRNP) represents the active form of U2 snRNP that binds to the pre-mRNA during spliceosome assembly. This particle forms by sequential interactions of splicing factors SF3b and SF3a with the 12S U2 snRNP. We have purified SF3b and the 15S U2 snRNP, an intermediate in the assembly pathway, from HeLa cell nuclear extracts and show that SF3b consists of four subunits of 49, 130, 145, and 155 kD. Biochemical analysis indicates that both SF3b and the 12S U2 snRNP are required for the incorporation of SF3a into the 17S U2 snRNP. Nuclease protection studies demonstrate interactions of SF3b with the 5' half of U2 small nuclear RNA, whereas SF3a associates with the 3' portion of the U2 snRNP and possibly also interacts with SF3b. Electron microscopy of the 15S U2 snRNP shows that it consists of two domains in which the characteristic features of isolated SF3b and the 12S U2 snRNP are conserved. Comparison to the two-domain structure of the 17S U2 snRNP corroborates the biochemical results in that binding of SF3a contributes to an increase in size of the 12S U2 domain and possibly induces a structural change in the SF3b domain.
Collapse
Affiliation(s)
- A Krämer
- Département de Biologie Cellulaire, Université de Genève, CH-1211 Genève 4, Switzerland.
| | | | | | | |
Collapse
|
159
|
Caspary F, Shevchenko A, Wilm M, Séraphin B. Partial purification of the yeast U2 snRNP reveals a novel yeast pre-mRNA splicing factor required for pre-spliceosome assembly. EMBO J 1999; 18:3463-74. [PMID: 10369685 PMCID: PMC1171425 DOI: 10.1093/emboj/18.12.3463] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have partially purified the U2 snRNP of Saccharomyces cerevisiae. Identification of some proteins consistently found in the purified fractions by nanoelectrospray mass spectrometry indicated the presence of a novel splicing factor named Rse1p. The RSE1 gene is essential and codes for a 148.2 kDa protein. We demonstrated that Rse1p associates specifically with U2 snRNA at low salt concentrations. In addition, we showed that Rse1p is a component of the pre-spliceosome. Depletion of Rse1p and analysis of a conditional mutant indicated that Rse1p was required for efficient splicing in vivo. In vitro Rse1p is required for the formation of pre-spliceosomes. Database searches revealed that Rse1p is conserved in humans and that it belongs to a large protein family that includes polyadenylation factors and DNA repair proteins. The characteristics of Rse1p suggest that its human homologue could be a subunit of the SF3 splicing factor.
Collapse
Affiliation(s)
- F Caspary
- EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
160
|
Reed R, Chiara MD. Identification of RNA-protein contacts within functional ribonucleoprotein complexes by RNA site-specific labeling and UV crosslinking. Methods 1999; 18:3-12. [PMID: 10208811 DOI: 10.1006/meth.1999.0751] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A variety of cellular processes are carried out by highly complex ribonucleoprotein (RNP) particles in which multiple RNA-RNA, RNA-protein, and protein-protein interactions occur. The spliceosome, which executes the nuclear pre-mRNA splicing reaction, is a particularly striking example of a complex RNP, containing a minimum of 50 distinct protein components as well as five small nuclear RNAs. In order to identify which among the numerous proteins may play critical roles in the splicing reaction, we have assembled spliceosomal complexes on pre-mRNA containing a single 32P-labeled nucleotide, isolated the complexes by gel filtration, and then carried out UV crosslinking. The combination of these three methods has allowed the identification of proteins that crosslink to critical sequence elements during each stage in spliceosome assembly. These methods should be generally applicable to the analysis of RNP complexes assembled in vitro.
Collapse
Affiliation(s)
- R Reed
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
161
|
Frilander MJ, Steitz JA. Initial recognition of U12-dependent introns requires both U11/5' splice-site and U12/branchpoint interactions. Genes Dev 1999; 13:851-63. [PMID: 10197985 PMCID: PMC316595 DOI: 10.1101/gad.13.7.851] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have investigated the formation of prespliceosomal complex A in HeLa nuclear extracts on a splicing substrate containing an AT-AC (U12-type) intron from the P120 gene. Using an RNase H protection assay and specific blocking oligonucleotides, we find that recognition of the 5' splice-site (5'ss) and branchpoint sequence (BPS) elements by U11 and U12 snRNPs, respectively, displays strong cooperativity, requiring both sites in the pre-mRNA substrate for efficient complex formation. Deletion analysis indicates that beside the 5'ss and BPS, no additional elements in the pre-mRNA are necessary for A-complex formation, although 5' exon sequences provide stimulation. Cross-linking studies with pre-mRNAs containing the 5'ss or BPS alone indicate that recognition of the BPS by the U12 snRNP is stimulated at least 20- to 30-fold by the binding of the U11 snRNP to the 5'ss in the same pre-mRNA molecule, whereas recognition of the 5'ss by U11 is stimulated approximately fivefold by the U12/BPS interaction. These results argue that intron recognition in the U12-dependent splicing pathway is carried out by a single U11/U12 di-snRNP complex, suggesting greater rigidity in the intron recognition process than in the major spliceosome.
Collapse
Affiliation(s)
- M J Frilander
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Howard Hughes Medical Institute, New Haven, Connecticut 06536-0812 USA
| | | |
Collapse
|
162
|
Zhang D, Rosbash M. Identification of eight proteins that cross-link to pre-mRNA in the yeast commitment complex. Genes Dev 1999; 13:581-92. [PMID: 10072386 PMCID: PMC316503 DOI: 10.1101/gad.13.5.581] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the yeast commitment complex and the mammalian E complex, there is an important base-pairing interaction between the 5' end of U1 snRNA and the conserved 5' splice site region of pre-mRNA. But no protein contacts between splicing proteins and the pre-mRNA substrate have been defined in or near this region of early splicing complexes. To address this issue, we used 4-thiouridine-substituted 5' splice site-containing RNAs as substrates and identified eight cross-linked proteins, all of which were identified previously as commitment complex components. The proteins were localized to three domains: the exon, the six nucleotides of the 5' ss region, and the downstream intron. The results indicate that the 5' splice site region and environs are dense with protein contacts in the commitment complex and suggest that some of them make important contributions to formation or stability of the U1 snRNP-pre-mRNA complex.
Collapse
Affiliation(s)
- D Zhang
- Department of Biology, Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, USA
| | | |
Collapse
|
163
|
Murray MV, Kobayashi R, Krainer AR. The type 2C Ser/Thr phosphatase PP2Cgamma is a pre-mRNA splicing factor. Genes Dev 1999; 13:87-97. [PMID: 9887102 PMCID: PMC316367 DOI: 10.1101/gad.13.1.87] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/1998] [Accepted: 11/18/1998] [Indexed: 11/24/2022]
Abstract
To identify activities involved in human pre-mRNA splicing, we have developed a procedure to separate HeLa cell nuclear extract into five complementing fractions. An activity called SCF1 was purified from one of these fractions by assaying for reconstitution of splicing in the presence of the remaining four fractions. A component of SCF1 is shown to be PP2Cgamma, a type 2C Ser/Thr phosphatase of previously unknown function. Previous work suggested that dephosphorylation of splicing factors may be important for catalysis after spliceosome assembly, although the identities of the specific phosphatases involved remain unclear. Here we show that human PP2Cgamma is physically associated with the spliceosome in vitro throughout the splicing reaction, but is first required during the early stages of spliceosome assembly for efficient formation of the A complex. The phosphatase activity is required for the splicing function of PP2Cgamma, as an active site mutant does not support spliceosome assembly. The requirement for PP2Cgamma is highly specific, as the closely related phosphatase PP2Calpha cannot substitute for PP2Cgamma. Consistent with a role in splicing, PP2Cgamma localizes to the nucleus in vivo. We conclude that at least one specific dephosphorylation event catalyzed by PP2Cgamma is required for formation of the spliceosome.
Collapse
Affiliation(s)
- M V Murray
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 USA
| | | | | |
Collapse
|
164
|
Liu ZR, Sargueil B, Smith CW. Detection of a novel ATP-dependent cross-linked protein at the 5' splice site-U1 small nuclear RNA duplex by methylene blue-mediated photo-cross-linking. Mol Cell Biol 1998; 18:6910-20. [PMID: 9819379 PMCID: PMC109274 DOI: 10.1128/mcb.18.12.6910] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Assembly of spliceosomes involves a number of sequential steps in which small nuclear ribonucleoprotein particles (snRNPs) and some non-snRNP proteins recognize the splice site sequences and undergo various conformational rearrangements. A number of important intermolecular RNA-RNA duplexes are formed transiently during the process of splice site recognition. Various steps in the assembly pathway are dependent upon ATP hydrolysis, either for protein phosphorylation or for the activity of helicases, which may modulate the RNA structures. Major efforts have been made to identify proteins that interact with specific regions of the pre-mRNA during the stages of spliceosome assembly and catalysis by site-specific UV cross-linking. However, UV cross-linking is often inefficient for the detection of proteins that interact with base-paired RNA. Here we have used the complementary approach of methylene blue-mediated photo-cross-linking to detect specifically proteins that interact with the duplexes formed between pre-mRNA and small nuclear RNA (snRNA). We have detected a novel cross-link between a 65-kDa protein (p65) and the 5' splice site. A range of data suggest that p65 cross-links to the transient duplex formed by U1 snRNA and the 5' splice site. Moreover, although p65 cross-linking requires only a 5' splice site within the pre-mRNA, it also requires ATP hydrolysis, suggesting that its detection reflects a very early ATP-dependent event during splicing.
Collapse
Affiliation(s)
- Z R Liu
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | | | | |
Collapse
|
165
|
Abstract
Human U2 snRNP contains two specific proteins, U2A' and U2B", that interact with U2 snRNA stem-loop IV. In Saccharomyces cerevisiae, only the counterpart of human U2B", Yib9p, has been identified. Database searches revealed a gene potentially coding for a protein with striking similarities to human U2A', henceforth called LEA1 (looks exceptionally like U2A'). We demonstrate that Lea1p is a specific component of the yeast U2 snRNP. In addition, we show that Lea1p interacts directly with Yib9p. In vivo association of Lea1p with U2 snRNA requires Yib9p. Reciprocally, Yib9p binds to the U2 snRNA only in the presence of Lea1p in vivo, even though it has been previously shown to associate on its own with the U2 snRNA stem-loop IV in vitro. Strains lacking LEA1 and/or YIB9 grow slowly, are temperature sensitive and contain reduced levels of U2 snRNA. Pre-mRNA splicing is strongly impaired in these cells. In vitro studies demonstrate that spliceosome assembly is blocked prior to addition of U2 snRNP. This phenotype can be rescued partially, but specifically, by addition of the corresponding recombinant protein(s). This demonstrates a specific role for the yeast U2 snRNP specific proteins during formation of the pre-spliceosome.
Collapse
Affiliation(s)
- F Caspary
- EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | |
Collapse
|
166
|
Yu YT, Shu MD, Steitz JA. Modifications of U2 snRNA are required for snRNP assembly and pre-mRNA splicing. EMBO J 1998; 17:5783-95. [PMID: 9755178 PMCID: PMC1170906 DOI: 10.1093/emboj/17.19.5783] [Citation(s) in RCA: 208] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Among the spliceosomal snRNAs, U2 has the most extensive modifications, including a 5' trimethyl guanosine (TMG) cap, ten 2'-O-methylated residues and 13 pseudouridines. At short times after injection, cellularly derived (modified) U2 but not synthetic (unmodified) U2 rescues splicing in Xenopus oocytes depleted of endogenous U2 by RNase H targeting. After prolonged reconstitution, synthetic U2 regenerates splicing activity; a correlation between the extent of U2 modification and U2 function in splicing is observed. Moreover, 5-fluorouridine-containing U2 RNA, a potent inhibitor of U2 pseudouridylation, specifically abolishes rescue by synthetic U2, while rescue by cellularly derived U2 is not affected. By creating chimeric U2 molecules in which some sequences are from cellularly derived U2 and others are from in vitro transcribed U2, we demonstrate that the functionally important modifications reside within the 27 nucleotides at the 5' end of U2. We further show that 2'-O-methylation and pseudouridylation activities reside in the nucleus and that the 5' TMG cap is not necessary for internal modification but is crucial for splicing activity. Native gel analysis reveals that unmodified U2 is not incorporated into the spliceosome. Examination of the U2 protein profile and glycerol-gradient analysis argue that U2 modifications directly contribute to conversion of the 12S to the 17S U2 snRNP particle, which is essential for spliceosome assembly.
Collapse
Affiliation(s)
- Y T Yu
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | | | | |
Collapse
|
167
|
Yan D, Perriman R, Igel H, Howe KJ, Neville M, Ares M. CUS2, a yeast homolog of human Tat-SF1, rescues function of misfolded U2 through an unusual RNA recognition motif. Mol Cell Biol 1998; 18:5000-9. [PMID: 9710584 PMCID: PMC109085 DOI: 10.1128/mcb.18.9.5000] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A screen for suppressors of a U2 snRNA mutation identified CUS2, an atypical member of the RNA recognition motif (RRM) family of RNA binding proteins. CUS2 protein is associated with U2 RNA in splicing extracts and interacts with PRP11, a subunit of the conserved splicing factor SF3a. Absence of CUS2 renders certain U2 RNA folding mutants lethal, arguing that a normal activity of CUS2 is to help refold U2 into a structure favorable for its binding to SF3b and SF3a prior to spliceosome assembly. Both CUS2 function in vivo and the in vitro RNA binding activity of CUS2 are disrupted by mutation of the first RRM, suggesting that rescue of misfolded U2 involves the direct binding of CUS2. Human Tat-SF1, reported to stimulate Tat-specific, transactivating region-dependent human immunodeficiency virus transcription in vitro, is structurally similar to CUS2. Anti-Tat-SF1 antibodies coimmunoprecipitate SF3a66 (SAP62), the human homolog of PRP11, suggesting that Tat-SF1 has a parallel function in splicing in human cells.
Collapse
Affiliation(s)
- D Yan
- Center for the Molecular Biology of RNA, Biology Department, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | | | | | | | | | | |
Collapse
|
168
|
Gozani O, Potashkin J, Reed R. A potential role for U2AF-SAP 155 interactions in recruiting U2 snRNP to the branch site. Mol Cell Biol 1998; 18:4752-60. [PMID: 9671485 PMCID: PMC109061 DOI: 10.1128/mcb.18.8.4752] [Citation(s) in RCA: 239] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Base pairing between U2 snRNA and the branchpoint sequence (BPS) is essential for pre-mRNA splicing. Because the metazoan BPS is short and highly degenerate, this interaction alone is insufficient for specific binding of U2 snRNP. The splicing factor U2AF binds to the pyrimidine tract at the 3' splice site in the earliest spliceosomal complex, E, and is essential for U2 snRNP binding in the spliceosomal complex A. We show that the U2 snRNP protein SAP 155 UV cross-links to pre-mRNA on both sides of the BPS in the A complex. SAP 155's downstream cross-linking site is immediately adjacent to the U2AF binding site, and the two proteins interact directly in protein-protein interaction assays. Using UV cross-linking, together with functional analyses of pre-mRNAs containing duplicated BPSs, we show a direct correlation between BPS selection and UV cross-linking of SAP 155 on both sides of the BPS. Together, our data are consistent with a model in which U2AF binds to the pyrimidine tract in the E complex and then interacts with SAP 155 to recruit U2 snRNP to the BPS.
Collapse
Affiliation(s)
- O Gozani
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
169
|
Tsai TF, Wu MJ, Su TS. Usage of cryptic splice sites in citrullinemia fibroblasts suggests role of polyadenylation in splice-site selection during terminal exon definition. DNA Cell Biol 1998; 17:717-25. [PMID: 9726254 DOI: 10.1089/dna.1998.17.717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Citrullinemia is a human genetic disease caused by a deficient argininosuccinate synthetase. In fibroblasts established from a citrullinemia patient with a mutation at the 3' splice site of the terminal intron of the gene, three cryptic 3' splice sites; i.e., SA1275, SA1636, and SA1663, residing on the terminal exon were activated. The usage of the cryptic sites showed a gradient, with the most downstream site having the highest usage; i.e., SA1663 > SA1636 > SA1275. However, when these cryptic sites were relocated to the internal exon, SA1636 was used the most. The splice-site strength of SA1636 was at least 10-fold higher than that of SA1663 in this situation. The results suggest that the preferential usage of SA1663 residing on the terminal exon may depend on its proximity to the poly(A) signal rather than on the strength of the splice site. Furthermore, when the strength of the downstream-most splice site increased, almost all the RNAs spliced to this site. However, in the presence of the wild-type splice site, all the RNAs were processed to the authentic site. Apparently, the selection of splice site can be revealed only when the sites being selected do not differ too much in their strength. By using a naturally occurring human mutant gene as a model, this study reveals that polyadenylation may play an important role in the selection of splice site during terminal exon definition.
Collapse
Affiliation(s)
- T F Tsai
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
170
|
Seghezzi W, Chua K, Shanahan F, Gozani O, Reed R, Lees E. Cyclin E associates with components of the pre-mRNA splicing machinery in mammalian cells. Mol Cell Biol 1998; 18:4526-36. [PMID: 9671462 PMCID: PMC109038 DOI: 10.1128/mcb.18.8.4526] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/1998] [Accepted: 05/13/1998] [Indexed: 02/08/2023] Open
Abstract
Cyclin E-cdk2 is a critical regulator of cell cycle progression from G1 into S phase in mammalian cells. Despite this important function little is known about the downstream targets of this cyclin-kinase complex. Here we have identified components of the pre-mRNA processing machinery as potential targets of cyclin E-cdk2. Cyclin E-specific antibodies coprecipitated a number of cyclin E-associated proteins from cell lysates, among which are the spliceosome-associated proteins, SAP 114, SAP 145, and SAP 155, as well as the snRNP core proteins B' and B. The three SAPs are all subunits of the essential splicing factor SF3, a component of U2 snRNP. Cyclin E antibodies also specifically immunoprecipitated U2 snRNA and the spliceosome from splicing extracts. We demonstrate that SAP 155 serves as a substrate for cyclin E-cdk2 in vitro and that its phosphorylation in the cyclin E complex can be inhibited by the cdk-specific inhibitor p21. SAP 155 contains numerous cdk consensus phosphorylation sites in its N terminus and is phosphorylated prior to catalytic step II of the splicing pathway, suggesting a potential role for cdk regulation. These findings provide evidence that pre-mRNA splicing may be linked to the cell cycle machinery in mammalian cells.
Collapse
Affiliation(s)
- W Seghezzi
- Department of Cell Signaling, DNAX Research Institute, Palo Alto, California 94304-1104, USA.
| | | | | | | | | | | |
Collapse
|
171
|
Bouck J, Fu XD, Skalka AM, Katz RA. Role of the constitutive splicing factors U2AF65 and SAP49 in suboptimal RNA splicing of novel retroviral mutants. J Biol Chem 1998; 273:15169-76. [PMID: 9614130 DOI: 10.1074/jbc.273.24.15169] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retroviruses display a unique form of alternative splicing in which both spliced and unspliced RNAs accumulate in the cytoplasm. Simple retroviruses, such as avian sarcoma virus, do not encode regulatory proteins that affect splicing; this process is controlled solely through interactions between the viral RNA and the host cell splicing machinery. Previously, we described the selection and characterization of novel avian sarcoma virus mutants. These viruses were separated into two classes based upon analysis of splicing intermediates produced in infected cells and in a cell-free system. One class, which included mutants with altered polypyrimidine tract or branch point sequences, showed significant accumulation of intermediates, suggesting that splicing was regulated in step 2. The other class, which included mutants with deletions of exonic enhancer sequences, did not accumulate splicing intermediates, suggesting that splicing was regulated before step 1 of the splicing reaction. In this report, we show that a mutant blocked at step 1 fails to form a stable spliceosomal complex, whereas one blocked at step 2 shows a defect in its ability to transit through the last spliceosomal complex. Using UV cross-linking methods, we show that regulation at each step is associated with specific changes in the binding of cellular splicing factors. Regulation at step 1 is correlated with decreased cross-linking of the factor U2AF65, whereas regulation at step 2 is correlated with enhanced cross-linking of the factor SAP49. Because these mutations were isolated by selection for replication-competent viruses, we conclude that retroviral splicing may be regulated in vivo through altered binding of constitutive splicing factors.
Collapse
Affiliation(s)
- J Bouck
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | |
Collapse
|
172
|
Wang C, Chua K, Seghezzi W, Lees E, Gozani O, Reed R. Phosphorylation of spliceosomal protein SAP 155 coupled with splicing catalysis. Genes Dev 1998; 12:1409-14. [PMID: 9585501 PMCID: PMC316838 DOI: 10.1101/gad.12.10.1409] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The U2 snRNP component SAP 155 contacts pre-mRNA on both sides of the branch site early in spliceosome assembly and is therefore positioned near or at the spliceosome catalytic center. We have isolated a cDNA encoding human SAP 155 and identified its highly related Saccharomyces cerevisiae homolog (50% identity). The carboxy-terminal two-thirds of SAP 155 shows the highest conservation and is remarkably similar to the regulatory subunit A of the phosphatase PP2A. Significantly, SAP 155 is phosphorylated concomitant with or just after catalytic step one, making this the first example of a protein modification tightly regulated with splicing catalysis.
Collapse
Affiliation(s)
- C Wang
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115,
| | | | | | | | | | | |
Collapse
|
173
|
Meyer V, Oliver B, Pauli D. Multiple developmental requirements of noisette, the Drosophila homolog of the U2 snRNP-associated polypeptide SP3a60. Mol Cell Biol 1998; 18:1835-43. [PMID: 9528755 PMCID: PMC121413 DOI: 10.1128/mcb.18.4.1835] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/1997] [Accepted: 01/20/1998] [Indexed: 02/07/2023] Open
Abstract
We report the cloning of the noisette gene (noi), which encodes the Drosophila melanogaster ortholog of a U2 snRNP-associated splicing factor, SF3a60 (SAP61) in humans and PRP9p in Saccharomyces cerevisiae. Antibodies raised against human SF3a60 recognized NOI in flies, showing a nuclear localization in all the stages examined, including the embryo, the dividing cells of imaginal discs, and the larval polyploid nuclei. NOI is expressed in somatic and germinal cells of both male and female gonads. By mobilization of P transposons, we have generated a large number of noi mutations. Complete loss of function resulted in lethality at the end of embryogenesis, without obvious morphological defects. Hypomorphic alleles revealed multiple roles of noi for the survival and differentiation of male germ cells, the differentiation of female germ cells, and the development of several adult structures.
Collapse
Affiliation(s)
- V Meyer
- Department of Zoology and Animal Biology, University of Geneva, Switzerland
| | | | | |
Collapse
|
174
|
Pearson BM, Hernando Y, Schweizer M. Construction of PCR-ligated long flanking homology cassettes for use in the functional analysis of six unknown open reading frames from the left and right arms of Saccharomyces cerevisiae chromosome XV. Yeast 1998; 14:391-9. [PMID: 9559547 DOI: 10.1002/(sici)1097-0061(19980315)14:4<391::aid-yea235>3.0.co;2-o] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Six open reading frames (ORFs) of unknown function from Saccharomyces cerevisiae chromosome XV, three from the left and three from the right arm, were deleted in two diploid strains by the short flanking homology method (Wach et al., 1994). Transformants were selected as Geneticin (G418)-resistant colonies and correct integration of the kanMX4 cassette was checked by colony PCR. Following sporulation of the diploids, tetrads were dissected and scored for the segregation of the G418-resistant marker. We have developed a widely applicable method for the construction of gap repair plasmids to obtain the cognate clones for each of the disrupted ORFs. The 5'- and 3'-flanks of the ORF in question are linked by a unique restriction endonuclease. When the plasmid is cut at this site it can be used to obtain, by selection for the appropriate antibiotic resistance, long flanking homology (LFH) cassettes containing the cognate clone or the disrupted allele. The LFH cassette containing the cognate clone or the disrupted allele can be released from the gap-repaired plasmid by cutting at the inserted flanking restriction sites. One of the six ORFs (YOR319w) corresponds to an essential gene whose product is part of the spliceosome complex. Haploid as well as homozygous and heterozygous diploid disruptant strains for each of the five non-essential ORFs were subjected to growth test on different media at 15 degrees C, 30 degrees C and 37 degrees C. Disruption of YOR322c causes osmotically sensitive growth on YEPD at 37 degrees C and the product of YOL091w appears to play a role in sporulation since the homozygous diploid disruptant has lost the ability to sporulate.
Collapse
Affiliation(s)
- B M Pearson
- Genetics & Microbiology Department, Institute of Food Research, Colney, Norwich, UK
| | | | | |
Collapse
|
175
|
Agell N, Aligué R, Alemany V, Castro A, Jaime M, Pujol MJ, Rius E, Serratosa J, Taulés M, Bachs O. New nuclear functions for calmodulin. Cell Calcium 1998; 23:115-21. [PMID: 9601606 DOI: 10.1016/s0143-4160(98)90109-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The data reported here summarize a series of results which reveal new functions for nuclear calmodulin (CaM). The addition of CaM inhibitors to cultures of proliferating NRK cells blocked the activity of the cyclin-dependent protein kinases 4 (cdk4) and 2 (cdk2), which are enzymes implicated in the progression of G1 and in the onset of DNA replication, respectively. CaM modulates the activity of cdk4 by regulating the nuclear location of both cdk4 and cyclin D, its associated regulatory subunit. By using CaM-affinity chromatography, we have recently identified two new nuclear CaM-binding proteins: (i) the protein La/SSB, which is an autoantigen implicated in several autoimmune diseases such as lupus erythematosus and Sjögren's syndrome (since La/SSB participates in the process of transcription mediated by RNA polymerase III, CaM could be involved in the regulation of this process); and (ii) the protein SAP145, a member of the spliceosome-associated proteins (SAPs) which is a subunit of the splicing factor SF3(b). This finding suggests the involvement of CaM in pre-mRNA splicing. Finally, a screening for new CaM-binding proteins in the fission yeast performed by using the phage display analysis, revealed that several nucleolar-ribosomal proteins associate to CaM, suggesting that CaM modulates ribosomal assembly and/or function.
Collapse
Affiliation(s)
- N Agell
- Department of Cell Biology, Faculty of Medicine, University of Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Schmidt-Zachmann MS, Knecht S, Krämer A. Molecular characterization of a novel, widespread nuclear protein that colocalizes with spliceosome components. Mol Biol Cell 1998; 9:143-60. [PMID: 9436997 PMCID: PMC25229 DOI: 10.1091/mbc.9.1.143] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We report the identification and molecular characterization of a novel type of constitutive nuclear protein that is present in diverse vertebrate species, from Xenopus laevis to human. The cDNA-deduced amino acid sequence of the Xenopus protein defines a polypeptide of a calculated mass of 146.2 kDa and a isoelectric point of 6.8, with a conspicuous domain enriched in the dipeptide TP (threonine-proline) near its amino terminus. Immunolocalization studies in cultured cells and tissues sections of different origin revealed an exclusive nuclear localization of the protein. The protein is diffusely distributed in the nucleoplasm but concentrated in nuclear speckles, which represent a subnuclear compartment enriched in small nuclear ribonucleoprotein particles and other splicing factors, as confirmed by colocalization with certain splicing factors and Sm proteins. During mitosis, when transcription and splicing are downregulated, the protein is released from the nuclear speckles and transiently dispersed throughout the cytoplasm. Biochemical experiments have shown that the protein is recovered in a approximately 12S complex, and gel filtration studies confirm that the protein is part of a large particle. Immunoprecipitation and Western blot analysis of chromatographic fractions enriched in human U2 small nuclear ribonucleoprotein particles of distinct sizes (12S, 15S, and 17S), reflecting their variable association with splicing factors SF3a and SF3b, strongly suggests that the 146-kDa protein reported here is a constituent of the SF3b complex.
Collapse
|
177
|
Gee S, Krauss SW, Miller E, Aoyagi K, Arenas J, Conboy JG. Cloning of mDEAH9, a putative RNA helicase and mammalian homologue of Saccharomyces cerevisiae splicing factor Prp43. Proc Natl Acad Sci U S A 1997; 94:11803-7. [PMID: 9342318 PMCID: PMC23596 DOI: 10.1073/pnas.94.22.11803] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/1996] [Accepted: 08/08/1997] [Indexed: 02/05/2023] Open
Abstract
Yeast splicing factor Prp43, a DEAH box protein of the putative RNA helicase/RNA-dependent NTPase family, is a splicing factor that functions late in the pre-mRNA splicing pathway to facilitate spliceosome disassembly. In this paper we report cDNA cloning and characterization of mDEAH9, an apparent mammalian homologue of Prp43. Amino acid sequence comparison revealed that the two proteins are approximately 65% identical over a 500-aa region spanning the central helicase domain and the C-terminal region. Expression of mDEAH9 in S. cerevisiae bearing a temperature-sensitive mutation in prp43 was sufficient to restore growth at the nonpermissive temperature. This functional complementation was specific, as mouse mDEAH9 failed to complement mutations in related splicing factor genes prp16 or prp22. Finally, double label immunofluorescence experiments performed with mammalian cells revealed colocalization of mDEAH9 and splicing factor SC35 in punctate nuclear speckles. Thus, the hypothesis that mDEAH9 represents the mammalian homologue of yeast Prp43 is supported by its high sequence homology, functional complementation, and colocalization with a known splicing factor in the nucleus. Our results provide additional support for the hypothesis that the spliceosomal machinery that mediates regulated, dynamic changes in conformation of pre-mRNA and snRNP RNAs has been highly conserved through evolution.
Collapse
Affiliation(s)
- S Gee
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
178
|
Tolstrup N, Rouzé P, Brunak S. A branch point consensus from Arabidopsis found by non-circular analysis allows for better prediction of acceptor sites. Nucleic Acids Res 1997; 25:3159-63. [PMID: 9224618 PMCID: PMC146848 DOI: 10.1093/nar/25.15.3159] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Little knowledge exists about branch points in plants; it has even been claimed that plant introns lack conserved branch point sequences similar to those found in vertebrate introns. A putative branch point consensus sequence for Arabidopsis thaliana resembling the well known metazoan consensus sequence has been proposed, but this is based on search of sequences similar to those in yeast and metazoa. Here we present a novel consensus sequence found by a non-circular approach. A hidden Markov model with a fixed A nucleotide was trained on sequences upstream of the acceptor site. The consensus found by the Markov model shares features with the metazoan consensus, but differs in its details from the consensus proposed earlier. Despite the fact that branch point consensus sequences in plants are weak, we show that a prediction scheme incorporating them leads to a substantial improvement in the recognition of true acceptor sites; the false positive rate being reduced by a factor of 2. We take this as an indication that the consensus found here is the genuine one and that the branch point does play a role in the proper recognition of the acceptor site in plants.
Collapse
Affiliation(s)
- N Tolstrup
- Center for Biological Sequence Analysis, Department of Chemistry, The Technical University of Denmark, Building 206, DK-2800 Lyngby, Denmark
| | | | | |
Collapse
|
179
|
Abstract
Proteins have been implicated in an expanding variety of functions during pre-mRNA splicing. Molecular cloning has identified genes encoding spliceosomal proteins that potentially act as novel RNA helicases, GTPases, or protein isomerases. Novel protein-protein and protein-RNA interactions that are required for functional spliceosome formation have also been described. Finally, growing evidence suggests that proteins may contribute directly to the spliceosome's active sites.
Collapse
Affiliation(s)
- C L Will
- Institut für Molekularbiologie und Tumorforschung, Philipps Universität Marburg, Emil Mannkopff Strasse 2, 35037, Marburg, Germany.
| | | |
Collapse
|
180
|
Query CC, McCaw PS, Sharp PA. A minimal spliceosomal complex A recognizes the branch site and polypyrimidine tract. Mol Cell Biol 1997; 17:2944-53. [PMID: 9111366 PMCID: PMC232146 DOI: 10.1128/mcb.17.5.2944] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The association of U2 snRNP with the pre-mRNA branch region is a critical step in the assembly of spliceosomal complexes. We describe an assembly process that reveals both minimal requirements for formation of a U2 snRNP-substrate RNA complex, here designated the Amin complex, and specific interactions with the branch site adenosine. The substrate is a minimal RNA oligonucleotide, containing only a branch sequence and polypyrimidine tract. Interactions at the branch site adenosine and requirements for polypyrimidine tract-binding proteins for the Amin complex are the same as those of authentic prespliceosome complex A. Surprisingly, Amin complex formation does not require U1 snRNP or ATP, suggesting that these factors are not necessary for stable binding of U2 snRNP per se, but rather are necessary for accessibility of components on longer RNA substrates. Furthermore, there is an ATP-dependent activity that releases or destabilizes U2 snRNP from branch sequences. The simplicity of the Amin complex will facilitate a detailed understanding of the assembly of prespliceosomes.
Collapse
Affiliation(s)
- C C Query
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139-4307, USA
| | | | | |
Collapse
|
181
|
Kennedy CF, Berget SM. Pyrimidine tracts between the 5' splice site and branch point facilitate splicing and recognition of a small Drosophila intron. Mol Cell Biol 1997; 17:2774-80. [PMID: 9111348 PMCID: PMC232128 DOI: 10.1128/mcb.17.5.2774] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The minimum size for splicing of a vertebrate intron is approximately 70 nucleotides. In Drosophila melanogaster, more than half of the introns are significantly below this minimum yet function well. Such short introns often lack the pyrimidine tract located between the branch point and 3' splice site common to metazoan introns. To investigate if small introns contain special sequences that facilitate their recognition, the sequences and factors required for the splicing of a 59-nucleotide intron from the D. melanogaster mle gene have been examined. This intron contains only a minimal region of interrupted pyrimidines downstream of the branch point. Instead, two longer, uninterrupted C-rich tracts are located between the 5' splice site and branch point. Both of these sequences are required for maximal in vivo and in vitro splicing. The upstream sequences are also required for maximal binding of factors to the 5' splice site, cross-linking of U2AF to precursor RNA, and assembly of the active spliceosome, suggesting that sequences upstream of the branch point influence events at both ends of the small mle intron. Thus, a very short intron lacking a classical pyrimidine tract between the branch point and 3' splice site requires accessory pyrimidine sequences in the short region between the 5' splice site and branch point.
Collapse
Affiliation(s)
- C F Kennedy
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
182
|
Hong W, Bennett M, Xiao Y, Feld Kramer R, Wang C, Reed R. Association of U2 snRNP with the spliceosomal complex E. Nucleic Acids Res 1997; 25:354-61. [PMID: 9016565 PMCID: PMC146436 DOI: 10.1093/nar/25.2.354] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In metazoans, the E complex is operationally defined as an ATP-independent spliceosomal complex that elutes as a single peak on a gel filtration column and can be chased into spliced products in the presence of an excess of competitor pre-mRNA. The A complex is the first ATP-dependent functional spliceosomal complex. U1 snRNP first binds tightly to the 5'splice site in the E complex and U2 snRNP first binds tightly to the branch site in the A complex. In this study, we have generated and characterized a monoclonal antibody (mAb 4G8) directed against SAP 62, a component of U2 snRNP and a subunit of the essential mammalian splicing factor SF3a. We show that this antibody is highly specific for SAP 62, detecting only SAP 62 on Western blots and immunoprecipitating only SAP 62 from nuclear extracts. The anti-SAP 62 antibody also immunoprecipitates U2 snRNP and the A complex. Significantly, however, we find that the E complex is also efficiently immunoprecipitated by the anti-SAP 62 antibody. This antibody does not cross-react with any E complex-specific components, indicating that SAP 62 itself is associated with the E complex. To determine whether other U2 snRNP components are associated with the E complex, we used antibodies to the U2 snRNP proteins B"and SAP 155. These antibodies also specifically immunoprecipitate the E complex. These observations indicate that U2 snRNP is associated with the E complex. However, we find that U2 snRNP is not as tightly bound in the E complex as it is in the A complex. The possible significance of the weak association of U2 snRNP with the E complex is discussed.
Collapse
Affiliation(s)
- W Hong
- Membrane Biology Laboratory, Institute of Molecular and Cell Biology, National University of Singapore, 10 Kent Ridge Crescent, Singapore 0511, Singapore
| | | | | | | | | | | |
Collapse
|
183
|
Horowitz DS, Krainer AR. A human protein required for the second step of pre-mRNA splicing is functionally related to a yeast splicing factor. Genes Dev 1997; 11:139-51. [PMID: 9000057 DOI: 10.1101/gad.11.1.139] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have identified a human splicing factor required for the second step of pre-mRNA splicing. This new protein, hPrp18, is 30% identical to the yeast splicing factor Prp18. In HeLa cell extracts immunodepleted of hPrp18, the second step of pre-mRNA splicing is abolished. Splicing activity is restored by the addition of recombinant hPrp18, demonstrating that hPrp18 is required for the second step. The hPrp18 protein is bound tightly to the spliceosome only during the second step of splicing. hPrp18 is required for the splicing of several pre-mRNAs, making it the first general second-step splicing factor found in humans. Splicing activity can be restored to hPrp18-depleted HeLa cell extracts by yeast Prp18, showing that important functional regions of the proteins have been conserved. A 90-amino-acid region near the carboxyl terminus of hPrp18 is strongly homologous to yeast Prp18 and is also conserved in rice and nematodes. The homology identifies one region important for the function of both proteins and may define a new protein motif. In contrast to yeast Prp18, hPrp18 is not stably associated with any of the snRNPs. A 55-kD protein that cross-reacts with antibodies against hPrp18 is a constituent of the U4/U6 and U4/U6 x U5 snRNP particles.
Collapse
Affiliation(s)
- D S Horowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
184
|
Simpson GG, Filipowicz W. Splicing of precursors to mRNA in higher plants: mechanism, regulation and sub-nuclear organisation of the spliceosomal machinery. PLANT MOLECULAR BIOLOGY 1996; 32:1-41. [PMID: 8980472 DOI: 10.1007/bf00039375] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The removal of introns from pre-mRNA transcripts and the concomitant ligation of exons is known as pre-mRNA splicing. It is a fundamental aspect of constitutive eukaryotic gene expression and an important level at which gene expression is regulated. The process is governed by multiple cis-acting elements of limited sequence content and particular spatial constraints, and is executed by a dynamic ribonucleoprotein complex termed the spliceosome. The mechanism and regulation of pre-mRNA splicing, and the sub-nuclear organisation of the spliceosomal machinery in higher plants is reviewed here. Heterologous introns are often not processed in higher plants indicating that, although highly conserved, the process of pre-mRNA splicing in plants exhibits significant differences that distinguish it from splicing in yeast and mammals. A fundamental distinguishing feature is the presence of and requirement for AU or U-rich intron sequence in higher-plant pre-mRNA splicing. In this review we document the properties of higher-plant introns and trans-acting spliceosomal components and discuss the means by which these elements combine to determine the accuracy and efficiency of pre-mRNA processing. We also detail examples of how introns can effect regulated gene expression by affecting the nature and abundance of mRNA in plants and list the effects of environmental stresses on splicing. Spliceosomal components exhibit a distinct pattern of organisation in higher-plant nuclei. Effective probes that reveal this pattern have only recently become available, but the domains in which spliceosomal components concentrate were identified in plant nuclei as enigmatic structures some sixty years ago. The organisation of spliceosomal components in plant nuclei is reviewed and these recent observations are unified with previous cytochemical and ultrastructural studies of plant ribonuleoprotein domains.
Collapse
Affiliation(s)
- G G Simpson
- Friedrich Miescher-Institut, Basel, Switzerland
| | | |
Collapse
|
185
|
Chiara MD, Gozani O, Bennett M, Champion-Arnaud P, Palandjian L, Reed R. Identification of proteins that interact with exon sequences, splice sites, and the branchpoint sequence during each stage of spliceosome assembly. Mol Cell Biol 1996; 16:3317-26. [PMID: 8668147 PMCID: PMC231326 DOI: 10.1128/mcb.16.7.3317] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have carried out a systematic analysis of the proteins that interact with specific intron and exon sequences during each stage of mammalian spliceosome assembly. This was achieved by site-specifically labeling individual nucleotides within the 5' and 3' splice sites, the branchpoint sequence (BPS), or the exons with 32P and identifying UV-cross-linked proteins in the E, A, B, or C spliceosomal complex. Significantly, two members of the SR family of splicing factors, which are known to promote E-complex assembly, cross-link within exon sequences to a region approximately 25 nucleotides upstream from the 5' splice site. At the 5' splice site, cross-linking of the U5 small nuclear ribonucleoprotein particle protein, U5(200), was detected in both the B and C complexes. As observed in yeast cells, U5(200), also cross-links to intron/exon sequences at the 3' splice site in the C complex and may play a role in aligning the 5' and 3' exons for ligation. With label at the branch site, we detected three distinct proteins, designated BPS72,BpS70, and BPS56, which replace one another in the E, A, and C complexes. Another dynamic exchange was detected with pre-mRNA labeled at the AG dinucleotide of the 3' splice site. In this case, a protein, AG100,cross-links in the A complex and is replaced by another protein, AG75, in the C complex. The observation that these proteins are specifically associated with critical pre-mRNA sequence elements in functional complexes at different stages of spliceosome assembly implicates roles for these factors in key recognition events during the splicing pathway.
Collapse
Affiliation(s)
- M D Chiara
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
186
|
Abstract
During the past year, significant advances have been made in the field of pre-mRNA splicing. It is now clear that members of the serine-arginine-rich protein family are key players in exon definition and function at multiple steps in the spliceosome cycle. Novel findings have been made concerning the role of exon sequences, which function as both constitutive and regulated enhancers of splicing, in trans-splicing and as targets for tissue-specific control of splicing patterns. By combining biochemical approaches in human and yeast extracts with genetic analysis, much has been learned about the RNA-RNA and RNA-protein interactions that are necessary to assemble the various complexes that are found along the pathway to the catalytically active spliceosome.
Collapse
Affiliation(s)
- M D Adams
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3204, USA
| | | | | |
Collapse
|
187
|
Abstract
Advances over the past year have provided new insights into the mechanisms involved in the initial recognition and pairing of the 5' and 3' splice sites in complex metazoan pre-mRNAs. Highlights include the demonstration that exonic enhancers can promote trans splicing and that an excess of the serine and arginine rich family of splicing proteins can obviate the requirement for U1 small nuclear ribonucleoprotein particle in splicing.
Collapse
Affiliation(s)
- R Reed
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|