151
|
Ciaghi S, Schwelm A, Neuhauser S. Transcriptomic response in symptomless roots of clubroot infected kohlrabi (Brassica oleracea var. gongylodes) mirrors resistant plants. BMC PLANT BIOLOGY 2019; 19:288. [PMID: 31262271 PMCID: PMC6604361 DOI: 10.1186/s12870-019-1902-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 06/23/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Clubroot disease caused by Plasmodiophora brassicae (Phytomyxea, Rhizaria) is one of the economically most important diseases of Brassica crops. The formation of hypertrophied roots accompanied by altered metabolism and hormone homeostasis is typical for infected plants. Not all roots of infected plants show the same phenotypic changes. While some roots remain uninfected, others develop galls of diverse size. The aim of this study was to analyse and compare the intra-plant heterogeneity of P. brassicae root galls and symptomless roots of the same host plants (Brassica oleracea var. gongylodes) collected from a commercial field in Austria using transcriptome analyses. RESULTS Transcriptomes were markedly different between symptomless roots and gall tissue. Symptomless roots showed transcriptomic traits previously described for resistant plants. Genes involved in host cell wall synthesis and reinforcement were up-regulated in symptomless roots indicating elevated tolerance against P. brassicae. By contrast, genes involved in cell wall degradation and modification processes like expansion were up-regulated in root galls. Hormone metabolism differed between symptomless roots and galls. Brassinosteroid-synthesis was down-regulated in root galls, whereas jasmonic acid synthesis was down-regulated in symptomless roots. Cytokinin metabolism and signalling were up-regulated in symptomless roots with the exception of one CKX6 homolog, which was strongly down-regulated. Salicylic acid (SA) mediated defence response was up-regulated in symptomless roots, compared with root gall tissue. This is probably caused by a secreted benzoic acid/salicylic acid methyl transferase from the pathogen (PbBSMT), which was one of the highest expressed pathogen genes in gall tissue. The PbBSMT derived Methyl-SA potentially leads to increased pathogen tolerance in uninfected roots. CONCLUSIONS Infected and uninfected roots of clubroot infected plants showed transcriptomic differences similar to those previously described between clubroot resistant and susceptible hosts. The here described intra-plant heterogeneity suggests, that for a better understanding of clubroot disease targeted, spatial analyses of clubroot infected plants will be vital in understanding this economically important disease.
Collapse
Affiliation(s)
- Stefan Ciaghi
- University of Innsbruck, Institute of Microbiology, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Arne Schwelm
- University of Innsbruck, Institute of Microbiology, Technikerstraße 25, 6020 Innsbruck, Austria
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Linnean Centre for Plant Biology, P.O. Box 7080, SE-75007 Uppsala, Sweden
| | - Sigrid Neuhauser
- University of Innsbruck, Institute of Microbiology, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
152
|
Takahashi D, Gorka M, Erban A, Graf A, Kopka J, Zuther E, Hincha DK. Both cold and sub-zero acclimation induce cell wall modification and changes in the extracellular proteome in Arabidopsis thaliana. Sci Rep 2019; 9:2289. [PMID: 30783145 PMCID: PMC6381082 DOI: 10.1038/s41598-019-38688-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/31/2018] [Indexed: 02/07/2023] Open
Abstract
Cold acclimation (CA) leads to increased plant freezing tolerance during exposure to low, non-freezing temperatures as a result of many physiological, biochemical and molecular changes that have been extensively investigated. In addition, many plant species, such as Arabidopsis thaliana, respond to a subsequent exposure to mild, non-damaging freezing temperatures with an additional increase in freezing tolerance referred to as sub-zero acclimation (SZA). There is comparatively little information available about the molecular basis of SZA. However, previous transcriptomic studies indicated that cell wall modification may play an important role during SZA. Here we show that CA and SZA are accompanied by extensive changes in cell wall amount, composition and structure. While CA leads to a significant increase in cell wall amount, the relative proportions of pectin, hemicellulose and cellulose remained unaltered during both CA and SZA. However, both treatments resulted in more subtle changes in structure as determined by infrared spectroscopy and monosaccharide composition as determined by gas chromatography-mass spectrometry. These differences could be related through a proteomic approach to the accumulation of cell wall modifying enzymes such as pectin methylesterases, pectin methylesterase inhibitors and xyloglucan endotransglucosylases/hydrolases in the extracellular matrix.
Collapse
Affiliation(s)
- Daisuke Takahashi
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Michal Gorka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Alexander Erban
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Alexander Graf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Ellen Zuther
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany.
| |
Collapse
|
153
|
Dandekar AM, Jacobson A, Ibáñez AM, Gouran H, Dolan DL, Agüero CB, Uratsu SL, Just R, Zaini PA. Trans-Graft Protection Against Pierce's Disease Mediated by Transgenic Grapevine Rootstocks. FRONTIERS IN PLANT SCIENCE 2019; 10:84. [PMID: 30787937 PMCID: PMC6372540 DOI: 10.3389/fpls.2019.00084] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/21/2019] [Indexed: 05/03/2023]
Abstract
A field study showed that transgenic grapevine rootstocks can provide trans-graft-mediated protection to a wild type scion against Pierce's disease (PD) development. We individually field-tested two distinct strategies. The first expressed a chimeric antimicrobial protein (CAP) that targeted the functionality of the lipopolysaccharide (LPS) surface of Xylella fastidiosa (Xf), the causative agent of PD. The second expressed a plant polygalacturonase inhibitory protein (PGIP) that prevents PD by inhibiting breakdown of pectin present in primary cell walls. Both proteins are secreted to the apoplast and then into the xylem, where they migrate past the graft union, transiting into the xylem of the grafted scion. Transgenic Vitis vinifera cv. Thompson Seedless (TS) expressing ether CAP or PGIP were tested in the greenhouse and those lines that showed resistance to PD were grafted with wild type TS scions. Grafted grapevines were introduced into the field and tested over 7 years. Here we present data on the field evaluation of trans-graft protection using four CAP and four PGIP independent rootstock lines, compared to an untransformed rootstock. There was 30 to 95% reduction in vine mortality among CAP- and PGIP-expressing lines after three successive yearly infections with virulent Xf. Shoot tissues grafted to either CAP or PGIP transgenic rootstocks supported lower pathogen titers and showed fewer disease symptoms. Grafted plants on transgenic rootstocks also had more spring bud break following infection, more shoots, and more vigorous growth compared to those grafted to wild type rootstocks. No yield penalty was observed in the transgenic lines and some PGIP-expressing vines had enhanced yield potential. Trans-graft protection is an efficient way to protect grape scions against PD while preserving their valuable varietal genotypes and clonal properties.
Collapse
Affiliation(s)
- Abhaya M. Dandekar
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Aaron Jacobson
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Ana M. Ibáñez
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Hossein Gouran
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - David L. Dolan
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Cecilia B. Agüero
- Department of Enology and Viticulture, University of California, Davis, Davis, CA, United States
| | - Sandie L. Uratsu
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Robert Just
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Paulo A. Zaini
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
154
|
Schmitz K, Protzko R, Zhang L, Benz JP. Spotlight on fungal pectin utilization-from phytopathogenicity to molecular recognition and industrial applications. Appl Microbiol Biotechnol 2019; 103:2507-2524. [PMID: 30694345 DOI: 10.1007/s00253-019-09622-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 11/29/2022]
Abstract
Pectin is a complex polysaccharide with D-galacturonic acid as its main component that predominantly accumulates in the middle lamella of the plant cell wall. Integrity and depolymerization of pectic structures have long been identified as relevant factors in fungal phytosymbiosis and phytopathogenicity in the context of tissue penetration and carbon source supply. While the pectic content of a plant cell wall can vary significantly, pectin was reported to account for up to 20-25% of the total dry weight in soft and non-woody tissues with non- or mildly lignified secondary cell walls, such as found in citrus peel, sugar beet pulp, and apple pomace. Due to their potential applications in various industrial sectors, pectic sugars from these and similar agricultural waste streams have been recognized as valuable targets for a diverse set of biotechnological fermentations.Recent advances in uncovering the molecular regulation mechanisms for pectinase expression in saprophytic fungi have led to a better understanding of fungal pectin sensing and utilization that could help to improve industrial, pectin-based fermentations. Related research in phytopathogenic fungi has furthermore added to our knowledge regarding the relevance of pectinases in plant cell wall penetration during onset of disease and is therefore highly relevant for agricultural sciences and the agricultural industry. This review therefore aims at summarizing (i) the role of pectinases in phytopathogenicity, (ii) the global regulation patterns for pectinase expression in saprophytic filamentous fungi as a highly specialized class of pectin degraders, and (iii) the current industrial applications in pectic sugar fermentations and transformations.
Collapse
Affiliation(s)
- Kevin Schmitz
- Holzforschung München, TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Ryan Protzko
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Lisha Zhang
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - J Philipp Benz
- Holzforschung München, TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany.
| |
Collapse
|
155
|
Decker D, Kleczkowski LA. UDP-Sugar Producing Pyrophosphorylases: Distinct and Essential Enzymes With Overlapping Substrate Specificities, Providing de novo Precursors for Glycosylation Reactions. FRONTIERS IN PLANT SCIENCE 2019; 9:1822. [PMID: 30662444 PMCID: PMC6329318 DOI: 10.3389/fpls.2018.01822] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/23/2018] [Indexed: 05/02/2023]
Abstract
Nucleotide sugars are the key precursors for all glycosylation reactions and are required both for oligo- and polysaccharides synthesis and protein and lipid glycosylation. Among all nucleotide sugars, UDP-sugars are the most important precursors for biomass production in nature (e.g., synthesis of cellulose, hemicellulose, and pectins for cell wall production). Several recent studies have already suggested a potential role for UDP-Glc in plant growth and development, and UDP-Glc has also been suggested as a signaling molecule, in addition to its precursor function. In this review, we will cover primary mechanisms of formation of UDP-sugars, by focusing on UDP-sugar metabolizing pyrophosphorylases. The pyrophosphorylases can be divided into three families: UDP-Glc pyrophosphorylase (UGPase), UDP-sugar pyrophosphorylase (USPase), and UDP-N-acetyl glucosamine pyrophosphorylase (UAGPase), which can be distinguished both by their amino acid sequences and by differences in substrate specificity. Substrate specificities of these enzymes are discussed, along with structure-function relationships, based on their crystal structures and homology modeling. Earlier studies with transgenic plants have revealed that each of the pyrophosphorylases is essential for plant survival, and their loss or a decrease in activity results in reproductive impairment. This constitutes a problem when studying exact in vivo roles of the enzymes using classical reverse genetics approaches. Thus, strategies involving the use of specific inhibitors (reverse chemical genetics) are also discussed. Further characterization of the properties/roles of pyrophosphorylases should address fundamental questions dealing with mechanisms and control of carbohydrate synthesis and may allow to identify targets for manipulation of biomass production in plants.
Collapse
Affiliation(s)
| | - Leszek A. Kleczkowski
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| |
Collapse
|
156
|
Cheong MS, Lee DY, Seo KH, Choi GH, Song YH, Park KH, Kim JH. Phenylephrine, a small molecule, inhibits pectin methylesterases. Biochem Biophys Res Commun 2019; 508:320-325. [DOI: 10.1016/j.bbrc.2018.11.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 11/25/2022]
|
157
|
Corral-Martínez P, Driouich A, Seguí-Simarro JM. Dynamic Changes in Arabinogalactan-Protein, Pectin, Xyloglucan and Xylan Composition of the Cell Wall During Microspore Embryogenesis in Brassica napus. FRONTIERS IN PLANT SCIENCE 2019; 10:332. [PMID: 30984213 PMCID: PMC6447685 DOI: 10.3389/fpls.2019.00332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/04/2019] [Indexed: 05/05/2023]
Abstract
Microspore embryogenesis is a manifestation of plant cell totipotency whereby new cell walls are formed as a consequence of the embryogenic switch. In particular, the callose-rich subintinal layer created immediately upon induction of embryogenesis was recently related to protection against stress. However, little is currently known about the functional significance of other compositional changes undergone by the walls of embryogenic microspores. We characterized these changes in Brassica napus at different stages during induction of embryogenic microspores and development of microspore-derived embryos (MDEs) by using a series of monoclonal antibodies specific for cell wall components, including arabinogalactan-proteins (AGPs), pectins, xyloglucan and xylan. We used JIM13, JIM8, JIM14 and JIM16 for AGPs, CCRC-M13, LM5, LM6, JIM7, JIM5 and LM7 for pectins, CCRC-M1 and LM15 for xyloglucan, and LM11 for xylan. By transmission electron microscopy and quantification of immunogold labeling on high-pressure frozen, freeze-substituted samples, we profiled the changes in cell wall ultrastructure and composition at the different stages of microspore embryogenesis. As a reference to compare with, we also studied in vivo microspores and maturing pollen grains. We showed that the cell wall of embryogenic microspores is a highly dynamic structure whose architecture, arrangement and composition changes dramatically as microspores undergo embryogenesis and then transform into MDEs. Upon induction, the composition of the preexisting microspore intine walls is remodeled, and unusual walls with a unique structure and composition are formed. Changes in AGP composition were related to developmental fate. In particular, AGPs containing the JIM13 epitope were massively excreted into the cell apoplast, and appeared associated to cell totipotency. According to the ultrastructure and the pectin and xyloglucan composition of these walls, we deduced that commitment to embryogenesis induces the formation of fragile, plastic and deformable cell walls, which allow for cell expansion and microspore growth. We also showed that these special walls are transient, since cell wall composition in microspore-derived embryos was completely different. Thus, once adopted the embryogenic developmental pathway and far from the effects of heat shock exposure, cell wall biosynthesis would approach the structure, composition and properties of conventional cell walls.
Collapse
Affiliation(s)
- Patricia Corral-Martínez
- COMAV – Universitat Politècnica de València, Ciudad Politécnica de la Innovación, Valencia, Spain
- *Correspondence: Patricia Corral-Martínez, Jose M. Seguí-Simarro,
| | - Azeddine Driouich
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche Normandie-Végétal – FED 4277, Université de Rouen Normandie, Mont-Saint-Aignan, France
| | - Jose M. Seguí-Simarro
- COMAV – Universitat Politècnica de València, Ciudad Politécnica de la Innovación, Valencia, Spain
- *Correspondence: Patricia Corral-Martínez, Jose M. Seguí-Simarro,
| |
Collapse
|
158
|
Herburger K, Xin A, Holzinger A. Homogalacturonan Accumulation in Cell Walls of the Green Alga Zygnema sp. (Charophyta) Increases Desiccation Resistance. FRONTIERS IN PLANT SCIENCE 2019; 10:540. [PMID: 31105732 PMCID: PMC6494968 DOI: 10.3389/fpls.2019.00540] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/09/2019] [Indexed: 05/13/2023]
Abstract
Land plants inherited several traits from their green algal ancestors (Zygnematophyceae), including a polysaccharide-rich cell wall, which is a prerequisite for terrestrial survival. A major component of both land plant and Zygnematophyceaen cell walls is the pectin homogalacturonan (HG), and its high water holding capacity may have helped algae to colonize terrestrial habitats, characterized by water scarcity. To test this, HG was removed from the cell walls of Zygnema filaments by pectate lyase (PL), and their effective quantum yield of photosystem II (YII) as a proxy for photosynthetic performance was measured in response to desiccation stress by pulse amplitude modulation (PAM). Old filaments were found to contain more HG and are more resistant against desiccation stress but relatively lose more desiccation resistance after HG removal than young filaments. After rehydration, the photosynthetic performance recovered less efficiently in filaments with a HG content reduced by PL, independently of filament age. Immunolabeling showed that partial or un-methylesterified HG occurs throughout the longitudinal cell walls of both young and old filaments, while no labeling signal occurred when filaments were treated with PL prior labeling. This confirmed that most HG can be removed from the cell walls by PL. The initial labeling pattern was restored after ~3 days. A different form of methylesterified HG was restricted to cell poles and cross cell walls. In conclusion, it was shown that the accumulation of HG in Zygnema filaments increases their resistance against desiccation stress. This trait might have played an important role during the colonization of land by Zygnematophyceae, which founded the evolution of all land plants.
Collapse
Affiliation(s)
- Klaus Herburger
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- Functional Plant Biology, Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Anzhou Xin
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Andreas Holzinger
- Functional Plant Biology, Department of Botany, University of Innsbruck, Innsbruck, Austria
- *Correspondence: Andreas Holzinger,
| |
Collapse
|
159
|
Hloušková P, Černý M, Kořínková N, Luklová M, Minguet EG, Brzobohatý B, Galuszka P, Bergougnoux V. Affinity chromatography revealed 14-3-3 interactome of tomato (Solanum lycopersicum L.) during blue light-induced de-etiolation. J Proteomics 2018; 193:44-61. [PMID: 30583044 DOI: 10.1016/j.jprot.2018.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/09/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022]
Abstract
De-etiolation is the first developmental process under light control allowing the heterotrophic seedling to become autotrophic. The phytohormones cytokinins (CKs) largely contribute to this process. Reversible phosphorylation is a key event of cell signaling, allowing proteins to become active or generating a binding site for specific protein interaction. 14-3-3 proteins regulate a variety of plant responses. The expression, hormonal regulation, and proteomic network under the control of 14-3-3s were addressed in tomato (Solanum lycopersicum L.) during blue light-induced photomorphogenesis. Two isoforms were specifically investigated due to their high expression during tomato de-etiolation. The multidisciplinary approach demonstrated that TFT9 expression, but not TFT6, was regulated by CKs and identified cis-regulating elements required for this response. Our study revealed >130 potential TFT6/9 interactors. Their functional annotation predicted that TFTs might regulate the activity of proteins involved notably in cell wall strengthening or primary metabolism. Several potential interactors were also predicted to be CK-responsive. For the first time, the 14-3-3 interactome linked to de-etiolation was investigated and evidenced that 14-3-3s might be involved in CK signaling pathway, cell expansion inhibition and steady-state growth rate establishment, and reprograming from heterotrophy to autotrophy. BIOLOGICAL SIGNIFICANCE: Tomato (Solanum lycopersicum L.) is one of the most important vegetables consumed all around the world and represents probably the most preferred garden crop. Regulation of hypocotyl growth by light plays an important role in the early development of a seedling, and consequently the homogeneity of the culture. The present study focuses on the importance of tomato 14-3-3/TFT proteins in this process. We provide here the first report of 14-3-3 interactome in the regulation of light-induced de-etiolation and subsequent photomorphogenesis. Our data provide new insights into light-induced de-etiolation and open new horizons for dissecting the post-transcriptional regulations.
Collapse
Affiliation(s)
- Petra Hloušková
- Department of Molecular Biology, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University in Olomouc, Šlechtitelu 27, 783 71 Olomouc, Czechia
| | - Martin Černý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR and CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czechia
| | - Nikola Kořínková
- Department of Molecular Biology, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University in Olomouc, Šlechtitelu 27, 783 71 Olomouc, Czechia
| | - Markéta Luklová
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR and CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czechia
| | - Eugenio Gómez Minguet
- Instituto de Biología Molecular y Celular de Plantas (UPV-Consejo Superior de Investigaciones Científicas), Universidad Politécnica de Valencia, 46022, Valencia, Spain
| | - Břetislav Brzobohatý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR and CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czechia
| | - Petr Galuszka
- Department of Molecular Biology, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University in Olomouc, Šlechtitelu 27, 783 71 Olomouc, Czechia
| | - Véronique Bergougnoux
- Department of Molecular Biology, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University in Olomouc, Šlechtitelu 27, 783 71 Olomouc, Czechia.
| |
Collapse
|
160
|
Ebert B, Birdseye D, Liwanag AJM, Laursen T, Rennie EA, Guo X, Catena M, Rautengarten C, Stonebloom SH, Gluza P, Pidatala VR, Andersen MCF, Cheetamun R, Mortimer JC, Heazlewood JL, Bacic A, Clausen MH, Willats WGT, Scheller HV. The Three Members of the Arabidopsis Glycosyltransferase Family 92 are Functional β-1,4-Galactan Synthases. PLANT & CELL PHYSIOLOGY 2018; 59:2624-2636. [PMID: 30184190 DOI: 10.1093/pcp/pcy180] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/31/2018] [Indexed: 05/18/2023]
Abstract
Pectin is a major component of primary cell walls and performs a plethora of functions crucial for plant growth, development and plant-defense responses. Despite the importance of pectic polysaccharides their biosynthesis is poorly understood. Several genes have been implicated in pectin biosynthesis by mutant analysis, but biochemical activity has been shown for very few. We used reverse genetics and biochemical analysis to study members of Glycosyltransferase Family 92 (GT92) in Arabidopsis thaliana. Biochemical analysis gave detailed insight into the properties of GALS1 (Galactan synthase 1) and showed galactan synthase activity of GALS2 and GALS3. All proteins are responsible for adding galactose onto existing galactose residues attached to the rhamnogalacturonan-I (RG-I) backbone. Significant GALS activity was observed with galactopentaose as acceptor but longer acceptors are favored. Overexpression of the GALS proteins in Arabidopsis resulted in accumulation of unbranched β-1, 4-galactan. Plants in which all three genes were inactivated had no detectable β-1, 4-galactan, and surprisingly these plants exhibited no obvious developmental phenotypes under standard growth conditions. RG-I in the triple mutants retained branching indicating that the initial Gal substitutions on the RG-I backbone are added by enzymes different from GALS.
Collapse
Affiliation(s)
- Berit Ebert
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Devon Birdseye
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - April J M Liwanag
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Tomas Laursen
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Emilie A Rennie
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Xiaoyuan Guo
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Michela Catena
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Carsten Rautengarten
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Solomon H Stonebloom
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Pawel Gluza
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Venkataramana R Pidatala
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mathias C F Andersen
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Roshan Cheetamun
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Jenny C Mortimer
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Mads H Clausen
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - William G T Willats
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Henrik V Scheller
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
161
|
Bozbuga R, Lilley CJ, Knox JP, Urwin PE. Host-specific signatures of the cell wall changes induced by the plant parasitic nematode, Meloidogyne incognita. Sci Rep 2018; 8:17302. [PMID: 30470775 PMCID: PMC6251906 DOI: 10.1038/s41598-018-35529-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/29/2018] [Indexed: 11/10/2022] Open
Abstract
Root-knot nematodes (Meloidogyne spp.) are an important group of plant parasitic nematodes that induce within host plant roots unique feeding site structures, termed giant cells, which supply nutrient flow to the nematode. A comparative in situ analysis of cell wall polysaccharides in the giant cells of three host species (Arabidopsis, maize and aduki bean) infected with Meloidogyne incognita has been carried out. Features common to giant cell walls of all three species include the presence of high-esterified pectic homogalacturonan, xyloglucan and pectic arabinan. The species-specific presence of xylan and mixed-linkage glucan (MLG) epitopes in giant cell walls of maize reflected that host’s taxonomic group. The LM5 galactan and LM21 mannan epitopes were not detected in the giant cell walls of aduki bean but were detected in Arabidopsis and maize giant cell walls. The LM2 arabinogalactan-protein epitope was notable for its apparent global variations in root cell walls as a response to infection across the three host species. Additionally, a set of Arabidopsis cell wall mutants were used to determine any impacts of altered cell wall structures on M. incognita infection. Disruption of the arabinogalactan-protein 8 gene had the greatest impact and resulted in an increased infection rate.
Collapse
Affiliation(s)
- Refik Bozbuga
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, Leeds, United Kingdom
| | - Catherine J Lilley
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, Leeds, United Kingdom
| | - J Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, Leeds, United Kingdom
| | - Peter E Urwin
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, Leeds, United Kingdom.
| |
Collapse
|
162
|
Wu HC, Bulgakov VP, Jinn TL. Pectin Methylesterases: Cell Wall Remodeling Proteins Are Required for Plant Response to Heat Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:1612. [PMID: 30459794 PMCID: PMC6232315 DOI: 10.3389/fpls.2018.01612] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/17/2018] [Indexed: 05/21/2023]
Abstract
Heat stress (HS) is expected to be of increasing worldwide concern in the near future, especially with regard to crop yield and quality as a consequence of rising or varying temperatures as a result of global climate change. HS response (HSR) is a highly conserved mechanism among different organisms but shows remarkable complexity and unique features in plants. The transcriptional regulation of HSR is controlled by HS transcription factors (HSFs) which allow the activation of HS-responsive genes, among which HS proteins (HSPs) are best characterized. Cell wall remodeling constitutes an important component of plant responses to HS to maintain overall function and growth; however, little is known about the connection between cell wall remodeling and HSR. Pectin controls cell wall porosity and has been shown to exhibit structural variation during plant growth and in response to HS. Pectin methylesterases (PMEs) are present in multigene families and encode isoforms with different action patterns by removal of methyl esters to influencing the properties of cell wall. We aimed to elucidate how plant cell walls respond to certain environmental cues through cell wall-modifying proteins in connection with modifications in cell wall machinery. An overview of recent findings shed light on PMEs contribute to a change in cell-wall composition/structure. The fine-scale modulation of apoplastic calcium ions (Ca2+) content could be mediated by PMEs in response to abiotic stress for both the assembly and disassembly of the pectic network. In particular, this modulation is prevalent in guard cell walls for regulating cell wall plasticity as well as stromal aperture size, which comprise critical determinants of plant adaptation to HS. These insights provide a foundation for further research to reveal details of the cell wall machinery and stress-responsive factors to provide targets and strategies to facilitate plant adaptation.
Collapse
Affiliation(s)
- Hui-Chen Wu
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Victor P. Bulgakov
- Institute of Biology and Soil Science, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Tsung-Luo Jinn
- Department of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
163
|
Dranca F, Oroian M. Extraction, purification and characterization of pectin from alternative sources with potential technological applications. Food Res Int 2018; 113:327-350. [DOI: 10.1016/j.foodres.2018.06.065] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/31/2022]
|
164
|
Jeong HY, Nguyen HP, Eom SH, Lee C. Integrative analysis of pectin methylesterase (PME) and PME inhibitors in tomato (Solanum lycopersicum): Identification, tissue-specific expression, and biochemical characterization. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:557-565. [PMID: 30326434 DOI: 10.1016/j.plaphy.2018.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
Although previous studies have demonstrated that the degree of demethylesterification of pectin polysaccharides is modulated during tomato fruit ripening, its involvement in vegetative organ development has been seldom investigated. As a first step in understanding the importance of pectin modification during vegetative stages, we used chemical, biochemical, and molecular approaches to analyze PMEs and PMEIs in tomato plants. We found that tomato cell walls isolated from vegetative tissues as well as the fruit contain substantial quantities of pectin, and different degrees of methylesterification were evident in different tissues. Our chemical study was further substantiated by immunolocalization analysis, which showed that selective removal of pectin-bound methyl groups is required for proper organ development and growth. In the tomato genome, there exists 79 PMEs and 48 PMEIs with temporally and spatially regulated expression. As a case study, we showed that two tomato PMEIs (SolycPMEI13 and SolycPMEI14) exhibited PMEI activities. This is the first report regarding the genome-wide identification and expression profiling of PME/PMEIs in tomato and the first chemical evidence of the differential degrees of pectin methylesterification in vegetative and reproductive tissues. Taken together, our findings provide an important tool to unravel the molecular and physiological functions of tomato PME and PMEI in further study.
Collapse
Affiliation(s)
- Ho Young Jeong
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, South Korea
| | - Hong Phuong Nguyen
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, South Korea
| | - Seok Hyun Eom
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, 446-701, South Korea.
| | - Chanhui Lee
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, South Korea; Department of Plant and Environmental New Resources, Kyung Hee University, Yongin, 446-701, South Korea.
| |
Collapse
|
165
|
Voiniciuc C, Engle KA, Günl M, Dieluweit S, Schmidt MHW, Yang JY, Moremen KW, Mohnen D, Usadel B. Identification of Key Enzymes for Pectin Synthesis in Seed Mucilage. PLANT PHYSIOLOGY 2018; 178:1045-1064. [PMID: 30228108 PMCID: PMC6236597 DOI: 10.1104/pp.18.00584] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/31/2018] [Indexed: 05/12/2023]
Abstract
Pectin is a vital component of the plant cell wall and provides the molecular glue that maintains cell-cell adhesion, among other functions. As the most complex wall polysaccharide, pectin is composed of several covalently linked domains, such as homogalacturonan (HG) and rhamnogalacturonan I (RG I). Pectin has widespread uses in the food industry and has emerging biomedical applications, but its synthesis remains poorly understood. For instance, the enzymes that catalyze RG I elongation remain unknown. Recently, a coexpression- and sequence-based MUCILAGE-RELATED (MUCI) reverse genetic screen uncovered hemicellulose biosynthetic enzymes in the Arabidopsis (Arabidopsis thaliana) seed coat. Here, we use an extension of this strategy to identify MUCI70 as the founding member of a glycosyltransferase family essential for the accumulation of seed mucilage, a gelatinous wall rich in unbranched RG I. Detailed biochemical and histological characterization of two muci70 mutants and two galacturonosyltransferase11 (gaut11) mutants identified MUCI70 and GAUT11 as required for two distinct RG I domains in seed mucilage. We demonstrate that, unlike MUCI70, GAUT11 catalyzes HG elongation in vitro and, thus, likely is required for the synthesis of an HG region important for RG I elongation. Analysis of a muci70 gaut11 double mutant confirmed that MUCI70 and GAUT11 are indispensable for the production and release of the bulk of mucilage RG I and for shaping the surface morphology of seeds. In addition, we uncover relationships between pectin and hemicelluloses and show that xylan is essential for the elongation of at least one RG I domain.
Collapse
Affiliation(s)
- Cătălin Voiniciuc
- Institute for Bio- and Geosciences (Plant Sciences), Forschungszentrum Jülich, 52425 Juelich, Germany
- Institute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany
| | - Kristen A Engle
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Markus Günl
- Institute for Bio- and Geosciences (Plant Sciences), Forschungszentrum Jülich, 52425 Juelich, Germany
| | - Sabine Dieluweit
- Institute of Complex Systems, Forschungszentrum Jülich, 52425 Juelich, Germany
| | - Maximilian Heinrich-Wilhelm Schmidt
- Institute for Bio- and Geosciences (Plant Sciences), Forschungszentrum Jülich, 52425 Juelich, Germany
- Institute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany
| | - Jeong-Yeh Yang
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Kelley W Moremen
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Debra Mohnen
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Björn Usadel
- Institute for Bio- and Geosciences (Plant Sciences), Forschungszentrum Jülich, 52425 Juelich, Germany
- Institute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
166
|
Affiliation(s)
- Csaba Fehér
- Department of Applied Biotechnology and Food Science, Biorefinery Research Group, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
167
|
Van de Wouwer D, Boerjan W, Vanholme B. Plant cell wall sugars: sweeteners for a bio-based economy. PHYSIOLOGIA PLANTARUM 2018; 164:27-44. [PMID: 29430656 DOI: 10.1111/ppl.12705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 05/23/2023]
Abstract
Global warming and the consequent climate change is one of the major environmental challenges we are facing today. The driving force behind the rise in temperature is our fossil-based economy, which releases massive amounts of the greenhouse gas carbon dioxide into the atmosphere. In order to reduce greenhouse gas emission, we need to scale down our dependency on fossil resources, implying that we need other sources for energy and chemicals to feed our economy. Here, plants have an important role to play; by means of photosynthesis, plants capture solar energy to split water and fix carbon derived from atmospheric carbon dioxide. A significant fraction of the fixed carbon ends up as polysaccharides in the plant cell wall. Fermentable sugars derived from cell wall polysaccharides form an ideal carbon source for the production of bio-platform molecules. However, a major limiting factor in the use of plant biomass as feedstock for the bio-based economy is the complexity of the plant cell wall and its recalcitrance towards deconstruction. To facilitate the release of fermentable sugars during downstream biomass processing, the composition and structure of the cell wall can be engineered. Different strategies to reduce cell wall recalcitrance will be described in this review. The ultimate goal is to obtain a tailor-made biomass, derived from plants with a cell wall optimized for particular industrial or agricultural applications, without affecting plant growth and development.
Collapse
Affiliation(s)
- Dorien Van de Wouwer
- Ghent University, Department of Plant Biotechnology and Bioinformatics, (Technologiepark 927), 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 927), 9052, Ghent, Belgium
| | - Wout Boerjan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, (Technologiepark 927), 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 927), 9052, Ghent, Belgium
| | - Bartel Vanholme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, (Technologiepark 927), 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 927), 9052, Ghent, Belgium
| |
Collapse
|
168
|
John A, Yang J, Liu J, Jiang Y, Yang B. The structure changes of water-soluble polysaccharides in papaya during ripening. Int J Biol Macromol 2018; 115:152-156. [DOI: 10.1016/j.ijbiomac.2018.04.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/26/2018] [Accepted: 04/10/2018] [Indexed: 11/16/2022]
|
169
|
Sarker PK, Kapuscinski AR, Bae AY, Donaldson E, Sitek AJ, Fitzgerald DS, Edelson OF. Towards sustainable aquafeeds: Evaluating substitution of fishmeal with lipid-extracted microalgal co-product (Nannochloropsis oculata) in diets of juvenile Nile tilapia (Oreochromis niloticus). PLoS One 2018; 13:e0201315. [PMID: 30063730 PMCID: PMC6067735 DOI: 10.1371/journal.pone.0201315] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/12/2018] [Indexed: 12/12/2022] Open
Abstract
Microalgae companies increasingly seek markets for defatted biomass that is left over after extracting omega-3 rich oil for human nutraceuticals and crude oil for fuels. Such a protein-rich co-product is a promising alternative to unsustainably sourced fishmeal in aquaculture diets. We report the first evaluation of co-product of the marine microalga Nannochloropsis oculata (N. oculata co-product) for replacing fishmeal in diets of Nile tilapia, a globally important aquaculture species. We conducted a nutrient digestibility experiment with N. oculata dried whole cells and N. oculata co-product, followed by an 84-day nutritional feeding experiment with N. oculata co-product. N. oculata co-product, more nutrient-dense than whole cells, had the highest digestibility for lysine, an essential amino acid that is often deficient in terrestrial crop meals; and for 20:5 n-3 EPA, making it a good option for EPA supplementation in tilapia feed. N. oculata co-product, despite containing higher amounts of protein than whole cells, had significantly lower digestibility for crude protein than whole cells. Apparent digestibility coefficients (ADC) of methionine were significantly lower in N. oculata co-product than in whole cells. The nutritional feeding experiment compared diets with N. oculata co-product that replaced fishmeal as follows: 0% replacement in reference diet (fishmeal as 7% of total diet) and test diets with 33%, 66% and 100% replacement of fishmeal (3%, 5.5%, and 8% of total diet, respectively). Results showed the 33% replacement diet yielded fish growth, feed conversion, and survival similar to the reference diet. Reduced digestibility and growth at greater N. oculata co-product inclusion levels may have been due to higher levels of anti-nutrients in co-product than whole cells. All diets yielded a n3:n6 ratio of tilapia fillet that is favorable for human consumption. Depositions of macro minerals and several trace elements in the fillet were not significantly different across diets. Thus, N. oculata co-product, when replacing 33% of fishmeal in tilapia feed, led to fish performance and flesh composition comparable to that of fish fed the reference diet, but its nutrient digestibility needs to be improved to achieve higher replacement levels.
Collapse
Affiliation(s)
- Pallab K. Sarker
- Environmental Studies Program, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Anne R. Kapuscinski
- Environmental Studies Program, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Ashley Y. Bae
- Environmental Studies Program, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Emily Donaldson
- Environmental Studies Program, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Alexander J. Sitek
- Environmental Studies Program, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Devin S. Fitzgerald
- Environmental Studies Program, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Oliver F. Edelson
- Environmental Studies Program, Dartmouth College, Hanover, New Hampshire, United States of America
| |
Collapse
|
170
|
Neeragunda Shivaraj Y, Barbara P, Gugi B, Vicré-Gibouin M, Driouich A, Ramasandra Govind S, Devaraja A, Kambalagere Y. Perspectives on Structural, Physiological, Cellular, and Molecular Responses to Desiccation in Resurrection Plants. SCIENTIFICA 2018; 2018:9464592. [PMID: 30046509 PMCID: PMC6036803 DOI: 10.1155/2018/9464592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/07/2018] [Accepted: 04/26/2018] [Indexed: 05/21/2023]
Abstract
Resurrection plants possess a unique ability to counteract desiccation stress. Desiccation tolerance (DT) is a very complex multigenic and multifactorial process comprising a combination of physiological, morphological, cellular, genomic, transcriptomic, proteomic, and metabolic processes. Modification in the sugar composition of the hemicellulosic fraction of the cell wall is detected during dehydration. An important change is a decrease of glucose in the hemicellulosic fraction during dehydration that can reflect a modification of the xyloglucan structure. The expansins might also be involved in cell wall flexibility during drying and disrupt hydrogen bonds between polymers during rehydration of the cell wall. Cleavages by xyloglucan-modifying enzymes release the tightly bound xyloglucan-cellulose network, thus increasing cell wall flexibility required for cell wall folding upon desiccation. Changes in hydroxyproline-rich glycoproteins (HRGPs) such as arabinogalactan proteins (AGPs) are also observed during desiccation and rehydration processes. It has also been observed that significant alterations in the process of photosynthesis and photosystem (PS) II activity along with changes in the antioxidant enzyme system also increased the cell wall and membrane fluidity resulting in DT. Similarly, recent data show a major role of ABA, LEA proteins, and small regulatory RNA in regulating DT responses. Current progress in "-omic" technologies has enabled quantitative monitoring of the plethora of biological molecules in a high throughput routine, making it possible to compare their levels between desiccation-sensitive and DT species. In this review, we present a comprehensive overview of structural, physiological, cellular, molecular, and global responses involved in desiccation tolerance.
Collapse
Affiliation(s)
- Yathisha Neeragunda Shivaraj
- Centre for Bioinformation, Department of Studies and Research in Environmental Science, Tumkur University, Tumakuru 57210, India
| | - Plancot Barbara
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, Normandie Univ, UniRouen, 76000 Rouen, France
- Fédération de Recherche “Normandie-Végétal”-FED 4277, 76000 Rouen, France
| | - Bruno Gugi
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, Normandie Univ, UniRouen, 76000 Rouen, France
- Fédération de Recherche “Normandie-Végétal”-FED 4277, 76000 Rouen, France
| | - Maïté Vicré-Gibouin
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, Normandie Univ, UniRouen, 76000 Rouen, France
- Fédération de Recherche “Normandie-Végétal”-FED 4277, 76000 Rouen, France
| | - Azeddine Driouich
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, Normandie Univ, UniRouen, 76000 Rouen, France
- Fédération de Recherche “Normandie-Végétal”-FED 4277, 76000 Rouen, France
| | - Sharatchandra Ramasandra Govind
- Centre for Bioinformation, Department of Studies and Research in Environmental Science, Tumkur University, Tumakuru 57210, India
| | - Akash Devaraja
- Centre for Bioinformation, Department of Studies and Research in Environmental Science, Tumkur University, Tumakuru 57210, India
| | - Yogendra Kambalagere
- Department of Studies and Research in Environmental Science, Kuvempu University, Shankaraghatta, Shimoga 577451, India
| |
Collapse
|
171
|
Lin D, Lopez-Sanchez P, Selway N, Gidley MJ. Viscoelastic properties of pectin/cellulose composites studied by QCM-D and oscillatory shear rheology. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
172
|
Tucker MR, Lou H, Aubert MK, Wilkinson LG, Little A, Houston K, Pinto SC, Shirley NJ. Exploring the Role of Cell Wall-Related Genes and Polysaccharides during Plant Development. PLANTS (BASEL, SWITZERLAND) 2018; 7:E42. [PMID: 29857498 PMCID: PMC6028917 DOI: 10.3390/plants7020042] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022]
Abstract
The majority of organs in plants are not established until after germination, when pluripotent stem cells in the growing apices give rise to daughter cells that proliferate and subsequently differentiate into new tissues and organ primordia. This remarkable capacity is not only restricted to the meristem, since maturing cells in many organs can also rapidly alter their identity depending on the cues they receive. One general feature of plant cell differentiation is a change in cell wall composition at the cell surface. Historically, this has been viewed as a downstream response to primary cues controlling differentiation, but a closer inspection of the wall suggests that it may play a much more active role. Specific polymers within the wall can act as substrates for modifications that impact receptor binding, signal mobility, and cell flexibility. Therefore, far from being a static barrier, the cell wall and its constituent polysaccharides can dictate signal transmission and perception, and directly contribute to a cell's capacity to differentiate. In this review, we re-visit the role of plant cell wall-related genes and polysaccharides during various stages of development, with a particular focus on how changes in cell wall machinery accompany the exit of cells from the stem cell niche.
Collapse
Affiliation(s)
- Matthew R Tucker
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Haoyu Lou
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
- Australian Research Council Centre of Excellence in Plant Cell Walls, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Matthew K Aubert
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
- Australian Research Council Centre of Excellence in Plant Cell Walls, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Laura G Wilkinson
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
- Australian Research Council Centre of Excellence in Plant Cell Walls, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Alan Little
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Kelly Houston
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK.
| | - Sara C Pinto
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal.
| | - Neil J Shirley
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
- Australian Research Council Centre of Excellence in Plant Cell Walls, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| |
Collapse
|
173
|
Ben-Tov D, Idan-Molakandov A, Hugger A, Ben-Shlush I, Günl M, Yang B, Usadel B, Harpaz-Saad S. The role of COBRA-LIKE 2 function, as part of the complex network of interacting pathways regulating Arabidopsis seed mucilage polysaccharide matrix organization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:497-512. [PMID: 29446495 DOI: 10.1111/tpj.13871] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 05/12/2023]
Abstract
The production of hydrophilic mucilage along the course of seed coat epidermal cell differentiation is a common adaptation in angiosperms. Previous studies have identified COBRA-LIKE 2 (COBL2), a member of the COBRA-LIKE gene family, as a novel component required for crystalline cellulose deposition in seed coat epidermal cells. In recent years, Arabidopsis seed coat epidermal cells (SCEs), also called mucilage secretory cells, have emerged as a powerful model system for the study of plant cell wall components biosynthesis, secretion, assembly and de muro modification. Despite accumulating data, the molecular mechanism of COBL function remains largely unknown. In the current research, we utilized genetic interactions to study the role of COBL2 as part of the protein network required for seed mucilage production. Using correlative phenotyping of structural and biochemical characteristics, unique features of the cobl2 extruded mucilage are revealed, including: 'unraveled' ray morphology, loss of primary cell wall 'pyramidal' organization, reduced Ruthenium red staining intensity of the adherent mucilage layer, and increased levels of the monosaccharides arabinose and galactose. Examination of the cobl2cesa5 double mutant provides insight into the interface between COBL function and cellulose deposition. Additionally, genetic interactions between cobl2 and fei1fei2 as well as between each of these mutants to mucilage-modified 2 (mum2) suggest that COBL2 functions independently of the FEI-SOS pathway. Altogether, the presented data place COBL2 within the complex protein network required for cell wall deposition in the context of seed mucilage and introduce new methodology expending the seed mucilage phenotyping toolbox.
Collapse
Affiliation(s)
- Daniela Ben-Tov
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University, Rehovot, 7610001, Israel
| | - Anat Idan-Molakandov
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University, Rehovot, 7610001, Israel
| | - Anat Hugger
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University, Rehovot, 7610001, Israel
| | - Ilan Ben-Shlush
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University, Rehovot, 7610001, Israel
| | - Markus Günl
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Jülich, 52425, Germany
| | - Bo Yang
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Jülich, 52425, Germany
| | - Björn Usadel
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Jülich, 52425, Germany
| | - Smadar Harpaz-Saad
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University, Rehovot, 7610001, Israel
| |
Collapse
|
174
|
Krell V, Jakobs-Schoenwandt D, Vidal S, Patel AV. Cellulase enhances endophytism of encapsulated Metarhizium brunneum in potato plants. Fungal Biol 2018; 122:373-378. [DOI: 10.1016/j.funbio.2018.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/27/2018] [Accepted: 03/02/2018] [Indexed: 01/18/2023]
|
175
|
Hu H, Zhang R, Feng S, Wang Y, Wang Y, Fan C, Li Y, Liu Z, Schneider R, Xia T, Ding S, Persson S, Peng L. Three AtCesA6-like members enhance biomass production by distinctively promoting cell growth in Arabidopsis. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:976-988. [PMID: 28944540 PMCID: PMC5902768 DOI: 10.1111/pbi.12842] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 05/11/2023]
Abstract
Cellulose is an abundant biopolymer and a prominent constituent of plant cell walls. Cellulose is also a central component to plant morphogenesis and contributes the bulk of a plant's biomass. While cellulose synthase (CesA) genes were identified over two decades ago, genetic manipulation of this family to enhance cellulose production has remained difficult. In this study, we show that increasing the expression levels of the three primary cell wall AtCesA6-like genes (AtCesA2, AtCesA5, AtCesA6), but not AtCesA3, AtCesA9 or secondary cell wall AtCesA7, can promote the expression of major primary wall CesA genes to accelerate primary wall CesA complex (cellulose synthase complexes, CSCs) particle movement for acquiring long microfibrils and consequently increasing cellulose production in Arabidopsis transgenic lines, as compared with wild-type. The overexpression transgenic lines displayed changes in expression of genes related to cell growth and proliferation, perhaps explaining the enhanced growth of the transgenic seedlings. Notably, overexpression of the three AtCesA6-like genes also enhanced secondary cell wall deposition that led to improved mechanical strength and higher biomass production in transgenic mature plants. Hence, we propose that overexpression of certain AtCesA genes can provide a biotechnological approach to increase cellulose synthesis and biomass accumulation in transgenic plants.
Collapse
Affiliation(s)
- Huizhen Hu
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ran Zhang
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shengqiu Feng
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Youmei Wang
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yanting Wang
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Chunfen Fan
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ying Li
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zengyu Liu
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - René Schneider
- School of BiosciencesUniversity of MelbourneParkvilleVICAustralia
| | - Tao Xia
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shi‐You Ding
- Department of Plant BiologyMichigan State UniversityEast LansingMIUSA
| | - Staffan Persson
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- School of BiosciencesUniversity of MelbourneParkvilleVICAustralia
| | - Liangcai Peng
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
176
|
Lara-Espinoza C, Carvajal-Millán E, Balandrán-Quintana R, López-Franco Y, Rascón-Chu A. Pectin and Pectin-Based Composite Materials: Beyond Food Texture. Molecules 2018; 23:E942. [PMID: 29670040 PMCID: PMC6017442 DOI: 10.3390/molecules23040942] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/07/2018] [Accepted: 04/12/2018] [Indexed: 12/03/2022] Open
Abstract
Pectins are plant cell wall natural heteropolysaccharides composed mainly of α-1-4 d-galacturonic acid units, which may or may not be methyl esterified, possesses neutral sugars branching that harbor functional moieties. Physicochemical features as pH, temperature, ions concentration, and cosolute presence, affect directly the extraction yield and gelling capacity of pectins. The chemical and structural features of this polysaccharide enables its interaction with a wide range of molecules, a property that scientists profit from to form new composite matrices for target/controlled delivery of therapeutic molecules, genes or cells. Considered a prebiotic dietary fiber, pectins meetmany regulations easily, regarding health applications within the pharmaceutical industry as a raw material and as an agent for the prevention of cancer. Thus, this review lists many emergent pectin-based composite materials which will probably palliate the impact of obesity, diabetes and heart disease, aid to forestall actual epidemics, expand the ken of food additives and food products design.
Collapse
Affiliation(s)
- Claudia Lara-Espinoza
- Research Center for Food and Development, CIAD, A.C., Carretera a La Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| | - Elizabeth Carvajal-Millán
- Research Center for Food and Development, CIAD, A.C., Carretera a La Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| | - René Balandrán-Quintana
- Research Center for Food and Development, CIAD, A.C., Carretera a La Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| | - Yolanda López-Franco
- Research Center for Food and Development, CIAD, A.C., Carretera a La Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| | - Agustín Rascón-Chu
- Research Center for Food and Development, CIAD, A.C., Carretera a La Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| |
Collapse
|
177
|
Laursen T, Stonebloom SH, Pidatala VR, Birdseye DS, Clausen MH, Mortimer JC, Scheller HV. Bifunctional glycosyltransferases catalyze both extension and termination of pectic galactan oligosaccharides. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:340-351. [PMID: 29418030 DOI: 10.1111/tpj.13860] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 05/18/2023]
Abstract
Pectins are the most complex polysaccharides of the plant cell wall. Based on the number of methylations, acetylations and glycosidic linkages present in their structures, it is estimated that up to 67 transferase activities are involved in pectin biosynthesis. Pectic galactans constitute a major part of pectin in the form of side-chains of rhamnogalacturonan-I. In Arabidopsis, galactan synthase 1 (GALS1) catalyzes the addition of galactose units from UDP-Gal to growing β-1,4-galactan chains. However, the mechanisms for obtaining varying degrees of polymerization remain poorly understood. In this study, we show that AtGALS1 is bifunctional, catalyzing both the transfer of galactose from UDP-α-d-Gal and the transfer of an arabinopyranose from UDP-β-l-Arap to galactan chains. The two substrates share a similar structure, but UDP-α-d-Gal is the preferred substrate, with a 10-fold higher affinity. Transfer of Arap to galactan prevents further addition of galactose residues, resulting in a lower degree of polymerization. We show that this dual activity occurs both in vitro and in vivo. The herein described bifunctionality of AtGALS1 may suggest that plants can produce the incredible structural diversity of polysaccharides without a dedicated glycosyltransferase for each glycosidic linkage.
Collapse
Affiliation(s)
- Tomas Laursen
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94702, USA
| | - Solomon H Stonebloom
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94702, USA
| | - Venkataramana R Pidatala
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94702, USA
| | - Devon S Birdseye
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94702, USA
| | - Mads H Clausen
- Department of Chemistry, Center for Nanomedicine and Theranostics, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Jenny C Mortimer
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94702, USA
| | - Henrik Vibe Scheller
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94702, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
178
|
Chandrayan P. Biological Function(s) and Application (s) of Pectin and Pectin Degrading Enzymes. ACTA ACUST UNITED AC 2018. [DOI: 10.13005/bbra/2611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pectin is an integral part of plant cell wall and since centuries pectin extracted from plants is widely used in food and fruit juice processing. Moreover, in last half century, the applications have also invaded into many bio-processing applications such as pharmaceutical, bioenergy, textile, paper and tea processing. In these growing industries, the use of pectinases has grown with a significant amount i.e. approximately 10 % of total global enzyme market comes from pectinases. Herein comprehensive analyses of information related to structure and function of pectin in plant cell wall as well as structural classes of pectins have been discussed. The major function of pectin is in cementing the cellulose and hemicelluloses network, cell-cell adhesion and plant defence. Keeping the wide use of pectin in food industry and growing need of environment friendly technology for pectin extraction has accelerated the demand of pectin degrading enzymes (PDEs). PDEs are from three enzyme classes: carbohydrate esterases from CE8 and CE12 family, glycoside hydrolases from GH28 family and lyases from PL1, 2, 3, 9 and 10. We have reviewed the literature related to abundance and structure-function of these abovementioned enzymes from bacteria. From the current available literature, we found very limited information is present about thermostable PDEs. Hence, in future it could be a topic of study to gain the insight about structure-function of enzymes together with the expanded role of thermostable enzymes in development of bioprocesses based on these enzymes.
Collapse
Affiliation(s)
- Puja Chandrayan
- Maharishi University of Information Technology (Established vide Uttar Pradesh Act No.31of 2001) Sitapur Road (IIM Bypass, Bhitauli Tiraha, P.O-Maharishi Vidya Mandir, Lucknow-226013 (UP), India
| |
Collapse
|
179
|
Han Q, Song H, Yang Y, Jiang H, Zhang S. Transcriptional profiling reveals mechanisms of sexually dimorphic responses of Populus cathayana to potassium deficiency. PHYSIOLOGIA PLANTARUM 2018; 162:301-315. [PMID: 28857174 DOI: 10.1111/ppl.12636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/04/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
Potassium (K) deficiency causes a series of physiological and metabolic disorders in plants, and dioecious species exhibit different responses based on sex. Our previous morphological and physiological observations indicated that Populus cathayana males were more tolerant to K+ deficiency than females. To continue this work, comparative transcriptome analyses were carried out to investigate sexually differentially expressed genes (DEGs) in this study. The results indicate that 10 weeks of K+ deficiency result in 111 and 181 DEGs in males and females, respectively. These DEGs are mainly involved in photosynthesis, cell wall biosynthesis, secondary metabolism, transport, stress responses, gene expression regulation and protein synthesis and degradation. Comparing between sexes, P. cathayana females showed more changes in response to K+ deficiency than males with regard to photosynthesis, gene expression regulation and posttranslational modification but fewer changes in secondary metabolism, stress responses and redox homeostasis. These results provide evidence that P. cathayana females are more susceptible to K+ deficiency than males. Therefore, there are sex-related molecular strategies in response to K+ deficiency between sexes.
Collapse
Affiliation(s)
- Qingquan Han
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Haifeng Song
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yanni Yang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Hao Jiang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Sheng Zhang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| |
Collapse
|
180
|
Wildhagen H, Paul S, Allwright M, Smith HK, Malinowska M, Schnabel SK, Paulo MJ, Cattonaro F, Vendramin V, Scalabrin S, Janz D, Douthe C, Brendel O, Buré C, Cohen D, Hummel I, Le Thiec D, van Eeuwijk F, Keurentjes JJB, Flexas J, Morgante M, Robson P, Bogeat-Triboulot MB, Taylor G, Polle A. Genes and gene clusters related to genotype and drought-induced variation in saccharification potential, lignin content and wood anatomical traits in Populus nigra. TREE PHYSIOLOGY 2018; 38:320-339. [PMID: 28541580 PMCID: PMC5982782 DOI: 10.1093/treephys/tpx054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/03/2017] [Indexed: 05/03/2023]
Abstract
Wood is a renewable resource that can be employed for the production of second generation biofuels by enzymatic saccharification and subsequent fermentation. Knowledge on how the saccharification potential is affected by genotype-related variation of wood traits and drought is scarce. Here, we used three Populus nigra L. genotypes from habitats differing in water availability to (i) investigate the relationships between wood anatomy, lignin content and saccharification and (ii) identify genes and co-expressed gene clusters related to genotype and drought-induced variation in wood traits and saccharification potential. The three poplar genotypes differed in wood anatomy, lignin content and saccharification potential. Drought resulted in reduced cambial activity, decreased vessel and fiber lumina, and increased the saccharification potential. The saccharification potential was unrelated to lignin content as well as to most wood anatomical traits. RNA sequencing of the developing xylem revealed that 1.5% of the analyzed genes were differentially expressed in response to drought, while 67% differed among the genotypes. Weighted gene correlation network analysis identified modules of co-expressed genes correlated with saccharification potential. These modules were enriched in gene ontology terms related to cell wall polysaccharide biosynthesis and modification and vesicle transport, but not to lignin biosynthesis. Among the most strongly saccharification-correlated genes, those with regulatory functions, especially kinases, were prominent. We further identified transcription factors whose transcript abundances differed among genotypes, and which were co-regulated with genes for biosynthesis and modifications of hemicelluloses and pectin. Overall, our study suggests that the regulation of pectin and hemicellulose metabolism is a promising target for improving wood quality of second generation bioenergy crops. The causal relationship of the identified genes and pathways with saccharification potential needs to be validated in further experiments.
Collapse
Affiliation(s)
- Henning Wildhagen
- Forest Botany and Tree Physiology, Georg-August University of Goettingen, Büsgenweg 2, 37077 Göttingen, Germany
- HAWK University of Applied Sciences and Arts, Faculty of Resource Management, Büsgenweg 1a, 37077 Göttingen, Germany
| | - Shanty Paul
- Forest Botany and Tree Physiology, Georg-August University of Goettingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Mike Allwright
- Center for Biological Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Hazel K Smith
- Center for Biological Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Marta Malinowska
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, SY233EE, UK
| | - Sabine K Schnabel
- Biometris, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - M João Paulo
- Biometris, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | - Vera Vendramin
- IGA Technology Services, via Jacopo Linussio 51, 33100 Udine, Italy
| | - Simone Scalabrin
- IGA Technology Services, via Jacopo Linussio 51, 33100 Udine, Italy
| | - Dennis Janz
- Forest Botany and Tree Physiology, Georg-August University of Goettingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Cyril Douthe
- Universidad de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Oliver Brendel
- EEF, INRA, Université de Lorraine, rue d'Amance, 54280 Champenoux, France
| | - Cyril Buré
- EEF, INRA, Université de Lorraine, rue d'Amance, 54280 Champenoux, France
| | - David Cohen
- EEF, INRA, Université de Lorraine, rue d'Amance, 54280 Champenoux, France
| | - Irène Hummel
- EEF, INRA, Université de Lorraine, rue d'Amance, 54280 Champenoux, France
| | - Didier Le Thiec
- EEF, INRA, Université de Lorraine, rue d'Amance, 54280 Champenoux, France
| | - Fred van Eeuwijk
- Biometris, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jaume Flexas
- Universidad de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Michele Morgante
- Università Di Udine, Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100 Udine, Italy
| | - Paul Robson
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, SY233EE, UK
| | | | - Gail Taylor
- Center for Biological Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Andrea Polle
- Forest Botany and Tree Physiology, Georg-August University of Goettingen, Büsgenweg 2, 37077 Göttingen, Germany
- Corresponding author ()
| |
Collapse
|
181
|
Sugar release and growth of biofuel crops are improved by downregulation of pectin biosynthesis. Nat Biotechnol 2018; 36:249-257. [DOI: 10.1038/nbt.4067] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 01/02/2018] [Indexed: 01/17/2023]
|
182
|
Zakharova AN, Awan SI, Nami F, Gotfredsen CH, Madsen R, Clausen MH. Synthesis of Two Tetrasaccharide Pentenyl Glycosides Related to the Pectic Rhamnogalacturonan I Polysaccharide. Molecules 2018; 23:molecules23020327. [PMID: 29401687 PMCID: PMC6017268 DOI: 10.3390/molecules23020327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 11/29/2022] Open
Abstract
The synthesis of two protected tetrasaccharide pentenyl glycosides with diarabinan and digalactan branching related to the pectic polysaccharide rhamnogalacturonan I is reported. The strategy relies on the coupling of N-phenyl trifluoroacetimidate disaccharide donors to a common rhamnosyl acceptor. The resulting trisaccharide thioglycosides were finally coupled to an n-pentenyl galactoside acceptor to access the two protected branched tetrasaccharides.
Collapse
Affiliation(s)
- Alexandra N Zakharova
- Center for Nanomedicine and Theranostics, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark.
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark.
| | - Shahid I Awan
- Center for Nanomedicine and Theranostics, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark.
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark.
| | - Faranak Nami
- Center for Nanomedicine and Theranostics, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark.
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark.
| | - Charlotte H Gotfredsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark.
| | - Robert Madsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark.
| | - Mads H Clausen
- Center for Nanomedicine and Theranostics, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark.
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
183
|
Lampugnani ER, Khan GA, Somssich M, Persson S. Building a plant cell wall at a glance. J Cell Sci 2018; 131:131/2/jcs207373. [PMID: 29378834 DOI: 10.1242/jcs.207373] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Plant cells are surrounded by a strong polysaccharide-rich cell wall that aids in determining the overall form, growth and development of the plant body. Indeed, the unique shapes of the 40-odd cell types in plants are determined by their walls, as removal of the cell wall results in spherical protoplasts that are amorphic. Hence, assembly and remodeling of the wall is essential in plant development. Most plant cell walls are composed of a framework of cellulose microfibrils that are cross-linked to each other by heteropolysaccharides. The cell walls are highly dynamic and adapt to the changing requirements of the plant during growth. However, despite the importance of plant cell walls for plant growth and for applications that we use in our daily life such as food, feed and fuel, comparatively little is known about how they are synthesized and modified. In this Cell Science at a Glance article and accompanying poster, we aim to illustrate the underpinning cell biology of the synthesis of wall carbohydrates, and their incorporation into the wall, in the model plant Arabidopsis.
Collapse
Affiliation(s)
- Edwin R Lampugnani
- School of Biosciences, University of Melbourne, Parkville 3010 VIC, Melbourne, Australia
| | - Ghazanfar Abbas Khan
- School of Biosciences, University of Melbourne, Parkville 3010 VIC, Melbourne, Australia
| | - Marc Somssich
- School of Biosciences, University of Melbourne, Parkville 3010 VIC, Melbourne, Australia
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville 3010 VIC, Melbourne, Australia
| |
Collapse
|
184
|
Herburger K, Ryan LM, Popper ZA, Holzinger A. Localisation and substrate specificities of transglycanases in charophyte algae relate to development and morphology. J Cell Sci 2018; 131:jcs203208. [PMID: 28827406 PMCID: PMC5722204 DOI: 10.1242/jcs.203208] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/16/2017] [Indexed: 12/26/2022] Open
Abstract
Cell wall-modifying enzymes have been previously investigated in charophyte green algae (CGA) in cultures of uniform age, giving limited insight into their roles. Therefore, we investigated the in situ localisation and specificity of enzymes acting on hemicelluloses in CGA genera of different morphologies and developmental stages. In vivo transglycosylation between xyloglucan and an endogenous donor in filamentous Klebsormidium and Zygnema was observed in longitudinal cell walls of young (1 month) but not old cells (1 year), suggesting that it has a role in cell growth. By contrast, in parenchymatous Chara, transglycanase action occurred in all cell planes. In Klebsormidium and Zygnema, the location of enzyme action mainly occurred in regions where xyloglucans and mannans, and to a lesser extent mixed-linkage β-glucan (MLG), were present, indicating predominantly xyloglucan:xyloglucan endotransglucosylase (XET) activity. Novel transglycosylation activities between xyloglucan and xylan, and xyloglucan and galactomannan were identified in vitro in both genera. Our results show that several cell wall-modifying enzymes are present in CGA, and that differences in morphology and cell age are related to enzyme localisation and specificity. This indicates an evolutionary significance of cell wall modifications, as similar changes are known in their immediate descendants, the land plants. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Klaus Herburger
- Department of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestraße 16, 6020 Innsbruck, Austria
| | - Louise M Ryan
- Botany and Plant Science and Ryan Institute for Environmental, Marine, and Energy Research, School of Natural Sciences, National University of Ireland, Galway, University Road, H91 TK33 Galway, Ireland
| | - Zoë A Popper
- Botany and Plant Science and Ryan Institute for Environmental, Marine, and Energy Research, School of Natural Sciences, National University of Ireland, Galway, University Road, H91 TK33 Galway, Ireland
| | - Andreas Holzinger
- Department of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestraße 16, 6020 Innsbruck, Austria
| |
Collapse
|
185
|
Yan J, He H, Fang L, Zhang A. Pectin methylesterase31 positively regulates salt stress tolerance in Arabidopsis. Biochem Biophys Res Commun 2018; 496:497-501. [PMID: 29307824 DOI: 10.1016/j.bbrc.2018.01.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 12/01/2022]
Abstract
The alteration of cell wall component and structure is an important adaption to saline environment. Pectins, a major cell wall component, are often present in a highly methylesterified form. The level of methyl esterification determined by pectin methylesterases (PMEs) influences many important wall properties that are believed to relate to the adaption to saline stress. However, little is known about the function of PMEs in response to salt stress. Here, we established a link between pectin methylesterase31 (PME31) and salt stress tolerance. Salt stress significantly increases PME31 expression. PME31 is located in the plasma membrane and the expression level of PME31 was high in dry seeds. Knock-down mutants in PME31 conferred hypersensitive phenotypes to salt stress in seed germination and post-germination growth. Real-time PCR analysis revealed that the transcript levels of several stress genes (DREB2A, RD29A and RD29B) are lower in pme31-2 mutant than that in the wild type in response to salt stress. These results suggested that PME31 could positively modulate salt stress tolerance.
Collapse
Affiliation(s)
- Jingwei Yan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Huan He
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Lin Fang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Aying Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
186
|
Abstract
Plant cell walls have important roles during all phases of plant growth and development. Polysaccharides are the major components of the primary walls surrounding growing plant cells, together with small amounts of protein and minerals. Secondary walls that are deposited when a cell has ceased to grow are also composed predominantly of polysaccharides, although lignin may account for up to 20% w/w of these walls. The types of polysaccharides and their structure and abundance often vary greatly in the cell walls of different plant species, different cell types, and different developmental stages. Significant changes in structure and composition of cell wall have been described in various types of plant senescence. Here we describe a general method for the isolation of cell wall polysaccharides as their alcohol-insoluble residues (AIR) and procedures for the determination of the neutral and acidic monosaccharides present in the wall.
Collapse
Affiliation(s)
- Yingzhen Kong
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China.
| | - Malcolm O'Neill
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Gongke Zhou
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| |
Collapse
|
187
|
Aznar A, Chalvin C, Shih PM, Maimann M, Ebert B, Birdseye DS, Loqué D, Scheller HV. Gene stacking of multiple traits for high yield of fermentable sugars in plant biomass. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:2. [PMID: 29321811 PMCID: PMC5759196 DOI: 10.1186/s13068-017-1007-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/23/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND Second-generation biofuels produced from biomass can help to decrease dependency on fossil fuels, bringing about many economic and environmental benefits. To make biomass more suitable for biorefinery use, we need a better understanding of plant cell wall biosynthesis. Increasing the ratio of C6 to C5 sugars in the cell wall and decreasing the lignin content are two important targets in engineering of plants that are more suitable for downstream processing for second-generation biofuel production. RESULTS We have studied the basic mechanisms of cell wall biosynthesis and identified genes involved in biosynthesis of pectic galactan, including the GALS1 galactan synthase and the UDP-galactose/UDP-rhamnose transporter URGT1. We have engineered plants with a more suitable biomass composition by applying these findings, in conjunction with synthetic biology and gene stacking tools. Plants were engineered to have up to fourfold more pectic galactan in stems by overexpressing GALS1, URGT1, and UGE2, a UDP-glucose epimerase. Furthermore, the increased galactan trait was engineered into plants that were already engineered to have low xylan content by restricting xylan biosynthesis to vessels where this polysaccharide is essential. Finally, the high galactan and low xylan traits were stacked with the low lignin trait obtained by expressing the QsuB gene encoding dehydroshikimate dehydratase in lignifying cells. CONCLUSION The results show that approaches to increasing C6 sugar content, decreasing xylan, and reducing lignin content can be combined in an additive manner. Thus, the engineered lines obtained by this trait-stacking approach have substantially improved properties from the perspective of biofuel production, and they do not show any obvious negative growth effects. The approach used in this study can be readily transferred to bioenergy crop plants.
Collapse
Affiliation(s)
- Aude Aznar
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Camille Chalvin
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Ecole Normale Supérieure de Cachan, 94230 Cachan, France
| | - Patrick M. Shih
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Michael Maimann
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Berit Ebert
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Devon S. Birdseye
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Dominique Loqué
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- INSA de Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720 USA
| | - Henrik V. Scheller
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
188
|
Yang L, Huang W, Xiong F, Xian Z, Su D, Ren M, Li Z. Silencing of SlPL, which encodes a pectate lyase in tomato, confers enhanced fruit firmness, prolonged shelf-life and reduced susceptibility to grey mould. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1544-1555. [PMID: 28371176 PMCID: PMC5698048 DOI: 10.1111/pbi.12737] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 05/18/2023]
Abstract
Pectate lyase genes have been documented as excellent candidates for improvement of fruit firmness. However, implementation of pectate lyase in regulating fruit postharvest deterioration has not been fully explored. In this report, 22 individual pectate lyase genes in tomato were identified, and one pectate lyase gene SlPL (Solyc03g111690) showed dominant expression during fruit maturation. RNA interference of SlPL resulted in enhanced fruit firmness and changes in pericarp cells. More importantly, the SlPL-RNAi fruit demonstrated greater antirotting and pathogen-resisting ability. Compared to wild-type, SlPL-RNAi fruit had higher levels of cellulose and hemicellulose, whereas the level of water-soluble pectin was lower. Consistent with this, the activities of peroxidase, superoxide dismutase and catalase were higher in SlPL-RNAi fruit, and the malondialdehyde concentration was lower. RNA-Seq results showed large amounts of differentially expressed genes involved in hormone signalling, cell wall modification, oxidative stress and pathogen resistance. Collectively, these data demonstrate that pectate lyase plays an important role in both fruit softening and pathogen resistance. This may advance knowledge of postharvest fruit preservation in tomato and other fleshy fruit.
Collapse
Affiliation(s)
- Lu Yang
- School of Life SciencesChongqing UniversityChongqingChina
| | - Wei Huang
- School of Life SciencesChongqing UniversityChongqingChina
| | - Fangjie Xiong
- School of Life SciencesChongqing UniversityChongqingChina
| | - Zhiqiang Xian
- School of Life SciencesChongqing UniversityChongqingChina
| | - Deding Su
- School of Life SciencesChongqing UniversityChongqingChina
| | - Maozhi Ren
- School of Life SciencesChongqing UniversityChongqingChina
| | - Zhengguo Li
- School of Life SciencesChongqing UniversityChongqingChina
| |
Collapse
|
189
|
Rao X, Shen H, Pattathil S, Hahn MG, Gelineo-Albersheim I, Mohnen D, Pu Y, Ragauskas AJ, Chen X, Chen F, Dixon RA. Dynamic changes in transcriptome and cell wall composition underlying brassinosteroid-mediated lignification of switchgrass suspension cells. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:266. [PMID: 29213317 PMCID: PMC5707915 DOI: 10.1186/s13068-017-0954-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/02/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Plant cell walls contribute the majority of plant biomass that can be used to produce transportation fuels. However, the complexity and variability in composition and structure of cell walls, particularly the presence of lignin, negatively impacts their deconstruction for bioenergy. Metabolic and genetic changes associated with secondary wall development in the biofuel crop switchgrass (Panicum virgatum) have yet to be reported. RESULTS Our previous studies have established a cell suspension system for switchgrass, in which cell wall lignification can be induced by application of brassinolide (BL). We have now collected cell wall composition and microarray-based transcriptome profiles for BL-induced and non-induced suspension cultures to provide an overview of the dynamic changes in transcriptional reprogramming during BL-induced cell wall modification. From this analysis, we have identified changes in candidate genes involved in cell wall precursor synthesis, cellulose, hemicellulose, and pectin formation and ester-linkage generation. We have also identified a large number of transcription factors with expression correlated with lignin biosynthesis genes, among which are candidates for control of syringyl (S) lignin accumulation. CONCLUSION Together, this work provides an overview of the dynamic compositional changes during brassinosteroid-induced cell wall remodeling, and identifies candidate genes for future plant genetic engineering to overcome cell wall recalcitrance.
Collapse
Affiliation(s)
- Xiaolan Rao
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
| | - Hui Shen
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX USA
- Present Address: Marker-assisted Breeding and Traits, Chromatin Inc, Lubbock, TX 79404 USA
| | - Sivakumar Pattathil
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd, Athens, GA 30602 USA
- Present Address: Mascoma LLC (Lallemand Company), 67 Etna Road, Lebanon, NH 03766 USA
| | - Michael G. Hahn
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd, Athens, GA 30602 USA
| | - Ivana Gelineo-Albersheim
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd, Athens, GA 30602 USA
| | - Debra Mohnen
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd, Athens, GA 30602 USA
| | - Yunqiao Pu
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
| | - Arthur J. Ragauskas
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN USA
| | - Xin Chen
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
- Present Address: Center for Applied Mathematics, Tianjin University, Tianjin, 300072 China
| | - Fang Chen
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
| | - Richard A. Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
| |
Collapse
|
190
|
Yoshinari A, Takano J. Insights into the Mechanisms Underlying Boron Homeostasis in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1951. [PMID: 29204148 PMCID: PMC5698777 DOI: 10.3389/fpls.2017.01951] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/30/2017] [Indexed: 05/21/2023]
Abstract
Boron is an essential element for plants but is toxic in excess. Therefore, plants must adapt to both limiting and excess boron conditions for normal growth. Boron transport in plants is primarily based on three transport mechanisms across the plasma membrane: passive diffusion of boric acid, facilitated diffusion of boric acid via channels, and export of borate anion via transporters. Under boron -limiting conditions, boric acid channels and borate exporters function in the uptake and translocation of boron to support growth of various plant species. In Arabidopsis thaliana, NIP5;1 and BOR1 are located in the plasma membrane and polarized toward soil and stele, respectively, in various root cells, for efficient transport of boron from the soil to the stele. Importantly, sufficient levels of boron induce downregulation of NIP5;1 and BOR1 through mRNA degradation and proteolysis through endocytosis, respectively. In addition, borate exporters, such as Arabidopsis BOR4 and barley Bot1, function in boron exclusion from tissues and cells under conditions of excess boron. Thus, plants actively regulate intracellular localization and abundance of transport proteins to maintain boron homeostasis. In this review, the physiological roles and regulatory mechanisms of intracellular localization and abundance of boron transport proteins are discussed.
Collapse
Affiliation(s)
| | - Junpei Takano
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
191
|
Pectin methylesterase inhibitor (PMEI) family can be related to male sterility in Chinese cabbage (Brassica rapa ssp. pekinensis). Mol Genet Genomics 2017; 293:343-357. [DOI: 10.1007/s00438-017-1391-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/31/2017] [Indexed: 10/18/2022]
|
192
|
Bhatia R, Gallagher JA, Gomez LD, Bosch M. Genetic engineering of grass cell wall polysaccharides for biorefining. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1071-1092. [PMID: 28557198 PMCID: PMC5552484 DOI: 10.1111/pbi.12764] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/17/2017] [Accepted: 05/24/2017] [Indexed: 05/10/2023]
Abstract
Grasses represent an abundant and widespread source of lignocellulosic biomass, which has yet to fulfil its potential as a feedstock for biorefining into renewable and sustainable biofuels and commodity chemicals. The inherent recalcitrance of lignocellulosic materials to deconstruction is the most crucial limitation for the commercial viability and economic feasibility of biomass biorefining. Over the last decade, the targeted genetic engineering of grasses has become more proficient, enabling rational approaches to modify lignocellulose with the aim of making it more amenable to bioconversion. In this review, we provide an overview of transgenic strategies and targets to tailor grass cell wall polysaccharides for biorefining applications. The bioengineering efforts and opportunities summarized here rely primarily on (A) reprogramming gene regulatory networks responsible for the biosynthesis of lignocellulose, (B) remodelling the chemical structure and substitution patterns of cell wall polysaccharides and (C) expressing lignocellulose degrading and/or modifying enzymes in planta. It is anticipated that outputs from the rational engineering of grass cell wall polysaccharides by such strategies could help in realizing an economically sustainable, grass-derived lignocellulose processing industry.
Collapse
Affiliation(s)
- Rakesh Bhatia
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | - Joe A. Gallagher
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | | | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| |
Collapse
|
193
|
Karaki N, Aljawish A, Muniglia L, Bouguet-Bonnet S, Leclerc S, Paris C, Jasniewski J, Humeau-Virot C. Functionalization of pectin with laccase-mediated oxidation products of ferulic acid. Enzyme Microb Technol 2017. [DOI: 10.1016/j.enzmictec.2017.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
194
|
Goulao LF, Fernandes JC, Amâncio S. How the Depletion in Mineral Major Elements Affects Grapevine ( Vitis vinifera L.) Primary Cell Wall. FRONTIERS IN PLANT SCIENCE 2017; 8:1439. [PMID: 28871267 PMCID: PMC5566972 DOI: 10.3389/fpls.2017.01439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/03/2017] [Indexed: 05/29/2023]
Abstract
The noteworthy fine remodeling that plant cell walls (CWs) undergo to adapt to developmental, physiological and environmental cues and the observation that its composition and dynamics differ between species represents an opportunity to couple crop species agronomic studies with research on CW modifications. Vitis vinifera is one of the most important crops from an economic point-of-view due to the high value of the fruit, predominantly for winemaking. The availability of some information related to this species' CWs allows researching its responses to imposed conditions that affect the plant's development. Mineral deficiency, in particular nitrogen, phosphorus, potassium and sulfur, strongly affects plant metabolism, reducing both growth and crop yield. Despite the importance of mineral nutrition in development, its influence on CW synthesis and modifications is still insufficiently documented. Addressing this knowledge gap, V. vinifera experimental models were used to study CW responses to imposed mineral depletion in unorganized (callus) and organized (shoots) tissues. The discussion of the obtained results is the main focus of this review. Callus and shoots submitted to mineral restriction are impaired in specific CW components, predominantly cellulose. Reorganization on structure and deposition of several other polymers, in particular the degree and pattern of pectin methyl-esterification and the amount of xyloglucan (XyG), arabinan and extensin, is also observed. In view of recently proposed CW models that consider biomechanical hotspots and direct linkages between pectins and XyG/cellulose, the outcome of these modifications in explaining maintenance of CW integrity through compensatory stiffening can be debated. Nutrient stresses do not affect evenly all tissues with undifferentiated callus tissues showing more pronounced responses, followed by shoot mature internodes, and then newly formed internodes. The impact of nitrogen depletion leads to more noticeable responses, supporting this nutrient's primary role in plant development and metabolism. The consequential compensatory mechanisms highlight the pivotal role of CW in rearranging under environmental stresses.
Collapse
|
195
|
Liu J, Hou J, Chen H, Pei K, Li Y, He XQ. Dynamic Changes of Pectin Epitopes in Cell Walls during the Development of the Procambium-Cambium Continuum in Poplar. Int J Mol Sci 2017; 18:E1716. [PMID: 28783076 PMCID: PMC5578106 DOI: 10.3390/ijms18081716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/07/2017] [Accepted: 07/31/2017] [Indexed: 11/25/2022] Open
Abstract
The change of pectin epitopes during procambium-cambium continuum development was investigated by immunolocalization in poplar. The monoclonal antibody JIM5 labels homogalacturonan (HGA) with a low degree of esterification, and the monoclonal antibody JIM7 labels HGA with a high degree of methyl-esterification. Arabinan, rather than galactan, and HGA with low degree of esterification were located in the cell walls of procambial, while HGA with a low degree of esterification was located in the tangential walls, and galactan was located in both the tangential and radial walls of procambial, yet nearly no arabinan was located in the tangential walls of the cambial cells. The changes in pectin distribution took place when periclinal divisions appeared within a procambial trace. The distribution difference of pectin epitopes was also present in procambium-cambium derivatives. The arabinan existed in all cell walls of primary xylem, but was absent from the tangential walls of secondary xylem cells. The galactan existed only in mature primary phloem. Furthermore, 19 pectin methylesterases (PMEs) genes were identified by RNA sequencing, six genes presented highly differentially and were supposed to be involved in the cell wall esterification process. The results provide direct evidence of the dynamic changes of pectin epitopes during the development of the procambium-cambium continuum in poplar.
Collapse
Affiliation(s)
- Jundi Liu
- College of Forestry, Gansu Agriculture University, Lanzhou 730070, China.
| | - Jie Hou
- School of Life Sciences, Peking University, Beijing 100871, China.
| | - Huimin Chen
- Hefei No. 1 High School, Hefei 230601, China.
| | - Keliang Pei
- College of Forestry, Gansu Agriculture University, Lanzhou 730070, China.
| | - Yi Li
- College of Forestry, Gansu Agriculture University, Lanzhou 730070, China.
| | - Xin-Qiang He
- School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
196
|
Pectins functionalized biomaterials; a new viable approach for biomedical applications: A review. Int J Biol Macromol 2017; 101:254-272. [DOI: 10.1016/j.ijbiomac.2017.03.029] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 12/31/2022]
|
197
|
Lim SH. Larch Arabinogalactan Attenuates Myocardial Injury by Inhibiting Apoptotic Cascades in a Rat Model of Ischemia–Reperfusion. J Med Food 2017. [DOI: 10.1089/jmf.2016.3886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Sun-Ha Lim
- Department of Biochemistry, School of Medicine, Catholic University of Daegu, Daegu, Korea
| |
Collapse
|
198
|
Landis JB, Soltis DE, Soltis PS. Comparative transcriptomic analysis of the evolution and development of flower size in Saltugilia (Polemoniaceae). BMC Genomics 2017; 18:475. [PMID: 28645249 PMCID: PMC5481933 DOI: 10.1186/s12864-017-3868-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 06/16/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Flower size varies dramatically across angiosperms, representing innovations over the course of >130 million years of evolution and contributing substantially to relationships with pollinators. However, the genetic underpinning of flower size is not well understood. Saltugilia (Polemoniaceae) provides an excellent non-model system for extending the genetic study of flower size to interspecific differences that coincide with variation in pollinators. RESULTS Using targeted gene capture methods, we infer phylogenetic relationships among all members of Saltugilia to provide a framework for investigating the genetic control of flower size differences via RNA-Seq de novo assembly. Nuclear concatenation and species tree inference methods provide congruent topologies. The inferred evolutionary trajectory of flower size is from small flowers to larger flowers. We identified 4 to 10,368 transcripts that are differentially expressed during flower development, with many unigenes associated with cell wall modification and components of the auxin and gibberellin pathways. CONCLUSIONS Saltugilia is an excellent model for investigating covarying floral and pollinator evolution. Four candidate genes from model systems (BIG BROTHER, BIG PETAL, GASA, and LONGIFOLIA) show differential expression during development of flowers in Saltugilia, and four other genes (FLOWERING-PROMOTING FACTOR 1, PECTINESTERASE, POLYGALACTURONASE, and SUCROSE SYNTHASE) fit into hypothesized organ size pathways. Together, these gene sets provide a strong foundation for future functional studies to determine their roles in specifying interspecific differences in flower size.
Collapse
Affiliation(s)
- Jacob B. Landis
- Department of Biology, University of Florida, Gainesville, FL 32611 USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611 USA
- Department of Botany and Plant Sciences, University of California Riverside, 4412 Boyce Hall, 3401 Watkins Drive, Riverside, CA 92521 USA
| | - Douglas E. Soltis
- Department of Biology, University of Florida, Gainesville, FL 32611 USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611 USA
- Genetics Institute, University of Florida, Gainesville, FL 32610 USA
| | - Pamela S. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611 USA
- Genetics Institute, University of Florida, Gainesville, FL 32610 USA
| |
Collapse
|
199
|
Philippe F, Pelloux J, Rayon C. Plant pectin acetylesterase structure and function: new insights from bioinformatic analysis. BMC Genomics 2017; 18:456. [PMID: 28595570 PMCID: PMC5465549 DOI: 10.1186/s12864-017-3833-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/31/2017] [Indexed: 11/10/2022] Open
Abstract
Background Pectins are plant cell wall polysaccharides that can be acetylated on C2 and/or C3 of galacturonic acid residues. The degree of acetylation of pectin can be modulated by pectin acetylesterase (EC 3.1.1.6, PAE). The function and structure of plant PAEs remain poorly understood and the role of the fine-tuning of pectin acetylation on cell wall properties has not yet been elucidated. Results In the present study, a bioinformatic approach was used on 72 plant PAEs from 16 species among 611 plant PAEs available in plant genomic databases. An overview of plant PAE proteins, particularly Arabidopsis thaliana PAEs, based on phylogeny analysis, protein motif identification and modeled 3D structure is presented. A phylogenetic tree analysis using protein sequences clustered the plant PAEs into five clades. AtPAEs clustered in four clades in the plant kingdom PAE tree while they formed three clades when a phylogenetic tree was performed only on Arabidopsis proteins, due to isoform AtPAE9. Primitive plants that display a smaller number of PAEs clustered into two clades, while in higher plants, the presence of multiple members of PAE genes indicated a diversification of AtPAEs. 3D homology modeling of AtPAE8 from clade 2 with a human Notum protein showed an α/β hydrolase structure with the hallmark Ser-His-Asp of the active site. A 3D model of AtPAE4 from clade 1 and AtPAE10 from clade 3 showed a similar shape suggesting that the diversification of AtPAEs is unlikely to arise from the shape of the protein. Primary structure prediction analysis of AtPAEs showed a specific motif characteristic of each clade and identified one major group of AtPAEs with a signal peptide and one group without a signal peptide. A multiple sequence alignment of the putative plant PAEs revealed consensus sequences with important putative catalytic residues: Ser, Asp, His and a pectin binding site. Data mining of gene expression profiles of AtPAE revealed that genes from clade 2 including AtPAE7, AtPAE8 and AtPAE11, which are duplicated genes, are highly expressed during plant growth and development while AtPAEs without a signal peptide, including AtPAE2 and AtPAE4, are more regulated in response to plant environmental conditions. Conclusion Bioinformatic analysis of plant, and particularly Arabidopsis, AtPAEs provides novel insights, including new motifs that could play a role in pectin binding and catalytic sites. The diversification of AtPAEs is likely to be related to neofunctionalization of some AtPAE genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3833-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Florian Philippe
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039, Amiens, France
| | - Jérôme Pelloux
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039, Amiens, France
| | - Catherine Rayon
- EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039, Amiens, France.
| |
Collapse
|
200
|
Huang YC, Wu HC, Wang YD, Liu CH, Lin CC, Luo DL, Jinn TL. PECTIN METHYLESTERASE34 Contributes to Heat Tolerance through Its Role in Promoting Stomatal Movement. PLANT PHYSIOLOGY 2017; 174:748-763. [PMID: 28381503 PMCID: PMC5462046 DOI: 10.1104/pp.17.00335] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/03/2017] [Indexed: 05/18/2023]
Abstract
Pectin, a major component of the primary cell wall, is synthesized in the Golgi apparatus and exported to the cell wall in a highly methylesterified form, then is partially demethylesterified by pectin methylesterases (PMEs; EC 3.1.1.11). PME activity on the status of pectin methylesterification profoundly affects the properties of pectin and, thereby, is critical for plant development and the plant defense response, although the roles of PMEs under heat stress (HS) are poorly understood. Functional genome annotation predicts that at least 66 potential PME genes are contained in Arabidopsis (Arabidopsis thaliana). Thermotolerance assays of PME gene T-DNA insertion lines revealed two null mutant alleles of PME34 (At3g49220) that both consistently showed reduced thermotolerance. Nevertheless, their impairment was independently associated with the expression of HS-responsive genes. It was also observed that PME34 transcription was induced by abscisic acid and highly expressed in guard cells. We showed that the PME34 mutation has a defect in the control of stomatal movement and greatly altered PME and polygalacturonase (EC 3.2.1.15) activity, resulting in a heat-sensitive phenotype. PME34 has a role in the regulation of transpiration through the control of the stomatal aperture due to its cell wall-modifying enzyme activity during the HS response. Hence, PME34 is required for regulating guard cell wall flexibility to mediate the heat response in Arabidopsis.
Collapse
Affiliation(s)
- Ya-Chen Huang
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan (Y.C.H., H.C.W., Y.D.W., C.H.L., C.C.L., D.L.L., T.L.J.); and
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan (H.C.W.)
| | - Hui-Chen Wu
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan (Y.C.H., H.C.W., Y.D.W., C.H.L., C.C.L., D.L.L., T.L.J.); and
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan (H.C.W.)
| | - Yin-Da Wang
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan (Y.C.H., H.C.W., Y.D.W., C.H.L., C.C.L., D.L.L., T.L.J.); and
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan (H.C.W.)
| | - Chia-Hung Liu
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan (Y.C.H., H.C.W., Y.D.W., C.H.L., C.C.L., D.L.L., T.L.J.); and
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan (H.C.W.)
| | - Ching-Chih Lin
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan (Y.C.H., H.C.W., Y.D.W., C.H.L., C.C.L., D.L.L., T.L.J.); and
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan (H.C.W.)
| | - Dan-Li Luo
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan (Y.C.H., H.C.W., Y.D.W., C.H.L., C.C.L., D.L.L., T.L.J.); and
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan (H.C.W.)
| | - Tsung-Luo Jinn
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan (Y.C.H., H.C.W., Y.D.W., C.H.L., C.C.L., D.L.L., T.L.J.); and
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 70005, Taiwan (H.C.W.)
| |
Collapse
|