151
|
Huang PY, Catinot J, Zimmerli L. Ethylene response factors in Arabidopsis immunity. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1231-41. [PMID: 26663391 DOI: 10.1093/jxb/erv518] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Pathogen attack leads to transcriptional changes and metabolic modifications allowing the establishment of appropriate plant defences. Transcription factors (TFs) are key players in plant innate immunity. Notably, ethylene response factor (ERF) TFs are integrators of hormonal pathways and are directly responsible for the transcriptional regulation of several jasmonate (JA)/ethylene (ET)-responsive defence genes. Transcriptional activation or repression by ERFs is achieved through the binding to JA/ET-responsive gene promoters. In this review, we describe the regulation and mode of action at a molecular level of ERFs involved in Arabidopsis thaliana immunity. In particular, we focus on defence activators such as ERF1, ORA59, ERF6, and the recently described ERF96.
Collapse
|
152
|
Alpuerto JB, Hussain RMF, Fukao T. The key regulator of submergence tolerance, SUB1A, promotes photosynthetic and metabolic recovery from submergence damage in rice leaves. PLANT, CELL & ENVIRONMENT 2016; 39:672-84. [PMID: 26477688 DOI: 10.1111/pce.12661] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/12/2015] [Indexed: 05/24/2023]
Abstract
The submergence-tolerance regulator, SUBMERGENCE1A (SUB1A), of rice (Oryza sativa L.) modulates gene regulation, metabolism and elongation growth during submergence. Its benefits continue during desubmergence through protection from reactive oxygen species and dehydration, but there is limited understanding of SUB1A's role in physiological recovery from the stress. Here, we investigated the contribution of SUB1A to desubmergence recovery using the two near-isogenic lines, submergence-sensitive M202 and tolerant M202(Sub1). No visible damage was detected in the two genotypes after 3 d of submergence, but the sublethal stress differentially altered photosynthetic parameters and accumulation of energy reserves. Submergence inhibited photosystem II photochemistry and stimulated breakdown of protein and accumulation of several amino acids in both genotypes at similar levels. Upon desubmergence, however, more rapid return to homeostasis of these factors was observed in M202(Sub1). Submergence considerably restrained non-photochemical quenching (NPQ) in M202, whereas the value was unaltered in M202(Sub1) during the stress. Upon reaeration, submerged plants encounter sudden exposure to higher light. A greater capability for NPQ-mediated photoprotection can benefit the rapid recovery of photosynthetic performance and energy reserve metabolism in M202(Sub1). Our findings illuminate the significant role of SUB1A in active physiological recovery upon desubmergence, a component of enhanced tolerance to submergence.
Collapse
Affiliation(s)
| | | | - Takeshi Fukao
- Department of Crop and Soil Environmental Sciences
- Translational Plant Sciences Program, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
153
|
Du C, Hu K, Xian S, Liu C, Fan J, Tu J, Fu T. Dynamic transcriptome analysis reveals AP2/ERF transcription factors responsible for cold stress in rapeseed (Brassica napus L.). Mol Genet Genomics 2016; 291:1053-67. [PMID: 26728151 DOI: 10.1007/s00438-015-1161-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/14/2015] [Indexed: 02/02/2023]
Abstract
The APETALA2/ethylene response factor (AP2/ERF) transcription factor (TF) superfamily plays an important regulatory role in signal transduction of the plant responses to various stresses including low temperature. Significant progress has been made in understanding the mechanism of cold resistance in Brassica napus, an important oilseed crop. However, comprehensive studies on the induction and activity of these TFs under low temperature have been lacking. In this study, 132 AP2/ERF genes were identified by transcriptome sequencing of rapeseed leaves exposed to 0, 2, 6, 12, and 24 h of low (4 °C) temperature stress. The genes were classified into 4 subfamilies (AP2, DREB, ERF, and RAV) and 13 subgroups, among which the DREB subfamily and ERF subfamily contained 114 genes, no genes were assigned to soloist or DREB A3 subgroups. One hundred and eighteen genes were located on chromosomes A1 to C9. GO functional analysis and promoter sequence analysis revealed that these genes are involved in many molecular pathways that may enhance cold resistance in plants, such as the low-temperature responsiveness, methyl jasmonate, abscisic acid, and ethylene-responsiveness pathways. Their expression patterns revealed dynamic control at different times following initiation of cold stress; the RAV and DREB subfamilies were expressed at the early stage of cold stress, whereas the AP2 subfamily was expressed later. Quantitative PCR analyses of 13 cold-induced AP2/ERF TFs confirmed the accuracy of above results. This study is the first dynamic analysis of the AP2/ERF TFs responsible for cold stress in rapeseed. These findings will serve as a reference for future functional research on transcription in rapeseed.
Collapse
Affiliation(s)
- Chunfang Du
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, People's Republic of China.,Cotton Research Institute, Shanxi Academy of Agricultural Sciences, Yuncheng, 044000, People's Republic of China
| | - Kaining Hu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shuanshi Xian
- Cotton Research Institute, Shanxi Academy of Agricultural Sciences, Yuncheng, 044000, People's Republic of China
| | - Chunqing Liu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jianchun Fan
- Cotton Research Institute, Shanxi Academy of Agricultural Sciences, Yuncheng, 044000, People's Republic of China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, People's Republic of China.
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
154
|
Gasch P, Fundinger M, Müller JT, Lee T, Bailey-Serres J, Mustroph A. Redundant ERF-VII Transcription Factors Bind to an Evolutionarily Conserved cis-Motif to Regulate Hypoxia-Responsive Gene Expression in Arabidopsis. THE PLANT CELL 2016; 28:160-80. [PMID: 26668304 PMCID: PMC4746684 DOI: 10.1105/tpc.15.00866] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/01/2015] [Indexed: 05/08/2023]
Abstract
The response of Arabidopsis thaliana to low-oxygen stress (hypoxia), such as during shoot submergence or root waterlogging, includes increasing the levels of ∼50 hypoxia-responsive gene transcripts, many of which encode enzymes associated with anaerobic metabolism. Upregulation of over half of these mRNAs involves stabilization of five group VII ethylene response factor (ERF-VII) transcription factors, which are routinely degraded via the N-end rule pathway of proteolysis in an oxygen- and nitric oxide-dependent manner. Despite their importance, neither the quantitative contribution of individual ERF-VIIs nor the cis-regulatory elements they govern are well understood. Here, using single- and double-null mutants, the constitutively synthesized ERF-VIIs RELATED TO APETALA2.2 (RAP2.2) and RAP2.12 are shown to act redundantly as principle activators of hypoxia-responsive genes; constitutively expressed RAP2.3 contributes to this redundancy, whereas the hypoxia-induced HYPOXIA RESPONSIVE ERF1 (HRE1) and HRE2 play minor roles. An evolutionarily conserved 12-bp cis-regulatory motif that binds to and is sufficient for activation by RAP2.2 and RAP2.12 is identified through a comparative phylogenetic motif search, promoter dissection, yeast one-hybrid assays, and chromatin immunopurification. This motif, designated the hypoxia-responsive promoter element, is enriched in promoters of hypoxia-responsive genes in multiple species.
Collapse
Affiliation(s)
- Philipp Gasch
- Plant Physiology, University Bayreuth, 95440 Bayreuth, Germany
| | | | - Jana T Müller
- Plant Physiology, University Bayreuth, 95440 Bayreuth, Germany
| | - Travis Lee
- Center for Plant Cell Biology and Botany and Plant Sciences Department, University of California, Riverside, California 92521
| | - Julia Bailey-Serres
- Center for Plant Cell Biology and Botany and Plant Sciences Department, University of California, Riverside, California 92521
| | | |
Collapse
|
155
|
Barreto P, Okura V, Pena IA, Maia R, Maia IG, Arruda P. Overexpression of mitochondrial uncoupling protein 1 (UCP1) induces a hypoxic response in Nicotiana tabacum leaves. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:301-13. [PMID: 26494730 PMCID: PMC4682437 DOI: 10.1093/jxb/erv460] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mitochondrial uncoupling protein 1 (UCP1) decreases reactive oxygen species production under stress conditions by uncoupling the electrochemical gradient from ATP synthesis. This study combined transcriptome profiling with experimentally induced hypoxia to mechanistically dissect the impact of Arabidopsis thaliana UCP1 (AtUCP1) overexpression in tobacco. Transcriptomic analysis of AtUCP1-overexpressing (P07) and wild-type (WT) plants was carried out using RNA sequencing. Metabolite and carbohydrate profiling of hypoxia-treated plants was performed using (1)H-nuclear magnetic resonance spectroscopy and high-performance anion-exchange chromatography with pulsed amperometric detection. The transcriptome of P07 plants revealed a broad induction of stress-responsive genes that were not strictly related to the mitochondrial antioxidant machinery, suggesting that overexpression of AtUCP1 imposes a strong stress response within the cell. In addition, transcripts that mapped into carbon fixation and energy expenditure pathways were broadly altered. It was found that metabolite markers of hypoxic adaptation, such as alanine and tricarboxylic acid intermediates, accumulated in P07 plants under control conditions at similar rates to WT plants under hypoxia. These findings indicate that constitutive overexpression of AtUCP1 induces a hypoxic response. The metabolites that accumulated in P07 plants are believed to be important in signalling for an improvement in carbon assimilation and induction of a hypoxic response. Under these conditions, mitochondrial ATP production is less necessary and fermentative glycolysis becomes critical to meet cell energy demands. In this scenario, the more flexible energy metabolism along with an intrinsically activated hypoxic response make these plants better adapted to face several biotic and abiotic stresses.
Collapse
Affiliation(s)
- Pedro Barreto
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), 13083-875 Campinas, SP, Brazil
| | - Vagner Okura
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), 13083-875 Campinas, SP, Brazil
| | - Izabella A Pena
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), 13083-875 Campinas, SP, Brazil
| | - Renato Maia
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), 13083-875 Campinas, SP, Brazil
| | - Ivan G Maia
- Departamento de Genética, Instituto de Biociências, UNESP, 18618-970 Botucatu, SP, Brazil
| | - Paulo Arruda
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), 13083-875 Campinas, SP, Brazil Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), 13083-875 Campinas, SP, Brazil
| |
Collapse
|
156
|
Tamang BG, Fukao T. Plant Adaptation to Multiple Stresses during Submergence and Following Desubmergence. Int J Mol Sci 2015; 16:30164-80. [PMID: 26694376 PMCID: PMC4691168 DOI: 10.3390/ijms161226226] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/03/2015] [Accepted: 12/10/2015] [Indexed: 11/25/2022] Open
Abstract
Plants require water for growth and development, but excessive water negatively affects their productivity and viability. Flash floods occasionally result in complete submergence of plants in agricultural and natural ecosystems. When immersed in water, plants encounter multiple stresses including low oxygen, low light, nutrient deficiency, and high risk of infection. As floodwaters subside, submerged plants are abruptly exposed to higher oxygen concentration and greater light intensity, which can induce post-submergence injury caused by oxidative stress, high light, and dehydration. Recent studies have emphasized the significance of multiple stress tolerance in the survival of submergence and prompt recovery following desubmergence. A mechanistic understanding of acclimation responses to submergence at molecular and physiological levels can contribute to the deciphering of the regulatory networks governing tolerance to other environmental stresses that occur simultaneously or sequentially in the natural progress of a flood event.
Collapse
Affiliation(s)
- Bishal Gole Tamang
- Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Takeshi Fukao
- Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
- Translational Plant Sciences Program, Virginia Tech, Blacksburg, VA 24061, USA.
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
157
|
Bekele EA, Beshir WF, Hertog MLATM, Nicolai BM, Geeraerd AH. Metabolic profiling reveals ethylene mediated metabolic changes and a coordinated adaptive mechanism of 'Jonagold' apple to low oxygen stress. PHYSIOLOGIA PLANTARUM 2015; 155:232-47. [PMID: 26031836 DOI: 10.1111/ppl.12351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 03/30/2015] [Accepted: 05/06/2015] [Indexed: 05/14/2023]
Abstract
Apples are predominantly stored in controlled atmosphere (CA) storage to delay ripening and prolong their storage life. Profiling the dynamics of metabolic changes during ripening and CA storage is vital for understanding the governing molecular mechanism. In this study, the dynamics of the primary metabolism of 'Jonagold' apples during ripening in regular air (RA) storage and initiation of CA storage was profiled. 1-Methylcyclopropene (1-MCP) was exploited to block ethylene receptors and to get insight into ethylene mediated metabolic changes during ripening of the fruit and in response to hypoxic stress. Metabolic changes were quantified in glycolysis, the tricarboxylic acid (TCA) cycle, the Yang cycle and synthesis of the main amino acids branching from these metabolic pathways. Partial least square discriminant analysis of the metabolic profiles of 1-MCP treated and control apples revealed a metabolic divergence in ethylene, organic acid, sugar and amino acid metabolism. During RA storage at 18°C, most amino acids were higher in 1-MCP treated apples, whereas 1-aminocyclopropane-1-carboxylic acid (ACC) was higher in the control apples. The initial response of the fruit to CA initiation was accompanied by an increase of alanine, succinate and glutamate, but a decline in aspartate. Furthermore, alanine and succinate accumulated to higher levels in control apples than 1-MCP treated apples. The observed metabolic changes in these interlinked metabolites may indicate a coordinated adaptive strategy to maximize energy production.
Collapse
Affiliation(s)
- Elias A Bekele
- Department of Biosystems (BIOSYST), Division of Mechatronics, Biostatistics and Sensors (MeBioS), KU Leuven, Willem de Croylaan 42, bus 2428, 3001, Leuven, Belgium
| | - Wasiye F Beshir
- Department of Biosystems (BIOSYST), Division of Mechatronics, Biostatistics and Sensors (MeBioS), KU Leuven, Willem de Croylaan 42, bus 2428, 3001, Leuven, Belgium
| | - Maarten L A T M Hertog
- Department of Biosystems (BIOSYST), Division of Mechatronics, Biostatistics and Sensors (MeBioS), KU Leuven, Willem de Croylaan 42, bus 2428, 3001, Leuven, Belgium
| | - Bart M Nicolai
- Department of Biosystems (BIOSYST), Division of Mechatronics, Biostatistics and Sensors (MeBioS), KU Leuven, Willem de Croylaan 42, bus 2428, 3001, Leuven, Belgium
| | - Annemie H Geeraerd
- Department of Biosystems (BIOSYST), Division of Mechatronics, Biostatistics and Sensors (MeBioS), KU Leuven, Willem de Croylaan 42, bus 2428, 3001, Leuven, Belgium
| |
Collapse
|
158
|
Gibbs DJ, Conde JV, Berckhan S, Prasad G, Mendiondo GM, Holdsworth MJ. Group VII Ethylene Response Factors Coordinate Oxygen and Nitric Oxide Signal Transduction and Stress Responses in Plants. PLANT PHYSIOLOGY 2015; 169:23-31. [PMID: 25944828 PMCID: PMC4577381 DOI: 10.1104/pp.15.00338] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/30/2015] [Indexed: 05/18/2023]
Abstract
The group VII ethylene response factors (ERFVIIs) are plant-specific transcription factors that have emerged as important regulators of abiotic and biotic stress responses, in particular, low-oxygen stress. A defining feature of ERFVIIs is their conserved N-terminal domain, which renders them oxygen- and nitric oxide (NO)-dependent substrates of the N-end rule pathway of targeted proteolysis. In the presence of these gases, ERFVIIs are destabilized, whereas an absence of either permits their accumulation; ERFVIIs therefore coordinate plant homeostatic responses to oxygen availability and control a wide range of NO-mediated processes. ERFVIIs have a variety of context-specific protein and gene interaction partners, and also modulate gibberellin and abscisic acid signaling to regulate diverse developmental processes and stress responses. This update discusses recent advances in our understanding of ERFVII regulation and function, highlighting their role as central regulators of gaseous signal transduction at the interface of ethylene, oxygen, and NO signaling.
Collapse
Affiliation(s)
- Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom (D.J.G.); andDepartment of Plant and Crop Sciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom (J.V.C., S.B., G.P., G.M.M., M.J.H.)
| | - Jorge Vicente Conde
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom (D.J.G.); andDepartment of Plant and Crop Sciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom (J.V.C., S.B., G.P., G.M.M., M.J.H.)
| | - Sophie Berckhan
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom (D.J.G.); andDepartment of Plant and Crop Sciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom (J.V.C., S.B., G.P., G.M.M., M.J.H.)
| | - Geeta Prasad
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom (D.J.G.); andDepartment of Plant and Crop Sciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom (J.V.C., S.B., G.P., G.M.M., M.J.H.)
| | - Guillermina M Mendiondo
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom (D.J.G.); andDepartment of Plant and Crop Sciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom (J.V.C., S.B., G.P., G.M.M., M.J.H.)
| | - Michael J Holdsworth
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom (D.J.G.); andDepartment of Plant and Crop Sciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom (J.V.C., S.B., G.P., G.M.M., M.J.H.)
| |
Collapse
|
159
|
Sasidharan R, Voesenek LACJ. Ethylene-Mediated Acclimations to Flooding Stress. PLANT PHYSIOLOGY 2015; 169:3-12. [PMID: 25897003 PMCID: PMC4577390 DOI: 10.1104/pp.15.00387] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/18/2015] [Indexed: 05/18/2023]
Abstract
Flooding is detrimental for plants, primarily because of restricted gas exchange underwater, which leads to an energy and carbohydrate deficit. Impeded gas exchange also causes rapid accumulation of the volatile ethylene in all flooded plant cells. Although several internal changes in the plant can signal the flooded status, it is the pervasive and rapid accumulation of ethylene that makes it an early and reliable flooding signal. Not surprisingly, it is a major regulator of several flood-adaptive plant traits. Here, we discuss these major ethylene-mediated traits, their functional relevance, and the recent progress in identifying the molecular and signaling events underlying these traits downstream of ethylene. We also speculate on the role of ethylene in postsubmergence recovery and identify several questions for future investigations.
Collapse
Affiliation(s)
- Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584-CH Utrecht, The Netherlands
| | - Laurentius A C J Voesenek
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584-CH Utrecht, The Netherlands
| |
Collapse
|
160
|
Phukan UJ, Mishra S, Shukla RK. Waterlogging and submergence stress: affects and acclimation. Crit Rev Biotechnol 2015; 36:956-66. [PMID: 26177332 DOI: 10.3109/07388551.2015.1064856] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Submergence, whether partial or complete, imparts some serious consequences on plants grown in flood prone ecosystems. Some plants can endure these conditions by embracing various survival strategies, including morphological adaptations and physiological adjustments. This review summarizes recent progress made in understanding of the stress and the acclimation responses of plants under waterlogged or submerged conditions. Waterlogging and submergence are often associated with hypoxia development, which may trigger various morphological traits and cellular acclimation responses. Ethylene, abscisic acid, gibberellic acid and other hormones play a crucial role in the survival process which is controlled genetically. Effects at the cellular level, including ATP management, starch metabolism, elemental toxicity, role of transporters and redox status have been explained. Transcriptional and hormonal interplay during this stress may provide some key aspects in understanding waterlogging and submergence tolerance. The level and degree of tolerance may vary depending on species or climatic variations which need to be studied for a proper understanding of waterlogging stress at the global level. The exploration of regulatory pathways and interplay in model organisms such as Arabidopsis and rice would provide valuable resources for improvement of economically and agriculturally important plants in waterlogging affected areas.
Collapse
Affiliation(s)
- Ujjal J Phukan
- a Biotechnology Division (CSIR-CIMAP) , Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) , Lucknow , Uttar Pradesh , India
| | - Sonal Mishra
- a Biotechnology Division (CSIR-CIMAP) , Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) , Lucknow , Uttar Pradesh , India
| | - Rakesh Kumar Shukla
- a Biotechnology Division (CSIR-CIMAP) , Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) , Lucknow , Uttar Pradesh , India
| |
Collapse
|
161
|
Bui LT, Giuntoli B, Kosmacz M, Parlanti S, Licausi F. Constitutively expressed ERF-VII transcription factors redundantly activate the core anaerobic response in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:37-43. [PMID: 26025519 DOI: 10.1016/j.plantsci.2015.03.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 05/22/2023]
Abstract
Plant adaptation to hypoxic conditions is mediated by the transcriptional activation of genes involved in the metabolic reprogramming of plant cells to cope with reduced oxygen availability. Recent studies indicated that members of the group VII of the Ethylene Responsive Transcription Factor (ERFs) family act as positive regulators of this molecular response. In the current study, the five ERF-VII transcription factors of Arabidopsis thaliana were compared to infer a hierarchy in their role with respect to the anaerobic response. When the activity of each transcription factor was tested on a set of hypoxia-responsive promoters, RAP2.2, RAP2.3 and RAP2.12 appeared to be the most powerful activators. RAP2.12 was further dissected in transactivation assays in Arabidopsis protoplasts to identify responsible regions for transcriptional activation. An ultimate C-terminal motif was identified as sufficient to drive gene transcription. Finally, using realtime RT-PCR in single and double mutants for the corresponding genes, we confirmed that RAP2.2 and RAP2.12 exert major control upon the anaerobic response.
Collapse
Affiliation(s)
- Liem T Bui
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via Mariscoglio 34, 56124, Pisa, Italy.
| | - Beatrice Giuntoli
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via Mariscoglio 34, 56124, Pisa, Italy.
| | - Monika Kosmacz
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Golm, Germany.
| | - Sandro Parlanti
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via Mariscoglio 34, 56124, Pisa, Italy.
| | - Francesco Licausi
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via Mariscoglio 34, 56124, Pisa, Italy.
| |
Collapse
|
162
|
Papdi C, Pérez-Salamó I, Joseph MP, Giuntoli B, Bögre L, Koncz C, Szabados L. The low oxygen, oxidative and osmotic stress responses synergistically act through the ethylene response factor VII genes RAP2.12, RAP2.2 and RAP2.3. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:772-84. [PMID: 25847219 DOI: 10.1111/tpj.12848] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 05/22/2023]
Abstract
The ethylene response factor VII (ERF-VII) transcription factor RELATED TO APETALA2.12 (RAP2.12) was previously identified as an activator of the ALCOHOL DEHYDROGENASE1 promoter::luciferase (ADH1-LUC) reporter gene. Here we show that overexpression of RAP2.12 and its homologues RAP2.2 and RAP2.3 sustains ABA-mediated activation of ADH1 and activates hypoxia marker genes under both anoxic and normoxic conditions. Inducible expression of all three RAP2s conferred tolerance to anoxia, oxidative and osmotic stresses, and enhanced the sensitivity to abscisic acid (ABA). Consistently, the rap2.12-2 rap2.3-1 double mutant showed hypersensitivity to both submergence and osmotic stress. These findings suggest that the three ERF-VII-type transcription factors play roles in tolerance to multiple stresses that sequentially occur during and after submergence in Arabidopsis. Oxygen-dependent degradation of RAP2.12 was previously shown to be mediated by the N-end rule pathway. During submergence the RAP2.12, RAP2.2 and RAP2.3 are stabilized and accumulates in the nucleus affecting the transcription of stress response genes. We conclude that the stabilized RAP2 transcription factors can prolong the ABA-mediated activation of a subset of osmotic responsive genes (e.g. ADH1). We also show that RAP2.12 protein level is affected by the REALLY INTERESTING GENE (RING) domain containing SEVEN IN ABSENTIA of Arabidopsis thaliana 2 (SINAT2). Silencing of SINAT1/2 genes leads to enhanced RAP2.12 abundance independently of the presence or absence of its N-terminal degron. Taken together, our results suggest that RAP2.12 and its homologues RAP2.2 and RAP2.3 act redundantly in multiple stress responses. Alternative protein degradation pathways may provide inputs to the RAP2 transcription factors for the distinct stresses.
Collapse
Affiliation(s)
- Csaba Papdi
- Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62., H-6726, Szeged, Hungary
- Royal Holloway, University of London, Egham Hill, Surrey, TW20 0EX, UK
| | - Imma Pérez-Salamó
- Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62., H-6726, Szeged, Hungary
- Royal Holloway, University of London, Egham Hill, Surrey, TW20 0EX, UK
| | - Mary Prathiba Joseph
- Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62., H-6726, Szeged, Hungary
| | - Beatrice Giuntoli
- Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
| | - László Bögre
- Royal Holloway, University of London, Egham Hill, Surrey, TW20 0EX, UK
| | - Csaba Koncz
- Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62., H-6726, Szeged, Hungary
- Max-Planck-Institut für Züchtungsforschung, Carl von Linne weg 10., 50829, Cologne, Germany
| | - László Szabados
- Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62., H-6726, Szeged, Hungary
| |
Collapse
|
163
|
Wang X, Han H, Yan J, Chen F, Wei W. A New AP2/ERF Transcription Factor from the Oil Plant Jatropha curcas Confers Salt and Drought Tolerance to Transgenic Tobacco. Appl Biochem Biotechnol 2015; 176:582-97. [PMID: 25935218 DOI: 10.1007/s12010-015-1597-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/26/2015] [Indexed: 10/23/2022]
Abstract
Jatropha curcas L. is a drought and salt-tolerant oil plant widely used for various purposes and has considerable potential as a diesel/kerosene substitute or extender. Understanding the molecular mechanisms underlie that the response to various biotic and abiotic stresses of this plant could be important to crop improvement efforts. Here, a new AP2/ERF-type transcription factor gene, named JcERF2, was isolated from the leaves of J. curcas. Sequence analysis showed that the JcERF2 gene contains a 759-bp open reading frame encoding a polypeptide of 252 amino acids. The predicted JcERF2 protein contained a conserved DNA-binding domain (the AP2/ERF domain) with 58 amino acids. The JcERF2 protein is highly homologous with other ERFs. JcERF2 was localized in the nucleus by analysis with a JcERF2-green fluorescent protein (GFP) fusion protein. Quantitative polymerase chain reaction (qPCR) analysis showed that JcERF2 was induced by drought, salt, abscisic acid, and ethylene. Overexpression of JcERF2 in transgenic tobacco plants enhanced the expression of biotic and abiotic stress-related genes, increased the accumulation of free proline and soluble carbohydrates, and conferred tolerance to drought and salt stresses compared to the wild type (WT). Taken together, the JcERF2 gene is a novel AP2/ERF transcription factor involved in plant response to environmental factors, which can be used as a potential candidate gene for genetic engineering of crops.
Collapse
Affiliation(s)
- Xuehua Wang
- School of Life Sciences and Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu, China
| | | | | | | | | |
Collapse
|
164
|
Kazan K. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. TRENDS IN PLANT SCIENCE 2015; 20:219-29. [PMID: 25731753 DOI: 10.1016/j.tplants.2015.02.001] [Citation(s) in RCA: 432] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/25/2015] [Accepted: 02/01/2015] [Indexed: 05/18/2023]
Abstract
Jasmonates (JAs) and ethylene (ET), often acting cooperatively, play essential roles in regulating plant defense against pests and pathogens. Recent research reviewed here has revealed mechanistic new insights into the mode of action of these hormones in plant abiotic stress tolerance. During cold stress, JAs and ET differentially regulate the C-repeat binding factor (CBF) pathway. Major JA and ET signaling hubs such as JAZ proteins, CTR1, MYC2, components of the mediator complex, EIN2, EIN3, and several members of the AP2/ERF transcription factor gene family all have complex regulatory roles during abiotic stress adaptation. Better understanding the roles of these phytohormones in plant abiotic stress tolerance will contribute to the development of crop plants tolerant to a wide range of stressful environments.
Collapse
Affiliation(s)
- Kemal Kazan
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Queensland Bioscience Precinct, Brisbane, Queensland, Australia; The Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Queensland Bioscience Precinct, Brisbane, Queensland, Australia.
| |
Collapse
|
165
|
Xie F, Jones DC, Wang Q, Sun R, Zhang B. Small RNA sequencing identifies miRNA roles in ovule and fibre development. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:355-69. [PMID: 25572837 DOI: 10.1111/pbi.12296] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) have been found to be differentially expressed during cotton fibre development. However, which specific miRNAs and how they are involved in fibre development is unclear. Here, using deep sequencing, 65 conserved miRNA families were identified and 32 families were differentially expressed between leaf and ovule. At least 40 miRNAs were either leaf or ovule specific, whereas 62 miRNAs were shared in both leaf and ovule. qRT-PCR confirmed these miRNAs were differentially expressed during fibre early development. A total of 820 genes were potentially targeted by the identified miRNAs, whose functions are involved in a series of biological processes including fibre development, metabolism and signal transduction. Many predicted miRNA-target pairs were subsequently validated by degradome sequencing analysis. GO and KEGG analyses showed that the identified miRNAs and their targets were classified to 1027 GO terms including 568 biological processes, 324 molecular functions and 135 cellular components and were enriched to 78 KEGG pathways. At least seven unique miRNAs participate in trichome regulatory interaction network. Eleven trans-acting siRNA (tasiRNA) candidate genes were also identified in cotton. One has never been found in other plant species and two of them were derived from MYB and ARF, both of which play important roles in cotton fibre development. Sixteen genes were predicted to be tasiRNA targets, including sucrose synthase and MYB2. Together, this study discovered new miRNAs in cotton and offered evidences that miRNAs play important roles in cotton ovule/fibre development. The identification of tasiRNA genes and their targets broadens our understanding of the complicated regulatory mechanism of miRNAs in cotton.
Collapse
Affiliation(s)
- Fuliang Xie
- Department of Biology, East Carolina University, Greenville, NC, USA
| | | | | | | | | |
Collapse
|
166
|
Abstract
Oxygen is an indispensable substrate for many biochemical reactions in plants, including energy metabolism (respiration). Despite its importance, plants lack an active transport mechanism to distribute oxygen to all cells. Therefore, steep oxygen gradients occur within most plant tissues, which can be exacerbated by environmental perturbations that further reduce oxygen availability. Plants possess various responses to cope with spatial and temporal variations in oxygen availability, many of which involve metabolic adaptations to deal with energy crises induced by low oxygen. Responses are induced gradually when oxygen concentrations decrease and are rapidly reversed upon reoxygenation. A direct effect of the oxygen level can be observed in the stability, and thus activity, of various transcription factors that control the expression of hypoxia-induced genes. Additional signaling pathways are activated by the impact of oxygen deficiency on mitochondrial and chloroplast functioning. Here, we describe the molecular components of the oxygen-sensing pathway.
Collapse
Affiliation(s)
- Joost T van Dongen
- Institute of Biology I, Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany;
| | | |
Collapse
|
167
|
Xie LJ, Yu LJ, Chen QF, Wang FZ, Huang L, Xia FN, Zhu TR, Wu JX, Yin J, Liao B, Yao N, Shu W, Xiao S. Arabidopsis acyl-CoA-binding protein ACBP3 participates in plant response to hypoxia by modulating very-long-chain fatty acid metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:53-67. [PMID: 25284079 PMCID: PMC4309432 DOI: 10.1111/tpj.12692] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/21/2014] [Accepted: 09/29/2014] [Indexed: 05/02/2023]
Abstract
In Arabidopsis thaliana, acyl-CoA-binding proteins (ACBPs) are encoded by a family of six genes (ACBP1 to ACBP6), and are essential for diverse cellular activities. Recent investigations suggest that the membrane-anchored ACBPs are involved in oxygen sensing by sequestration of group VII ethylene-responsive factors under normoxia. Here, we demonstrate the involvement of Arabidopsis ACBP3 in hypoxic tolerance. ACBP3 transcription was remarkably induced following submergence under both dark (DS) and light (LS) conditions. ACBP3-overexpressors (ACBP3-OEs) showed hypersensitivity to DS, LS and ethanolic stresses, with reduced transcription of hypoxia-responsive genes as well as accumulation of hydrogen peroxide in the rosettes. In contrast, suppression of ACBP3 in ACBP3-KOs enhanced plant tolerance to DS, LS and ethanol treatments. By analyses of double combinations of OE-1 with npr1-5, coi1-2, ein3-1 as well as ctr1-1 mutants, we observed that the attenuated hypoxic tolerance in ACBP3-OEs was dependent on NPR1- and CTR1-mediated signaling pathways. Lipid profiling revealed that both the total amounts and very-long-chain species of phosphatidylserine (C42:2- and C42:3-PS) and glucosylinositolphosphorylceramides (C22:0-, C22:1-, C24:0-, C24:1-, and C26:1-GIPC) were significantly lower in ACBP3-OEs but increased in ACBP3-KOs upon LS exposure. By microscale thermophoresis analysis, the recombinant ACBP3 protein bound VLC acyl-CoA esters with high affinities in vitro. Further, a knockout mutant of MYB30, a master regulator of very-long-chain fatty acid (VLCFA) biosynthesis, exhibited enhanced sensitivities to LS and ethanolic stresses, phenotypes that were ameliorated by ACBP3-RNAi. Taken together, these findings suggest that Arabidopsis ACBP3 participates in plant response to hypoxia by modulating VLCFA metabolism.
Collapse
Affiliation(s)
| | | | | | - Feng-Zhu Wang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, 510275, China
| | - Li Huang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, 510275, China
| | - Fan-Nv Xia
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, 510275, China
| | - Tian-Ren Zhu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, 510275, China
| | - Jian-Xin Wu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, 510275, China
| | - Jian Yin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, 510275, China
| | - Bin Liao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, 510275, China
| | - Nan Yao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, 510275, China
| | - Wensheng Shu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, 510275, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, 510275, China
| |
Collapse
|
168
|
Hameed MW. Hypoxia up-regulates mitochondrial genome-encoded transcripts in Arabidopsis roots. Genes Genet Syst 2015; 90:325-34. [DOI: 10.1266/ggs.14-00057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Muhammad Waqar Hameed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi
- Pakistan and Max Planck Institute of Molecular Plant Physiology
| |
Collapse
|
169
|
Khan MIR, Trivellini A, Fatma M, Masood A, Francini A, Iqbal N, Ferrante A, Khan NA. Role of ethylene in responses of plants to nitrogen availability. FRONTIERS IN PLANT SCIENCE 2015; 6:927. [PMID: 26579172 PMCID: PMC4626634 DOI: 10.3389/fpls.2015.00927] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/14/2015] [Indexed: 05/05/2023]
Abstract
Ethylene is a plant hormone involved in several physiological processes and regulates the plant development during the whole life. Stressful conditions usually activate ethylene biosynthesis and signaling in plants. The availability of nutrients, shortage or excess, influences plant metabolism and ethylene plays an important role in plant adaptation under suboptimal conditions. Among the plant nutrients, the nitrogen (N) is one the most important mineral element required for plant growth and development. The availability of N significantly influences plant metabolism, including ethylene biology. The interaction between ethylene and N affects several physiological processes such as leaf gas exchanges, roots architecture, leaf, fruits, and flowers development. Low plant N use efficiency (NUE) leads to N loss and N deprivation, which affect ethylene biosynthesis and tissues sensitivity, inducing cell damage and ultimately lysis. Plants may respond differently to N availability balancing ethylene production through its signaling network. This review discusses the recent advances in the interaction between N availability and ethylene at whole plant and different organ levels, and explores how N availability induces ethylene biology and plant responses. Exogenously applied ethylene seems to cope the stress conditions and improves plant physiological performance. This can be explained considering the expression of ethylene biosynthesis and signaling genes under different N availability. A greater understanding of the regulation of N by means of ethylene modulation may help to increase NUE and directly influence crop productivity under conditions of limited N availability, leading to positive effects on the environment. Moreover, efforts should be focused on the effect of N deficiency or excess in fruit trees, where ethylene can have detrimental effects especially during postharvest.
Collapse
Affiliation(s)
- M. I. R. Khan
- Department of Botany, Aligarh Muslim UniversityAligarh, India
| | - Alice Trivellini
- Institute of Life Sciences, Scuola Superiore Sant’AnnaPisa, Italy
| | - Mehar Fatma
- Department of Botany, Aligarh Muslim UniversityAligarh, India
| | - Asim Masood
- Department of Botany, Aligarh Muslim UniversityAligarh, India
| | | | - Noushina Iqbal
- Department of Botany, Jamia Hamdard University New Delhi, India
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di MilanoMilan, Italy
| | - Nafees A. Khan
- Department of Botany, Aligarh Muslim UniversityAligarh, India
- *Correspondence: Nafees A. Khan,
| |
Collapse
|
170
|
Tsai KJ, Chou SJ, Shih MC. Ethylene plays an essential role in the recovery of Arabidopsis during post-anaerobiosis reoxygenation. PLANT, CELL & ENVIRONMENT 2014; 37:2391-405. [PMID: 24506560 DOI: 10.1111/pce.12292] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/09/2014] [Accepted: 01/20/2014] [Indexed: 05/05/2023]
Abstract
Ethylene is known to play an essential role in mediating hypoxic responses in plants. Here, we show that in addition to regulating hypoxic responses, ethylene also regulates cellular responses in the reoxygenation stage after anoxic treatment in Arabidopsis. We found that expression of several ethylene biosynthetic genes and ethylene-responsive factors, including ERF1 and ERF2, was induced during reoxygenation. Compared with the wild type, two ethylene-insensitive mutants (ein2-5 and ein3eil1) were more sensitive to reoxygenation and displayed damaged phenotypes during reoxygenation. To characterize the role of ethylene, we applied microarray analysis to Col-0, ein2-5 and ein3eil1 under reoxygenation conditions. Our results showed that gene transcripts involved in reactive oxygen species (ROS) detoxification, dehydration response and metabolic processes were regulated during reoxygenation. Moreover, ethylene signalling may participate in regulating these responses and maintaining the homeostasis of different phytohormones. Our work presents evidence that ethylene has distinct functions in recovery after anoxia and provides insight into the reoxygenation signalling network.
Collapse
Affiliation(s)
- Kuen-Jin Tsai
- Institute of Plant Biology, National Taiwan University, Taipei, 115, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | | | | |
Collapse
|
171
|
Shingaki-Wells R, Millar AH, Whelan J, Narsai R. What happens to plant mitochondria under low oxygen? An omics review of the responses to low oxygen and reoxygenation. PLANT, CELL & ENVIRONMENT 2014; 37:2260-77. [PMID: 24575773 DOI: 10.1111/pce.12312] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/09/2014] [Accepted: 02/16/2014] [Indexed: 05/19/2023]
Abstract
Floods can rapidly submerge plants, limiting oxygen to the extent that oxidative phosphorylation no longer generates adequate ATP supplies. Low-oxygen tolerant plants, such as rice, are able to adequately respond to low oxygen by successfully remodelling primary and mitochondrial metabolism to partially counteract the energy crisis that ensues. In this review, we discuss how plants respond to low-oxygen stress at the transcriptomic, proteomic, metabolomic and enzyme activity levels, particularly focusing on mitochondria and interacting pathways. The role of reactive oxygen species and nitrite as an alternative electron acceptor as well as their links to respiratory chain components is discussed. By making intra-kingdom as well as cross-kingdom comparisons, conserved mechanisms of anoxia tolerance are highlighted as well as tolerance mechanisms that are specific to anoxia-tolerant rice during germination and in coleoptiles. We discuss reoxygenation as an often overlooked, yet essential stage of this environmental stress and consider the possibility that changes occurring during low oxygen may also provide benefits upon re-aeration. Finally, we consider what it takes to be low-oxygen tolerant and argue that alternative mechanisms of ATP production, glucose signalling, starch/sucrose signalling as well as reverse metabolism of fermentation end products promote the survival of rice after this debilitating stress.
Collapse
Affiliation(s)
- Rachel Shingaki-Wells
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building University of Western Australia, Crawley, Western Australia, 6009, Australia
| | | | | | | |
Collapse
|
172
|
Tamang BG, Magliozzi JO, Maroof MAS, Fukao T. Physiological and transcriptomic characterization of submergence and reoxygenation responses in soybean seedlings. PLANT, CELL & ENVIRONMENT 2014; 37:2350-65. [PMID: 24433575 DOI: 10.1111/pce.12277] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/02/2014] [Accepted: 01/05/2014] [Indexed: 05/24/2023]
Abstract
Complete inundation at the early seedling stage is a common environmental constraint for soybean production throughout the world. As floodwaters subside, submerged seedlings are subsequently exposed to reoxygenation stress in the natural progression of a flood event. Here, we characterized the fundamental acclimation responses to submergence and reoxygenation in soybean at the seedling establishment stage. Approximately 90% of seedlings succumbed during 3 d of inundation under constant darkness, whereas 10 d of submergence were lethal to over 90% of seedlings under 12 h light/12 h dark cycles, indicating the significance of underwater photosynthesis in seedling survival. Submergence rapidly decreased the abundance of carbohydrate reserves and ATP in aerial tissue of seedlings although chlorophyll breakdown was not observed. The carbohydrate and ATP contents were recovered upon de-submergence, but sudden exposure to oxygen also induced lipid peroxidation, confirming that reoxygenation induced oxidative stress. Whole transcriptome analysis recognized genome-scale reconfiguration of gene expression that regulates various signalling and metabolic pathways under submergence and reoxygenation. Comparative analysis of differentially regulated genes in shoots and roots of soybean and other plants defines conserved, organ-specific and species-specific adjustments which enhance adaptability to submergence and reoxygenation through different metabolic pathways.
Collapse
Affiliation(s)
- Bishal G Tamang
- Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | | | | | | |
Collapse
|
173
|
van Veen H, Akman M, Jamar DCL, Vreugdenhil D, Kooiker M, van Tienderen P, Voesenek LACJ, Schranz ME, Sasidharan R. Group VII ethylene response factor diversification and regulation in four species from flood-prone environments. PLANT, CELL & ENVIRONMENT 2014; 37:2421-2432. [PMID: 24548060 DOI: 10.1111/pce.12302] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/27/2014] [Accepted: 01/31/2014] [Indexed: 06/03/2023]
Abstract
Flooding events negatively affect plant performance and survival. Flooding gradients thereby determine the dynamics in vegetation composition and species abundance. In adaptation to flooding, the group VII Ethylene Response Factor genes (ERF-VIIs) play pivotal roles in rice and Arabidopsis through regulation of anaerobic gene expression and antithetical survival strategies. We investigated if ERF-VIIs have a similar role in mediating survival strategies in eudicot species from flood-prone environments. Here, we studied the evolutionary origin and regulation of ERF-VII transcript abundance and the physiological responses in species from two genera of divergent taxonomic lineages (Rumex and Rorippa). Synteny analysis revealed that angiosperm ERF-VIIs arose from two ancestral loci and that subsequent diversification and duplication led to the present ERF-VII variation. We propose that subtle variation in the regulation of ERF-VII transcript abundance could explain variation in tolerance among Rorippa species. In Rumex, the main difference in flood tolerance correlated with the genetic variation in ERF-VII genes. Large transcriptional differences were found by comparing the two genera: darkness and dark submergence-induced Rumex ERF-VIIs, whereas HRE2 expression was increased in submerged Rorippa roots. We conclude that the involvement of ERF-VIIs in flooding tolerance developed in a phylogenetic-dependent manner, with subtle variations within taxonomic clades.
Collapse
Affiliation(s)
- Hans van Veen
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Geigenberger P, Fernie AR. Metabolic control of redox and redox control of metabolism in plants. Antioxid Redox Signal 2014; 21:1389-421. [PMID: 24960279 PMCID: PMC4158967 DOI: 10.1089/ars.2014.6018] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Reduction-oxidation (Redox) status operates as a major integrator of subcellular and extracellular metabolism and is simultaneously itself regulated by metabolic processes. Redox status not only dominates cellular metabolism due to the prominence of NAD(H) and NADP(H) couples in myriad metabolic reactions but also acts as an effective signal that informs the cell of the prevailing environmental conditions. After relay of this information, the cell is able to appropriately respond via a range of mechanisms, including directly affecting cellular functioning and reprogramming nuclear gene expression. RECENT ADVANCES The facile accession of Arabidopsis knockout mutants alongside the adoption of broad-scale post-genomic approaches, which are able to provide transcriptomic-, proteomic-, and metabolomic-level information alongside traditional biochemical and emerging cell biological techniques, has dramatically advanced our understanding of redox status control. This review summarizes redox status control of metabolism and the metabolic control of redox status at both cellular and subcellular levels. CRITICAL ISSUES It is becoming apparent that plastid, mitochondria, and peroxisome functions influence a wide range of processes outside of the organelles themselves. While knowledge of the network of metabolic pathways and their intraorganellar redox status regulation has increased in the last years, little is known about the interorganellar redox signals coordinating these networks. A current challenge is, therefore, synthesizing our knowledge and planning experiments that tackle redox status regulation at both inter- and intracellular levels. FUTURE DIRECTIONS Emerging tools are enabling ever-increasing spatiotemporal resolution of metabolism and imaging of redox status components. Broader application of these tools will likely greatly enhance our understanding of the interplay of redox status and metabolism as well as elucidating and characterizing signaling features thereof. We propose that such information will enable us to dissect the regulatory hierarchies that mediate the strict coupling of metabolism and redox status which, ultimately, determine plant growth and development.
Collapse
Affiliation(s)
- Peter Geigenberger
- 1 Department of Biology I, Ludwig Maximilian University Munich , Planegg-Martinsried, Germany
| | | |
Collapse
|
175
|
Shang J, Song P, Ma B, Qi X, Zeng Q, Xiang Z, He N. Identification of the mulberry genes involved in ethylene biosynthesis and signaling pathways and the expression of MaERF-B2-1 and MaERF-B2-2 in the response to flooding stress. Funct Integr Genomics 2014; 14:767-77. [PMID: 25231943 PMCID: PMC4233114 DOI: 10.1007/s10142-014-0403-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 09/02/2014] [Accepted: 09/07/2014] [Indexed: 11/30/2022]
Abstract
The phytohormone ethylene is essential to plant growth and development. It plays crucial roles in responses to biotic and abiotic stress. The mulberry tree is an important crop plant in countries in which people rear silkworms for silk production. The availability of the mulberry genome has made it possible to identify mulberry genes involved in ethylene biosynthesis and signal pathways. A total of 145 mulberry genes were identified by both homology-based and hidden Markov model (HMM) search, including 29 genes associated with ethylene biosynthesis and 116 genes in the AP2/ERF family. Studies on gene structure have provided a genetic basis for understanding the functions of these genes. The differences in gene expression were also observed in different tissues. The expression of two mulberry genes in the AP2/ERF family, MaERF-B2-1 and MaERF-B2-2, was found to be associated with the response to flooding stress.
Collapse
Affiliation(s)
- Jingzhe Shang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | | | | | | | | | | | | |
Collapse
|
176
|
Du H, Huang M, Zhang Z, Cheng S. Genome-wide analysis of the AP2/ERF gene family in maize waterlogging stress response. EUPHYTICA 2014; 198:115-126. [PMID: 0 DOI: 10.1007/s10681-014-1088-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 02/20/2014] [Indexed: 05/26/2023]
|
177
|
Sequence and expression analyses of ethylene response factors highly expressed in latex cells from Hevea brasiliensis. PLoS One 2014; 9:e99367. [PMID: 24971876 PMCID: PMC4074046 DOI: 10.1371/journal.pone.0099367] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/05/2014] [Indexed: 11/21/2022] Open
Abstract
The AP2/ERF superfamily encodes transcription factors that play a key role in plant development and responses to abiotic and biotic stress. In Hevea brasiliensis, ERF genes have been identified by RNA sequencing. This study set out to validate the number of HbERF genes, and identify ERF genes involved in the regulation of latex cell metabolism. A comprehensive Hevea transcriptome was improved using additional RNA reads from reproductive tissues. Newly assembled contigs were annotated in the Gene Ontology database and were assigned to 3 main categories. The AP2/ERF superfamily is the third most represented compared with other transcription factor families. A comparison with genomic scaffolds led to an estimation of 114 AP2/ERF genes and 1 soloist in Hevea brasiliensis. Based on a phylogenetic analysis, functions were predicted for 26 HbERF genes. A relative transcript abundance analysis was performed by real-time RT-PCR in various tissues. Transcripts of ERFs from group I and VIII were very abundant in all tissues while those of group VII were highly accumulated in latex cells. Seven of the thirty-five ERF expression marker genes were highly expressed in latex. Subcellular localization and transactivation analyses suggested that HbERF-VII candidate genes encoded functional transcription factors.
Collapse
|
178
|
Mattoo AK. Translational research in agricultural biology-enhancing crop resistivity against environmental stress alongside nutritional quality. Front Chem 2014; 2:30. [PMID: 24926479 PMCID: PMC4046571 DOI: 10.3389/fchem.2014.00030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/05/2014] [Indexed: 01/24/2023] Open
Affiliation(s)
- Autar K. Mattoo
- Sustainable Agricultural Systems Laboratory, United States Department of Agriculture, The Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research ServiceBeltsville, MD, USA
| |
Collapse
|
179
|
Lakshmanan M, Mohanty B, Lim SH, Ha SH, Lee DY. Metabolic and transcriptional regulatory mechanisms underlying the anoxic adaptation of rice coleoptile. AOB PLANTS 2014; 6:plu026. [PMID: 24894389 PMCID: PMC4077593 DOI: 10.1093/aobpla/plu026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The ability of rice to germinate under anoxia by extending the coleoptile is a highly unusual characteristic and a key feature underpinning the ability of rice seeds to establish in such a stressful environment. The process has been a focal point for research for many years. However, the molecular mechanisms underlying the anoxic growth of the coleoptile still remain largely unknown. To unravel the key regulatory mechanisms of rice germination under anoxic stress, we combined in silico modelling with gene expression data analysis. Our initial modelling analysis via random flux sampling revealed numerous changes in rice primary metabolism in the absence of oxygen. In particular, several reactions associated with sucrose metabolism and fermentation showed a significant increase in flux levels, whereas reaction fluxes across oxidative phosphorylation, the tricarboxylic acid cycle and the pentose phosphate pathway were down-regulated. The subsequent comparative analysis of the differences in calculated fluxes with previously published gene expression data under air and anoxia identified at least 37 reactions from rice central metabolism that are transcriptionally regulated. Additionally, cis-regulatory content analyses of these transcriptionally controlled enzymes indicate a regulatory role for transcription factors such as MYB, bZIP, ERF and ZnF in transcriptional control of genes that are up-regulated during rice germination and coleoptile elongation under anoxia.
Collapse
Affiliation(s)
- Meiyappan Lakshmanan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Bijayalaxmi Mohanty
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Sun-Hyung Lim
- Divison of Metabolic Engineering, National Academy of Agricultural Science, Suwon 441707, Republic of Korea
| | - Sun-Hwa Ha
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446701, Republic of Korea
| | - Dong-Yup Lee
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Centros, Singapore 138668, Singapore
| |
Collapse
|
180
|
Min T, Fang F, Ge H, Shi YN, Luo ZR, Yao YC, Grierson D, Yin XR, Chen KS. Two novel anoxia-induced ethylene response factors that interact with promoters of deastringency-related genes from persimmon. PLoS One 2014; 9:e97043. [PMID: 24805136 PMCID: PMC4013125 DOI: 10.1371/journal.pone.0097043] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/14/2014] [Indexed: 02/03/2023] Open
Abstract
A hypoxic environment is generally undesirable for most plants and stimulates anaerobic metabolism. It is a beneficial treatment, however, for the removal of astringency from persimmon to improve the fruit quality after harvest. High soluble tannins (SCTs) content is one of most important causes of astringency. High CO2 (95%) treatment effectively reduced SCTs in both "Mopan" and "Gongcheng-shuishi" persimmon fruit by causing increases in acetaldehyde. Using RNA-seq and realtime PCR, twelve ethylene response factor genes (DkERF11-22) were isolated and characterized, to determine those responsive to high CO2 treatment. Only two genes, DkERF19 and DkERF22, showed trans-activation effects on the promoters of deastringency-related genes pyruvate decarboxylase genes (DkPDC2 and DkPDC3) and the transcript levels of these genes was enhanced by hypoxia. Moreover, DkERF19 and the previously isolated DkERF9 had additive effects on activating the DkPDC2 promoter. Taken together, these results provide further evidence that transcriptome changes in the level of DkERF mRNAs regulate deastringency-related genes and their role in the mechanism of persimmon fruit deastringency is discussed.
Collapse
Affiliation(s)
- Ting Min
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| | - Fang Fang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| | - Hang Ge
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| | - Yan-na Shi
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| | - Zheng-rong Luo
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| | - Yun-cong Yao
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, PR China
| | - Donald Grierson
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, PR China
- Plant & Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Xue-ren Yin
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, PR China
- * E-mail:
| | - Kun-song Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, PR China
| |
Collapse
|
181
|
Phukan UJ, Mishra S, Timbre K, Luqman S, Shukla RK. Mentha arvensis exhibit better adaptive characters in contrast to Mentha piperita when subjugated to sustained waterlogging stress. PROTOPLASMA 2014; 251:603-614. [PMID: 24154494 DOI: 10.1007/s00709-013-0561-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/02/2013] [Indexed: 05/29/2023]
Abstract
Waterlogging is becoming a critical threat to plants growing in areas prone to flooding. Some plants adapt various morphological and biochemical alterations which are regulated transcriptionally to cope with the situation. A comparative study of waterlogging response in two different varieties of Mentha namely Mentha piperita and Mentha arvensis was performed. M. arvensis showed better response towards waterlogging in comparison to M. piperita. M. arvensis maintained a healthy posture by utilizing its carbohydrate content; also, it showed a flourished vegetative growth under waterlogged condition. Soluble protein, chlorophyll content, relative water content, and nitric oxide scavenging activity were comparatively more salient in M. arvensis during this hypoxia treatment. Lipid peroxidation was less in M. arvensis. M. arvensis also showed vigorous outgrowth of adventitious roots to assist waterlogging tolerance. To further investigate the possible gene transcripts involved in this response, we did cDNA subtraction of waterlogging treated M. piperita and M. arvensis seedlings. cDNA subtraction has identified thirty seven novel putative Expressed Sequence Tags which were further classified functionally. Functional classification revealed that maximum percentage of proteins belonged to hypothetical proteins followed by proteins involved in biosynthesis. Some of the identified ESTs were further quantified for their induced expression in M. arvensis in comparison to M. piperita through quantitative real-time PCR.
Collapse
Affiliation(s)
- Ujjal J Phukan
- Biotechnology Division, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | | | | | | | | |
Collapse
|
182
|
You J, Zong W, Du H, Hu H, Xiong L. A special member of the rice SRO family, OsSRO1c, mediates responses to multiple abiotic stresses through interaction with various transcription factors. PLANT MOLECULAR BIOLOGY 2014; 84:693-705. [PMID: 24337801 DOI: 10.1007/s11103-013-0163-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/05/2013] [Indexed: 05/09/2023]
Abstract
SIMILAR TO RCD ONE (SRO) is a plant-specific gene family involved in development and abiotic stress responses. SRO proteins are characterized by containing poly (ADP-ribose) polymerase catalytic (PARP) and C-terminal RCD1-SRO-TAF4 domains, and can be classified into two groups and five subgroups on the basis of their PARP domain. Expression analysis of rice SRO genes in response to various abiotic stresses showed that OsSRO1c, a rice SRO gene which functions downstream of the stress-responsive transcription factor SNAC1, is the major stress-responsive gene in the rice SRO family. The ossro1c-1 mutant showed resistance not only to chloroplastic oxidative stress, but also to apoplastic oxidative stress. However, the ossro1c-1 mutant and artificial microRNA-OsSRO1c transgenic rice were significantly impaired in cold tolerance. When compared with the well-characterized Arabidopsis SRO protein radical-induced cell death 1 (RCD1), OsSRO1c has considerable variation in the protein sequence, and the two genes exhibit different expression profiles under abiotic stresses. Furthermore, ossro1c-1 and rcd1 showed different responses to multiple abiotic stresses. By screening an Arabidopsis transcription factor library, 29 transcription factors interacted with OsSRO1c in yeast, but only two of these transcription factors were reported to interact with RCD1, which may partly explain the different responses of the two mutants under various stresses. The data presented in this report provide important clues for further elucidating the molecular and biochemical mechanisms of OsSRO1c in mediating responses to multiple abiotic stresses.
Collapse
Affiliation(s)
- Jun You
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | |
Collapse
|
183
|
Limami AM, Diab H, Lothier J. Nitrogen metabolism in plants under low oxygen stress. PLANTA 2014; 239:531-41. [PMID: 24370634 DOI: 10.1007/s00425-013-2015-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 12/14/2013] [Indexed: 05/22/2023]
Abstract
More frequent flooding and waterlogging events due to more heavy precipitation are expected worldwide in the context of climate change. Accordingly, adaptation of plants to oxygen limitation at both cellular and whole plant levels should be investigated thoroughly, that derived knowledge could be taken into account in breeding programs and agronomical practices for saving plant fitness, growth and development even when oxygen availability is low. In the present review, we highlight current knowledge on essential aspects of low oxygen stress-induced changes in nitrogen metabolism. The involvement of two possible pathways for NO production either via the reaction catalyzed by nitrate reductase or at Complex III or IV of the mitochondrial electron transport chain, thus contributing to ATP synthesis via the so-called nitrite-NO respiration, is discussed. NO is proposed to be scavenged by non-symbiotic hemoglobin (Hb) in a Hb/NO cycle, in which NAD(P)H is oxidized for the conversion of NO into NO3(-). The investigation of an additional adaptation to the decrease in oxygen availability via transcriptional and posttranslational regulation of amino acid synthesis pathways, using publicly available transcriptome and translatome data for Arabidopsis thaliana and rice is also discussed.
Collapse
Affiliation(s)
- Anis M Limami
- University of Angers, UMR 1345 IRHS, SFR 4207 QUASAV, 2 Bd Lavoisier, 49045, Angers, France,
| | | | | |
Collapse
|
184
|
Gibbs DJ, Md Isa N, Movahedi M, Lozano-Juste J, Mendiondo GM, Berckhan S, Marín-de la Rosa N, Vicente Conde J, Sousa Correia C, Pearce SP, Bassel GW, Hamali B, Talloji P, Tomé DFA, Coego A, Beynon J, Alabadí D, Bachmair A, León J, Gray JE, Theodoulou FL, Holdsworth MJ. Nitric oxide sensing in plants is mediated by proteolytic control of group VII ERF transcription factors. Mol Cell 2014; 53:369-79. [PMID: 24462115 PMCID: PMC3969242 DOI: 10.1016/j.molcel.2013.12.020] [Citation(s) in RCA: 278] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/14/2013] [Accepted: 12/13/2013] [Indexed: 11/28/2022]
Abstract
Nitric oxide (NO) is an important signaling compound in prokaryotes and eukaryotes. In plants, NO regulates critical developmental transitions and stress responses. Here, we identify a mechanism for NO sensing that coordinates responses throughout development based on targeted degradation of plant-specific transcriptional regulators, the group VII ethylene response factors (ERFs). We show that the N-end rule pathway of targeted proteolysis targets these proteins for destruction in the presence of NO, and we establish them as critical regulators of diverse NO-regulated processes, including seed germination, stomatal closure, and hypocotyl elongation. Furthermore, we define the molecular mechanism for NO control of germination and crosstalk with abscisic acid (ABA) signaling through ERF-regulated expression of ABSCISIC ACID INSENSITIVE5 (ABI5). Our work demonstrates how NO sensing is integrated across multiple physiological processes by direct modulation of transcription factor stability and identifies group VII ERFs as central hubs for the perception of gaseous signals in plants.
Collapse
Affiliation(s)
- Daniel J Gibbs
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Nurulhikma Md Isa
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Mahsa Movahedi
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Jorge Lozano-Juste
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Ciudad Politécnica de la Innovación, 46022 Valencia, Spain
| | - Guillermina M Mendiondo
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Sophie Berckhan
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Nora Marín-de la Rosa
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Ciudad Politécnica de la Innovación, 46022 Valencia, Spain
| | - Jorge Vicente Conde
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Cristina Sousa Correia
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Simon P Pearce
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - George W Bassel
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Bulut Hamali
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr Gasse 9, Vienna 1030, Austria
| | - Prabhavathi Talloji
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr Gasse 9, Vienna 1030, Austria
| | - Daniel F A Tomé
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Alberto Coego
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Ciudad Politécnica de la Innovación, 46022 Valencia, Spain
| | - Jim Beynon
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Ciudad Politécnica de la Innovación, 46022 Valencia, Spain
| | - Andreas Bachmair
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr Gasse 9, Vienna 1030, Austria
| | - José León
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Ciudad Politécnica de la Innovación, 46022 Valencia, Spain
| | - Julie E Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Frederica L Theodoulou
- Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Michael J Holdsworth
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK.
| |
Collapse
|
185
|
Trinh NN, Huang TL, Chi WC, Fu SF, Chen CC, Huang HJ. Chromium stress response effect on signal transduction and expression of signaling genes in rice. PHYSIOLOGIA PLANTARUM 2014; 150:205-24. [PMID: 24033343 DOI: 10.1111/ppl.12088] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/15/2013] [Accepted: 07/01/2013] [Indexed: 05/04/2023]
Abstract
Hexavalent chromium [Cr(VI)] is a non-essential metal for normal plants and is toxic to plants at high concentrations. However, signaling pathways and molecular mechanisms of its action on cell function and gene expression remain elusive. In this study, we found that Cr(VI) induced endogenous reactive oxygen species (ROS) generation and Ca(2+) accumulation and activated NADPH oxidase and calcium-dependent protein kinase. We investigated global transcriptional changes in rice roots by microarray analysis. Gene expression profiling indicated activation of abscisic acid-, ethylene- and jasmonic acid-mediated signaling and inactivation of gibberellic acid-related pathways in Cr(VI) stress-treated rice roots. Genes encoding signaling components such as the protein kinases domain of unknown function 26, receptor-like cytoplasmic kinase, LRK10-like kinase type 2 and protein phosphatase 2C, as well as transcription factors WRKY and apetala2/ethylene response factor were predominant during Cr(VI) stress. Genes involved in vesicle trafficking were subjected to functional characterization. Pretreating rice roots with a vesicle trafficking inhibitor, brefeldin A, effectively reduced Cr(VI)-induced ROS production. Suppression of the vesicle trafficking gene, Exo70, by virus-induced gene silencing strategies revealed that vesicle trafficking is required for mediation of Cr(VI)-induced ROS production. Taken together, these findings shed light on the molecular mechanisms in signaling pathways and transcriptional regulation in response to Cr stress in plants.
Collapse
Affiliation(s)
- Ngoc-Nam Trinh
- Department of Life Sciences, National Cheng Kung University, No.1 University Road 701, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
186
|
|
187
|
New Insights into the Metabolic and Molecular Mechanism of Plant Response to Anaerobiosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 311:231-64. [DOI: 10.1016/b978-0-12-800179-0.00005-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
188
|
|
189
|
Juntawong P, Sirikhachornkit A, Pimjan R, Sonthirod C, Sangsrakru D, Yoocha T, Tangphatsornruang S, Srinives P. Elucidation of the molecular responses to waterlogging in Jatropha roots by transcriptome profiling. FRONTIERS IN PLANT SCIENCE 2014; 5:658. [PMID: 25520726 PMCID: PMC4251292 DOI: 10.3389/fpls.2014.00658] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 11/04/2014] [Indexed: 05/06/2023]
Abstract
Jatropha (Jatropha curcas) is a promising oil-seed crop for biodiesel production. However, the species is highly sensitive to waterlogging, which can result in stunted growth and yield loss. To date, the molecular mechanisms underlying the responses to waterlogging in Jatropha remain elusive. Here, the transcriptome adjustment of Jatropha roots to waterlogging was examined by high-throughput RNA-sequencing (RNA-seq). The results indicated that 24 h of waterlogging caused significant changes in mRNA abundance of 1968 genes. Comprehensive gene ontology and functional enrichment analysis of root transcriptome revealed that waterlogging promoted responses to hypoxia and anaerobic respiration. On the other hand, the stress inhibited carbohydrate synthesis, cell wall biogenesis, and growth. The results also highlighted the roles of ethylene, nitrate, and nitric oxide in waterlogging acclimation. In addition, transcriptome profiling identified 85 waterlogging-induced transcription factors including members of AP2/ERF, MYB, and WRKY families implying that reprogramming of gene expression is a vital mechanism for waterlogging acclimation. Comparative analysis of differentially regulated transcripts in response to waterlogging among Arabidopsis, gray poplar, Jatropha, and rice further revealed not only conserved but species-specific regulation. Our findings unraveled the molecular responses to waterlogging in Jatropha and provided new perspectives for developing a waterlogging tolerant cultivar in the future.
Collapse
Affiliation(s)
- Piyada Juntawong
- Special Research Unit in Microalgal Molecular Genetics and Functional Genomics, Department of Genetics, Faculty of Science, Kasetsart UniversityBangkok, Thailand
| | - Anchalee Sirikhachornkit
- Special Research Unit in Microalgal Molecular Genetics and Functional Genomics, Department of Genetics, Faculty of Science, Kasetsart UniversityBangkok, Thailand
| | - Rachaneeporn Pimjan
- Special Research Unit in Microalgal Molecular Genetics and Functional Genomics, Department of Genetics, Faculty of Science, Kasetsart UniversityBangkok, Thailand
| | - Chutima Sonthirod
- National Center for Genetic Engineering and BiotechnologyPathumthani, Thailand
| | - Duangjai Sangsrakru
- National Center for Genetic Engineering and BiotechnologyPathumthani, Thailand
| | - Thippawan Yoocha
- National Center for Genetic Engineering and BiotechnologyPathumthani, Thailand
| | | | - Peerasak Srinives
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart UniversityNakhon Pathom, Thailand
- *Correspondence: Peerasak Srinives, Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand e-mail:
| |
Collapse
|
190
|
Yin D, Ni D, Song L, Zhang Z. Isolation of an alcohol dehydrogenase cDNA from and characterization of its expression in chrysanthemum under waterlogging. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 212:48-54. [PMID: 24094053 DOI: 10.1016/j.plantsci.2013.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 05/21/2013] [Accepted: 05/31/2013] [Indexed: 06/02/2023]
Abstract
A PCR strategy was used to isolate a full-length CgADH (alcohol dehydrogenase) cDNA from chrysanthemum. The gene putatively encodes a 378 residue polypeptides, which shares 95% homology with tomato alcohol dehydrogenase class III. Endogenous ethylene generated in waterlogged Chrysanthemum zawadskii was enhanced by exogenous ethylene but decreased by 1-methylcyclopropene (1-MCP), an inhibitor of ethylene action. In waterlogged roots, the transcription of the gene encoding alcohol dehydrogenase (ADH, EC 1.1.1.1) increased rapidly but transiently, peaking at 7.5 fold the non-waterlogged level after 2h of stress. Waterlogging elevated ADH activity after a prolonged episode of stress. The exogenous supply of 40μLL(-1) ethylene suppressed the production of ethanol, while that of 4μLL(-1) 1-MCP enhanced it. Ethylene appeared to suppress an acceleration of both CgADH expression and fermentation, and alleviates ethanolic fermentation probably through by as a signal to acceleration of waterlogging-induced aerenchyma formation. This supports the previously observed phenomenon that the expression level of ADH gene is regulated by the local level of physiologically active ethylene. The relevance of the CgADH gene in relation to chrysanthemum waterlogging was discussed as well.
Collapse
Affiliation(s)
- Dongmei Yin
- School of Ecological Technology and Enginneering, Shanghai Institute of Technology, Shanghai 201418, China
| | | | | | | |
Collapse
|
191
|
Voesenek LACJ, Bailey-Serres J. Flooding tolerance: O2 sensing and survival strategies. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:647-653. [PMID: 23830867 DOI: 10.1016/j.pbi.2013.06.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 05/28/2023]
Abstract
The investigation of flooding survival strategies in model, crop and wild plant species has yielded insights into molecular, physiological and developmental mechanisms of soil flooding (waterlogging) and submergence survival. The antithetical flooding escape and quiescence strategies of deepwater and submergence tolerant rice (Oryza sativa), respectively, are regulated by members of a clade of ethylene responsive factor transcriptional activators. This knowledge paved the way for the discovery that these proteins are targets of a highly conserved O2-sensing protein turnover mechanism in Arabidopsis thaliana. Further examples of genes that regulate transcription, root and shoot metabolism or development during floods have emerged. With the rapid advancement of genomic technologies, the mining of natural genetic variation in flooding tolerant wild species may ultimately benefit crop production.
Collapse
Affiliation(s)
- L A C J Voesenek
- Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
192
|
Song X, Li Y, Hou X. Genome-wide analysis of the AP2/ERF transcription factor superfamily in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC Genomics 2013; 14:573. [PMID: 23972083 PMCID: PMC3765354 DOI: 10.1186/1471-2164-14-573] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 08/22/2013] [Indexed: 02/04/2023] Open
Abstract
Background Chinese cabbage (Brassica rapa ssp. pekinensis) is a member of one of the most important leaf vegetables grown worldwide, which has experienced thousands of years in cultivation and artificial selection. The entire Chinese cabbage genome sequence, and more than forty thousand proteins have been obtained to date. The genome has undergone triplication events since its divergence from Arabidopsis thaliana (13 to 17 Mya), however a high degree of sequence similarity and conserved genome structure remain between the two species. Arabidopsis is therefore a viable reference species for comparative genomics studies. Variation in the number of members in gene families due to genome triplication may contribute to the broad range of phenotypic plasticity, and increased tolerance to environmental extremes observed in Brassica species. Transcription factors are important regulators involved in plant developmental and physiological processes. The AP2/ERF proteins, one of the most important families of transcriptional regulators, play a crucial role in plant growth, and in response to biotic and abiotic stressors. Our analysis will provide resources for understanding the tolerance mechanisms in Brassica rapa ssp. pekinensis. Results In the present study, 291 putative AP2/ERF transcription factor proteins were identified from the Chinese cabbage genome database, and compared with proteins from 15 additional species. The Chinese cabbage AP2/ERF superfamily was classified into four families, including AP2, ERF, RAV, and Soloist. The ERF family was further divided into DREB and ERF subfamilies. The AP2/ERF superfamily was subsequently divided into 15 groups. The identification, classification, phylogenetic reconstruction, conserved motifs, chromosome distribution, functional annotation, expression patterns, and interaction networks of the AP2/ERF transcription factor superfamily were predicted and analyzed. Distribution mapping results showed AP2/ERF superfamily genes were localized on the 10 Chinese cabbage chromosomes. AP2/ERF transcription factor expression levels exhibited differences among six tissue types based on expressed sequence tags (ESTs). In the AP2/ERF superfamily, 214 orthologous genes were identified between Chinese cabbage and Arabidopsis. Orthologous gene interaction networks were constructed, and included seven CBF and four AP2 genes, primarily involved in cold regulatory pathways and ovule development, respectively. Conclusions The evolution of the AP2/ERF transcription factor superfamily in Chinese cabbage resulted from genome triplication and tandem duplications. A comprehensive analysis of the physiological functions and biological roles of AP2/ERF superfamily genes in Chinese cabbage is required to fully elucidate AP2/ERF, which provides us with rich resources and opportunities to understand crop stress tolerance mechanisms.
Collapse
Affiliation(s)
- Xiaoming Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | |
Collapse
|
193
|
Licausi F, Ohme-Takagi M, Perata P. APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. THE NEW PHYTOLOGIST 2013; 199:639-49. [PMID: 24010138 DOI: 10.1111/nph.12291] [Citation(s) in RCA: 614] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Transcription factors belonging to the APETALA2/Ethylene Responsive Factor (AP2/ERF) family are conservatively widespread in the plant kingdom. These regulatory proteins are involved in the control of primary and secondary metabolism, growth and developmental programs, as well as responses to environmental stimuli. Due to their plasticity and to the specificity of individual members of this family, AP2/ERF transcription factors represent valuable targets for genetic engineering and breeding of crops. In this review, we integrate the evidence collected from functional and structural studies to describe their different mechanisms of action and the regulatory pathways that affect their activity.
Collapse
|
194
|
Du ZY, Chye ML. Interactions between Arabidopsis acyl-CoA-binding proteins and their protein partners. PLANTA 2013; 238:239-45. [PMID: 23743537 DOI: 10.1007/s00425-013-1904-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/24/2013] [Indexed: 05/20/2023]
Abstract
Protein-protein interactions are at the core of cellular interactomics and are essential for various biological functions. Since proteins commonly function as macromolecular complexes, it is important to identify their interacting partners to better understand their function and the significance in these interactions. The acyl-CoA-binding proteins (ACBPs) of eukaryotes show conservation in the presence of a lipid-binding acyl-CoA-binding domain. In Arabidopsis thaliana, four of six members from the AtACBP family possess ankyrin repeats (AtACBP1 and AtACBP2) or kelch motifs (AtACBP4 and AtACBP5), which can potentially mediate protein-protein interactions. Through yeast two-hybrid screens, a dozen putative protein partners interacting with AtACBPs have been isolated from an Arabidopsis cDNA library. Investigations in the past decade on the interaction between AtACBPs and their protein partners have revealed novel roles for AtACBPs, including functions in mediating oxidative stress responses, heavy metal tolerance and oxygen sensing. Recent progress and current questions on AtACBPs and their interactors are discussed in this review.
Collapse
Affiliation(s)
- Zhi-Yan Du
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | |
Collapse
|
195
|
Hsu FC, Chou MY, Chou SJ, Li YR, Peng HP, Shih MC. Submergence confers immunity mediated by the WRKY22 transcription factor in Arabidopsis. THE PLANT CELL 2013; 25:2699-713. [PMID: 23897923 PMCID: PMC3753392 DOI: 10.1105/tpc.113.114447] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 06/30/2013] [Accepted: 07/08/2013] [Indexed: 05/17/2023]
Abstract
Transcriptional control plays an important role in regulating submergence responses in plants. Although numerous genes are highly induced during hypoxia, their individual roles in hypoxic responses are still poorly understood. Here, we found that expression of genes that encode members of the WRKY transcription factor family was rapidly and strongly induced upon submergence in Arabidopsis thaliana, and this induction correlated with induction of a large portion of innate immunity marker genes. Furthermore, prior submergence treatment conferred higher resistance to the bacterial pathogen Pseudomonas syringae in Arabidopsis. Among the WRKY genes tested, WRKY22 had the highest level of induction during the early stages of submergence. Compared with the wild type, WRKY22 T-DNA insertion mutants wrky22-1 and wrky22-2 had lower disease resistance and lower induction of innate immunity markers, such as FLG22-INDUCED RECEPTOR-LIKE KINASE1 (FRK1) and WRKY53, after submergence. Furthermore, transcriptomic analyses of wrky22-2 and chromatin immunoprecipitation identified several potential targets of WRKY22, which included genes encoding a TIR domain-containing protein, a plant peptide hormone, and many OLIGO PEPTIDE TRANSPORTER genes, all of which may lead to induction of innate immunity. In conclusion, we propose that submergence triggers innate immunity in Arabidopsis via WRKY22, a response that may protect against a higher probability of pathogen infection either during or after flooding.
Collapse
Affiliation(s)
- Fu-Chiun Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | |
Collapse
|
196
|
Wang C, Han J, Korir NK, Wang X, Liu H, Li X, Leng X, Fang J. Characterization of target mRNAs for grapevine microRNAs with an integrated strategy of modified RLM-RACE, newly developed PPM-RACE and qPCRs. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:943-57. [PMID: 23582890 DOI: 10.1016/j.jplph.2013.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 02/07/2013] [Accepted: 02/08/2013] [Indexed: 05/10/2023]
Abstract
MicroRNAs (miRNAs) regulate target gene expression by mediating target gene cleavage or inhibition of translation at transcriptional and post-transcriptional levels in higher plants. Until now, many grapevine microRNAs (Vv-miRNAs) have been identified and quite a number of miRNA target genes were also verified by various analysis. However, global interaction of miRNAs with their target genes still remained to perform more research. We reported experimental validation of a number of miRNA target genes in table grapevine that had been previously identified by bioinformatics in our earlier studies. To verify more predicted target genes of Vv-miRNAs and elucidate the modes by which these Vv-miRNAs work on their target genes, 31 unverified potential target genes for 18 Vv-miRNAs were experimentally verified by a new integrated strategy employing a modified 5'-RLM-RACE (RNA ligase-mediated 5' rapid amplification of cDNA ends), 3'-PPM-RACE (poly(A) polymerase-mediated 3' rapid amplification of cDNA ends) and qRT-PCRs of cleavage products. The results showed that these Vv-miRNAs negatively regulated expression of their target messenger RNAs (mRNAs) through guiding corresponding target mRNA cleavage, of which about 94.4% Vv-miRNAs cleaved their target mRNAs mainly at the tenth nucleotide of 5'-end of miRNAs. Expression levels of both miRNAs and their target mRNAs in eight tissues exhibited inverse relationships, and expressions both of cleaved targets and miRNAs indicated a cleavage mode of Vv-miRNAs on their target genes. Our results confirm the importance of Vv-miRNAs in grapevine growth and development, and suggest more study on Vv-miRNAs and targets can enrich the knowledge of miRNA mediated-regulation in grapevine.
Collapse
Affiliation(s)
- Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
197
|
Ethylene promotes induction of aerenchyma formation and ethanolic fermentation in waterlogged roots of Dendranthema spp. Mol Biol Rep 2013; 40:4581-90. [DOI: 10.1007/s11033-013-2550-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
|
198
|
Licausi F. Molecular elements of low-oxygen signaling in plants. PHYSIOLOGIA PLANTARUM 2013; 148:1-8. [PMID: 23167298 DOI: 10.1111/ppl.12011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 10/28/2012] [Accepted: 11/05/2012] [Indexed: 05/07/2023]
Abstract
Oxygen and its limitation are emerging as a crucial factor in plant fitness, growth and development. Recent studies revealed the mechanisms by which oxygen is perceived by plant cells. This sensory system partly relies on an oxygen-mediated branch of the N-end rule pathway for protein degradation acting on a specific clade of ethylene responsive transcription factors (ERF-VII). A complementary regulative step is provided by aerobic sequestration of an ERF-VII protein at the plasma membrane and its timely release when hypoxia occurs. Complete absence of oxygen triggers the transient accumulation of reactive hydrogen peroxide and induces an additional set of reactive oxygen species-related genes involved in both signaling and attenuation of oxidative stress. Moreover, temporary hypoxic environments that are built up as consequence of dense cell packing have been demonstrated to trigger cell-fate determination in maize anthers. Similarly, limited oxygen delivery in bulky fruit or tuber tissues growing in aerobic conditions were shown to stimulate anaerobic-like responses. These advances in low-oxygen signaling and its effect on cell development highlight the importance of taking hypoxia into account in agronomical practices as well as in breeding programs.
Collapse
|
199
|
Fukao T, Xiong L. Genetic mechanisms conferring adaptation to submergence and drought in rice: simple or complex? CURRENT OPINION IN PLANT BIOLOGY 2013; 16:196-204. [PMID: 23453780 DOI: 10.1016/j.pbi.2013.02.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/04/2013] [Accepted: 02/05/2013] [Indexed: 05/22/2023]
Abstract
Both high and low extremes in precipitation increasingly impact agricultural productivity and sustainability as a consequence of global climate change. Elucidation of the genetic basis underlying stress tolerance facilitates development of new rice varieties with enhanced tolerance. Submergence tolerance is conferred by a single master regulator that orchestrates various acclimation responses, whereas drought tolerance is regulated by a number of small-effect loci that are largely influenced by genetic background and environment. Detailed molecular studies have uncovered the functional importance of genes and signaling components which coordinate various morphological and physiological responses to submergence and drought, providing new insight into understanding the complex regulatory mechanisms of stress tolerance in rice.
Collapse
Affiliation(s)
- Takeshi Fukao
- Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | | |
Collapse
|
200
|
Voesenek LACJ, Sasidharan R. Ethylene--and oxygen signalling--drive plant survival during flooding. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:426-35. [PMID: 23574304 DOI: 10.1111/plb.12014] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/12/2013] [Indexed: 05/20/2023]
Abstract
Flooding is a widely occurring environmental stress both for natural and cultivated plant species. The primary problems associated with flooding arise due to restricted gas diffusion underwater. This hampers gas exchange needed for the critical processes of photosynthesis and respiration. Plant acclimation to flooding includes the adaptation of a suite of traits that helps alleviate or avoid these stressful conditions and improves or restores exchange of O2 and CO2 . The manifestation of these traits is, however, reliant on the timely perception of signals that convey the underwater status. Flooding-associated reduced gas diffusion imposes a drastic change in the internal gas composition within submerged plant organs. One of the earliest changes is an increase in the levels of the gaseous plant hormone ethylene. Depending on the species, organ, flooding conditions and time of the day, plants will also subsequently experience a reduction in oxygen levels. This review provides a comprehensive overview on the roles of ethylene and oxygen as critical signals of flooding stress. It includes a discussion of the dynamics of these gases in plants when underwater, their interaction, current knowledge of their perception mechanisms and the resulting downstream changes that mediate important acclimative processes that allow endurance and survival under flooded conditions.
Collapse
Affiliation(s)
- L A C J Voesenek
- Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands.
| | | |
Collapse
|