151
|
Flock G, Drucker DJ. Pax-2 activates the proglucagon gene promoter but is not essential for proglucagon gene expression or development of proglucagon-producing cell lineages in the murine pancreas or intestine. Mol Endocrinol 2002; 16:2349-59. [PMID: 12351699 DOI: 10.1210/me.2002-0149] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Tissue-specific proglucagon gene transcription is achieved through combinations of transcription factors expressed in pancreatic A cells and enteroendocrine L cells of the small and large intestine. Cell transfection and electrophoretic mobility shift assay experiments previously identified Pax-2 as a regulator of islet proglucagon gene expression. We examined whether Pax-2 regulates gut proglucagon gene expression using enteroendocrine cell lines and Pax2(1NEU) mutant mice. Immunoreactive Pax-2 was detected in STC-1 enteroendocrine cells, and Pax-2 activated proglucagon promoter activity in transfected baby hamster kidney and GLUTag cells. Pax-2 antisera diminished the formation of a Pax-2-G3 complex in electrophoretic mobility shift assay studies using nuclear extracts from islet and enteroendocrine cell lines. Surprisingly, Pax-2 mRNA transcripts were not detected by RT-PCR in RNA isolated from adult rat pancreas, rat islets, embryonic d 19 or adult murine pancreas and gastrointestinal tract. Furthermore, embryonic d 19 or neonatal d 1 Pax2(1NEU) mice exhibited normal islet A cells and gut endocrine L cells, and no decrement in pancreatic or intestinal glucagon gene expression. These findings demonstrate that Pax-2 is not essential for the developmental formation of islet A or gut L cells and does not play a role in the physiological control of proglucagon gene expression in vivo.
Collapse
Affiliation(s)
- Grace Flock
- The Department of Medicine, Banting and Best Diabetes Centre, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada M5G 2C4
| | | |
Collapse
|
152
|
Liu Y, Shen W, Brubaker PL, Kaestner KH, Drucker DJ. Foxa3 (HNF-3gamma) binds to and activates the rat proglucagon gene promoter but is not essential for proglucagon gene expression. Biochem J 2002; 366:633-41. [PMID: 12000309 PMCID: PMC1222783 DOI: 10.1042/bj20020095] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2002] [Revised: 04/19/2002] [Accepted: 05/09/2002] [Indexed: 12/13/2022]
Abstract
Members of the Forkhead box a (Foxa) transcription factor family are expressed in the liver, pancreatic islets and intestine and both Foxa1 and Foxa2 regulate proglucagon gene transcription. As Foxa proteins exhibit overlapping DNA-binding specificities, we examined the role of Foxa3 [hepatocyte nuclear factor (HNF)-3gamma] in control of proglucagon gene expression. Foxa3 was detected by reverse transcriptase PCR in glucagon-producing cell lines and binds to the rat proglucagon gene G2 promoter element in GLUTag enteroendocrine cells. Although Foxa3 increased rat proglucagon promoter activity in BHK fibroblasts, augmentation of Foxa3 expression did not increase proglucagon promoter activity in GLUTag cells. Furthermore, adenoviral Foxa3 expression did not affect endogenous proglucagon gene expression in islet or intestinal endocrine cell lines. Although Foxa3(-/-) mice exhibit mild hypoglycaemia during a prolonged fast, the levels of proglucagon-derived peptides and proglucagon mRNA transcripts were comparable in tissues from wild-type and Foxa3(-/-) mice. These findings identify Foxa3 as a member of the proglucagon gene G2 element binding-protein family that, unlike Foxa1, is not essential for control of islet or intestinal proglucagon gene expression in vivo.
Collapse
Affiliation(s)
- Yuanfang Liu
- Department of Medicine, Banting and Best Diabetes Centre, Toronto General Hospital, University of Toronto, 101 College Street CCRW3-845, Toronto, Canada M5G 2C4
| | | | | | | | | |
Collapse
|
153
|
Lee CS, Sund NJ, Vatamaniuk MZ, Matschinsky FM, Stoffers DA, Kaestner KH. Foxa2 controls Pdx1 gene expression in pancreatic beta-cells in vivo. Diabetes 2002; 51:2546-51. [PMID: 12145169 DOI: 10.2337/diabetes.51.8.2546] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Differentiation of early foregut endoderm into pancreatic endocrine and exocrine cells depends on a cascade of gene activation events controlled by various transcription factors. Prior in vitro analysis has suggested that the forkhead/winged helix transcription factor Foxa2 (formerly HNF-3beta) is a major upstream regulator of Pdx1, a homeobox gene essential for pancreatic development. Pdx1 is also essential for the maintenance of glucose homeostasis, as its human orthologue, IPF-1, is mutated in a subset of patients with early-onset type 2 diabetes (MODY4). To analyze the Foxa2/Pdx1 regulatory cascade during pancreatic beta-cell differentiation, we used conditional gene ablation of Foxa2 in mice. We demonstrated that the deletion of Foxa2 in beta-cell-specific knockout mice results in downregulation of Pdx1 mRNA and subsequent reduction of PDX-1 protein levels in islets. These data represent the first in vivo demonstration that Foxa2 acts upstream of Pdx1 in the differentiated beta-cell.
Collapse
Affiliation(s)
- Catherine S Lee
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6145, USA
| | | | | | | | | | | |
Collapse
|
154
|
Edlund H. Pancreatic organogenesis--developmental mechanisms and implications for therapy. Nat Rev Genet 2002; 3:524-32. [PMID: 12094230 DOI: 10.1038/nrg841] [Citation(s) in RCA: 347] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pancreas is a mixed exocrine and endocrine gland that controls many homeostatic functions. The exocrine pancreas produces and secretes digestive enzymes, whereas the endocrine compartment consists of four distinct hormone-producing cell types. Studies that further our knowledge of the basic mechanisms that underlie the formation of the pancreas will be crucial for understanding the development and homeostasis of this organ and of the mechanisms that cause diabetes. This information is also pivotal for any attempt to generate functional insulin-producing beta-cells that are suitable for transplantation.
Collapse
Affiliation(s)
- Helena Edlund
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden.
| |
Collapse
|
155
|
Abstract
Genetic analysis, embryonic tissue explantation and in vivo chromatin studies have together identified the distinct regulatory steps that are necessary for the development of endoderm into a bud of liver tissue and, subsequently, into an organ. In this review, I discuss the acquisition of competence to express liver-specific genes by the endoderm, the control of early hepatic growth, the coordination of hepatic and vascular development and the cell differentiation that is necessary to generate a functioning liver. The regulatory mechanisms that underlie these phases are common to the development of many organ systems and might be recapitulated or disrupted during stem-cell differentiation and adult tissue pathogenesis.
Collapse
Affiliation(s)
- Kenneth S Zaret
- Cell and Developmental Biology Program, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, Pennsylvania 19111, USA.
| |
Collapse
|
156
|
Wang H, Gauthier BR, Hagenfeldt-Johansson KA, Iezzi M, Wollheim CB. Foxa2 (HNF3beta ) controls multiple genes implicated in metabolism-secretion coupling of glucose-induced insulin release. J Biol Chem 2002; 277:17564-70. [PMID: 11875061 DOI: 10.1074/jbc.m111037200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The transcription factor Foxa2 is implicated in blood glucose homeostasis. Conditional expression of Foxa2 or its dominant-negative mutant DN-Foxa2 in INS-1 cells reveals that Foxa2 regulates the expression of genes important for glucose sensing in pancreatic beta-cells. Overexpression of Foxa2 results in blunted glucose-stimulated insulin secretion, whereas induction of DN-Foxa2 causes a left shift of glucose-induced insulin release. The mRNA levels of GLUT2 and glucokinase are drastically decreased after induction of Foxa2. In contrast, loss of Foxa2 function leads to up-regulation of hexokinase (HK) I and II and glucokinase (HK-IV) mRNA expression. The glucokinase and the low K(m) hexokinase activities as well as glycolysis are increased proportionally. In addition, induction of DN-Foxa2 also reduces the expression of beta-cell K(ATP) channel subunits Sur1 and Kir6.2 by 70%. Furthermore, in contrast to previous reports, induction of Foxa2 causes pronounced decreases in the HNF4alpha and HNF1alpha mRNA levels. Foxa2 fails to regulate the expression of Pdx1 transcripts. The expression of insulin and islet amyloid polypeptide is markedly suppressed after induction of Foxa2, while the glucagon mRNA levels are significantly increased. Conversely, Foxa2 is required for glucagon expression in these INS-1-derived cells. These results suggest that Foxa2 is a vital transcription factor evolved to control the expression of genes essential for maintaining beta-cell glucose sensing and glucose homeostasis.
Collapse
Affiliation(s)
- Haiyan Wang
- Division of Clinical Biochemistry, Department of Internal Medicine, University Medical Center, CH-1211 Geneva 4, Switzerland.
| | | | | | | | | |
Collapse
|
157
|
Kanai-Azuma M, Kanai Y, Gad JM, Tajima Y, Taya C, Kurohmaru M, Sanai Y, Yonekawa H, Yazaki K, Tam PPL, Hayashi Y. Depletion of definitive gut endoderm in Sox17-null mutant mice. Development 2002; 129:2367-79. [PMID: 11973269 DOI: 10.1242/dev.129.10.2367] [Citation(s) in RCA: 485] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the mouse, the definitive endoderm is derived from the epiblast during gastrulation, and, at the early organogenesis stage, forms the primitive gut tube, which gives rise to the digestive tract, liver, pancreas and associated visceral organs. The transcription factors, Sox17 (a Sry-related HMG box factor) and its upstream factors, Mixer (homeobox factor) and Casanova (a novel Sox factor), have been shown to function as endoderm determinants in Xenopus and zebrafish, respectively. However, whether the mammalian orthologues of these genes are also involved with endoderm formation is not known. We show that Sox17–/– mutant embryos are deficient of gut endoderm. The earliest recognisable defect is the reduced occupancy by the definitive endoderm in the posterior and lateral region of the prospective mid- and hindgut of the headfold-stage embryo. The prospective foregut develops properly until the late neural plate stage. Thereafter, elevated levels of apoptosis lead to a reduction in the population of the definitive endoderm in the foregut. In addition, the mid- and hindgut tissues fail to expand. These are accompanied by the replacement of the definitive endoderm in the lateral region of the entire length of the embryonic gut by cells that resemble the visceral endoderm. In the chimeras, although Sox17-null ES cells can contribute unrestrictedly to ectodermal and mesodermal tissues, few of them could colonise the foregut endoderm and they are completely excluded from the mid- and hindgut endoderm. Our findings indicate an important role of Sox17 in endoderm development in the mouse, highlighting the idea that the molecular mechanism for endoderm formation is likely to be conserved among vertebrates.
Collapse
Affiliation(s)
- Masami Kanai-Azuma
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Affiliation(s)
- Didier Y R Stainier
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, University of California, San Francisco, San Francisco, California 94143-0448, USA.
| |
Collapse
|
159
|
Kawazoe Y, Sekimoto T, Araki M, Takagi K, Araki K, Yamamura KI. Region-specific gastrointestinal Hox code during murine embryonal gut development. Dev Growth Differ 2002; 44:77-84. [PMID: 11869294 DOI: 10.1046/j.1440-169x.2002.00623.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hox genes encode transcription factors, and they are involved in the specification of each body part along the anteroposterior (AP) body axis during embryogenesis. To clarify AP pattern formation of the digestive tract, the expression patterns of Hox genes belonging to paralogous groups 4 and 5, and parts of groups 6 and 7, were systematically examined by whole-mount and section in situ hybridization. The Hox gene expression pattern of paralogous groups 4-9 in the developing gut at 12.5 days post-coitum was fully examined. All HoxA and HoxB genes in paralogous groups 4-8 were expressed in the stomach, in contrast to the HoxC and HoxD genes. In the midgut region, all Hox cluster genes showed colinear expression within each cluster, yielding the Hox code; the more 3' located genes were expressed more rostrally and the 5' group genes more caudally. The colinear expression of HoxA and HoxB cluster genes started from the duodenum, that of HoxC cluster genes started from the jejunum, and HoxD cluster genes were expressed in the caudal part of the midgut, ileum and cecum. In the hindgut region, HoxD cluster genes and Abd-B family genes were expressed. Thus, a different Hox code seems to exist in each subdomain of developing gut (foregut, midgut and hindgut). The visceral mesoderm restricted expression also suggested that the Hox code primarily functions in mesenchymal specification, and then leads to the regional differentiation of gut subdomains as the result of epithelial-mesenchymal interactions.
Collapse
Affiliation(s)
- Yasuhiro Kawazoe
- Department of Developmental Genetics, Institute of Molecular Embryology and Genetics, Kumamoto University, 4-24-1 Kuhonji, Kumamoto 862-0976, Japan
| | | | | | | | | | | |
Collapse
|
160
|
Gauthier BR, Schwitzgebel VM, Zaiko M, Mamin A, Ritz-Laser B, Philippe J. Hepatic nuclear factor-3 (HNF-3 or Foxa2) regulates glucagon gene transcription by binding to the G1 and G2 promoter elements. Mol Endocrinol 2002; 16:170-83. [PMID: 11773447 DOI: 10.1210/mend.16.1.0752] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glucagon gene expression in the endocrine pancreas is controlled by three islet-specific elements (G3, G2, and G4) and the alpha-cell-specific element G1. Two proteins interacting with G1 have previously been identified as Pax6 and Cdx2/3. We identify here the third yet uncharacterized complex on G1 as hepatocyte nuclear factor 3 (HNF-3)beta, a member of the HNF-3/forkhead transcription family, which plays an important role in the development of endoderm-related organs. HNF-3 has been previously demonstrated to interact with the G2 element and to be crucial for glucagon gene expression; we thus define a second binding site for this transcription on the glucagon gene promoter. We demonstrate that both HNF-3alpha and -beta produced in heterologous cells can interact with similar affinities to either the G1 or G2 element. Pax6, which binds to an overlapping site on G1, exhibited a greater affinity as compared with HNF-3alpha or -beta. We show that both HNF-3beta and -alpha can transactivate glucagon gene transcription through the G2 and G1 elements. However, HNF-3 via its transactivating domains specifically impaired Pax6-mediated transactivation of the glucagon promoter but had no effect on transactivation by Cdx2/3. We suggest that HNF-3 may play a dual role on glucagon gene transcription by 1) inhibiting the transactivation potential of Pax6 on the G1 and G3 elements and 2) direct activation through G1 and G2.
Collapse
Affiliation(s)
- Benoit R Gauthier
- Unité de Diabétologie Clinique, Centre Médical Universitaire, 1211 Genève 4, Switzerland.
| | | | | | | | | | | |
Collapse
|
161
|
Tan Y, Hughes D, Wang X, Costa RH. Adenovirus-mediated increase in HNF-3beta or HNF-3alpha shows differences in levels of liver glycogen and gene expression. Hepatology 2002; 35:30-9. [PMID: 11786957 DOI: 10.1053/jhep.2002.30317] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We previously generated a transgenic mouse line (T-77) in which increased hepatic expression of the hepatocyte nuclear factor-3beta (HNF-3beta) protein was used to assess its role in hepatocyte-specific gene transcription. The T-77 transgenic mice displayed elevated serum bile acid and bilirubin levels and a complete absence of hepatic glycogen storage. These postnatal liver defects were associated with diminished expression of hepatocyte genes involved in gluconeogenesis and bile acid transport as well as reduced levels of hepatocyte transcription factors. In this study, we show that mouse tail vein injections of adenovirus expressing the rat HNF-3beta (AdHNF3beta) cDNA efficiently increased its levels throughout the liver lobule and recapitulated the T-77 transgenic liver phenotype within several days postinfection. Likewise, the AdHNF3beta-infected liver phenotype was associated with reduced hepatic expression of genes involved in glucose homeostasis, bile acid transport, and bilirubin conjugation, which were not found with control adenovirus infections. These studies show that adenovirus-mediated gene transfer is an effective method for rapid hepatic increases in transcription factor levels to determine in vivo target genes. In contrast, AdHNF3alpha-infected liver displayed only a transient reduction in hepatic glycogen levels and was associated with less severe decreases in hepatic expression of gluconeogenic and bilirubin metabolism genes. Consistent with these findings, only T-77 transgenic and AdHNF3beta-infected liver exhibited diminished hepatic expression of the HNF-6 transcription factor, suggesting that reduced HNF-6 levels contribute to diminished HNF-3beta-specific transcriptional activity.
Collapse
Affiliation(s)
- Yongjun Tan
- University of Illinois at Chicago, College of Medicine, Department of Molecular Genetics, Chicago, IL 60607-7170, USA
| | | | | | | |
Collapse
|
162
|
Abstract
The pancreas, as most of the digestive tract, derives from the endoderm. Differentiation of these early gut endoderm cells into the endocrine cells forming the pancreatic islets of Langerhans depends on a cascade of gene activation events. These are controlled by different classes of transcription factors including the homeodomain, the basic helix-loop-helix (bHLH) and the winged helix proteins. Recently, considerable progress has been made delineating this cascade. The present review focuses on the role of the different transcription factors during pancreas development, with a particular emphasis on the newly identified bHLH transcription factor neurogenin3.
Collapse
Affiliation(s)
- V M Schwitzgebel
- Division of Pediatric Endocrinology and Diabetology, Hôpital des Enfants, University of Geneva, 6, rue Willi Donzé, CH-1211 Geneva, Switzerland.
| |
Collapse
|
163
|
Shen W, Scearce LM, Brestelli JE, Sund NJ, Kaestner KH. Foxa3 (hepatocyte nuclear factor 3gamma ) is required for the regulation of hepatic GLUT2 expression and the maintenance of glucose homeostasis during a prolonged fast. J Biol Chem 2001; 276:42812-7. [PMID: 11546810 DOI: 10.1074/jbc.m106344200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The winged helix transcription factors, hepatocyte nuclear factors 3alpha, -beta, and -gamma (HNF-3, encoded by the Foxa1, -a2, and -a3 genes, respectively), are expressed early in embryonic endoderm and play important roles in the regulation of gene expression in liver and pancreas. Foxa1 has been shown to be required for glucagon secretion in the pancreas, whereas Foxa2 is critical for the regulation of insulin secretion in pancreatic beta-cells. Here we address the role of Foxa3 in the maintenance of glucose homeostasis. Mice homozygous for a null mutation in Foxa3 appear normal under fed conditions. However, when fasted, Foxa3(-/-) mice have a significantly lower blood glucose compared with control mice. The fasting hypoglycemia in Foxa3(-/-) mice could not be attributed to defects in pancreatic hormone secretion, ketone production, or hepatic glycogen breakdown. Surprisingly, mRNA levels for several gluconeogenic enzymes were up-regulated appropriately in fasted Foxa3(-/-) mice, despite the fact that the corresponding genes had been shown to be activated by FOXA proteins in vitro. However, the mRNA for the plasma membrane glucose transporter GLUT2 was decreased by 64% in the fasted and 93% in the fed state, suggesting that efflux of newly synthesized glucose is limiting in Foxa3(-/-) hepatocytes. Thus, Foxa3 is the dominating transcriptional regulator of GLUT2 expression in hepatocytes in vivo. In addition, we investigated the hepatic transcription factor network in Foxa3(-/-) mice and found that the normal activation of HNF-4alpha, HNF-1alpha, and PGC-1 induced by fasting is attenuated in mice lacking Foxa3.
Collapse
Affiliation(s)
- W Shen
- Department of Genetics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
164
|
Waltz SE, Eaton L, Toney-Earley K, Hess KA, Peace BE, Ihlendorf JR, Wang MH, Kaestner KH, Degen SJ. Ron-mediated cytoplasmic signaling is dispensable for viability but is required to limit inflammatory responses. J Clin Invest 2001; 108:567-76. [PMID: 11518730 PMCID: PMC209396 DOI: 10.1172/jci11881] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Ron receptor activation induces numerous cellular responses in vitro, including proliferation, dissociation, and migration. Ron is thought to be involved in blood cell development in vivo, as well as in many aspects of the immune response including macrophage activation, antigen presentation, and nitric oxide regulation. In previous studies to determine the function of Ron in vivo, mice were generated with a targeted deletion of the extracellular and transmembrane regions of this gene. Mice homologous for this deletion appear to die early during embryonic development. To ascertain the in vivo function of Ron in more detail, we have generated mice with a germline ablation of the tyrosine kinase domain. Strikingly, our studies indicate that this domain of Ron, and therefore Ron cytoplasmic signaling, is not essential for embryonic development. While mice deficient in this domain are overtly normal, mice lacking Ron signaling have an altered ability to regulate nitric oxide levels and, in addition, have enhanced tissue damage following acute and cell-mediated inflammatory responses.
Collapse
MESH Headings
- Animals
- CHO Cells
- Cells, Cultured
- Cricetinae
- Cricetulus
- Dermatitis, Allergic Contact/etiology
- Dermatitis, Allergic Contact/immunology
- Dermatitis, Allergic Contact/pathology
- Dermatitis, Contact/etiology
- Dermatitis, Contact/immunology
- Dermatitis, Contact/pathology
- Dinitrofluorobenzene/toxicity
- Embryonic and Fetal Development/physiology
- Female
- Genes, Lethal
- Growth Substances/pharmacology
- Growth Substances/physiology
- Hepatocyte Growth Factor
- Inflammation/etiology
- Inflammation/metabolism
- Irritants/toxicity
- Macrophage Activation
- Macrophages, Peritoneal/physiology
- Mice
- Mice, Knockout
- Nitric Oxide/metabolism
- Organ Specificity
- Ovary/metabolism
- Ovary/pathology
- Phenol/toxicity
- Phosphorylation
- Phosphotyrosine/biosynthesis
- Protein Processing, Post-Translational/genetics
- Protein Structure, Tertiary
- Proto-Oncogene Proteins
- Receptor Protein-Tyrosine Kinases/chemistry
- Receptor Protein-Tyrosine Kinases/drug effects
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/physiology
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/drug effects
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Signal Transduction
- Single-Blind Method
- Stress, Physiological/complications
Collapse
Affiliation(s)
- S E Waltz
- Division of Developmental Biology, Children's Hospital Research Foundation, Cincinnati, Ohio 45229-3039, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Sund NJ, Vatamaniuk MZ, Casey M, Ang SL, Magnuson MA, Stoffers DA, Matschinsky FM, Kaestner KH. Tissue-specific deletion of Foxa2 in pancreatic beta cells results in hyperinsulinemic hypoglycemia. Genes Dev 2001; 15:1706-15. [PMID: 11445544 PMCID: PMC312732 DOI: 10.1101/gad.901601] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We have used conditional gene ablation to uncover a dramatic and unpredicted role for the winged-helix transcription factor Foxa2 (formerly HNF-3 beta) in pancreatic beta-cell differentiation and metabolism. Mice that lack Foxa2 specifically in beta cells (Foxa2(loxP/loxP); Ins.Cre mice) are severely hypoglycemic and show dysregulated insulin secretion in response to both glucose and amino acids. This inappropriate hypersecretion of insulin in the face of profound hypoglycemia mimics pathophysiological and molecular aspects of familial hyperinsulinism. We have identified the two subunits of the beta-cell ATP-sensitive K(+) channel (K(ATP)), the most frequently mutated genes linked to familial hyperinsulinism, as novel Foxa2 targets in islets. The Foxa2(loxP/loxP); Ins.Cre mice will serve as a unique model to investigate the regulation of insulin secretion by the beta cell and suggest the human FOXA2 as a candidate gene for familial hyperinsulinism.
Collapse
Affiliation(s)
- N J Sund
- Department of Genetics, Penn Diabetes Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Zhao R, Fahs SA, Weiler H, Duncan SA. An efficient method to successively introduce transgenes into a given genomic locus in the mouse. BMC DEVELOPMENTAL BIOLOGY 2001; 1:10. [PMID: 11430765 PMCID: PMC33517 DOI: 10.1186/1471-213x-1-10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2001] [Accepted: 06/19/2001] [Indexed: 12/11/2022]
Abstract
BACKGROUND Expression of transgenes in mice requires transcriptional regulatory elements that direct expression in a chosen cell type. Unfortunately, the availability of well-characterized promoters that direct bona-fide expression of transgenes in transgenic mice is limited. Here we described a method that allows highly efficient targeting of transgenes to a preselected locus in ES cells. RESULTS A pgk-LoxP-Neo cassette was introduced into a desired genomic locus by homologous recombination in ES cells. The pgk promoter was then removed from the targeted ES cells by Cre recombinase thereby restoring the ES cells' sensitivity to G418. We demonstrated that transgenes could be efficiently introduced into this genomic locus by reconstituting a functional Neo gene. CONCLUSION This approach is simple and extremely efficient in facilitating the introduction of single-copy transgenes into defined genomic loci. The availability of such an approach greatly enhances the ease of using endogenous regulatory elements to control transgene expression and, in turn, expands the repertoire of elements available for transgene expression.
Collapse
Affiliation(s)
- Roong Zhao
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Rd, WI 53226, USA
| | - Scott A Fahs
- Blood Research Institute, The Blood Center of Southeastern Wisconsin, 8272 Watertown Plank Rd., Milwaukee, Wisconsin 53226
| | - Hartmut Weiler
- Blood Research Institute, The Blood Center of Southeastern Wisconsin, 8272 Watertown Plank Rd., Milwaukee, Wisconsin 53226
| | - Stephen A Duncan
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Rd, WI 53226, USA
| |
Collapse
|
167
|
Lee JC, Smith SB, Watada H, Lin J, Scheel D, Wang J, Mirmira RG, German MS. Regulation of the pancreatic pro-endocrine gene neurogenin3. Diabetes 2001; 50:928-36. [PMID: 11334435 DOI: 10.2337/diabetes.50.5.928] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neurogenin3 (ngn3), a basic helix-loop-helix (bHLH) transcription factor, functions as a pro-endocrine factor in the developing pancreas: by itself, it is sufficient to force undifferentiated pancreatic epithelial cells to become islet cells. Because ngn3 expression determines which precursor cells will differentiate into islet cells, the signals that regulate ngn3 expression control islet cell formation. To investigate the factors that control ngn3 gene expression, we mapped the human and mouse ngn3 promoters and delineated transcriptionally active sequences within the human promoter. Surprisingly, the human ngn3 promoter drives transcription in all cell lines tested, including fibroblast cell lines. In contrast, in transgenic animals the promoter drives expression specifically in regions of ngn3 expression in the developing pancreas and gut; and the addition of distal sequences greatly enhances transgene expression. Within the distal enhancer, binding sites for several pancreatic transcription factors, including hepatocyte nuclear factor (HNF)-1 and HNF-3, form a tight cluster. HES1, an inhibitory bHLH factor activated by Notch signaling, binds to the proximal promoter and specifically blocks promoter activity. Together with previous genetic data, these results suggest a model in which the ngn3 gene is activated by the coordinated activities of several pancreatic transcription factors and inhibited by Notch signaling through HES1.
Collapse
Affiliation(s)
- J C Lee
- Hormone Research Institute, Department of Pediatrics, University of California, San Francisco 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
168
|
Costa RH, Kalinichenko VV, Lim L. Transcription factors in mouse lung development and function. Am J Physiol Lung Cell Mol Physiol 2001; 280:L823-38. [PMID: 11290504 DOI: 10.1152/ajplung.2001.280.5.l823] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Development of the mouse lung initiates on day 9.5 postcoitum from the laryngotracheal groove and involves mesenchymal-epithelial interactions, in particular, those between the splanchnic mesoderm and epithelial cells (derived from foregut endoderm) that induce cellular proliferation, migration, and differentiation, resulting in branching morphogenesis. This developmental process mediates formation of the pulmonary bronchiole tree and integrates a terminal alveolar region with an extensive endothelial capillary bed, which facilitates efficient gas exchange with the circulatory system. The major function of the mesenchymal-epithelial signaling is to potentiate the activity or expression of cell type-specific transcription factors in the developing lung, which, in turn, cooperatively bind to distinct promoter regions and activate target gene expression. In this review, we focus on the role of transcription factors in lung morphogenesis and the maintenance of differentiated gene expression. These lung transcription factors include forkhead box A2 [also known as hepatocyte nuclear factor (HNF)-3beta], HNF-3/forkhead homolog (HFH)-8 [also known as FoxF1 or forkhead-related activator-1], HNF-3/forkhead homolog-4 (also known as FoxJ1), thyroid transcription factor-1 (Nkx2.1), and homeodomain box A5 transcription factors, the zinc finger Gli (mouse homologs of the Drosophila cubitus interruptus) and GATA transcription factors, and the basic helix-loop-helix Pod1 transcription factor. We summarize the phenotypes of transgenic and knockout mouse models, which define important functions of these transcription factors in cellular differentiation and lung branching morphogenesis.
Collapse
Affiliation(s)
- R H Costa
- Department of Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60607-7170, USA
| | | | | |
Collapse
|
169
|
Nakae J, Kido Y, Kitamura T, Accili D. Glucose homeostasis: lessons from knockout mice. CURRENT OPINION IN ENDOCRINOLOGY & DIABETES 2001; 8:82-87. [DOI: 10.1097/00060793-200104000-00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
170
|
Clements D, Rex M, Woodland HR. Initiation and early patterning of the endoderm. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 203:383-446. [PMID: 11131522 DOI: 10.1016/s0074-7696(01)03012-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We review the early stages of endoderm formation in the major animal models. In Amphibia maternal molecules are important in initiating endoderm formation. This is followed by successive signaling events that establish and then pattern the endoderm. In other organisms there are differences in endodermal development, particularly in the initial, prephylotypic stages. Later many of the same key families of transcription factors and signaling cassettes are used in all animals, but more work will be needed to establish exact evolutionary homologies.
Collapse
Affiliation(s)
- D Clements
- Department of Biological Sciences, University of Warwick, Coventry, United Kingdom
| | | | | |
Collapse
|
171
|
Bischof LJ, Martin CC, Svitek CA, Stadelmaier BT, Hornbuckle LA, Goldman JK, Oeser JK, Hutton JC, O'Brien RM. Characterization of the mouse islet-specific glucose-6-phosphatase catalytic subunit-related protein gene promoter by in situ footprinting: correlation with fusion gene expression in the islet-derived betaTC-3 and hamster insulinoma tumor cell lines. Diabetes 2001; 50:502-14. [PMID: 11246869 DOI: 10.2337/diabetes.50.3.502] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glucose-6-phosphatase (G6Pase) is a multicomponent system located in the endoplasmic reticulum comprising a catalytic subunit and transporters for glucose-6-phosphate, inorganic phosphate, and glucose. We have recently cloned a novel gene that encodes an islet-specific G6Pase catalytic subunit-related protein (IGRP) (Ebert et al., Diabetes 48:543-551, 1999). To begin to investigate the molecular basis for the islet-specific expression of the IGRP gene, a series of truncated IGRP-chloramphenicol acetyltransferase (CAT) fusion genes were transiently transfected into the islet-derived mouse betaTC-3 and hamster insulinoma tumor cell lines. In both cell lines, basal fusion gene expression decreased upon progressive deletion of the IGRP promoter sequence between -306 and -66, indicating that multiple promoter regions are required for maximal IGRP-CAT expression. The ligation-mediated polymerase chain reaction footprinting technique was then used to compare trans-acting factor binding to the IGRP promoter in situ in betaTC-3 cells, which express the endogenous IGRP gene, and adrenocortical Y1 cells, which do not. Multiple trans-acting factor binding sites were selectively identified in betaTC-3 cells that correlate with regions of the IGRP promoter identified as being required for basal IGRP-CAT fusion gene expression. The data suggest that hepatocyte nuclear factor 3 may be important for basal IGRP gene expression, as it is for glucagon, GLUT2, and Pdx-1 gene expression. In addition, binding sites for several trans-acting factors not previously associated with islet gene expression, as well as binding sites for potentially novel proteins, were identified.
Collapse
Affiliation(s)
- L J Bischof
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee 37232-0615, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Tan Y, Costa RH, Kovesdi I, Reichel RR. Adenovirus-mediated increase of HNF-3 levels stimulates expression of transthyretin and sonic hedgehog, which is associated with F9 cell differentiation toward the visceral endoderm lineage. Gene Expr 2001; 9:237-48. [PMID: 11763995 PMCID: PMC5964945 DOI: 10.3727/000000001783992542] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2001] [Indexed: 11/24/2022]
Abstract
Retinoic acid-induced differentiation of mouse F9 embryonal carcinoma cells toward the visceral endoderm lineage is accompanied by increased expression of the Forkhead Box (Fox) transcription factors hepatocyte nuclear factor 3a (HNF-3alpha) and HNF-3beta, suggesting that they play a crucial role in visceral endoderm development. Retinoic acid stimulation results in a cascade of HNF-3 induction in which HNF-3alpha is a primary target for retinoic acid action and its increase is required for subsequent induction of HNF-3beta expression. Increased expression of HNF-3beta precedes activation of its known target genes, including transthyretin (TTR), Sonic hedgehog (Shh), HNF-1alpha, HNF-1beta, and HNF-4alpha. In order to examine whether increased HNF-3 expression is sufficient to induce expression of its downstream target genes without retinoic acid stimulation, we have used adenovirus-based expression vectors to increase HNF-3 protein levels in F9 cells. We demonstrate that adenovirus-mediated increase of HNF-3alpha levels in F9 cells is sufficient to induce activation of endogenous HNF-3beta levels followed by increased TTR and Shh expression. Furthermore, we show that elevated HNF-3beta levels stimulate expression of endogenous TTR and Shh without retinoic acid stimulation. Moreover, ectopic HNF-3 levels in undifferentiated F9 cells are insufficient to induce HNF-3alpha, HNF-1alpha, HNF-1beta, and HNF-4alpha expression, suggesting that their transcriptional activation required other regulatory proteins induced by the retinoic acid differentiation program. Finally, our studies demonstrate the utility of cell infections with adenovirus expressing distinct transcription factors to identify endogenous target genes, which are assembled with the appropriate nucleosome structure.
Collapse
Affiliation(s)
- Yongjun Tan
- *University of Illinois at Chicago, College of Medicine, Department of Molecular Genetics, 900 South Ashland Ave, Chicago, IL 60607-7170
- Address correspondence to Dr. Yongjun Tan or Dr. Robert H. Costa, Department of Molecular Genetics (M/C 669), University of Illinois at Chicago, College of Medicine, 900 S. Ashland Ave, Rm. 2220 MBRB, Chicago, IL 60607-7170. Office tel: (312) 996-0474; Lab tel: (312) 996-0534; Lab fax: (312) 355-4010; E-mail: or
| | - Robert H. Costa
- *University of Illinois at Chicago, College of Medicine, Department of Molecular Genetics, 900 South Ashland Ave, Chicago, IL 60607-7170
- Address correspondence to Dr. Yongjun Tan or Dr. Robert H. Costa, Department of Molecular Genetics (M/C 669), University of Illinois at Chicago, College of Medicine, 900 S. Ashland Ave, Rm. 2220 MBRB, Chicago, IL 60607-7170. Office tel: (312) 996-0474; Lab tel: (312) 996-0534; Lab fax: (312) 355-4010; E-mail: or
| | - Imre Kovesdi
- †GenVec, Inc., 65 West Watkins Mill Road, Gaithersburg, MD 20878
| | - Ronald R. Reichel
- ‡Department of Cellular and Molecular Pharmacology, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064
| |
Collapse
|
173
|
Miller LM, Hess HA, Doroquez DB, Andrews NM. Null mutations in the lin-31 gene indicate two functions during Caenorhabditis elegans vulval development. Genetics 2000; 156:1595-602. [PMID: 11102360 PMCID: PMC1461380 DOI: 10.1093/genetics/156.4.1595] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The lin-31 gene is required for the proper specification of vulval cell fates in the nematode Caenorhabditis elegans and encodes a member of the winged-helix family of transcription factors. Members of this important family have been identified in many organisms and are known to bind specific DNA targets involved in a variety of developmental processes. DNA sequencing of 13 lin-31 alleles revealed six nonsense mutations and two missense mutations within the DNA-binding domain, plus three deletions, one transposon insertion, and one frameshift mutation that all cause large-scale disruptions in the gene. The missense mutations are amino acid substitutions in the DNA-binding domain and probably disrupt interactions of the LIN-31 transcription factor with its DNA target. In addition, detailed phenotypic analysis of all 19 alleles showed similar penetrance for several characteristics examined. From our analysis we conclude: (1) the null phenotype of lin-31 is the phenotype displayed by almost all of the existing alleles, (2) the DNA-binding domain plays a critical role in LIN-31 function, and (3) direct screens for multivulva and vulvaless mutants will probably yield only null (or strong) alleles of lin-31.
Collapse
Affiliation(s)
- L M Miller
- Department of Biology, Santa Clara University, Santa Clara, California 95053, USA.
| | | | | | | |
Collapse
|
174
|
Sherwood NM, Krueckl SL, McRory JE. The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr Rev 2000; 21:619-70. [PMID: 11133067 DOI: 10.1210/edrv.21.6.0414] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The pituitary adenylate cyclase-activating polypeptide (PACAP)/ glucagon superfamily includes nine hormones in humans that are related by structure, distribution (especially the brain and gut), function (often by activation of cAMP), and receptors (a subset of seven-transmembrane receptors). The nine hormones include glucagon, glucagon-like peptide-1 (GLP-1), GLP-2, glucose-dependent insulinotropic polypeptide (GIP), GH-releasing hormone (GRF), peptide histidine-methionine (PHM), PACAP, secretin, and vasoactive intestinal polypeptide (VIP). The origin of the ancestral superfamily members is at least as old as the invertebrates; the most ancient and tightly conserved members are PACAP and glucagon. Evidence to date suggests the superfamily began with a gene or exon duplication and then continued to diverge with some gene duplications in vertebrates. The function of PACAP is considered in detail because it is newly (1989) discovered; it is tightly conserved (96% over 700 million years); and it is probably the ancestral molecule. The diverse functions of PACAP include regulation of proliferation, differentiation, and apoptosis in some cell populations. In addition, PACAP regulates metabolism and the cardiovascular, endocrine, and immune systems, although the physiological event(s) that coordinates PACAP responses remains to be identified.
Collapse
Affiliation(s)
- N M Sherwood
- Department of Biology, University of Victoria, British Columbia, Canada.
| | | | | |
Collapse
|
175
|
Abstract
The genes encoding hepatocyte nuclear factor 3 (HNF3) proteins play a pivotal role in the regulation of metabolism and in the differentiation of metabolic tissues such as the pancreas and liver. HNF3 transcription factors bind to cis-regulatory elements in hundreds of genes encoding gluconeogenic and glycolytic enzymes, serum proteins and hormones. Genetic analysis in mice has shown that HNF3 beta is necessary for the development of the foregut endoderm, from which the liver and pancreas arise. HNF3 alpha is required for the full activation of glucagon in the pancreas, whereas HNF3 gamma induces the activation of gluconeogenic enzymes to prevent hypoglycemia during fasting.
Collapse
Affiliation(s)
- K H Kaestner
- Department of Genetics, University of Pennsylvania School of Medicine, 415 Curie Blvd, Philadelphia, PA 19104-6145, USA.
| |
Collapse
|
176
|
Sund NJ, Ang SL, Sackett SD, Shen W, Daigle N, Magnuson MA, Kaestner KH. Hepatocyte nuclear factor 3beta (Foxa2) is dispensable for maintaining the differentiated state of the adult hepatocyte. Mol Cell Biol 2000; 20:5175-83. [PMID: 10866673 PMCID: PMC85966 DOI: 10.1128/mcb.20.14.5175-5183.2000] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Liver-specific gene expression is controlled by a heterogeneous group of hepatocyte-enriched transcription factors. One of these, the winged helix transcription factor hepatocyte nuclear factor 3beta (HNF3beta or Foxa2) is essential for multiple stages of embryonic development. Recently, HNF3beta has been shown to be an important regulator of other hepatocyte-enriched transcription factors as well as the expression of liver-specific structural genes. We have addressed the role of HNF3beta in maintenance of the hepatocyte phenotype by inactivation of HNF3beta in the liver. Remarkably, adult mice lacking HNF3beta expression specifically in hepatocytes are viable, with histologically normal livers and normal liver function. Moreover, analysis of >8,000 mRNAs by array hybridization revealed that lack of HNF3beta affects the expression of only very few genes. Based on earlier work it appears that HNF3beta plays a critical role in early liver development; however, our studies demonstrate that HNF3beta is not required for maintenance of the adult hepatocyte or for normal liver function. This is the first example of such functional dichotomy for a tissue specification transcription factor.
Collapse
Affiliation(s)
- N J Sund
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6145, USA
| | | | | | | | | | | | | |
Collapse
|
177
|
Wang JC, Stafford JM, Scott DK, Sutherland C, Granner DK. The molecular physiology of hepatic nuclear factor 3 in the regulation of gluconeogenesis. J Biol Chem 2000; 275:14717-21. [PMID: 10799560 DOI: 10.1074/jbc.275.19.14717] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucocorticoids stimulate gluconeogenesis by increasing the rate of transcription of genes that encode gluconeogenic enzymes such as phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase. Previous studies have shown that hepatic nuclear factor 3 (HNF3) is required as an accessory factor for several glucocorticoid-stimulated genes, including PEPCK. Here, we show that adenovirus-mediated expression of an HNF3beta protein with a deleted C-terminal transactivation domain (HNF3betaDeltaC) reduces the glucocorticoid-induced expression of the PEPCK and glucose-6-phosphatase genes in H4IIE hepatoma cells. Furthermore, expression of this truncated HNF3 protein results in a proportionate reduction of glucocorticoid-stimulated glucose production from lactate and pyruvate in these cells. The expression of HNF3betaDeltaN, in which the N-terminal transactivation domain is deleted, does not exhibit any of these effects. These results provide direct evidence that members of the HNF3 family are required for proper regulation of hepatic gluconeogenesis. Modulation of the function of the HNF3 family of proteins might be used to reduce the excessive hepatic production of glucose that is an important pathophysiologic feature of diabetes mellitus.
Collapse
Affiliation(s)
- J C Wang
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee 37232-0615, USA
| | | | | | | | | |
Collapse
|
178
|
Abstract
The gut of vertebrates exhibits a common anteroposterior regional differentiation. The role of homeobox genes in establishing this pattern is inferred by their sites of expression. It is suggested that the primary source of positional information is in the endoderm, which subsequently establishes a 'dialogue' with the surrounding visceral layer of the lateral plate mesoderm. This results in the anatomical and physiological specialization of the adult gut.
Collapse
Affiliation(s)
- F Beck
- Department of Biochemistry, University of Leicester, United Kingdom.
| | | | | |
Collapse
|
179
|
Li J, Ning G, Duncan SA. Mammalian hepatocyte differentiation requires the transcription factor HNF-4alpha. Genes Dev 2000; 14:464-74. [PMID: 10691738 PMCID: PMC316377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
HNF-4alpha is a transcription factor of the nuclear hormone receptor family that is expressed in the hepatic diverticulum at the onset of liver development. Mouse embryos lacking HNF-4alpha fail to complete gastrulation due to dysfunction of the visceral endoderm. This early embryonic lethality has so far prevented any analyses of the contribution of HNF-4alpha toward liver development and hepatocyte differentiation. However, we have shown that complementation of HNF-4alpha(-/-) embryos with a tetraploid embryo-derived wild-type visceral endoderm rescues this early developmental arrest and allows HNF-4alpha(-/-) embryos to proceed normally through midgestation stages of development. Examination of these rescued embryos revealed that HNF-4alpha was dispensable for specification and early development of the liver. However, HNF-4alpha(-/-) fetal livers failed to express a large array of genes whose expression in differentiated hepatocytes is essential for a functional hepatic parenchyma, including genes encoding several apolipoproteins, metabolic proteins, and serum factors. In addition, we have demonstrated that HNF-4alpha is essential for expression of the transcription factors HNF-1alpha and PXR within the fetal liver. We therefore conclude that HNF-4alpha is both essential for hepatocyte differentiation during mammalian liver development and also crucial for metabolic regulation and liver function.
Collapse
Affiliation(s)
- J Li
- Department of Cell Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53211 USA
| | | | | |
Collapse
|
180
|
Li J, Ning G, Duncan SA. Mammalian hepatocyte differentiation requires the transcription factor HNF-4α. Genes Dev 2000. [DOI: 10.1101/gad.14.4.464] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HNF-4α is a transcription factor of the nuclear hormone receptor family that is expressed in the hepatic diverticulum at the onset of liver development. Mouse embryos lacking HNF-4α fail to complete gastrulation due to dysfunction of the visceral endoderm. This early embryonic lethality has so far prevented any analyses of the contribution of HNF-4α toward liver development and hepatocyte differentiation. However, we have shown that complementation ofHNF-4 α−/−embryos with a tetraploid embryo-derived wild-type visceral endoderm rescues this early developmental arrest and allowsHNF-4 α−/−embryos to proceed normally through midgestation stages of development. Examination of these rescued embryos revealed that HNF-4α was dispensable for specification and early development of the liver. However,HNF-4α−/− fetal livers failed to express a large array of genes whose expression in differentiated hepatocytes is essential for a functional hepatic parenchyma, including genes encoding several apolipoproteins, metabolic proteins, and serum factors. In addition, we have demonstrated that HNF-4α is essential for expression of the transcription factors HNF-1α and PXR within the fetal liver. We therefore conclude that HNF-4α is both essential for hepatocyte differentiation during mammalian liver development and also crucial for metabolic regulation and liver function.
Collapse
|
181
|
Gerrish K, Gannon M, Shih D, Henderson E, Stoffel M, Wright CV, Stein R. Pancreatic beta cell-specific transcription of the pdx-1 gene. The role of conserved upstream control regions and their hepatic nuclear factor 3beta sites. J Biol Chem 2000; 275:3485-92. [PMID: 10652343 DOI: 10.1074/jbc.275.5.3485] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To identify potential transactivators of pdx-1, we sequenced approximately 4.5 kilobases of the 5' promoter region of the human and chicken homologs, assuming that sequences conserved with the mouse gene would contain critical cis-regulatory elements. The sequences associated with hypersensitive site 1 (HSS1) represented the principal area of homology within which three conserved subdomains were apparent: area I (-2694 to -2561 base pairs (bp)), area II (-2139 to -1958 bp), and area III (-1879 to -1799 bp). The identities between the mouse and chicken/human genes are very high, ranging from 78 to 89%, although only areas I and III are present within this region in chicken. Pancreatic beta cell-selective expression was shown to be controlled by mouse and human area I or area II, but not area III, from an analysis of pdx-1-driven reporter activity in transfected beta- and non-beta cells. Mutational and functional analyses of conserved hepatic nuclear factor 3 (HNF3)-like sites located within area I and area II demonstrated that activation by these regions was mediated by HNF3beta. To determine if a similar regulatory relationship might exist within the context of the endogenous gene, pdx-1 expression was measured in embryonic stem cells in which one or both alleles of HNF3beta were inactivated. pdx-1 mRNA levels induced upon differentiation to embryoid bodies were down-regulated in homozygous null HNF3beta cells. Together, these results suggest that the conserved sequences represented by areas I and II define the binding sites for factors such as HNF3beta, which control islet beta cell-selective expression of the pdx-1 gene.
Collapse
Affiliation(s)
- K Gerrish
- Department of Molecular Physiology, Vanderbilt Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
182
|
Abstract
The winged helix proteins constitute a subfamily within the large ensemble of helix-turn-helix proteins. Since the discovery of the winged helix/fork head motif in 1993, a large number of topologically related proteins with diverse biological functions have been characterized by X-ray crystallography and solution NMR spectroscopy. Recently, a winged helix transcription factor (RFX1) was shown to bind DNA using unprecedented interactions between one of its eponymous wings and the major groove. This surprising observation suggests that the winged helix proteins can be subdivided into at least two classes with radically different modes of DNA recognition.
Collapse
Affiliation(s)
- K S Gajiwala
- Laboratories of Molecular Biophysics, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
183
|
Yusta B, Somwar R, Wang F, Munroe D, Grinstein S, Klip A, Drucker DJ. Identification of glucagon-like peptide-2 (GLP-2)-activated signaling pathways in baby hamster kidney fibroblasts expressing the rat GLP-2 receptor. J Biol Chem 1999; 274:30459-67. [PMID: 10521425 DOI: 10.1074/jbc.274.43.30459] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Glucagon-like peptide-2 (GLP-2) promotes the expansion of the intestinal epithelium through stimulation of the GLP-2 receptor, a recently identified member of the glucagon-secretin G protein-coupled receptor superfamily. Although activation of G protein-coupled receptors may lead to stimulation of cell growth, the mechanisms transducing the GLP-2 signal to mitogenic proliferation remain unknown. We now report studies of GLP-2R signaling in baby hamster kidney (BHK) cells expressing a transfected rat GLP-2 receptor (BHK-GLP-2R cells). GLP-2, but not glucagon or GLP-1, increased the levels of cAMP and activated both cAMP-response element- and AP-1-dependent transcriptional activity in a dose-dependent manner. The activation of AP-1-luciferase activity was protein kinase A (PKA) -dependent and markedly diminished in the presence of a dominant negative inhibitor of PKA. Although GLP-2 stimulated the expression of c-fos, c-jun, junB, and zif268, and transiently increased p70 S6 kinase in quiescent BHK-GLP-2R cells, GLP-2 also inhibited extracellular signal-regulated kinase 1/2 and reduced serum-stimulated Elk-1 activity. Furthermore, no rise in intracellular calcium was observed following GLP-2 exposure in BHK-GLP-2R cells. Although GLP-2 stimulated both cAMP accumulation and cell proliferation, 8-bromo-cyclic AMP alone did not promote cell proliferation. These findings suggest that the GLP-2R may be coupled to activation of mitogenic signaling in heterologous cell types independent of PKA via as yet unidentified downstream mediators of GLP-2 action in vivo.
Collapse
Affiliation(s)
- B Yusta
- Department of Medicine, The Toronto General Hospital, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | | | | | | | | | | | | |
Collapse
|
184
|
Nian M, Drucker DJ, Irwin D. Divergent regulation of human and rat proglucagon gene promoters in vivo. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:G829-37. [PMID: 10516149 DOI: 10.1152/ajpgi.1999.277.4.g829] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
A single mammalian proglucagon gene is expressed in the brain, islets, and intestinal enteroendocrine cells, which gives rise to a unique profile of proglucagon-derived peptides (PGDPs) in each tissue. The biological importance of glucagon, glucagon-like peptide (GLP)-1, and GLP-2 has engendered considerable interest in the factors regulating the synthesis and secretion of the PGDPs in vivo. Although rat proglucagon gene transcription has been extensively studied, the factors important for control of human proglucagon gene expression have not been examined. We now report that, despite conservation of proximal promoter G1-G4 enhancer-like elements, human proglucagon reporter plasmids containing these elements are transcriptionally inactive in islet cell lines. Remarkably, larger human proglucagon promoter fragments, such as the 1604 hGLU-Luc, are expressed in GLUTag enteroendocrine cells but not in islet cell lines. A total of 5775 bases of human proglucagon promoter were required for expression in islet cell lines. Analysis of human proglucagon promoter expression in transgenic mice demonstrated that approximately 1.6 kb of human proglucagon gene sequences directs expression of a human growth hormone reporter gene to the brain and intestinal enteroendocrine cells but not islet cells in vivo. These findings provide the first evidence demonstrating divergence in the mechanisms utilized for tissue-specific regulation of the human and rodent proglucagon genes.
Collapse
Affiliation(s)
- M Nian
- Department of Laboratory Medicine, Banting and Best Diabetes Centre, Canada M5G 1L5
| | | | | |
Collapse
|
185
|
Shih DQ, Navas MA, Kuwajima S, Duncan SA, Stoffel M. Impaired glucose homeostasis and neonatal mortality in hepatocyte nuclear factor 3alpha-deficient mice. Proc Natl Acad Sci U S A 1999; 96:10152-7. [PMID: 10468578 PMCID: PMC17858 DOI: 10.1073/pnas.96.18.10152] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hepatocyte nuclear factors 3 (HNF-3) belong to an evolutionarily conserved family of transcription factors that are critical for diverse biological processes such as development, differentiation, and metabolism. To study the physiological role of HNF-3alpha, we generated mice that lack HNF-3alpha by homologous recombination in embryonic stem cells. Mice homozygous for a null mutation in the HNF-3alpha gene develop a complex phenotype that is characterized by abnormal feeding behavior, progressive starvation, persistent hypoglycemia, hypotriglyceridemia, wasting, and neonatal mortality between days 2 and 14. Hypoglycemia in HNF-3alpha-null mice leads to physiological counter-regulatory responses in glucocorticoid and growth hormone production and an inhibition of insulin secretion but fails to stimulate glucagon secretion. Glucagon-producing pancreatic alpha cells develop normally in HNF-3alpha-/- mice, but proglucagon mRNA levels are reduced 50%. Furthermore, the transcriptional levels of neuropeptide Y are also significantly reduced shortly after birth, implying a direct role of HNF-3alpha in the expression of these genes. In contrast, mRNA levels were increased in HNF-3 target genes phosphofructo-2-kinase/fructose-2,6-bisphophatase, insulin growth factor binding protein-1, and hexokinase I of HNF-3alpha-null mice. Mice lacking one or both HNF-3alpha alleles also show impaired insulin secretion and glucose intolerance after an intraperitoneal glucose challenge, indicating that pancreatic beta-cell function is also compromised. Our results indicate that HNF-3alpha plays a critical role in the regulation of glucose homeostasis and in pancreatic islet function.
Collapse
Affiliation(s)
- D Q Shih
- Laboratory of Metabolic Diseases, Rockefeller University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
186
|
Zaret K. Developmental competence of the gut endoderm: genetic potentiation by GATA and HNF3/fork head proteins. Dev Biol 1999; 209:1-10. [PMID: 10208738 DOI: 10.1006/dbio.1999.9228] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A long-standing problem in developmental biology has been to understand how the embryonic germ layers gain the competence to differentiate into distinct cell types. Genetic studies have shown that members of the GATA and HNF3/fork head transcription factor families are essential for the formation and differentiation of gut endoderm tissues in worms, flies, and mammals. Recent in vivo footprinting studies have shown that GATA and HNF3 binding sites in chromatin are occupied on a silent gene in endoderm that has the potential to be activated solely in that germ layer. These and other data indicate that these evolutionarily conserved factors help impart the competence of a gene to be activated in development, a phenomenon called genetic potentiation. The mechanistic implications of genetic potentiation and its general significance are discussed.
Collapse
Affiliation(s)
- K Zaret
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
187
|
Abelev GI, Lazarevich NL. Conformational effects of volatile anesthetics on the membrane-bound acetylcholine receptor protein: facilitation of the agonist-induced affinity conversion. Biochemistry 1983; 95:61-113. [PMID: 16860656 DOI: 10.1016/s0065-230x(06)95003-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The rate of the carbamylcholine-induced affinity conversion of the membrane-bound acetylcholine receptor protein from Torpedo californica is enhanced by pretreatment of the membranes under an atmosphere of 3% halothane or 1% chloroform. The enhancement is much more pronounced in the presence of low rather than high concentrations of carbamylcholine since the volatile anesthetics alter the apparent dissociation constant for carbamylcholine from 17 to 3 microM without affecting the first-order rate constant for the ligand-induced conversion (0.07 s-1). These results indicate that the acetylcholine receptor is assuming a conformational form with intermediate affinity for carbamylcholine in addition to the previously described low- and high-affinity forms. The dissociation constants for carbamylcholine obtained from kinetic studies of the carbamylcholine-induced transition are 3-15-fold lower than those obtained as inhibition constants from the rate of 125I-labeled alpha-bungarotoxin binding to the low-affinity conformer of the acetylcholine receptor protein. This pattern, observed in both the presence and absence of anesthetic, provides further evidence that the acetylcholine receptor has nonequivalent ligand binding sites for carbamylcholine.
Collapse
Affiliation(s)
- Garry I Abelev
- Department of Immunochemistry, Institute of Carcinogenesis, N. N. Blokhin Cancer Research Center, Moscow 115478, Russia
| | | |
Collapse
|