151
|
Li M, Zhang C, Zhou L, Li S, Cao YJ, Wang L, Xiang R, Shi Y, Piao Y. Identification and validation of novel DNA methylation markers for early diagnosis of lung adenocarcinoma. Mol Oncol 2020; 14:2744-2758. [PMID: 32688456 PMCID: PMC7607165 DOI: 10.1002/1878-0261.12767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/07/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Lung cancer has the highest mortality of all cancers worldwide. Epigenetic alterations have emerged as potential biomarkers for early diagnosis of various cancer tissue types. To identify methylation markers for early diagnosis of lung adenocarcinoma, we aimed to integrate genome‐wide DNA methylation and gene expression data from The Cancer Genome Atlas. To this end, we first examined the global DNA methylation pattern of lung adenocarcinoma and investigated the relationship between DNA methylation subtypes and clinical features. We then extracted differentially methylated and expressed genes, and adopted feature selection techniques to determine the final methylation markers. The performance of the markers in predicting lung adenocarcinoma was evaluated on three independent datasets from Gene Expression Omnibus. Protein levels of marker genes were validated by immunohistochemistry, and their biological function was further verified in vivo. We identified three novel methylation markers in lung adenocarcinoma including cg08032924, cg14823851, and cg19161124, mapping to CMTM2, TBX4, and DPP6, respectively. Validating these results on three independent datasets indicated that the three markers can achieve extremely high sensitivity and specificity in distinguishing lung adenocarcinoma from normal samples. Immunohistochemistry quantification results confirmed that markers are weakly expressed in human lung adenocarcinoma, and CMTM2 decreased tumor growth of mouse Lewis lung carcinoma in vivo. Overall, our study identified three novel methylation markers in lung adenocarcinoma which may contribute toward an improved diagnosis potentially leading to a better outcome for patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Miao Li
- School of Medicine, Nankai University, Tianjin, China
| | - Chen Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Lijun Zhou
- School of Medicine, Nankai University, Tianjin, China
| | - Siyu Li
- School of Medicine, Nankai University, Tianjin, China
| | - Yuan Jie Cao
- Department of Radiation and Oncology, National Clinical Research Center for Cancer and Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Longlong Wang
- School of Medicine, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Rong Xiang
- School of Medicine, Nankai University, Tianjin, China
| | - Yi Shi
- School of Medicine, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Yongjun Piao
- School of Medicine, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, China
| |
Collapse
|
152
|
Winkler T, Ben-David U. Elevated expression of ACE2 in tumor-adjacent normal tissues of cancer patients. Int J Cancer 2020; 147:3264-3266. [PMID: 32525565 DOI: 10.1002/ijc.33145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Tom Winkler
- Department of Human Molecular Genetics and Biochemistry, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
153
|
Harikrishnan K, Joshi O, Madangirikar S, Balasubramanian N. Cell Derived Matrix Fibulin-1 Associates With Epidermal Growth Factor Receptor to Inhibit Its Activation, Localization and Function in Lung Cancer Calu-1 Cells. Front Cell Dev Biol 2020; 8:522. [PMID: 32719793 PMCID: PMC7348071 DOI: 10.3389/fcell.2020.00522] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Epidermal Growth Factor Receptor (EGFR) is a known promoter of tumor progression and is overexpressed in lung cancers. Growth factor receptors (including EGFR) are known to interact with extracellular matrix (ECM) proteins, which regulate their activation and function. Fibulin-1 (FBLN1) is a major component of the ECM in lung tissue, and its levels are known to be downregulated in non-small cell lung cancers (NSCLC). To test the possible role FBLN1 isoforms could have in regulating EGFR signaling and function in lung cancer, we performed siRNA mediated knockdown of FBLN1C and FBLN1D in NSCLC Calu-1 cells. Their loss significantly increased basal (with serum) and EGF (Epidermal Growth Factor) mediated EGFR activation without affecting net EGFR levels. Overexpression of FBLN1C and FBLN1D also inhibits EGFR activation confirming their regulatory crosstalk. Loss of FBLN1C and FBLN1D promotes EGFR-dependent cell migration, inhibited upon Erlotinib treatment. Mechanistically, both FBLN1 isoforms interact with EGFR, their association not dependent on its activation. Notably, cell-derived matrix (CDM) enriched FBLN1 binds EGFR. Calu-1 cells plated on CDM derived from FBLN1C and FBLN1D knockdown cells show a significant increase in EGF mediated EGFR activation. This promotes cell adhesion and spreading with active EGFR enriched at membrane ruffles. Both adhesion and spreading on CDMs is significantly reduced by Erlotinib treatment. Together, these findings show FBLN1C/1D, as part of the ECM, can bind and regulate EGFR activation and function in NSCLC Calu-1 cells. They further highlight the role tumor ECM composition could have in influencing EGFR dependent lung cancers.
Collapse
Affiliation(s)
| | - Omkar Joshi
- Indian Institute of Science Education and Research, Pune, India
| | | | | |
Collapse
|
154
|
Liu D, Mao Y, Chen C, Zhu F, Lu W, Ma H. Expression patterns and clinical significances of ENO2 in lung cancer: an analysis based on Oncomine database. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:639. [PMID: 32566576 PMCID: PMC7290642 DOI: 10.21037/atm-20-3354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Lung cancer is a heterogeneous malignant tumor involving more than 50 histological subtypes. Currently, molecularly targeted drugs have been shown to have promising applications in the clinical treatment of lung cancer. This study aims to explore the expression patterns and prognostic potential of enolase 2 (ENO2) in lung cancer. Methods Differential expressions of ENO2 in lung cancer cases were analyzed using the Oncomine database. Meanwhile, the prognostic potentials of ENO2 in lung cancer were assessed by deploying the Kaplan-Meier plotter database. Results Forty-one studies reported a significant difference in ENO2 expression between tumors and the normal healthy control tissues. Among all the studies, there was an upregulation of ENO2 in 29 studies, and downregulation in 12 studies. 9/41 studies revealed upregulated ENO2 in distinct types of tumor tissues, including cervical cancer, esophageal cancer, kidney cancer, leukemia, melanoma, pancreatic cancer, sarcoma, and lung cancer. Furthermore, upregulated ENO2 was identified in 365 cases of lung cancer (P<0.05). By analyzing the Kaplan-Meier Plotter database, the ENO2 level was negatively correlated to the overall survival of lung cancer patients (P<0.05). Subsequently, subgroup analysis revealed that the prognostic potential of ENO2 was much more pronounced in lung adenocarcinoma patients (P<0.05). Conclusions ENO2 is upregulated in lung cancer tissues and linked to the prognosis. It can be used as a therapeutic target for developing lung cancer drugs.
Collapse
Affiliation(s)
- Desen Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yiming Mao
- Department of Thoracic Surgery, Suzhou Kowloon Hospital Shanghai Jiaotong University School of Medicine, Suzhou 215028, China
| | - Cheng Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Feng Zhu
- Department of Thoracic Surgery, Suzhou Kowloon Hospital Shanghai Jiaotong University School of Medicine, Suzhou 215028, China
| | - Wenqiang Lu
- Department of Thoracic Surgery, Suzhou Kowloon Hospital Shanghai Jiaotong University School of Medicine, Suzhou 215028, China
| | - Haitao Ma
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
155
|
Guo Z, Huang J, Wang Y, Liu XP, Li W, Yao J, Li S, Hu W. Analysis of Expression and Its Clinical Significance of the Secreted Phosphoprotein 1 in Lung Adenocarcinoma. Front Genet 2020; 11:547. [PMID: 32595698 PMCID: PMC7303289 DOI: 10.3389/fgene.2020.00547] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/07/2020] [Indexed: 12/24/2022] Open
Abstract
Objective To explore the expression of secreted phosphoprotein 1 (SPP1) in lung adenocarcinoma (LUAD), and evaluate its relationship with clinicopathological characteristics and prognosis of LUAD, and analyze the advantages of SPP1 as a potential prognostic marker in LUAD. Methods The expression of SPP1 in normal lung tissue and LUAD was analyzed from the Cancer Cell Line Encyclopedia (CCLE), Gene Expression Omnibus (GEO), and Human Protein Atlas (HPA) databases. GSE68465 was used to explore the relationship between the SPP1 expression and clinicopathological characteristics and the prognosis of LUAD patients. The relationship between SPP1 and immune infiltration in LUAD was analyzed by the Tumor Immune Estimation Resource (TIMER) database. Gene enrichment analysis was performed in GSEA. The Cancer Genome Atlas (TCGA)-LUAD data was used to verify the results. Results In the cell line level, non-small cell lung cancer ranked ninth among cancer cell lines based on SPP1 expression. In the messenger RNA (mRNA) and protein levels, SPP1 expression was higher in LUAD tissues than that in normal control. SPP1 expression was related to gender, N stage, histological grade, and progression or relapse. In men, SPP1 expression were higher compared to that in women. The higher the N stage, the higher the SPP1 expression level. As LUAD progresses or relapses, SPP1 expression could increase. In the pathological grade, the SPP1 expression was higher in LUAD samples with moderate differentiation. In addition, the overall 5-year survival rates of the SPP1 high and low expression groups were 50.574 and 59.181% [P = 0.008; hazard ratio (HR) = 0.7057; 95% CI, 0.5467-0.9109], indicating that SPP1 had an impact on overall survival for LUAD patients. The relationship between SPP1 expression and CD4+ T cell, macrophage, neutrophil, and dendritic cell infiltration was weak in LUAD. SPP1 could be considered as an independent prognostic marker in LUAD (P = 0.003; HR = 1.150; 95% CI, 1.048-1.261) by multivariate Cox regression analysis. The results of GSEA indicated that samples with high SPP1 expression were enriched in protein secretion, mTORC1 signaling, angiogenesis, and glycolysis pathway. The analysis results obtained by TCGA-LUAD data were basically consistent with the results obtained by GSE68465. Conclusions SPP1 can not only affect the occurrence and development of LUAD but also may be an independent prognostic marker of LUAD. SPP1 is expected to be a new target for molecular targeted therapy.
Collapse
Affiliation(s)
- Zixin Guo
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingyu Huang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yujin Wang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao-Ping Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Li
- Department of Oncology, The First People's Hospital of Tianmen, Tianmen, China
| | - Jie Yao
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Sheng Li
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Weidong Hu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
156
|
Xu S, Zhang H, Wang A, Ma Y, Gan Y, Li G. Silibinin suppresses epithelial-mesenchymal transition in human non-small cell lung cancer cells by restraining RHBDD1. Cell Mol Biol Lett 2020; 25:36. [PMID: 32528541 PMCID: PMC7285460 DOI: 10.1186/s11658-020-00229-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Rhomboid domain containing 1 (RHBDD1) plays a crucial role in tumorigenesis. Silibinin, which is a natural extract from milk thistle, has shown anti-tumor effects against various tumors. Here, we investigate whether silibinin affects the function of RHBDD1 in non-small cell lung cancer (NSCLC) cell proliferation, migration and invasion. METHODS The Oncomine database and an immunohistochemistry (IHC) assay were used to determine the RHBDD1 expression levels in lung cancer tissues. The associations between RHBDD1 and overall survival rate or clinicopathological parameters were respectively assessed using the Kaplan-Meier overall survival analysis or Chi-squared test. CCK-8 and Transwell assays were applied to analyze cell proliferation, migration and invasion. A549 cells were incubated with increasing concentrations of silibinin. RHBDD1 knockdown and overexpression were achieved via transfection with si-RHBDD1 or RHBDD1 overexpression plasmid, respectively. Western blotting was performed to measure the expressions of epithelial-mesenchymal transition (EMT) markers. RESULTS We found that overexpression of RHBDD1 in lung cancer tissues correlates with a poor prognosis of survival. Clinical specimen analysis showed that upregulation of RHBDD1 correlates remarkably well with TNM stage and lymph node metastasis. Silibinin suppresses A549 cell proliferation, migration, invasion and EMT in a dose-dependent manner. Importantly, RHBDD1 was downregulated in silibinin-treated A549 cells. RHBDD1 overexpression reversed the suppressive effects of silibinin on A549 cell proliferation, migration, invasion and EMT expression, while its knockdown enhanced them. CONCLUSIONS These findings shown an anti-tumor impact of silibinin on NSCLC cells via repression of RHBDD1.
Collapse
Affiliation(s)
- Suyan Xu
- Department of Pharmacy, Henan Provincial People Hospital, Department of Pharmacy of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Hongyan Zhang
- Department of Pharmacy, Henan Provincial People Hospital, Department of Pharmacy of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Aifeng Wang
- Department of Pharmacy, Henan Provincial People Hospital, Department of Pharmacy of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Yongcheng Ma
- Department of Pharmacy, Henan Provincial People Hospital, Department of Pharmacy of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Yuan Gan
- Department of Pharmacy, Henan Provincial People Hospital, Department of Pharmacy of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Guofeng Li
- Department of Pharmacy, Henan Provincial People Hospital, Department of Pharmacy of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| |
Collapse
|
157
|
Comprehensive analysis of the expression and prognosis for TFAP2 in human lung carcinoma. Genes Genomics 2020; 42:779-789. [DOI: 10.1007/s13258-020-00948-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022]
|
158
|
Li J, Li Z, Zhao S, Song Y, Si L, Wang X. Identification key genes, key miRNAs and key transcription factors of lung adenocarcinoma. J Thorac Dis 2020; 12:1917-1933. [PMID: 32642095 PMCID: PMC7330310 DOI: 10.21037/jtd-19-4168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Lung adenocarcinoma (LUAD) is one of the most common cancers worldwide. The etiology and pathophysiology of LUAD remain unclear. The aim of the present study was to identify the key genes, miRNAs and transcription factors (TFs) associated with the pathogenesis and prognosis of LUAD. Methods Three gene expression profiles (GSE43458, GSE32863, GSE74706) of LUAD were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified by GEO2R.The Gene Ontology (GO) terms, pathways, and protein-protein interactions (PPIs) of these DEGs were analyzed. Bases on DEGs, the miRNAs and TFs were predicted. Furthermore, TF-gene-miRNA co-expression network was constructed to identify key genes, miRNAs and TFs by bioinformatic methods. The expressions and prognostic values of key genes, miRNAs and TFs were carried out through The Cancer Genome Atlas (TCGA) database and Kaplan Meier-plotter (KM) online dataset. Results A total of 337 overlapped DEGs (75 upregulated and 262 downregulated) of LUAD were identified from the three GSE datasets. Moreover, 851 miRNAs and 29 TFs were identified to be associated with these DEGs. In total, 10 hub genes, 10 key miRNAs and 10 key TFs were located in the central hub of the TF-gene-miRNA co-expression network, and validated using The Cancer Genome Atlas (TCGA) database. Specifically, seven genes (PHACTR2, MSRB3, GHR, PLSCR4, EPB41L2, NPNT, FBXO32), two miRNAs (hsa-let-7e-5p, hsa-miR-17-5p) and four TFs (STAT6, E2F1, ETS1, JUN) were identified to be associated with prognosis of LUAD, which have significantly different expressions between LUAD and normal lung tissue. Additionally, the miRNA/gene co-expression analysis also revealed that hsa-miR-17-5p and PLSCR4 have a significant negative co-expression relationship (r=−0.33, P=1.67e-14) in LUAD. Conclusions Our study constructed a regulatory network of TF-gene-miRNA in LUAD, which may provide new insights about the interaction between genes, miRNAs and TFs in the pathogenesis of LUAD, and identify potential biomarkers or therapeutic targets for LUAD.
Collapse
Affiliation(s)
- Jinghang Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhi Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Sheng Zhao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuanyuan Song
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Linjie Si
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaowei Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
159
|
Song F, Li L, Zhang B, Zhao Y, Zheng H, Yang M, Li X, Tian J, Huang C, Liu L, Wang Q, Zhang W, Chen K. Tumor specific methylome in Chinese high-grade serous ovarian cancer characterized by gene expression profile and tumor genotype. Gynecol Oncol 2020; 158:178-187. [PMID: 32362568 DOI: 10.1016/j.ygyno.2020.04.688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/11/2020] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Extensive genetic and limited epigenetics have been characterized by the Cancer Genome Atlas (TCGA) among Western High-grade serous ovarian cancer (HGSOC). The present study aimed to characterize Chinese HGSOC at genome scale. METHODS We used reduced representation bisulfite sequencing to investigate whole-genome and tumor-specific DNA methylation in 21 HGSOC tumors paired with their normal tissues, followed by a replication study involving additional 41 HGSOC patients. Altered methylation patterns in HGSOC were further characterized by gene expression profiles and whole-exome sequencing data. RESULTS Comparing HGSOC tumors with normal tissues we observed global hypomethylation but with more specific hypermethylation in gene promoter. Totally, we revealed 159,881 differentially methylated regions (DMRs) and 4060 differentially expressed genes (DEGs). By integrating DNA methylation and mRNA expression data, we identified 153 negative (mainly in the upstream region) and 115 positive (mainly in the CDS regions) DMRs-DEGs correlated pairs, respectively. The negatively correlated DMRs-DEGs underlined Wnt and cell adhesion molecule binding as critical canonical pathways disrupted by DNA methylation. Eleven DMRs (in CAPS, FZD7, CDKN2A, PON3, KLF4, etc.), accompanied with a global DNA methylation marker, were validated in the replication samples. Whole-exome sequencing presented a relatively less dominated TP53 mutation in Chinese HGSOC compared to TCGA dataset. Unsupervised analysis of the three-level omics data identified differential methylation and expression subgroups based on tumor genetics, one of which presented increased DNA methylation and significantly associated with TP53 mutation. CONCLUSIONS Our individual and integrated analyses contribute details about the tissue-specific genetic and DNA methylation landscape of Chinese HGSOC.
Collapse
Affiliation(s)
- Fangfang Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Lian Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | | | - Yanrui Zhao
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Hong Zheng
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Meng Yang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Xiangchun Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Jing Tian
- Department of Gynecological Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Caiyun Huang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Luyang Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Qinghua Wang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Wei Zhang
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, USA; Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, USA
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| |
Collapse
|
160
|
Elshaer M, ElManawy AI, Hammad A, Namani A, Wang XJ, Tang X. Integrated data analysis reveals significant associations of KEAP1 mutations with DNA methylation alterations in lung adenocarcinomas. Aging (Albany NY) 2020; 12:7183-7206. [PMID: 32327612 PMCID: PMC7202502 DOI: 10.18632/aging.103068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/29/2020] [Indexed: 12/17/2022]
Abstract
KEAP1 regulates the cytoprotection induced by NRF2 and has been reported to be a candidate tumor suppressor. Recent evidence has shown that mutations in several driver genes cause aberrant DNA methylation patterns, a hallmark of cancer. However, the correlation between KEAP1 mutations and DNA methylation in lung cancer has still not been investigated. In this study, we systematically carried out an integrated multi-omics analysis to explore the correlation between KEAP1 mutations and DNA methylation and its effect on gene expression in lung adenocarcinoma (LUAD). We found that most of the DNA aberrations associated with KEAP1 mutations in LAUD were hypomethylation. Surprisingly, we found several NRF2-regulated genes among the genes that showed differential DNA methylation. Moreover, we identified an 8-gene signature with altered DNA methylation pattern and elevated gene expression levels in LUAD patients with mutated KEAP1, and evaluated the prognostic value of this signature in various clinical datasets. These results establish that KEAP1 mutations are associated with DNA methylation changes capable of shaping regulatory network functions. Combining both epigenomic and transcriptomic changes along with KEAP1 mutations may provide a better understanding of the molecular mechanisms associated with the progression of lung cancer and may help to provide better therapeutic approaches.
Collapse
Affiliation(s)
- Mohamed Elshaer
- Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo 13759, Egypt
| | - Ahmed Islam ElManawy
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
- Agricultural Engineering Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed Hammad
- Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
- Radiation Biology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo 13759, Egypt
| | - Akhileshwar Namani
- Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
| | - Xiu Jun Wang
- Department of Pharmacology and Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Xiuwen Tang
- Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
| |
Collapse
|
161
|
Liao Y, Wang Y, Cheng M, Huang C, Fan X. Weighted Gene Coexpression Network Analysis of Features That Control Cancer Stem Cells Reveals Prognostic Biomarkers in Lung Adenocarcinoma. Front Genet 2020; 11:311. [PMID: 32391047 PMCID: PMC7192063 DOI: 10.3389/fgene.2020.00311] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/16/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose We aimed to identify new prognostic biomarkers of lung adenocarcinoma (LUAD) based on cancer stem cell theory. Materials and Methods: RNA-seq and microarray data were obtained with clinical information downloaded from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. Weighted gene coexpression network analysis (WGCNA) was applied to identify significant module and hub genes. The hub genes were validated via microarray data from GEO, and a prognostic signature with prognostic hub genes was constructed. Results LUAD patients enrolled from TCGA had a higher mRNA expression-based stemness index (mRNAsi) in tumor tissue than in adjacent normal tissue. Some clinical features and prognoses were found to be highly correlated with mRNAsi. WGCNA found that the green module and blue module were the most significant modules related to mRNAsi; 50 key genes were identified in the green module and were enriched mostly in the cell cycle, chromosome segregation, chromosomal region and microtubule binding. Six hub genes were revealed through the protein-protein interaction (PPI) network and Molecular Complex Detection (MCODE) plugin of Cytoscape software. Based on external verification with the GEO database, these six genes are not only expressed at different levels in LUAD and normal tissues but also associated with different clinical features. In addition, the construction of a prognostic signature with three hub genes showed high predictive value. Conclusion mRNAsi-related biomarkers may suggest a new potential treatment strategy for LUAD.
Collapse
Affiliation(s)
- Yi Liao
- Department of Respiratory and Critical Care Medicine II, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yulei Wang
- Department of Respiratory and Critical Care Medicine II, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mengqing Cheng
- Department of Respiratory and Critical Care Medicine II, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chengliang Huang
- Department of Respiratory and Critical Care Medicine II, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xianming Fan
- Department of Respiratory and Critical Care Medicine II, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
162
|
Takakuwa K, Mogushi K, Han M, Fujii T, Hosoya M, Yamanami A, Akita T, Yamashita C, Hayashida T, Kato S, Yamaguchi S. A novel diagnostic system to evaluate epidermal growth factor receptor impact as a prognostic and therapeutic indicator for lung adenocarcinoma. Sci Rep 2020; 10:6214. [PMID: 32277151 PMCID: PMC7148318 DOI: 10.1038/s41598-020-63200-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/26/2020] [Indexed: 11/24/2022] Open
Abstract
Many driver pathways for cancer cell proliferation have been reported. Driver pathway activation is often evaluated based on a single hotspot mutation such as EGFR L858R. However, because of complex intratumoral networks, the impact of a driver pathway cannot be predicted based on only a single gene mutation. Here, we developed a novel diagnostic system named the "EGFR impact score" which is based on multiplex mRNA expression profiles, which can predict the impact of the EGFR pathway in lung cancer cells and the effect of EGFR-tyrosine kinase inhibitors on malignancy. The EGFR impact score indicated robust predictive power for the prognosis of early-stage lung cancer because this score can evaluate the impact of the EGFR pathway on the tumor and genomic instability. Additionally, the molecular features of the poor prognostic group resembled those of biomarkers associated with immune checkpoint inhibitors. The EGFR impact score is a novel prognostic and therapeutic indicator for lung adenocarcinoma.
Collapse
Affiliation(s)
- Kazuya Takakuwa
- Department of Clinical Oncology, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kaoru Mogushi
- Department of Clinical Oncology, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Min Han
- Department of Clinical Oncology, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tomoaki Fujii
- Department of Cancer Genome Research, Sasaki Institute, Sasaki Foundation, Kandasurugadai, Chiyoda-ku, Tokyo, Japan
| | - Masaki Hosoya
- Department of Clinical Oncology, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Arina Yamanami
- International School of the Sacred Heart, Shibuya-Ku, Tokyo, Japan
| | - Tomomi Akita
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba, Japan
| | - Chikamasa Yamashita
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba, Japan
| | - Tetsu Hayashida
- Department of Surgery, Keio University School of Medicine, Shinanomachi 35, Shinjuku-ku, Tokyo, Japan
| | - Shunsuke Kato
- Department of Clinical Oncology, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shigeo Yamaguchi
- Department of Clinical Oncology, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
163
|
Genome-Wide DNA Methylation Profiling in Early Stage I Lung Adenocarcinoma Reveals Predictive Aberrant Methylation in the Promoter Region of the Long Noncoding RNA PLUT: An Exploratory Study. J Thorac Oncol 2020; 15:1338-1350. [PMID: 32272161 DOI: 10.1016/j.jtho.2020.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Surgical procedure is the treatment of choice in early stage I lung adenocarcinoma. However, a considerable number of patients experience recurrence within the first 2 years after complete resection. Suitable prognostic biomarkers that identify patients at high risk of recurrence (who may probably benefit from adjuvant treatment) are still not available. This study aimed at identifying methylation markers for early recurrence that may become important tools for the development of new treatment modalities. METHODS Genome-wide DNA methylation profiling was performed on 30 stage I lung adenocarcinomas, comparing 14 patients with early metastatic recurrence with 16 patients with a long-term relapse-free survival period using methylated-CpG-immunoprecipitation followed by high-throughput next-generation sequencing. The differentially methylated regions between the two subgroups were validated for their prognostic value in two independent cohorts using the MassCLEAVE assay, a high-resolution quantitative methylation analysis. RESULTS Unsupervised clustering of patients in the discovery cohort on the basis of differentially methylated regions identified patients with shorter relapse-free survival (hazard ratio: 2.23; 95% confidence interval: 0.66-7.53; p = 0.03). In two validation cohorts, promoter hypermethylation of the long noncoding RNA PLUT was significantly associated with shorter relapse-free survival (hazard ratio: 0.54; 95% confidence interval: 0.31-0.93; p < 0.026) and could be reported as an independent prognostic factor in the multivariate Cox regression analysis. CONCLUSIONS Promoter hypermethylation of the long noncoding RNA PLUT is predictive in patients with early stage I adenocarcinoma at high risk for early recurrence. Further studies are needed to validate its role in carcinogenesis and its use as a biomarker to facilitate patient selection and risk stratification.
Collapse
|
164
|
Saha SK, Islam SMR, Kwak KS, Rahman MS, Cho SG. PROM1 and PROM2 expression differentially modulates clinical prognosis of cancer: a multiomics analysis. Cancer Gene Ther 2020; 27:147-167. [PMID: 31164716 PMCID: PMC7170805 DOI: 10.1038/s41417-019-0109-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/03/2019] [Accepted: 05/19/2019] [Indexed: 12/11/2022]
Abstract
Prominin 1 (PROM1) is considered a biomarker for cancer stem cells, although its biological role is unclear. Prominin 2 (PROM2) has also been associated with certain cancers. However, the prognostic value of PROM1 and PROM2 in cancer is controversial. Here, we performed a systematic data analysis to examine whether prominins can function as prognostic markers in human cancers. The expression of prominins was assessed and their prognostic value in human cancers was determined using univariate and multivariate survival analyses, via various online platforms. We selected a group of prominent functional protein partners of prominins by protein-protein interaction analysis. Subsequently, we investigated the relationship between mutations and copy number alterations in prominin genes and various types of cancers. Furthermore, we identified genes that correlated with PROM1 and PROM2 in certain cancers, based on their levels of expression. Gene ontology and pathway analyses were performed to assess the effect of these correlated genes on various cancers. We observed that PROM1 was frequently overexpressed in esophageal, liver, and ovarian cancers and its expression was negatively associated with prognosis, whereas PROM2 overexpression was associated with poor overall survival in lung and ovarian cancers. Based on the varying characteristics of prominins, we conclude that PROM1 and PROM2 expression differentially modulates the clinical outcomes of cancers.
Collapse
Affiliation(s)
- Subbroto Kumar Saha
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| | - S M Riazul Islam
- Department of Computer Science and Engineering, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea
| | - Kyung-Sup Kwak
- School of Information and Communication Engineering, Inha University, 100, Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea
| | - Md Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
165
|
Nie MJ, Pan XT, Tao HY, Xu MJ, Liu SL, Sun W, Wu J, Zou X. Clinical and prognostic significance of MYH11 in lung cancer. Oncol Lett 2020; 19:3899-3906. [PMID: 32382337 PMCID: PMC7202280 DOI: 10.3892/ol.2020.11478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 02/21/2020] [Indexed: 12/24/2022] Open
Abstract
Myosin heavy chain 11 (MYH11), encoded by the MYH11 gene, is a protein that participates in muscle contraction through the hydrolysis of adenosine triphosphate. Although previous studies have demonstrated that MYH11 gene expression levels are downregulated in several types of cancer, its expression levels have rarely been investigated in lung cancer. The present study aimed to explore the clinical significance and prognostic value of MYH11 expression levels in lung cancer and to further study the underlying molecular mechanisms of the function of this gene. The Oncomine database showed that the MYH11 expression levels were decreased in lung cancer compared with those noted in the normal lung tissue (P<0.05). Kaplan-Meier plotter results revealed that the decreased MYH11 expression levels were correlated with poor prognosis in lung cancer patients. Among the lung cancer cases with gene alteration of MYH11, mutation was the most common of all alteration types. Coexpedia and Metascape analyses revealed that the target genes were primarily enriched in ‘muscle contraction’, ‘contractile fiber part’, ‘actin cytoskeleton’ and the ‘adherens junction’. These results indicated that MYH11 is a potential novel drug target and prognostic indicator of lung cancer.
Collapse
Affiliation(s)
- Meng-Jun Nie
- Oncology Department, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China.,No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Xiao-Ting Pan
- Oncology Department, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China.,No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - He-Yun Tao
- Oncology Department, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China.,No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Meng-Jun Xu
- Oncology Department, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China.,No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Shen-Lin Liu
- Oncology Department, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Wei Sun
- Oncology Department, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Jian Wu
- Oncology Department, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Xi Zou
- Oncology Department, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
166
|
Prognostic value of Iroquois homeobox 1 methylation in non-small cell lung cancers. Genes Genomics 2020; 42:571-579. [PMID: 32200543 DOI: 10.1007/s13258-020-00925-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) poses a great threat to human health. DNA methylation abnormalities play a central role in the development and outcome of most human malignancies, providing potential biomarkers for diagnosis and prognosis. Iroquois homeobox 1 (IRX1) can act as a tumor suppressor or promoter depending on the tumor microenvironment, and its role in lung cancer is still controversial. OBJECTIVE The purpose of this study was to investigate the biological role and prognostic value of IRX1 in NSCLC. METHODS We examined the methylation status of IRX1 promoter in 146 tumors from patients with NSCLC using pyrosequencing and analyzed the association between methylation status and overall patient survival. RESULTS A total of 37 cases (25.3%) showed IRX1 methylation-positive tumors when compared with matched normal tissues. No association between IRX1 expression level and methylation status was found in lung cancer cell lines. IRX1 methylation significantly correlated with smoking status and TP53 mutation. Patients with IRX1 methylation showed significantly longer survival than patients without methylation (log-rank P = 0.011). In a multivariate analysis of prognostic factors, IRX1 methylation in tumor samples was an independent prognostic factor (adjusted hazard ratio = 0.35, 95% confidence interval 0.17-0.73, P = 0.005). CONCLUSION These results suggest that IRX1 promoter methylation may be a tumor-associated event and an independent predictor of survival advantage in patients with NSCLC. Further large-scale studies are needed to confirm these findings.
Collapse
|
167
|
Dong S, Men W, Yang S, Xu S. Identification of lung adenocarcinoma biomarkers based on bioinformatic analysis and human samples. Oncol Rep 2020; 43:1437-1450. [PMID: 32323809 PMCID: PMC7108011 DOI: 10.3892/or.2020.7526] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/23/2020] [Indexed: 12/24/2022] Open
Abstract
Lung adenocarcinoma is one of the most common malignant tumors worldwide. Although efforts have been made to clarify its pathology, the underlying molecular mechanisms of lung adenocarcinoma are still not clear. The microarray datasets GSE75037, GSE63459 and GSE32863 were downloaded from the Gene Expression Omnibus (GEO) database to identify biomarkers for effective lung adenocarcinoma diagnosis and therapy. The differentially expressed genes (DEGs) were identified by GEO2R, and function enrichment analyses were conducted using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). The STRING database and Cytoscape software were used to construct and analyze the protein-protein interaction network (PPI). We identified 376 DEGs, consisting of 83 upregulated genes and 293 downregulated genes. Functional and pathway enrichment showed that the DEGs were mainly focused on regulation of cell proliferation, the transforming growth factor β receptor signaling pathway, cell adhesion, biological adhesion, and responses to hormone stimulus. Sixteen hub genes were identified and biological process analysis showed that these 16 hub genes were mainly involved in the M phase, cell cycle phases, the mitotic cell cycle, and nuclear division. We further confirmed the two genes with the highest node degree, DNA topoisomerase IIα (TOP2A) and aurora kinase A (AURKA), in lung adenocarcinoma cell lines and human samples. Both these genes were upregulated and associated with larger tumor size. Upregulation of AURKA in particular, was associated with lymphatic metastasis. In summary, identification of the DEGs and hub genes in our research enables us to elaborate the molecular mechanisms underlying the genesis and progression of lung adenocarcinoma and identify potential targets for the diagnosis and treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Siyuan Dong
- Department of Thoracic Surgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Wanfu Men
- Department of Thoracic Surgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shize Yang
- Department of Thoracic Surgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shun Xu
- Department of Thoracic Surgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
168
|
Systematic identification of CDC34 that functions to stabilize EGFR and promote lung carcinogenesis. EBioMedicine 2020; 53:102689. [PMID: 32114396 PMCID: PMC7047192 DOI: 10.1016/j.ebiom.2020.102689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/24/2022] Open
Abstract
Background How the oncoprotein epidermal growth factor receptor (EGFR) evades proteolytic degradation and accumulates in non-small cell lung cancer (NSCLC) remains unclear, and ubiquitin pathway genes (UPGs) that are critical to NSCLC needs to be systematically identified. Methods A total of 696 UPGs (including E1, E2, E3, and deubiquitinases) were silenced by small interfering RNA (siRNA) library in NSCLC cells, the candidates were verified, and their significance was evaluated in patients with NSCLC. The effects of a candidate gene on EGFR were investigated in vitro and in vivo. Findings We report 31 candidates that are required for cell proliferation, with the E2 ubiquitin conjugase CDC34 as the most significant one. CDC34 is elevated in tumor tissues in 76 of 114 (66.7%) NSCLCs and inversely associated with prognosis, is higher in smoker patients than nonsmoker patients, and is induced by tobacco carcinogens in normal human lung epithelial cells. Forced expression of CDC34 promotes, whereas knockdown of CDC34 inhibits, NSCLC cell proliferation in vitro and in vivo. CDC34 competes with c-Cbl to bind Y1045 to inhibit polyubiquitination and degradation of EGFR. In EGFR-L858R and EGFR-T790M/Del (exon 19)-driven lung tumor growth in mouse models, knockdown of CDC34 significantly inhibits tumor formation. Interpretation These results demonstrate that an E2 enzyme is capable of competing with E3 ligase to stabilize substrates, and CDC34 represents an attractive therapeutic target for NSCLCs. Funding National Key Research and Development Program of China, National Natural Science Foundation of China, and the CAMS Innovation Fund for Medical Sciences.
Collapse
|
169
|
Wang G, Zhong Y, Liang J, Li Z, Ye Y. Upregulated expression of pyruvate kinase M2 mRNA predicts poor prognosis in lung adenocarcinoma. PeerJ 2020; 8:e8625. [PMID: 32117639 PMCID: PMC7036274 DOI: 10.7717/peerj.8625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/23/2020] [Indexed: 01/04/2023] Open
Abstract
Background Pyruvate kinase M2 (PKM2) is critical regulator contributing to Warburg effect. However, the expression pattern and prognostic value of PKM2 remain unknown in lung adenocarcinoma (LUAD). The aim of this study is to clarify the prognostic value of PKM2 via intergrated bioinformatics analysis. Methods Firstly, mRNA expression levels of PKM2 in LUAD were systematically analyzed using the ONCOMINE and TCGA databases. Then, the association between PKM2 expression and clinical parameters was investigated by UALCAN. The Kaplan-Meier Plotter was used to assess the prognostic significance of PKM2. Finally, the relationship between PKM2 expression and its genetic and epigenetic changes was evaluated with MEXPRESS and MethHC database. Results Pooled analysis showed that PKM2 is frequently upregulated expression in LUAD. Subsequently, PKM2 expression was identified to be positively associated with tumor stage and lymph node metastasis and also strongly correlated with worse OS (P = 2.80e-14), PPS (P = 0.022), FP (P = 1.30e-6) and RFS (P = 3.41e-8). Importantly, our results demonstrated that over-expressed PKM2 is associated with PKM2 hypomethylation and copy number variations (CNVs). Conclusion This study confirms that over-expressed PKM2 in LUAD is associated with poor prognosis, suggesting that PKM2 might act as a promising prognostic biomarker and novel therapeutic target for LUAD.
Collapse
Affiliation(s)
- Guiping Wang
- Department of Pharmacy, Guangzhou Health Science College, Guangzhou, China
| | - Yingying Zhong
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Jiecong Liang
- Department of General Surgery, Guangzhou Women and Children Medical Center, Guangzhou, China
| | - Zhibin Li
- Department of Pharmacy, Guangzhou Health Science College, Guangzhou, China
| | - Yun Ye
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| |
Collapse
|
170
|
Cui J, Wang J, Lin C, Liu J, Zuo W. Osteopontin Mediates Cetuximab Resistance via the MAPK Pathway in NSCLC Cells. Onco Targets Ther 2020; 12:10177-10185. [PMID: 32063712 PMCID: PMC6884967 DOI: 10.2147/ott.s228437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/05/2019] [Indexed: 01/21/2023] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. The high expression of osteopontin (OPN) is an important factor that aggravates drug resistance and causes a poor prognosis in this disease. Therefore, understanding the molecular mechanism of OPN is critical for the treatment and prognosis of NSCLC. Methods We used bioinformatics analysis to verify the expression of OPN in normal lung tissues and lung cancer tissues. Then we overexpressed and knocked down OPN in cell lines to detect cell proliferation, migration, invasion, and effects on signaling pathways. Finally, malignant progression and drug resistance induced by OPN were investigated by the wound healing assay, transwell assay, clone formation assay, and Western blot analysis. Results We verified that OPN was upregulated in NSCLC tissues, and its overexpression induced NSCLC cell proliferation, migration, and invasion via the mitogen-activated protein kinase (MAPK) pathway. Furthermore, overexpression of OPN reduced the sensitivity of NSCLC cells to cetuximab by upregulating MAPK pathway-related proteins. These results suggested that OPN promoted malignant progression and mediated drug resistance via the MAPK signaling pathway in NSCLC cells. Conclusion This study reveals the important role of OPN in NSCLC cells, making it a potential target for improving chemotherapy efficiency in patients with NSCLC.
Collapse
Affiliation(s)
- Jian Cui
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Jun Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Chao Lin
- Department of General Practice, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Jixiang Liu
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Wei Zuo
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| |
Collapse
|
171
|
Chen C, Chen S, Pang L, Yan H, Luo M, Zhao Q, Lai J, Li H. Analysis of the Expression of Cell Division Cycle-Associated Genes and Its Prognostic Significance in Human Lung Carcinoma: A Review of the Literature Databases. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6412593. [PMID: 32104702 PMCID: PMC7037569 DOI: 10.1155/2020/6412593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Lung cancer (LC) has become the top cause responsible for cancer-related deaths. Cell division cycle-associated (CDCA) genes exert an important role in the life process. Dysregulation in the process of cell division may lead to malignancy. METHODS Transcriptional data on CDCA gene family and patient survival data were examined for lung cancer (LC) patients from the GEPIA, Oncomine, cBioPortal, and Kaplan-Meier Plotter databases. RESULTS CDCA1/2/3/4/5/7/8 expression levels were higher in lung adenocarcinoma tissues, and the CDCA1/2/3/4/5/6/7/8 expression levels were increased in squamous cell LC tissues compared with those in noncarcinoma lung tissues. The expression levels of CDCA1/2/3/4/5/8 showed correlation with tumor classification. The Kaplan-Meier Plotter database was employed to carry out survival analysis, indicating that increased CDCA1/2/3/4/5/6/7/8 expression levels were increased in squamous cell LC tissues compared with those in noncarcinoma lung tissues. The expression levels of P < 0.05). Only LC patients with increased CDCA3/4/5/8 expression were significantly related to lower post-progression survival (PPS) (P < 0.05). Only LC patients with increased CDCA gene family and patient survival data were examined for lung cancer (LC) patients from the GEPIA, Oncomine, cBioPortal, and Kaplan-Meier Plotter databases. CDCA8, INCENP, AURKB, and BIRC5); CORUM: 127: NDC80 kinetochore complex; M129: the PID PLK1 pathway; and GO: 0007080: mitotic metaphase plate congression, all of which were remarkably modulated since the alterations affected CDCA gene family and patient survival data were examined for lung cancer (LC) patients from the GEPIA, Oncomine, cBioPortal, and Kaplan-Meier Plotter databases. CONCLUSIONS Upregulated CDCA genes' expression levels in LC tissues probably play a crucial part in LC oncogenesis. The upregulated CDCA genes' expression levels are used as the potential prognostic markers to improve patient survival and the LC prognostic accuracy. CDCA genes probably exert their functions in tumorigenesis through the PLK1 pathway.CDCA gene family and patient survival data were examined for lung cancer (LC) patients from the GEPIA, Oncomine, cBioPortal, and Kaplan-Meier Plotter databases. CDCA gene family and patient survival data were examined for lung cancer (LC) patients from the GEPIA, Oncomine, cBioPortal, and Kaplan-Meier Plotter databases. CDCA gene family and patient survival data were examined for lung cancer (LC) patients from the GEPIA, Oncomine, cBioPortal, and Kaplan-Meier Plotter databases.
Collapse
Affiliation(s)
- Chongxiang Chen
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Siliang Chen
- Department of Hematology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Lanlan Pang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Honghong Yan
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Ma Luo
- Department of Interventional Radiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Qingyu Zhao
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jielan Lai
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Huan Li
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
172
|
Sieg M, Richter G, Schaefer AS, Kruppa J. Detection of suspicious interactions of spiking covariates in methylation data. BMC Bioinformatics 2020; 21:36. [PMID: 32000657 PMCID: PMC6993406 DOI: 10.1186/s12859-020-3364-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/14/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND In methylation analyses like epigenome-wide association studies, a high amount of biomarkers is tested for an association between the measured continuous outcome and different covariates. In the case of a continuous covariate like smoking pack years (SPY), a measure of lifetime exposure to tobacco toxins, a spike at zero can occur. Hence, all non-smokers are generating a peak at zero, while the smoking patients are distributed over the other SPY values. Additionally, the spike might also occur on the right side of the covariate distribution, if a category "heavy smoker" is designed. Here, we will focus on methylation data with a spike at the left or the right of the distribution of a continuous covariate. After the methylation data is generated, analysis is usually performed by preprocessing, quality control, and determination of differentially methylated sites, often performed in pipeline fashion. Hence, the data is processed in a string of methods, which are available in one software package. The pipelines can distinguish between categorical covariates, i.e. for group comparisons or continuous covariates, i.e. for linear regression. The differential methylation analysis is often done internally by a linear regression without checking its inherent assumptions. A spike in the continuous covariate is ignored and can cause biased results. RESULTS We have reanalysed five data sets, four freely available from ArrayExpress, including methylation data and smoking habits reported by smoking pack years. Therefore, we generated an algorithm to check for the occurrences of suspicious interactions between the values associated with the spike position and the non-spike positions of the covariate. Our algorithm helps to decide if a suspicious interaction can be found and further investigations should be carried out. This is mostly important, because the information on the differentially methylated sites will be used for post-hoc analyses like pathway analyses. CONCLUSIONS We help to check for the validation of the linear regression assumptions in a methylation analysis pipeline. These assumptions should also be considered for machine learning approaches. In addition, we are able to detect outliers in the continuous covariate. Therefore, more statistical robust results should be produced in methylation analysis using our algorithm as a preprocessing step.
Collapse
Affiliation(s)
- Miriam Sieg
- Charité - University Medicine, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biometry and Clinical Epidemiology, Charitéplatz 1, Berlin, 10117 Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Strane 2, Berlin, 10178 Germany
| | - Gesa Richter
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Strane 2, Berlin, 10178 Germany
- Department of Periodontology and Synoptic Dentistry, Institute of Dental, Oral and Maxillary Medicine, Charité - University Medicine, Charitéplatz 1, Berlin, 10117 Germany
| | - Arne S. Schaefer
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Strane 2, Berlin, 10178 Germany
- Department of Periodontology and Synoptic Dentistry, Institute of Dental, Oral and Maxillary Medicine, Charité - University Medicine, Charitéplatz 1, Berlin, 10117 Germany
| | - Jochen Kruppa
- Charité - University Medicine, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biometry and Clinical Epidemiology, Charitéplatz 1, Berlin, 10117 Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Strane 2, Berlin, 10178 Germany
| |
Collapse
|
173
|
Dong YM, Qin LD, Tong YF, He QE, Wang L, Song K. Multiple genome pattern analysis and signature gene identification for the Caucasian lung adenocarcinoma patients with different tobacco exposure patterns. PeerJ 2020; 8:e8349. [PMID: 32030321 PMCID: PMC6995662 DOI: 10.7717/peerj.8349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/04/2019] [Indexed: 11/20/2022] Open
Abstract
Background When considering therapies for lung adenocarcinoma (LUAD) patients, the carcinogenic mechanisms of smokers are believed to differ from those who have never smoked. The rising trend in the proportion of nonsmokers in LUAD urgently requires the understanding of such differences at a molecular level for the development of precision medicine. Methods Three independent LUAD tumor sample sets—TCGA, SPORE and EDRN—were used. Genome patterns of expression (GE), copy number variation (CNV) and methylation (ME) were reviewed to discover the differences between them for both smokers and nonsmokers. Tobacco-related signature genes distinguishing these two groups of LUAD were identified using the GE, ME and CNV values of the whole genome. To do this, a novel iterative multi-step selection method based on the partial least squares (PLS) algorithm was proposed to overcome the high variable dimension and high noise inherent in the data. This method can thoroughly evaluate the importance of genes according to their statistical differences, biological functions and contributions to the tobacco exposure classification model. The kernel partial least squares (KPLS) method was used to further optimize the accuracies of the classification models. Results Forty-three, forty-eight and seventy-five genes were identified as GE, ME and CNV signatures, respectively, to distinguish smokers from nonsmokers. Using only the gene expression values of these 43 GE signature genes, ME values of the 48 ME signature genes or copy numbers of the 75 CNV signature genes, the accuracies of TCGA training and SPORE/EDRN independent validation datasets all exceed 76%. More importantly, the focal amplicon in Telomerase Reverse Transcriptase in nonsmokers, the broad deletion in ChrY in male nonsmokers and the greater amplification of MDM2 in female nonsmokers may explain why nonsmokers of both genders tend to suffer LUAD. These pattern analysis results may have clear biological interpretation in the molecular mechanism of tumorigenesis. Meanwhile, the identified signature genes may serve as potential drug targets for the precision medicine of LUAD.
Collapse
Affiliation(s)
- Yan-mei Dong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Li-da Qin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yi-fan Tong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Qi-en He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Ling Wang
- The First Affiliated Hospital Oncology, Dalian Medical University, Dalian, Liaoning, China
| | - Kai Song
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
174
|
Wang W, Liu B, Duan X, Feng X, Wang T, Wang P, Ding M, Zhang Q, Feng F, Wu Y, Yao W, Wang Q, Yang Y. Identification of Three Differentially Expressed miRNAs as Potential Biomarkers for Lung Adenocarcinoma Prognosis. Comb Chem High Throughput Screen 2020; 23:148-156. [PMID: 31976830 DOI: 10.2174/1386207323666200124123103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 11/29/2019] [Accepted: 01/03/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The aim of this study areto screen MicroRNAs (miRNAs) related to the prognosis of lung adenocarcinoma (LUAD) and to explore the possible molecular mechanisms. METHODS The data for a total of 535 patients with LUAD data were downloaded from The Cancer Genome Atlas (TCGA) database. The miRNAs for LUAD prognosis were screened by both Cox risk proportional regression model and Last Absolute Shrinkage and Selection Operator (LASSO) regression model. The performances of the models were verified by time-dependent Receiver Operating Characteristic (ROC) curve. The possible biological processes linked to the miRNAs' target genes were analyzed by Gene Ontology (GO), Kyoto gene and genome encyclopedia (KEGG). RESULTS Among 127 differentially expressed miRNAs identified from the screening analysis, there are 111 up-regulated and 16 down-regulated miRNAs. Three of them, hsa-miR-1293, hsa-miR-490 and hsa-miR- 5571, were also significantly associated with the survival of the LUAD patients. The targets of the three miRNAs are significantly enriched in systemic lupus erythematosus pathways. CONCLUSION Hsa-miR-1293, hsa-miR-490 and hsa-miR-5571 can be potentially used as novel biomarkers for the prognosis prediction of LUAD.
Collapse
Affiliation(s)
- Wei Wang
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, China.,The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, China
| | - Bin Liu
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, China.,The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, China
| | - Xiaoran Duan
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaolei Feng
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Tuanwei Wang
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Pengpeng Wang
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Mingcui Ding
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Qiao Zhang
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Feifei Feng
- The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, China.,Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongjun Wu
- The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, China.,Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wu Yao
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Qi Wang
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
175
|
Chen Y, Liao LD, Wu ZY, Yang Q, Guo JC, He JZ, Wang SH, Xu XE, Wu JY, Pan F, Lin DC, Xu LY, Li EM. Identification of key genes by integrating DNA methylation and next-generation transcriptome sequencing for esophageal squamous cell carcinoma. Aging (Albany NY) 2020; 12:1332-1365. [PMID: 31962291 PMCID: PMC7053602 DOI: 10.18632/aging.102686] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/25/2019] [Indexed: 02/05/2023]
Abstract
Aberrant DNA methylation leads to abnormal gene expression, making it a significant regulator in the progression of cancer and leading to the requirement for integration of gene expression with DNA methylation. Here, we identified 120 genes demonstrating an inverse correlation between DNA methylation and mRNA expression in esophageal squamous cell carcinoma (ESCC). Sixteen key genes, such as SIX4, CRABP2, and EHD3, were obtained by filtering 10 datasets and verified in paired ESCC samples by qRT-PCR. 5-Aza-dC as a DNA methyltransferase (DNMT) inhibitor could recover their expression and inhibit clonal growth of cancer cells in seven ESCC cell lines. Furthermore, 11 of the 16 genes were correlated with OS (overall survival) and DFS (disease-free survival) in 125 ESCC patients. ChIP-Seq data and WGBS data showed that DNA methylation and H3K27ac histone modification of these key genes displayed inverse trends, suggesting that there was collaboration between DNA methylation and histone modification in ESCC. Our findings illustrate that the integrated multi-omics data (transcriptome and epigenomics) can accurately obtain potential prognostic biomarkers, which may provide important insight for the effective treatment of cancers.
Collapse
Affiliation(s)
- Yang Chen
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
| | - Lian-Di Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
| | - Zhi-Yong Wu
- Departments of Oncology Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou 515041, Guangdong, P.R. China
| | - Qian Yang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
| | - Jin-Cheng Guo
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
| | - Jian-Zhong He
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
| | - Shao-Hong Wang
- Departments of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou 515041, Guangdong, P.R. China
| | - Xiu-E Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
| | - Jian-Yi Wu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
| | - Feng Pan
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
| | - De-Chen Lin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
| |
Collapse
|
176
|
Liang W, Gao R, Yang M, Wang X, Cheng K, Shi X, He C, Li Y, Wu Y, Shi L, Chen J, Yu X. MARCKSL1 promotes the proliferation, migration and invasion of lung adenocarcinoma cells. Oncol Lett 2020; 19:2272-2280. [PMID: 32194726 PMCID: PMC7039154 DOI: 10.3892/ol.2020.11313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 08/06/2019] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the most common cancer in males and females and ~40% of lung cancer cases are adenocarcinomas. Previous studies have demonstrated that myristoylated alanine rich protein kinase C substrate (MARCKS) is upregulated in several types of cancer and is associated with poor prognosis in patients with breast cancer. However, its expression level and role in lung adenocarcinoma remain unknown. Therefore, the aim of the present study was to investigate the expression level and biological functions of MARCKS like 1 (MARCKSL1), a member of the MARCKS family, in lung adenocarcinoma. The expression level of MARCKSL1 was examined in human lung adenocarcinoma tissues and cell lines. MARCKSL1-specific small interfering RNAs effectively suppressed its expression level and significantly inhibited the proliferation, migration and invasion of lung adenocarcinoma cells. Additionally, the role of MARCKSLI in the regulation of metastasis was examined. Silencing MARCKSL1 decreased the expression of the epithelial-mesenchymal transition (EMT)-associated proteins E-cadherin, N-cadherin, vimentin and snail family transcriptional repressor 2, and decreased the phosphorylation level of AKT. The results obtained in the current study suggested that MARCKSL1 promoted the progression of lung adenocarcinoma by regulating EMT. MARCKSLI may have prognostic value and serve as a novel therapeutic target in lung adenocarcinoma.
Collapse
Affiliation(s)
- Wenjun Liang
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Ruichen Gao
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Mingxia Yang
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Xiaohua Wang
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Kewei Cheng
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Xuejun Shi
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Chen He
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Yemei Li
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Yuying Wu
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Lei Shi
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Jingtao Chen
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Xiaowei Yu
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
177
|
Huang JX, Wu YC, Cheng YY, Wang CL, Yu CJ. IRF1 Negatively Regulates Oncogenic KPNA2 Expression Under Growth Stimulation and Hypoxia in Lung Cancer Cells. Onco Targets Ther 2020; 12:11475-11486. [PMID: 31920336 PMCID: PMC6939401 DOI: 10.2147/ott.s221832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose Karyopherin alpha 2 (KPNA2) has been reported as an oncogenic protein in numerous human cancers and is currently considered a potential therapeutic target. However, the transcriptional regulation and physiological conditions underlying KPNA2 expression remain unclear. The aim of the present study was to investigate the role and regulation of interferon regulatory factor-1 (IRF1) in modulating KPNA2 expression in lung adenocarcinoma (ADC). Materials and methods Bioinformatics tools and chromatin immunoprecipitation were used to analyze the transcription factor (TF) binding sites in the KPNA2 promoter region. We searched for a potential role of IRF1 in non-small-cell lung cancer (NSCLC) using Oncomine and Kaplan-Meier Plotter datasets. qRT-PCR was applied to examine the role of IRF1 and signaling involved in regulating KPNA2 transcription. Western blotting was used to determine the effects of extracellular stimulation and intracellular signaling on the modulation of KPNA2-related TF expression. Results IRF1 was identified as a novel TF that suppresses KPNA2 gene expression. We observed that IRF1 expression was lower in cancerous tissues than in normal lung tissues and that its low expression was correlated with poor prognosis in NSCLC. Notably, both ataxia telangiectasia mutated (ATM) and mechanistic target of rapamycin (mTOR) inhibitors reduced KPNA2 expression, which was accompanied by increased expression of IRF1 but decreased expression of E2F1, a TF that promotes KPNA2 expression in lung ADC cells. IRF1 knockdown restored the reduced levels of KPNA2 in ATM inhibitor-treated cells. We further demonstrated that epidermal growth factor (EGF)-activated mTOR and hypoxia-induced ATM suppressed IRF1 expression but promoted E2F1 expression, which in turn upregulated KPNA2 expression in lung ADC cells. Conclusion IRF1 acts as a potential tumor suppressor in NSCLC. EGF and hypoxia promote KPNA2 expression by simultaneously suppressing IRF1 expression and enhancing E2F1 expression in lung ADC cells. Our study provides new insights into targeted therapy for lung cancer.
Collapse
Affiliation(s)
- Jie-Xin Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Cheng Wu
- Department of Thoracic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ya-Yun Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Liang Wang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chia-Jung Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
178
|
Qin S, Yi M, Jiao D, Li A, Wu K. Distinct Roles of VEGFA and ANGPT2 in Lung Adenocarcinoma and Squamous Cell Carcinoma. J Cancer 2020; 11:153-167. [PMID: 31892982 PMCID: PMC6930396 DOI: 10.7150/jca.34693] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/26/2019] [Indexed: 01/03/2023] Open
Abstract
Background: Vascular endothelial growth factor A (VEGFA) and angiopoietin 2 (ANGPT2) are key mediators in angiogenesis. The expression and clinical significance of VEGFA and ANGPT2 have been investigated in lung cancer, but the results are controversial. The specific roles of VEGFA and ANGPT2 in adenocarcinoma (ADC) and squamous cell carcinoma (SQC) are still not fully understood. To characterize it, we conducted the current study. Materials and Methods: The relationships between clinic-pathological characteristics and the protein expressions of VEGFA and ANGPT2 were analyzed on tissue microarrays by immunohistochemistry (IHC) staining. Then public databases were used to evaluate the association of VEGFA and ANGPT2 mRNA expressions with clinic-pathological parameters and prognosis. Cobalt chloride (CoCl2) was adopted to mimic a hypoxic microenvironment and western blot was used to detect the expression of hypoxia inducible factor-1α (HIF-1α), VEGFA and ANGPT2 in lung cancer cell lines. Results: IHC staining revealed that the expressions of VEGFA and ANGPT2 were enriched in lung cancer tissues compared with normal tissues. Additionally, both VEGFA and ANGPT2 protein levels were significantly associated with the tumor size and lymph node metastasis only in ADC, not SQC. More importantly, increased VEGFA and ANGPT2 protein levels were negatively correlated with overall survival (OS) of ADC individuals. Meta-analyses of 22 gene expression omnibus (GEO) databases of lung cancer implicated that patients with higher VEGFA and ANGPT2 mRNA expressions tended to have advanced stage in ADC rather than SQC. Kaplan-Meier plot analyses further verified that high levels of VEGFA and ANGPT2 mRNA were associated with poor survival only in ADC. Moreover, the combination of VEGFA and ANGPT2 could more precisely predict prognosis in ADC. In hypoxia-mimicking conditions, induced expression of HIF-1α unregulated VEGFA and ANGPT2 proteins abundance. Conclusion: Our results showed hypoxia upregulated the protein levels of VEGFA and ANGPT2 in lung cancer cell lines, and the roles of VEGFA and ANGPT2 were distinct in ADC and SQC. Combined detections of VEGFA and ANGPT2 may be valuable prognostic biomarkers for ADC and double block of VEGFA and ANGPT2 may improve therapeutic outcome.
Collapse
Affiliation(s)
- Shuang Qin
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dechao Jiao
- Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Anping Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| |
Collapse
|
179
|
Lin YY, Wang CY, Phan NN, Chiao CC, Li CY, Sun Z, Hung JH, Chen YL, Yen MC, Weng TY, Hsu HP, Lai MD. PODXL2 maintains cellular stemness and promotes breast cancer development through the Rac1/Akt pathway. Int J Med Sci 2020; 17:1639-1651. [PMID: 32669966 PMCID: PMC7359396 DOI: 10.7150/ijms.46125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
The cluster of differentiation 34 (CD34) family, which includes CD34, podocalyxin-like protein 1 (PODXL), and PODXL2, are type-I transmembrane sialomucins and markers of hematopoietic stem cells (HSCs) and vascular-associated tissues. CD34 family proteins are expressed by endothelial cells and hematopoietic precursors. PODXL is well known to be associated with invadopodia formation and to promote the epithelial-mesenchymal transition, tumor migration and invasion. PODXL expression was correlated with poor survival of cancer patients. However, the role of PODXL2 in cancer has been less fully explored. To reveal the novel role of PODXL2 in breast cancer, the present study evaluated PODXL2 levels in relation to clinical outcomes of cancer patients by performing a bioinformatics analysis using the Oncomine database, Kaplan-Meier plots, and the CCLE database. Empirical validation of bioinformatics predictions was conducted utilizing the short hairpin (sh)-RNA silencing method for PODXL2 in the BT474 invasive ductal breast carcinoma cell line. The bioinformatics analysis revealed that PODXL2 overexpression was correlated with poor survival of breast cancer patients, suggesting an oncogenic role of PODXL2 in breast carcinoma. In a validation experiment, knockdown of PODXL2 in BT474 cells slightly influenced cell proliferation, suppressed migration, and inhibited expressions of downstream molecules, including Ras-related C3 botulinum toxin substrate 1 (Rac1), phosphorylated (p)-Akt (S473), and p-paxillin (Y31) proteins. In addition, knockdown of PODXL2 reduced expression levels of cancer stem cell (CSC) markers, including Oct-4 and Nanog, and the breast CSC marker aldehyde dehydrogenase 1 (ALDH1). Collectively, our present study demonstrated that PODXL2 plays a crucial role in cancer development and could serve as a potential prognostic biomarker in breast cancer patients.
Collapse
Affiliation(s)
- Yi-Yi Lin
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chih-Yang Wang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Nam Nhut Phan
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Chung-Chieh Chiao
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
| | - Chung-Yen Li
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Zhengda Sun
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| | - Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Yi-Ling Chen
- Department of Senior Citizen Service Management, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tzu-Yang Weng
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hui-Ping Hsu
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.,Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
180
|
Huo C, Zhang MY, Li R, Zhou XJ, Liu TT, Li JP, Liu X, Qu YQ. Comprehensive analysis of TPX2-related ceRNA network as prognostic biomarkers in lung adenocarcinoma. Int J Med Sci 2020; 17:2427-2439. [PMID: 33029085 PMCID: PMC7532481 DOI: 10.7150/ijms.49053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/13/2020] [Indexed: 01/15/2023] Open
Abstract
Background and aim: Competing endogenous RNA (ceRNA) is believed to play vital roles in tumorigenesis. The goal of this study was to screen prognostic biomarkers in lung adenocarcinoma (LUAD). Methods: Common differentially expressed genes (DEGs) were collected from Gene Expression Omnibus (GEO) databases and The Cancer Genome Atlas databases (TCGA) using GEO2R and "limma" package in R, respectively. Overlapping DEGs were conducted using enrichment of functions and protein-protein interaction (PPI) network to discover significant candidate genes. By using a comprehensive analysis, we constructed an mRNA mediated ceRNA network. Survival rates were used Kaplan-Meier analysis. Statistical analysis was used to further identify the prognosis of studied genes. Results: Integrated analysis of GSE32863 and TCGA databases, a total of 886 overlapping DEGs, including 279 up-regulated and 607 down-regulated genes were identified. Considering the highest term of candidate genes in PPI, we identified TPX2, which was enriched in cell division signaling pathway. Besides, 35 differentially expressed miRNAs (DEmiRNAs) were predicted to target TPX2 and only 7 DEmiRNAs were identified to be prognostic biomarkers in LUAD. Then, 30 differentially expressed lncRNAs (DElncRNAs) were predicted to bind these 7 DEmiRNAs. Finally, we found that 7 DElncRNAs were correlated with the overall survival (all p <0.05). Furthermore, we identified elevated TPX2 was strongly correlated with the worse survival rate among 458 samples. Univariate and multivariate cox analysis showed TPX2 may act as an independent factor for prognosis in LUAD (p <0.05). Then pathway enrichment results suggested that TPX2 may facilitate tumorigenesis by participating in several cancer-related signaling pathways in LUAD, especially in Notch signal pathway. Conclusions: TPX2-related lncRNAs and miRNAs are related to the survival of LUAD. 7 lncRNAs, 7 miRNAs and TPX2 may serve as prognostic biomarkers in LUAD.
Collapse
Affiliation(s)
- Chen Huo
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Meng-Yu Zhang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Rui Li
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xi-Jia Zhou
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ting-Ting Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jian-Ping Li
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiao Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
181
|
Ye T, Li J, Sun Z, Liu D, Zeng B, Zhao Q, Wang J, Xing HR. Cdh1 functions as an oncogene by inducing self-renewal of lung cancer stem-like cells via oncogenic pathways. Int J Biol Sci 2020; 16:447-459. [PMID: 32015681 PMCID: PMC6990901 DOI: 10.7150/ijbs.38672] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/04/2019] [Indexed: 01/01/2023] Open
Abstract
The mortality rate of lung cancer remains the highest amongst all cancers despite of new therapeutic developments. While cancer stem cells (CSCs) may play a pivotal role in cancer, mechanisms underlying CSCs self-renewal and their relevance to cancer progression have not been clearly elucidated due to the lack of reliable and stable CSC cellular models. In the present study, we unveiled the novel oncogene function of cadherin 1 (Cdh1) via bioinformatic analysis in a broad spectrum of human cancers including lung adenocarcinoma (LUAD), adding a new dimension to the widely reported tumor suppressor function of Cdh1. Experimentally, we show for the first time that Cdh1 promotes the self-renewal of lung CSCs, consistent with its function in embryonic and normal stem cells. Using the LLC-Symmetric Division (LLC-SD) model, we have revealed an intricate cross-talk between the oncogenic pathway and stem cell pathway in which Cdh1 functions as an oncogene by promoting lung CSC renewal via the activation of the Phosphoinositide 3-kinase (PI3K) and inhibition of Mitogen-activated protein kinase (MAPK) pathways, respectively. In summary, this study has provided evidence demonstrating effective utilization of the normal stem cell renewal mechanisms by CSCs to promote oncogenesis and progression.
Collapse
Affiliation(s)
- Ting Ye
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.,Laboratory of Translational Cancer Stem Cell Research, Chongqing Medical University, Chongqing, China.,Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jingyuan Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.,Laboratory of Translational Cancer Stem Cell Research, Chongqing Medical University, Chongqing, China
| | - Zhiwei Sun
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.,Laboratory of Translational Cancer Stem Cell Research, Chongqing Medical University, Chongqing, China
| | - Doudou Liu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.,Laboratory of Translational Cancer Stem Cell Research, Chongqing Medical University, Chongqing, China
| | - Bin Zeng
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.,Laboratory of Translational Cancer Stem Cell Research, Chongqing Medical University, Chongqing, China
| | - Qiting Zhao
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.,Laboratory of Translational Cancer Stem Cell Research, Chongqing Medical University, Chongqing, China
| | - Jianyu Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.,Laboratory of Translational Cancer Stem Cell Research, Chongqing Medical University, Chongqing, China
| | - H Rosie Xing
- Laboratory of Translational Cancer Stem Cell Research, Chongqing Medical University, Chongqing, China.,College of Biomedical Engineering, State Key Laboratory of Ultrasound Engineering in Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
182
|
Wang Q, Ren H, Xu Y, Jiang J, Wudu M, Liu Z, Su H, Jiang X, Zhang Y, Zhang B, Qiu X. GRWD1 promotes cell proliferation and migration in non-small cell lung cancer by activating the Notch pathway. Exp Cell Res 2019; 387:111806. [PMID: 31891681 DOI: 10.1016/j.yexcr.2019.111806] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 12/22/2022]
Abstract
GRWD1 is a member of the WD repeat protein family that is over-expressed in various cancer cell lines and associated with poor prognosis in patients with cancer. However, its biological function and mechanism in non-small cell lung cancer (NSCLC) remain unclear. In this study, we aimed to elucidate the role of GRWD1 in NSCLC. Immunohistochemistry on tumor specimens from 170 patients showed that GRWD1 is highly expressed in NSCLC tissues and positively correlated with tumor size, lymph node metastasis, and P-TNM stage, but negatively correlated with differentiation and prognosis. We found that GRWD1 promotes cell colony formation by affecting the expression of Cyclin B1, CDK1, and p27 and inducing G2/M transition. GRWD1 was also found to stimulate cell migration through RhoA, RhoC, and CDC42, and induce epithelial-mesenchymal transition by affecting the expression of E-cadherin, N-cadherin, Vimentin, Snail, Zeb1, and ZO-1. Our results indicated that the GRWD1 can activate the Notch signaling pathway by affecting the Notch intracellular domain and promoting the expression of Hes1. Our use of DAPT to suppress Notch signaling confirmed that GRWD1 promotes the progression of NSCLC through the Notch signaling pathway and may be a potential prognostic biomarker and therapeutic target for this disease.
Collapse
Affiliation(s)
- Qiongzi Wang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Hongjiu Ren
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yitong Xu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Jun Jiang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Muli Wudu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Zongang Liu
- Department of Thoracic Surgery, Shengjing Hospital, China Medical University, No.36 Sanhao St., Heping District, Shenyang, China
| | - Hongbo Su
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xizi Jiang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yao Zhang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xueshan Qiu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
183
|
Wu P, Wang Y, Wu Y, Jia Z, Song Y, Liang N. Expression and prognostic analyses of ITGA11, ITGB4 and ITGB8 in human non-small cell lung cancer. PeerJ 2019; 7:e8299. [PMID: 31875161 PMCID: PMC6927340 DOI: 10.7717/peerj.8299] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/26/2019] [Indexed: 12/30/2022] Open
Abstract
Background Integrins play a crucial role in the regulation process of cell proliferation, migration, differentiation, tumor invasion and metastasis. ITGA11, ITGB4 and ITGB8 are three encoding genes of integrins family. Accumulative evidences have proved that abnormal expression of ITGA11, ITGB4 and ITGB8 are a common phenomenon in different malignances. However, their expression patterns and prognostic roles for patients with non-small cell lung cancer (NSCLC) have not been completely illustrated. Methods We investigated the expression patterns and prognostic values of ITGA11, ITGB4 and ITGB8 in patients with NSCLC through using a series of databases and various datasets, including ONCOMINE, GEPIA, HPA, TCGA and GEO datasets. Results We found that the expression levels of ITGA11 and ITGB4 were significantly upregulated in both LUAD and LUSC, while ITGB8 was obviously upregulated in LUSC. Additionally, higher expression level of ITGB4 revealed a worse OS in LUAD. Conclusion Our findings suggested that ITGA11 and ITGB4 might have the potential ability to act as diagnostic biomarkers for both LUAD and LUSC, while ITGB8 might serve as diagnostic biomarker for LUSC. Furthermore, ITGB4 could serve as a potential prognostic biomarker for LUAD.
Collapse
Affiliation(s)
- Pancheng Wu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanyu Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yijun Wu
- Peking Union Medical College, Eight-Year MD Program, Chinese Academy of Medical Sciences, Beijing, China
| | - Ziqi Jia
- Peking Union Medical College, Eight-Year MD Program, Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Song
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
184
|
Malousi A, Kouidou S, Tsagiopoulou M, Papakonstantinou N, Bouras E, Georgiou E, Tzimagiorgis G, Stamatopoulos K. MeinteR: A framework to prioritize DNA methylation aberrations based on conformational and cis-regulatory element enrichment. Sci Rep 2019; 9:19148. [PMID: 31844073 PMCID: PMC6915744 DOI: 10.1038/s41598-019-55453-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
DNA methylation studies have been reformed with the advent of single-base resolution arrays and bisulfite sequencing methods, enabling deeper investigation of methylation-mediated mechanisms. In addition to these advancements, numerous bioinformatics tools address important computational challenges, covering DNA methylation calling up to multi-modal interpretative analyses. However, contrary to the analytical frameworks that detect driver mutational signatures, the identification of putatively actionable epigenetic events remains an unmet need. The present work describes a novel computational framework, called MeinteR, that prioritizes critical DNA methylation events based on the following hypothesis: critical aberrations of DNA methylation more likely occur on a genomic substrate that is enriched in cis-acting regulatory elements with distinct structural characteristics, rather than in genomic “deserts”. In this context, the framework incorporates functional cis-elements, e.g. transcription factor binding sites, tentative splice sites, as well as conformational features, such as G-quadruplexes and palindromes, to identify critical epigenetic aberrations with potential implications on transcriptional regulation. The evaluation on multiple, public cancer datasets revealed significant associations between the highest-ranking loci with gene expression and known driver genes, enabling for the first time the computational identification of high impact epigenetic changes based on high-throughput DNA methylation data.
Collapse
Affiliation(s)
- Andigoni Malousi
- Lab. of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Sofia Kouidou
- Lab. of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Tsagiopoulou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Nikos Papakonstantinou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Emmanouil Bouras
- Lab. of Hygiene, Social-Preventive Medicine & Medical Statistics, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Elisavet Georgiou
- Lab. of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Tzimagiorgis
- Lab. of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| |
Collapse
|
185
|
Zhang Y, Kou C, Wang S, Zhang Y. Genome-wide Differential-based Analysis of the Relationship between DNA Methylation and Gene Expression in Cancer. Curr Bioinform 2019. [DOI: 10.2174/1574893614666190424160046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background::
DNA methylation is an epigenetic modification that plays an important
role in regulating gene expression. There is evidence that the hypermethylation of promoter regions
always causes gene silencing. However, how the methylation patterns of other regions in the
genome, such as gene body and 3’UTR, affect gene expression is unknown.
Objective::
The study aimed to fully explore the relationship between DNA methylation and expression
throughout the genome-wide analysis which is important in understanding the function of
DNA methylation essentially.
Method::
In this paper, we develop a heuristic framework to analyze the relationship between the
methylated change in different regions and that of the corresponding gene expression based on differential
analysis.
Results::
To understande the methylated function of different genomic regions, a gene is divided
into seven functional regions. By applying the method in five cancer datasets from the Synapse database,
it was found that methylated regions with a significant difference between cases and controls
were almost uniformly distributed in the seven regions of the genome. Also, the effect of
DNA methylation in different regions on gene expression was different. For example, there was a
higher percentage of positive relationships in 1stExon, gene body and 3’UTR than in TSS1500 and
TSS200. The functional analysis of genes with a significant positive and negative correlation between
DNA methylation and gene expression demonstrated the epigenetic mechanism of cancerassociated
genes.
Conclusion::
Differential based analysis helps us to recognize the change in DNA methylation and
how this change affects the change in gene expression. It provides a basis for further integrating
gene expression and DNA methylation data to identify disease-associated biomarkers.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of information and control engineering, Qingdao University of Technology, Qingdao, Shandong, China
| | - Chuanhua Kou
- School of information and control engineering, Qingdao University of Technology, Qingdao, Shandong, China
| | - Shudong Wang
- College of Computer and Communication Engineering, China University of Petroleum (East China), Qingdao, Shandong, China
| | - Yulin Zhang
- College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, Shandong, China
| |
Collapse
|
186
|
Ko PH, Lenka G, Chen YA, Chuang EY, Tsai MH, Sher YP, Lai LC. Semaphorin 5A suppresses the proliferation and migration of lung adenocarcinoma cells. Int J Oncol 2019; 56:165-177. [PMID: 31789397 PMCID: PMC6910195 DOI: 10.3892/ijo.2019.4932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/13/2019] [Indexed: 12/26/2022] Open
Abstract
Semaphorin 5A (SEMA5A), a member of the semaphorin family, plays an important role in axonal guidance. Previously, the authors identified another possible role of SEMA5A as a prognostic biomarker for non-smoking women with lung adenocarcinoma in Taiwan, and this phenomenon has been validated in other ethnic groups. However, the functional significance of SEMA5A in lung adenocarcinoma remains unclear. Therefore, we assessed the function of SEMA5A in three lung adenocarcinoma cell lines in this study. Kaplan-Meier Plotter for lung cancer was conducted for survival analyses. Reverse transcription-quantitative PCR (RT-qPCR) and western blot analysis were performed to investigate the expression and post-translational regulation of SEMA5A in lung adenocar-cinoma cell lines. A pre-designed PyroMark CpG assay and 5-aza-2′-deoxycytidine treatment were used to measure the methylation levels of SEMA5A. The biological functions of lung adenocarcinoma cells overexpressing SEMA5A were investigated by microarrays, and validated both in vitro (proliferation, colony formation and migration assays) and in vivo (tumor xenografts) experiments. The results revealed that the hypermethylation of SEMA5A and the cleavage of the extracellular domain of SEMA5A were responsible for the downregulation of the SEMA5A levels in lung adenocarcinoma cells (A549 and H1299) as compared to the normal controls. Functional analysis of SEMA5A-regulated genes revealed that they were involved in cellular growth and proliferation. The overexpression of SEMA5A in A549 and H1299 cells significantly decreased the proliferation (P<0.01), colony formation (P<0.001) and migratory ability (P<0.01) of the cells. The suppressive effects of SEMA5A on the proliferative and migratory ability of the cells were also observed in both in vitro and in vivo experiments using brain metastatic Bm7 lung adenocarcinoma cells. On the whole, the findings of this study suggest a suppressive role for SEMA5A in lung adenocarcinoma involving the inhibition of the proliferation and migration of lung transformed cells.
Collapse
Affiliation(s)
- Pin-Hao Ko
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, R.O.C
| | - Govinda Lenka
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, R.O.C
| | - Yu-An Chen
- Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei 10055, Taiwan, R.O.C
| | - Eric Y Chuang
- Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei 10055, Taiwan, R.O.C
| | - Mong-Hsun Tsai
- Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei 10055, Taiwan, R.O.C
| | - Yuh-Pyng Sher
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, R.O.C
| |
Collapse
|
187
|
Zhang C, Hao X. Prognostic Significance of CD276 in Non-small Cell Lung Cancer. Open Med (Wars) 2019; 14:805-812. [PMID: 31737785 PMCID: PMC6843478 DOI: 10.1515/med-2019-0076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/07/2019] [Indexed: 11/15/2022] Open
Abstract
Background The expression and significance of CD276 in non-small cell lung cancer (NSCLC) was explored. Method The BioGPS database was used to analyze the expression level of CD276 in normal tissues. Studies on the expression of CD276 in NSCLC patients using the Oncomine database. The prognostic roles of CD276 in NSCLC was studied using the Kaplan-Meier plotter database. Result The BioGPS database showed CD276 expression in all the human normal tissues. Compared with normal lung tissue, CD276 gene highly expressed in NSCLC tissue at mRNA level (P<0.05). The expression level of CD276 gene was negatively correlated with overall survival (OS) of NSCLC patients. Subgroup analysis showed that CD276 expression level had a significant effect on OS of patients with lung adenocarcinoma, while in squamous cell carcinoma its expression level had no significant effect on OS. Conclusion According to the information mined from the tumor gene database, CD276 mRNA was found highly expressed in NSCLC tissue and the expression of CD276 has a significant impact on survival of NSCLC patients, which provides an important theoretical basis for further study of the role of CD276 in the occurrence and development of NSCLC.
Collapse
Affiliation(s)
- Changgong Zhang
- Department of Oncology, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xuezhi Hao
- Department of Oncology, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
188
|
Zhu HE, Yin JY, Chen DX, He S, Chen H. Agmatinase promotes the lung adenocarcinoma tumorigenesis by activating the NO-MAPKs-PI3K/Akt pathway. Cell Death Dis 2019; 10:854. [PMID: 31699997 PMCID: PMC6838094 DOI: 10.1038/s41419-019-2082-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/13/2019] [Accepted: 10/17/2019] [Indexed: 12/24/2022]
Abstract
Lung adenocarcinoma (LUAD) is one of the leading causes of cancer-related death worldwide. There is an urgent need to uncover the pathogenic mechanism to develop new treatments. Agmatinase (AGMAT) expression and its association with clinicopathological characteristics were analyzed via GEO, Oncomine, and TCGA databases, and IHC staining in human LUAD specimens. An EdU cell proliferation kit, propidiumiodide staining, colony formation, cell migration, and invasion assays, and a xenograft tumor model were used to detect the biological function of AGMAT in LUAD. Furthermore, the expression level of nitric oxide (NO) was detected using a DAF-FMDA fluorescent probe or nitrite assay kit, and further validated with Carboxy-PTIO (a NO scavenger). The roles of three isoforms of nitric oxide synthases (nNOS, eNOS, and iNOS) were validated using L-NAME (eNOS inhibitor), SMT (iNOS inhibitor), and spermidine (nNOS inhibitor). AGMAT expression was up-regulated in LUAD tissues. LUAD patients with high AGMAT levels were associated with poorer prognoses. AGMAT promoted LUAD tumorigenesis in NO released by iNOS both in vitro and in vivo. Importantly, NO signaling up-regulated the expression of cyclin D1 via activating the MAPK and PI3K/Akt-dependent c-myc activity, ultimately promoting the malignant proliferation of tumor cells. On the whole, AGMAT promoted NO release via up-regulating the expression of iNOS. High levels of NO drove LUAD tumorigenesis via activating MAPK and PI3K/Akt cascades. AGMAT might be a potential diagnostic and therapeutic target for LUAD patients.
Collapse
Affiliation(s)
- Hui-Er Zhu
- Department of Emergency Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510150, PR China
| | - Jia-Yi Yin
- Department of Emergency Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510150, PR China
| | - De-Xiong Chen
- Department of Emergency Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510150, PR China
| | - Sheng He
- Department of Respiratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510150, PR China
| | - Hui Chen
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510150, PR China.
| |
Collapse
|
189
|
Murray CW, Brady JJ, Tsai MK, Li C, Winters IP, Tang R, Andrejka L, Ma RK, Kunder CA, Chu P, Winslow MM. An LKB1-SIK Axis Suppresses Lung Tumor Growth and Controls Differentiation. Cancer Discov 2019; 9:1590-1605. [PMID: 31350327 PMCID: PMC6825558 DOI: 10.1158/2159-8290.cd-18-1237] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 05/09/2019] [Accepted: 07/22/2019] [Indexed: 12/29/2022]
Abstract
The kinase LKB1 is a critical tumor suppressor in sporadic and familial human cancers, yet the mechanisms by which it suppresses tumor growth remain poorly understood. To investigate the tumor-suppressive capacity of four canonical families of LKB1 substrates in vivo, we used CRISPR/Cas9-mediated combinatorial genome editing in a mouse model of oncogenic KRAS-driven lung adenocarcinoma. We demonstrate that members of the SIK family are critical for constraining tumor development. Histologic and gene-expression similarities between LKB1- and SIK-deficient tumors suggest that SIKs and LKB1 operate within the same axis. Furthermore, a gene-expression signature reflecting SIK deficiency is enriched in LKB1-mutant human lung adenocarcinomas and is regulated by LKB1 in human cancer cell lines. Together, these findings reveal a key LKB1-SIK tumor-suppressive axis and underscore the need to redirect efforts to elucidate the mechanisms through which LKB1 mediates tumor suppression. SIGNIFICANCE: Uncovering the effectors of frequently altered tumor suppressor genes is critical for understanding the fundamental driving forces of cancer growth. Our identification of the SIK family of kinases as effectors of LKB1-mediated tumor suppression will refocus future mechanistic studies and may lead to new avenues for genotype-specific therapeutic interventions.This article is highlighted in the In This Issue feature, p. 1469.
Collapse
Affiliation(s)
- Christopher W Murray
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California
| | - Jennifer J Brady
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Min K Tsai
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Chuan Li
- Department of Biology, Stanford University, Stanford, California
| | - Ian P Winters
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Rui Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Laura Andrejka
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Rosanna K Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Christian A Kunder
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Pauline Chu
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Monte M Winslow
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California.
- Department of Genetics, Stanford University School of Medicine, Stanford, California
- Department of Pathology, Stanford University School of Medicine, Stanford, California
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
190
|
Affiliation(s)
- Julia Kastner
- University of Maryland School of Medicine, Baltimore, MD
| | - Rydhwana Hossain
- University of Maryland School of Medicine, Cardiothoracic Imaging, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Medical Center, Baltimore, MD
| | | |
Collapse
|
191
|
Hernández-Lemus E, Reyes-Gopar H, Espinal-Enríquez J, Ochoa S. The Many Faces of Gene Regulation in Cancer: A Computational Oncogenomics Outlook. Genes (Basel) 2019; 10:E865. [PMID: 31671657 PMCID: PMC6896122 DOI: 10.3390/genes10110865] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022] Open
Abstract
Cancer is a complex disease at many different levels. The molecular phenomenology of cancer is also quite rich. The mutational and genomic origins of cancer and their downstream effects on processes such as the reprogramming of the gene regulatory control and the molecular pathways depending on such control have been recognized as central to the characterization of the disease. More important though is the understanding of their causes, prognosis, and therapeutics. There is a multitude of factors associated with anomalous control of gene expression in cancer. Many of these factors are now amenable to be studied comprehensively by means of experiments based on diverse omic technologies. However, characterizing each dimension of the phenomenon individually has proven to fall short in presenting a clear picture of expression regulation as a whole. In this review article, we discuss some of the more relevant factors affecting gene expression control both, under normal conditions and in tumor settings. We describe the different omic approaches that we can use as well as the computational genomic analysis needed to track down these factors. Then we present theoretical and computational frameworks developed to integrate the amount of diverse information provided by such single-omic analyses. We contextualize this within a systems biology-based multi-omic regulation setting, aimed at better understanding the complex interplay of gene expression deregulation in cancer.
Collapse
Affiliation(s)
- Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico.
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Helena Reyes-Gopar
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico.
| | - Jesús Espinal-Enríquez
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico.
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Soledad Ochoa
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico.
| |
Collapse
|
192
|
Malvi P, Janostiak R, Nagarajan A, Cai G, Wajapeyee N. Loss of thymidine kinase 1 inhibits lung cancer growth and metastatic attributes by reducing GDF15 expression. PLoS Genet 2019; 15:e1008439. [PMID: 31589613 PMCID: PMC6797230 DOI: 10.1371/journal.pgen.1008439] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/17/2019] [Accepted: 09/19/2019] [Indexed: 12/25/2022] Open
Abstract
Metabolic alterations that are critical for cancer cell growth and metastasis are one of the key hallmarks of cancer. Here, we show that thymidine kinase 1 (TK1) is significantly overexpressed in tumor samples from lung adenocarcinoma (LUAD) patients relative to normal controls, and this TK1 overexpression is associated with significantly reduced overall survival and cancer recurrence. Genetic knockdown of TK1 with short hairpin RNAs (shRNAs) inhibits both the growth and metastatic attributes of LUAD cells in culture and in mice. We further show that transcriptional overexpression of TK1 in LUAD cells is driven, in part, by MAP kinase pathway in a transcription factor MAZ dependent manner. Using targeted and gene expression profiling-based approaches, we then show that loss of TK1 in LUAD cells results in reduced Rho GTPase activity and reduced expression of growth and differentiation factor 15 (GDF15). Furthermore, ectopic expression of GDF15 can partially rescue TK1 knockdown-induced LUAD growth and metastasis inhibition, confirming its important role as a downstream mediator of TK1 function in LUAD. Collectively, our findings demonstrate that TK1 facilitates LUAD tumor and metastatic growth and represents a target for LUAD therapy. Thymidine kinase 1 (TK1) is overexpressed and associated with poor prognosis in a number of different cancers. However, despite these data suggesting an important role for TK1 in cancer pathogenesis, no study thus far has analyzed the functional effect of TK1 inhibition on tumor growth and metastasis. In this study, we performed TK1 knockdown and found that this protein is necessary for lung adenocarcinoma (LUAD) tumor growth and metastasis. Notably, inhibition of another nucleotide kinase, deoxycytidine kinase (DCK), had no effect on LUAD tumor growth and metastatic attributes. We therefore performed experiments to determine if the TK1 mechanism of action in cancer is distinct from its previously reported role in DNA damage, DNA replication, and DNA repair. We found that TK1 can promote LUAD tumor growth and metastasis in a non-canonical manner by activating Rho GTPase activity and growth and differentiation factor 15 (GDF15) expression. Taken together, our data suggest that TK1 may represent a potential target for development of LUAD therapy, due to its critical role in maintaining lung tumor growth and metastasis.
Collapse
Affiliation(s)
- Parmanand Malvi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Radoslav Janostiak
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Arvindhan Nagarajan
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Guoping Cai
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
193
|
Zhang Y, Zhao X, Zhou Y, Wang M, Zhou G. Identification of an E3 ligase-encoding gene RFWD3 in non-small cell lung cancer. Front Med 2019; 14:318-326. [DOI: 10.1007/s11684-019-0708-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/25/2019] [Indexed: 01/05/2023]
|
194
|
Li S, Jiang Z, Li Y, Xu Y. Prognostic significance of minichromosome maintenance mRNA expression in human lung adenocarcinoma. Oncol Rep 2019; 42:2279-2292. [PMID: 31545501 PMCID: PMC6826304 DOI: 10.3892/or.2019.7330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022] Open
Abstract
The minichromosome maintenance (MCM) gene family plays an essential role in DNA replication and cell cycle progression. However, MCM gene expression has not been well-studied in lung adenocarcinoma (LUAD). In the present study, the expression, prognostic value and functions of MCMs in LUAD were investigated using several databases and bioinformatic tools, including Oncomine, GEPIA, cBioPortal, CancerSEA and Kaplan-Meier plotter. It was demonstrated that the mRNA expression of MCM2, MCM4 and MCM10 were significantly increased in patients with LUAD. High mRNA expression of MCM2-5, MCM8 and MCM10 were associated with poor overall survival and progression-free survival. High MCM4 expression was associated with adverse post-progression survival. In addition, the Human Protein Atlas database showed that MCM protein expression was consistent with the mRNA expression. These results demonstrate that MCM2, MCM4 and MCM10 are potential prognostic markers and therapeutic targets for LUAD.
Collapse
Affiliation(s)
- Shu Li
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Zhou Jiang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, P.R. China
| | - Yang Xu
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
195
|
Smetannikova NA, Evdokimov AA, Netesova NA, Abdurashitov MA, Akishev AG, Dubinin EV, Pozdnyakov PI, Vihlyanov IV, Nikitin MK, Topolnitsky EB, Karpov AB, Kolomiets SA, Degtyarev SK. [Application of GLAD-PCR Assay for Study on DNA Methylation in Regulatory Regions of Some Tumor-Suppressor Genes in Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2019; 22:551-561. [PMID: 31526458 PMCID: PMC6754573 DOI: 10.3779/j.issn.1009-3419.2019.09.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Hypermethylation of the gene regulatory regions are common for many cancer diseases. In this work we applied GLAD-PCR assay for identificating of the aberrantly methylated RCGY sites in the regulatory regions of some downregulated genes in tissue samples of lung cancer (LC). This list includes EFEMP1, EPHA5, HOXA5, HOXA9, LHX1, MYF6, NID2, OTX1, PAX9, RARB, RASSF1A, RXRG, SIX6, SKOR1 and TERT genes. The results of DNA samples from 40 cancer and 25 normal lung tissues showed a good diagnostic potential of selected RCGY sites in regulatory regions of MYF6, SIX6, RXRG, LHX1, RASSF1A and TERT genes with relatively high sensitivity (80.0 %) and specificity (88.0 %) of LC detection in tumor DNA.
Collapse
Affiliation(s)
- N A Smetannikova
- State Research Center of Virology and Biotechnology, Koltsovo, Russia.,EpiGene LLC, Novosibirsk, Russia
| | - A A Evdokimov
- State Research Center of Virology and Biotechnology, Koltsovo, Russia.,EpiGene LLC, Novosibirsk, Russia
| | - N A Netesova
- State Research Center of Virology and Biotechnology, Koltsovo, Russia.,EpiGene LLC, Novosibirsk, Russia
| | | | | | | | - P I Pozdnyakov
- State Research Center of Virology and Biotechnology, Koltsovo, Russia
| | | | - M K Nikitin
- Altai Regional Oncology Center, Barnaul, Russia
| | | | - A B Karpov
- Seversk Biophysical Research Centre, Seversk, Russia
| | | | | |
Collapse
|
196
|
Zhang ZH, Luan ZY, Han F, Chen HQ, Liu WB, Liu JY, Cao J. Diagnostic and prognostic value of the BEX family in lung adenocarcinoma. Oncol Lett 2019; 18:5523-5533. [PMID: 31612060 PMCID: PMC6781490 DOI: 10.3892/ol.2019.10905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/23/2019] [Indexed: 02/07/2023] Open
Abstract
Previous studies have demonstrated that members of the brain-expressed X-linked (BEX) family participate in a wide range of biological functions in normal and tumor tissues. However, their role and clinical significance in lung adenocarcinoma (LUAD) remains unclear. The present study investigated The Cancer Genome Atlas data and revealed that the BEX family was downregulated in LUAD tissues compared with adjacent non-cancerous tissues. Additionally, analysis of LUAD cohorts from the Oncomine database revealed similar results. Furthermore, the expression of BEX members was significantly decreased in several LUAD cell lines compared with normal lung epithelial cells in vitro. The aforementioned data mining and in vitro results suggested that the BEX family may be involved in the development of LUAD. Furthermore, receiver operating characteristic curve analysis revealed that BEX members exhibited high sensitivity and specificity for the diagnosis of patients with LUAD. The low expression levels of BEX1, BEX4 and BEX5 were associated with certain pathologic features, particularly in advanced LUAD. Survival analysis demonstrated that BEX members, particularly BEX4, were involved in the prognosis of patients with LUAD at early and late clinical stages. The results obtained in the current study suggested that BEX members may serve as potential tumor biomarkers for the diagnosis and prognosis of patients with LUAD.
Collapse
Affiliation(s)
- Zhong-Hao Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Zhi-Yu Luan
- Department of Medical Affairs, Chinese PLA No. 964 Hospital, Changchun, Jilin 130062, P.R. China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
197
|
Deng J, Hou G, Fang Z, Liu J, Lv XD. Distinct expression and prognostic value of OTU domain-containing proteins in non-small-cell lung cancer. Oncol Lett 2019; 18:5417-5427. [PMID: 31612050 PMCID: PMC6781715 DOI: 10.3892/ol.2019.10883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin-proteasome pathway is an important protein degradation regulatory system in cells. This pathway is also a reversible process that is strictly regulated, and the regulation of deubiquitinating enzymes (DUBs) represents an important facet of the process. Ovarian tumor-associated proteases domain-containing proteins (OTUDs), as a subfamily within the DUB family, serve an important role in regulatory mechanisms of several biological processes, through the regulation of gene transcription, cell cycle, immune response, inflammation and tumor growth processes, and may be important in the diagnosis of various diseases and constitute novel drug targets. However, the role of OTUDs in non-small-cell lung cancer (NSCLC) has not been fully elucidated. In the present study, the Oncomine database was used to examine gene expression in NSCLC, and the prognostic value of each gene was analyzed by Kaplan-Meier analysis. The results indicated that high mRNA expression levels of OTUD1, OTUD3, OTUD4 and putative bifunctional UDP-N-acetylglucosamine transferase and deubiquitinase ALG13 were associated with improved prognosis in all NSCLC and adenocarcinoma, but not in squamous cell carcinoma. By contrast, high expression levels of OTUD2 mRNA were associated with poorer overall survival in patients with NSCLC. These data suggested that these OTUD isozymes may be a potential drug target for NSCLC.
Collapse
Affiliation(s)
- Jingjing Deng
- Department of Respiration, Key Medical Discipline of Jiaxing, Jiaxing Lung Cancer Innovation Team, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Gouxin Hou
- Department of Oncology, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Zhixian Fang
- Department of Respiration, Key Medical Discipline of Jiaxing, Jiaxing Lung Cancer Innovation Team, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Jialiang Liu
- Department of Respiration, Key Medical Discipline of Jiaxing, Jiaxing Lung Cancer Innovation Team, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Xiao-Dong Lv
- Department of Respiration, Key Medical Discipline of Jiaxing, Jiaxing Lung Cancer Innovation Team, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
198
|
Wang H, Zhang Z, Xu K, Wei S, Li L, Wang L. Exploration of estrogen receptor-associated hub genes and potential molecular mechanisms in non-smoking females with lung adenocarcinoma using integrated bioinformatics analysis. Oncol Lett 2019; 18:4605-4612. [PMID: 31611968 PMCID: PMC6781748 DOI: 10.3892/ol.2019.10845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 07/26/2019] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to explore important estrogen receptor-associated genes and to determine the potential pathogenic and prognostic factors for lung adenocarcinoma in non-smoking females. The gene expression profiles of the two datasets (GSE32863 and GSE75037) were downloaded from the Gene Expression Omnibus (GEO) database. Data for non-smoking female patients with lung adenocarcinoma from The Cancer Genome Atlas (TCGA) database were also downloaded. The Linear Models for Microarray Data package in R was used to explore the differentially expressed genes (DEGs) between samples from non-smoking female patients with lung adenocarcinoma and samples of adjacent non-cancerous lung tissue. The Database for Annotation, Visualization and Integrated Discovery was used for functional enrichment of the DEGs. The Search Tool for the Retrieval of Interacting Genes/Proteins and Cytoscape software were used to obtain a protein-protein interaction (PPI) network and to identify the hub genes. In addition, the network between the estrogen receptor and the DEGs was constructed. A Kaplan-Meier survival plot was used to analyze the overall survival (OS). In total, 248 DEGs were identified in the GEO database, and 2,362 DEGs were identified in TCGA database. The intersection of the two datasets (DEGs in GEO and TCGA) revealed 170 DEGs, and these were selected for further investigation. Gene Ontology was used to group the 170 DEGs into biological process, molecular function and cellular component categories. Kyoto Encyclopedia of Genes and Genomes pathway analysis was subsequently performed. A total of 27 hub genes, including caveolin 1 (CAV1), matrix metallopeptidase 9 (MMP9), secreted phosphoprotein 1 (SPP1) and collagen type I α 1 chain (COL1A1), were closely associated with the estrogen receptor. CAV1 and SPP1 were associated with the OS. However, MMP9 and COL1A1 did not have any significant effect on OS. In summary, the identification of CAV1, MMP9, SPP1 and COL1A1 may provide novel insights into the molecular mechanism of lung adenocarcinoma in non-smoking female patients, and the results obtained in the current study may guide future clinical studies.
Collapse
Affiliation(s)
- Hao Wang
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC West District), Hefei, Anhui 230031, P.R. China
| | - Zhihong Zhang
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC West District), Hefei, Anhui 230031, P.R. China
| | - Ke Xu
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC West District), Hefei, Anhui 230031, P.R. China
| | - Song Wei
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC West District), Hefei, Anhui 230031, P.R. China
| | - Lailing Li
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC West District), Hefei, Anhui 230031, P.R. China
| | - Lijun Wang
- Department of Respiratory Disease, Tongling People's Hospital, Tongling, Anhui 244000, P.R. China
| |
Collapse
|
199
|
Epsi NJ, Panja S, Pine SR, Mitrofanova A. pathCHEMO, a generalizable computational framework uncovers molecular pathways of chemoresistance in lung adenocarcinoma. Commun Biol 2019; 2:334. [PMID: 31508508 PMCID: PMC6731276 DOI: 10.1038/s42003-019-0572-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/01/2019] [Indexed: 02/01/2023] Open
Abstract
Despite recent advances in discovering a wide array of novel chemotherapy agents, identification of patients with poor and favorable chemotherapy response prior to treatment administration remains a major challenge in clinical oncology. To tackle this challenge, we present a generalizable genome-wide computational framework pathCHEMO that uncovers interplay between transcriptomic and epigenomic mechanisms altered in biological pathways that govern chemotherapy response in cancer patients. Our approach is tested on patients with lung adenocarcinoma who received adjuvant standard-of-care doublet chemotherapy (i.e., carboplatin-paclitaxel), identifying seven molecular pathway markers of primary treatment response and demonstrating their ability to predict patients at risk of carboplatin-paclitaxel resistance in an independent patient cohort (log-rank p-value = 0.008, HR = 10). Furthermore, we extend our method to additional chemotherapy-regimens and cancer types to demonstrate its accuracy and generalizability. We propose that our model can be utilized to prioritize patients for specific chemotherapy-regimens as a part of treatment planning. Nusrat Epsi et al. present pathCHEMO, a computational framework for uncovering transcriptomic and epigenomic pathways of chemoresistance in cancer that has the potential to improve clinical decision-making. They apply pathCHEMO to lung adenocarcinoma data from public databases, and identify seven molecular pathways implicated in carboplatin-paclitaxel resistance.
Collapse
Affiliation(s)
- Nusrat J Epsi
- 1Department of Health Informatics, Rutgers School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ 07107 USA
| | - Sukanya Panja
- 1Department of Health Informatics, Rutgers School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ 07107 USA
| | - Sharon R Pine
- 2Departments of Pharmacology and Medicine, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901 USA
| | - Antonina Mitrofanova
- 1Department of Health Informatics, Rutgers School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ 07107 USA.,3Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA
| |
Collapse
|
200
|
Wang X, Xu Z, Ren X, Chen X, Wei J, Lin W, Li Z, Ou C, Gong Z, Yan Y. Function of low ADARB1 expression in lung adenocarcinoma. PLoS One 2019; 14:e0222298. [PMID: 31491024 PMCID: PMC6730894 DOI: 10.1371/journal.pone.0222298] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/26/2019] [Indexed: 02/05/2023] Open
Abstract
Adenosine deaminase RNA-specific B1 (ADARB1), an adenosine-to-inosine (A-to-I) RNA-editing enzyme, has been found to play an essential role in the development of cancer. However, the specific function of ADARB1 in lung cancer, especially in lung adenocarcinoma (LUAD), is still not fully understood and requires further study. In our study, integrative bioinformatics were used to analyze the detailed function of ADARB1 in LUAD. By conducting bioinformatics analyses of several public databases, such as Gene Expression Profiling Interactive Analysis (GEPIA), GE-mini, and Oncomine, we found significantly decreased ADARB1 expression in LUAD cells and tissues. Moreover, RT-PCR and Western blot showed lower ADARB1 expression in H358 and A549 LUAD cells compared to human bronchial epithelial Beas-2B cells. Wound Healing Assay indicated that knockdown ADARB1 could promote LUAD cell metastasis. By using the Kaplan-Meier Plotter tool, we found that downregulation of ADARB1 was related to shorter first progression (FP), overall survival time (OS) and post-progression survival time (PPS). The relevant clinical data acquired from the Wanderer database indicated that the expression and methylation values of ADARB1 were significantly associated with the clinical characteristics of LUAD. Using DNA methylation inhibitor, we found DNMT inhibitor 5-aza-2-deoxycytidine (5-azaD) could promote the expression of ADARB1 and reverse the inhibition effect of ADARB1 in migration. In addition, functional enrichment analysis of ADARB1-associated coexpression genes was further conducted. Our investigation demonstrated that low levels of ADARB1 were specifically found in LUAD, and this gene might be a potential target in the diagnostic and prognostic evaluation of LUAD patients.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinxin Ren
- Center for Molecular Medicine, Xiangya Hospital, Key Laboratory of Molecular Radiation Oncology of Hunan Province, Central South University, Changsha, China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Lin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhi Li
- Center for Molecular Medicine, Xiangya Hospital, Key Laboratory of Molecular Radiation Oncology of Hunan Province, Central South University, Changsha, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|