151
|
Seneviratne HK, Dalisay DS, Kim KW, Moinuddin SGA, Yang H, Hartshorn CM, Davin LB, Lewis NG. Non-host disease resistance response in pea (Pisum sativum) pods: Biochemical function of DRR206 and phytoalexin pathway localization. PHYTOCHEMISTRY 2015; 113:140-8. [PMID: 25457488 DOI: 10.1016/j.phytochem.2014.10.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/11/2014] [Accepted: 10/15/2014] [Indexed: 05/20/2023]
Abstract
Continually exposed to potential pathogens, vascular plants have evolved intricate defense mechanisms to recognize encroaching threats and defend themselves. They do so by inducing a set of defense responses that can help defeat and/or limit effects of invading pathogens, of which the non-host disease resistance response is the most common. In this regard, pea (Pisum sativum) pod tissue, when exposed to Fusarium solani f. sp. phaseoli spores, undergoes an inducible transcriptional activation of pathogenesis-related genes, and also produces (+)-pisatin, its major phytoalexin. One of the inducible pathogenesis-related genes is Disease Resistance Response-206 (DRR206), whose role in vivo was unknown. DRR206 is, however, related to the dirigent protein (DP) family. In this study, its biochemical function was investigated in planta, with the metabolite associated with its gene induction being pinoresinol monoglucoside. Interestingly, both pinoresinol monoglucoside and (+)-pisatin were co-localized in pea pod endocarp epidermal cells, as demonstrated using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging. In addition, endocarp epidermal cells are also the site for both chalcone synthase and DRR206 gene expression. Taken together, these data indicate that both (+)-pisatin and pinoresinol monoglucoside function in the overall phytoalexin responses.
Collapse
Affiliation(s)
| | - Doralyn S Dalisay
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - Kye-Won Kim
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - Syed G A Moinuddin
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - Hong Yang
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | | - Laurence B Davin
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - Norman G Lewis
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA.
| |
Collapse
|
152
|
Chandna R, Ahmad A. Nitrogen stress-induced alterations in the leaf proteome of two wheat varieties grown at different nitrogen levels. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2015; 21:19-33. [PMID: 25649735 PMCID: PMC4312336 DOI: 10.1007/s12298-014-0277-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 06/04/2023]
Abstract
Inorganic nitrogen (N) is a key limiting factor of the agricultural productivity. Nitrogen utilization efficiency has significant impact on crop growth and yield as well as on the reduction in production cost. The excessive nitrogen application is accompanied with severe negative impact on environment. Thus to reduce the environmental contamination, improving NUE is need of an hour. In our study we have deployed comparative proteome analysis using 2-DE to investigate the effect of the nitrogen nutrition on differential expression pattern of leaf proteins in low-N sensitive and low-N tolerant wheat (Triticum aestivum L.) varieties. Results showed a comprehensive picture of the post-transcriptional response to different nitrogen regimes administered which would be expected to serve as a basic platform for further characterization of gene function and regulation. We detected proteins related to photosynthesis, glycolysis, nitrogen metabolism, sulphur metabolism and defence. Our results provide new insights towards the altered protein pattern in response to N stress. Through this study we suggest that genes functioning in many physiological events coordinate the response to availability of nitrogen and also for the improvement of NUE of crops.
Collapse
Affiliation(s)
- Ruby Chandna
- Department of Botany, Faculty of Science, Hamdard University, New Delhi, India
| | - Altaf Ahmad
- Department of Botany, Faculty of Science, Hamdard University, New Delhi, India
| |
Collapse
|
153
|
Aliferis KA, Faubert D, Jabaji S. A metabolic profiling strategy for the dissection of plant defense against fungal pathogens. PLoS One 2014; 9:e111930. [PMID: 25369450 PMCID: PMC4219818 DOI: 10.1371/journal.pone.0111930] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/09/2014] [Indexed: 12/12/2022] Open
Abstract
Here we present a metabolic profiling strategy employing direct infusion Orbitrap mass spectrometry (MS) and gas chromatography-mass spectrometry (GC/MS) for the monitoring of soybean's (Glycine max L.) global metabolism regulation in response to Rhizoctonia solani infection in a time-course. Key elements in the approach are the construction of a comprehensive metabolite library for soybean, which accelerates the steps of metabolite identification and biological interpretation of results, and bioinformatics tools for the visualization and analysis of its metabolome. The study of metabolic networks revealed that infection results in the mobilization of carbohydrates, disturbance of the amino acid pool, and activation of isoflavonoid, α-linolenate, and phenylpropanoid biosynthetic pathways of the plant. Components of these pathways include phytoalexins, coumarins, flavonoids, signaling molecules, and hormones, many of which exhibit antioxidant properties and bioactivity helping the plant to counterattack the pathogen's invasion. Unraveling the biochemical mechanism operating during soybean-Rhizoctonia interaction, in addition to its significance towards the understanding of the plant's metabolism regulation under biotic stress, provides valuable insights with potential for applications in biotechnology, crop breeding, and agrochemical and food industries.
Collapse
Affiliation(s)
- Konstantinos A. Aliferis
- Department of Plant Science, Macdonald Campus of McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Denis Faubert
- Institut de Recherches Cliniques de Montréal, Montréal, Quebec, Canada
| | - Suha Jabaji
- Department of Plant Science, Macdonald Campus of McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
154
|
Agbarya A, Ruimi N, Epelbaum R, Ben-Arye E, Mahajna J. Natural products as potential cancer therapy enhancers: A preclinical update. SAGE Open Med 2014; 2:2050312114546924. [PMID: 26770737 PMCID: PMC4607199 DOI: 10.1177/2050312114546924] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/18/2014] [Indexed: 12/23/2022] Open
Abstract
Cancer is a multifactorial disease that arises as a consequence of alterations in many physiological processes. Recently, hallmarks of cancer were suggested that include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis, along with two emerging hallmarks including reprogramming energy metabolism and escaping immune destruction. Treating multifactorial diseases, such as cancer with agents targeting a single target, might provide partial treatment and, in many cases, disappointing cure rates. Epidemiological studies have consistently shown that the regular consumption of fruits and vegetables is strongly associated with a reduced risk of developing chronic diseases, such as cardiovascular diseases and cancer. Since ancient times, plants, herbs, and other natural products have been used as healing agents. Moreover, the majority of the medicinal substances available today have their origin in natural compounds. Traditionally, pharmaceuticals are used to cure diseases, and nutrition and herbs are used to prevent disease and to provide an optimal balance of macro- and micro-nutrients needed for good health. We explored the combination of natural products, dietary nutrition, and cancer chemotherapeutics for improving the efficacy of cancer chemotherapeutics and negating side effects.
Collapse
Affiliation(s)
- Abed Agbarya
- Thoracic Oncology Clinic, Division of Oncology, Rambam Health Care Campus, Haifa, Israel
| | - Nili Ruimi
- Cancer Drug Discovery Program, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel
| | - Ron Epelbaum
- Thoracic Oncology Clinic, Division of Oncology, Rambam Health Care Campus, Haifa, Israel
| | - Eran Ben-Arye
- Complementary and Traditional Medicine Unit, Department of Family Medicine, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Integrative Oncology Program, The Oncology Service, Lin Medical center, Clalit Health Services, Haifa and Western Galilee District, Israel
| | - Jamal Mahajna
- Cancer Drug Discovery Program, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel; Department of Nutritional Sciences, Tel-Hai College, Kiryat Shmona, Israel
| |
Collapse
|
155
|
Mahajan M, Yadav SK. Overexpression of a tea flavanone 3-hydroxylase gene confers tolerance to salt stress and Alternaria solani in transgenic tobacco. PLANT MOLECULAR BIOLOGY 2014; 85:551-73. [PMID: 24880475 DOI: 10.1007/s11103-014-0203-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 05/15/2014] [Indexed: 05/23/2023]
Abstract
Flavan-3-ols are the major flavonoids present in tea (Camellia sinensis) leaves. These are known to have antioxidant and free radical scavenging properties in vitro. Flavanone 3-hydroxylase is considered to be an important enzyme of flavonoid pathway leading to accumulation of flavan-3-ols in tea. Expression analysis revealed the upregulation in transcript levels of C. sinensis flavanone 3-hydroxylase (CsF3H) encoding gene under salt stress. In this study, the biotechnological potential of CsF3H was evaluated by gene overexpression in tobacco (Nicotiana tabacum cv. Xanthi). Overexpression of CsF3H cDNA increased the content of flavan-3-ols in tobacco and conferred tolerance to salt stress and fungus Alternaria solani infection. Transgenic tobaccos were observed for increase in primary root length, number of lateral roots, chlorophyll content, antioxidant enzyme expression and their activities. Also, they showed lesser malondialdehyde content and electrolyte leakage compared to control tobacco plants. Further, transgenic plants produced higher degree of pectin methyl esterification via decreasing pectin methyl esterase (PME) activity in roots and leaves under unstressed and salt stressed conditions. The effect of flavan-3-ols on pectin methyl esterification under salt stressed conditions was further validated through in vitro experiments in which non-transgenic (wild) tobacco seedlings were exposed to salt stress in presence of flavan-3-ols, epicatechin and epigallocatechin. The in vitro exposed seedlings showed similar trend of increase in pectin methyl esterification through decreasing PME activity as observed in CsF3H transgenic lines. Taken together, overexpression of CsF3H provided tolerance to salt stress and fungus A. solani infection to transgenic tobacco through improved antioxidant system and enhanced pectin methyl esterification.
Collapse
Affiliation(s)
- Monika Mahajan
- Biotechnology Division, Plant Metabolic Engineering, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, 176061, HP, India
| | | |
Collapse
|
156
|
Nishihara M, Yamada E, Saito M, Fujita K, Takahashi H, Nakatsuka T. Molecular characterization of mutations in white-flowered torenia plants. BMC PLANT BIOLOGY 2014; 14:86. [PMID: 24694353 PMCID: PMC4234012 DOI: 10.1186/1471-2229-14-86] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/20/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Torenia (Torenia fournieri Lind.) is a model plant increasingly exploited in studies in various disciplines, including plant engineering, biochemistry, physiology, and ecology. Additionally, cultivars with different flower colors have been bred and made commercially available. Flower color in torenia is mainly attributed to the accumulation of anthocyanins, but the molecular mechanisms inducing flower color mutations in torenia have not been well elucidated. In this study, we therefore attempted to identify the cause of white coloration in torenia by comparing the white-flowered cultivar Crown White (CrW) with Crown Violet (CrV), a violet-flowered variety. RESULTS In an expression analysis, no flavanone 3-hydroxylase (TfF3H) transcript accumulation was detected in CrW petals. Sequence analyses revealed that a novel long terminal repeat (LTR)-type retrotransposable element, designated as TORE1 (Torenia retrotransposon 1), is inserted into the 5'-upstream region of the TfF3H gene in CrW. A transient expression assay using torenia F3H promoters with or without TORE1 insertion showed that the TORE1 insertion substantially suppressed F3H promoter activity, suggesting that this insertion is responsible for the absence of F3H transcripts in white petals. Furthermore, a transformation experiment demonstrated that the introduction of a foreign gentian F3H cDNA, GtF3H, into CrW was able to recover pink-flower pigmentation, indicating that F3H deficiency is indeed the cause of the colorless flower phenotype in CrW. Detailed sequence analysis also identified deletion mutations in flavonoid 3'-hydroxylase (TfF3'H) and flavonoid 3',5'- hydroxylase (TfF3'5'H) genes, but these were not directly responsible for white coloration in this cultivar. CONCLUSIONS Taken together, a novel retrotransposable element, TORE1, inserted into the F3H 5'-upstream region is the cause of deficient F3H transcripts in white-flowered torenia, thereby leading to reduced petal anthocyanin levels. This is the first report of a retrotransposable element involved in flower color mutation in the genus Torenia.
Collapse
Affiliation(s)
- Masahiro Nishihara
- Iwate Biotechnology Research Center, Narita 22-174-4, Kitakami, Iwate 024-0003, Japan
| | - Eri Yamada
- Iwate Biotechnology Research Center, Narita 22-174-4, Kitakami, Iwate 024-0003, Japan
| | - Misa Saito
- Iwate Biotechnology Research Center, Narita 22-174-4, Kitakami, Iwate 024-0003, Japan
| | - Kohei Fujita
- Iwate Biotechnology Research Center, Narita 22-174-4, Kitakami, Iwate 024-0003, Japan
| | - Hideyuki Takahashi
- Iwate Biotechnology Research Center, Narita 22-174-4, Kitakami, Iwate 024-0003, Japan
| | - Takashi Nakatsuka
- Department of Biological and Environmental Science, Graduate School of Agriculture, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
157
|
Fornalé S, Lopez E, Salazar-Henao JE, Fernández-Nohales P, Rigau J, Caparros-Ruiz D. AtMYB7, a new player in the regulation of UV-sunscreens in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2014; 55:507-16. [PMID: 24319076 DOI: 10.1093/pcp/pct187] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The phenylpropanoid metabolic pathway provides a wide variety of essential compounds for plants. Together with sinapate esters, in Brassicaceae species, flavonoids play an important role in protecting plants against UV irradiation. In this work we have characterized Arabidopsis thaliana AtMYB7, the closest homolog of AtMYB4 and AtMYB32, described as repressors of different branches of phenylpropanoid metabolism. The characterization of atmyb7 plants revealed an induction of several genes involved in flavonol biosynthesis and an increased amount of these compounds. In addition, AtMYB7 gene expression is repressed by AtMYB4. As a consequence, the atmyb4 mutant plants present a reduction of flavonol contents, indicating once more that AtMYB7 represses flavonol biosynthesis. Our results also show that AtMYB7 gene expression is induced by salt stress. Induction assays indicated that AtMYB7 represses several genes of the flavonoid pathway, DFR and UGT being early targets of this transcription factor. The results obtained indicate that AtMYB7 is a repressor of flavonol biosynthesis and also led us to propose AtMYB4 and AtMYB7 as part of the regulatory mechanism controlling the balance of the main A. thaliana UV-sunscreens.
Collapse
Affiliation(s)
- Silvia Fornalé
- Centre for Research in Agricultural Genomics (CRAG), Consorci CSIC-IRTA-UAB-UB Edifici CRAG Campus de Bellaterra de la UAB, 08193 Cerdanyola del Valles, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
158
|
Nemie-Feyissa D, Olafsdottir SM, Heidari B, Lillo C. Nitrogen depletion and small R3-MYB transcription factors affecting anthocyanin accumulation in Arabidopsis leaves. PHYTOCHEMISTRY 2014; 98:34-40. [PMID: 24388610 DOI: 10.1016/j.phytochem.2013.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 12/03/2013] [Accepted: 12/09/2013] [Indexed: 05/08/2023]
Abstract
Ternary complexes consisting of a R2R3-MYB, a bHLH and a WD40 protein (MBW complexes) regulate trichome formation and anthocyanin synthesis in plants. Small R3-MYBs interact with the MBW complexes to exert a negative feedback, and thereby participate in regulation of epidermal cell fate, for example trichome numbers and clustering in leaves. In Arabidopsis thaliana, GL3, a bHLH transcription factor, is important in the MBW complex regulating trichome formation as well as in the MBW complex induced by nitrogen depletion and promoting anthocyanin formation. The small R3-MYBs: CPC, TRY, ETC1, ETC2, ETC3/CPL3, TCL1, MYBL2, are all known to interact with GL3. We here investigated these R3-MYBs in leaves of Arabidopsis rosette stage plants under nitrogen depletion to examine if the small MYBs would interfere with anthocyanin accumulation in plants under normal (autotrophic) growth conditions. CPC expression was enhanced two-fold in response to nitrogen depletion, and ETC3/CPL3 expression was enhanced by almost an order of magnitude (9×). Knockout of ETC3/CPL3 did not influence anthocyanin accumulation, but the results establish ETC3/CPL3 as a nitrate regulated gene and a putative candidate for being involved in nitrate status signaling and root development. Other R3-MYBs tested were not significantly influenced by nitrogen depletion. In conclusion, only CPC expression increased and clearly exerted a negative feedback on anthocyanin accumulation during nitrogen starvation in rosette leaves.
Collapse
Affiliation(s)
- Dugassa Nemie-Feyissa
- University of Stavanger, Centre for Organelle Research, Faculty of Science and Technology, N-4036 Stavanger, Norway
| | - Solveig Margret Olafsdottir
- University of Stavanger, Centre for Organelle Research, Faculty of Science and Technology, N-4036 Stavanger, Norway
| | - Behzad Heidari
- University of Stavanger, Centre for Organelle Research, Faculty of Science and Technology, N-4036 Stavanger, Norway
| | - Cathrine Lillo
- University of Stavanger, Centre for Organelle Research, Faculty of Science and Technology, N-4036 Stavanger, Norway.
| |
Collapse
|
159
|
Cacabelos R, Cacabelos P, Torrellas C, Tellado I, Carril JC. Pharmacogenomics of Alzheimer's disease: novel therapeutic strategies for drug development. Methods Mol Biol 2014; 1175:323-556. [PMID: 25150875 DOI: 10.1007/978-1-4939-0956-8_13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a major problem of health and disability, with a relevant economic impact on our society. Despite important advances in pathogenesis, diagnosis, and treatment, its primary causes still remain elusive, accurate biomarkers are not well characterized, and the available pharmacological treatments are not cost-effective. As a complex disorder, AD is a polygenic and multifactorial clinical entity in which hundreds of defective genes distributed across the human genome may contribute to its pathogenesis. Diverse environmental factors, cerebrovascular dysfunction, and epigenetic phenomena, together with structural and functional genomic dysfunctions, lead to amyloid deposition, neurofibrillary tangle formation, and premature neuronal death, the major neuropathological hallmarks of AD. Future perspectives for the global management of AD predict that genomics and proteomics may help in the search for reliable biomarkers. In practical terms, the therapeutic response to conventional drugs (cholinesterase inhibitors, multifactorial strategies) is genotype-specific. Genomic factors potentially involved in AD pharmacogenomics include at least five categories of gene clusters: (1) genes associated with disease pathogenesis; (2) genes associated with the mechanism of action of drugs; (3) genes associated with drug metabolism (phase I and II reactions); (4) genes associated with drug transporters; and (5) pleiotropic genes involved in multifaceted cascades and metabolic reactions. The implementation of pharmacogenomic strategies will contribute to optimize drug development and therapeutics in AD and related disorders.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Chair of Genomic Medicine, Camilo José Cela University, 28692, Villanueva de la Cañada, Madrid, Spain,
| | | | | | | | | |
Collapse
|
160
|
Xiong L, Li J, Li Y, Yuan L, Liu S, Huang J, Liu Z. Dynamic changes in catechin levels and catechin biosynthesis-related gene expression in albino tea plants (Camellia sinensis L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 71:132-43. [PMID: 23911731 DOI: 10.1016/j.plaphy.2013.06.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 06/17/2013] [Indexed: 05/18/2023]
Abstract
Tea (Camellia sinensis (L.) O. Kuntze) leaves are a major source of flavonoids that mainly belong to the flavan-3-ols or catechins and are implicated in a wide range of health benefits. Although the catechins in tea leaves were identified long ago, the regulatory mechanisms governing catechin biosynthesis remain unclear. In the present work, the dynamic changes of catechin levels and the expression profiles of catechin-related genes in albino tea plants were intensively examined. The amounts of most catechins decreased to their lowest levels in the albino phase, when epigallocatechingallate was the highest of the catechins compared to all catechins, and catechin the lowest. Enzyme assays indicated that phenylalanine ammonia-lyase (PAL) activity was positively correlated with the concentration of catechins (r = 0.673). Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that the transcript abundance of flavonoid biosynthetic genes followed a tightly regulated biphasic pattern, and was affected by albinism. These genes (PAL, C4H, 4CL, CHS, CHI, F3H, FLS, F3'H, F3'5'H, DFR, LAR, ANS and ANR) encode enzymes in flavonoid biosynthesis. The expression levels of PAL, F3H and FLS were correlated with the concentration of catechins and the correlation coefficients were -0.683, 0.687 and -0.602, respectively. Therefore, these results indicate that PAL might be a core regulator in the control of catechin biosynthesis in albino tea plants.
Collapse
Affiliation(s)
- Ligui Xiong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Hunan, Changsha 410128, China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Hunan, Changsha 410128, China
| | | | | | | | | | | | | |
Collapse
|
161
|
Ogo Y, Ozawa K, Ishimaru T, Murayama T, Takaiwa F. Transgenic rice seed synthesizing diverse flavonoids at high levels: a new platform for flavonoid production with associated health benefits. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:734-46. [PMID: 23551455 DOI: 10.1111/pbi.12064] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/31/2013] [Accepted: 02/15/2013] [Indexed: 05/20/2023]
Abstract
Flavonoids possess diverse health-promoting benefits but are nearly absent from rice, because most of the genes encoding enzymes for flavonoid biosynthesis are not expressed in rice seeds. In the present study, a transgenic rice plant producing several classes of flavonoids in seeds was developed by introducing multiple genes encoding enzymes involved in flavonoid synthesis, from phenylalanine to the target flavonoids, into rice. Rice accumulating naringenin was developed by introducing phenylalanine ammonia lyase (PAL) and chalcone synthase (CHS) genes. Rice producing other classes of flavonoids, kaempferol, genistein, and apigenin, was developed by introducing, together with PAL and CHS, genes encoding flavonol synthase/flavanone-3-hydroxylase, isoflavone synthase, and flavone synthases, respectively. The endosperm-specific GluB-1 promoter or embryo- and aleurone-specific 18-kDa oleosin promoters were used to express these biosynthetic genes in seed. The target flavonoids of naringenin, kaempferol, genistein, and apigenin were highly accumulated in each transgenic rice, respectively. Furthermore, tricin was accumulated by introducing hydroxylase and methyltransferase, demonstrating that modification to flavonoid backbones can be also well manipulated in rice seeds. The flavonoids accumulated as both aglycones and several types of glycosides, and flavonoids in the endosperm were deposited into PB-II-type protein bodies. Therefore, these rice seeds provide an ideal platform for the production of particular flavonoids due to efficient glycosylation, the presence of appropriate organelles for flavonoid accumulation, and the small effect of endogenous enzymes on the production of flavonoids by exogenous enzymes.
Collapse
Affiliation(s)
- Yuko Ogo
- Transgenic Crop Research and Development Centre, National Institute of Agrobiological Sciences-NIAS, Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
162
|
Chen G, Deng W, Peng F, Truksa M, Singer S, Snyder CL, Mietkiewska E, Weselake RJ. Brassica napus TT16 homologs with different genomic origins and expression levels encode proteins that regulate a broad range of endothelium-associated genes at the transcriptional level. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:663-77. [PMID: 23425240 DOI: 10.1111/tpj.12151] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/08/2013] [Accepted: 02/14/2013] [Indexed: 05/14/2023]
Abstract
The transcription factor TRANSPARENT TESTA 16 (TT16) plays an important role in endothelial cell specification and proanthocyanidin (PA) accumulation. However, its precise regulatory function with regard to the expression of endothelial-associated genes in developing seeds, and especially in the PA-producing inner integument, remains largely unknown. Therefore, we endeavored to characterize four TT16 homologs from the allotetraploid oil crop species Brassica napus, and systematically explore their regulatory function in endothelial development. Our results indicated that all four BnTT16 genes were predominantly expressed in the early stages of seed development, but at distinct levels, and encoded functional proteins. Bntt16 RNA interference lines exhibited abnormal endothelial development and decreased PA content, while PA polymerization was not affected. In addition to the previously reported function of TT16 in the transcriptional regulation of anthocyanidin reductase (ANR) and dihydroflavonol reductase (TT3), we also determined that BnTT16 proteins played a significant role in the transcriptional regulation of five other genes involved in the PA biosynthetic pathway (P < 0.01). Moreover, we identified two genes involved in inner integument development that were strongly regulated by the BnTT16 proteins (TT2 and δ-vacuolar processing enzyme). These results will better our understanding of the precise role of TT16 in endothelial development in Brassicaceae species, and could potentially be used for the future improvement of oilseed crops.
Collapse
Affiliation(s)
- Guanqun Chen
- Alberta Innovates Phytola Centre, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Simmler C, Hajirahimkhan A, Lankin DC, Bolton JL, Jones T, Soejarto DD, Chen SN, Pauli GF. Dynamic residual complexity of the isoliquiritigenin-liquiritigenin interconversion during bioassay. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:2146-57. [PMID: 23427769 PMCID: PMC3728173 DOI: 10.1021/jf304445p] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Bioactive components in food plants can undergo dynamic processes that involve multiple chemical species. For example, 2'-hydroxychalcones can readily isomerize into flavanones. Although chemically well documented, this reaction has barely been explored in the context of cell-based assays. The present time-resolved study fills this gap by investigating the isomerization of isoliquiritigenin (a 2'-hydroxychalcone) and liquiritigenin (a flavanone) in two culture media (Dulbecco's modified eagle medium and Roswell Park Memorial Institute medium) with and without MCF-7 cells, using high-performance liquid chromatography-diode array detector-electrospray ionization/atmospheric pressure chemical ionization-mass spectrometry for analysis. Both compounds were isomerized and epimerized under all investigated biological conditions, leading to mixtures of isoliquiritigenin and R/S-liquiritigenin, with 19.6% R enantiomeric excess. Consequently, all three species can potentially modulate the biological responses. This exemplifies dynamic residual complexity and demonstrates how both nonchiral reactions and enantiomeric discrimination can occur in bioassay media, with or without cells. The findings highlight the importance of controlling in situ chemical reactivity, influenced by biological systems when evaluating the mode of action of bioactives.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guido F. Pauli
- Corresponding author: Tel: +1 (312) 355-1949, Fax: +1 (312) 355-2693,
| |
Collapse
|
164
|
Evaluation of antioxidant and anti-fatigue properties of Trigonella foenum-graecum L. in rats subjected to weight loaded forced swim test. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.phcgj.2013.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
165
|
Hayashi S, Gresshoff PM, Ferguson BJ. Systemic Signalling in Legume Nodulation: Nodule Formation and Its Regulation. LONG-DISTANCE SYSTEMIC SIGNALING AND COMMUNICATION IN PLANTS 2013. [DOI: 10.1007/978-3-642-36470-9_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
166
|
|
167
|
Shah MS, Davidson LA, Chapkin RS. Mechanistic insights into the role of microRNAs in cancer: influence of nutrient crosstalk. Front Genet 2012; 3:305. [PMID: 23293655 PMCID: PMC3531809 DOI: 10.3389/fgene.2012.00305] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 12/10/2012] [Indexed: 12/14/2022] Open
Abstract
A plethora of studies have described the disruption of key cellular regulatory mechanisms involving non-coding RNAs, specifically microRNAs (miRNA) from the let-7 family, the miR-17 family, miR-21, miR-143, and the miR-200 family, which contribute to aberrant signaling and tumor formation. Certain environmental factors, such as bioactive dietary agents, e.g., folate, curcumin, polyunsaturated fatty acids, are also thought to impact the progression and severity of cancer. In terms of the chemoprotective mechanisms of action, these bioactive dietary agents appear to act, in part, by modulating tissue levels of miR-16, miR-17 family, miR-26b, miR-106b, and miR-200 family miRNAs and their target genes. However, the mechanisms of nutrient action are not yet fully understood. Therefore, additional characterization of the putative underlying mechanisms is needed to further our understanding of the biology, early diagnosis, prevention, and the treatment of cancer. For the purpose of elucidating the epigenetic landscape of cancer, this review will summarize the key findings from recent studies detailing the effect of bioactive dietary agents on miRNA regulation in cancer.
Collapse
Affiliation(s)
- Manasvi S Shah
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station TX, USA ; Intercollegiate Faculty of Genetics, Texas A&M University, College Station TX, USA
| | | | | |
Collapse
|
168
|
Mahajan M, Yadav SK. Effect of Quercetin and Epicatechin on the Transcript Expression and Activity of Antioxidant Enzymes in Tobacco Seedlings. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ajbmb.2013.81.90] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
169
|
Koehler G, Wilson RC, Goodpaster JV, Sønsteby A, Lai X, Witzmann FA, You JS, Rohloff J, Randall SK, Alsheikh M. Proteomic study of low-temperature responses in strawberry cultivars (Fragaria x ananassa) that differ in cold tolerance. PLANT PHYSIOLOGY 2012; 159:1787-805. [PMID: 22689892 PMCID: PMC3425213 DOI: 10.1104/pp.112.198267] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/07/2012] [Indexed: 05/19/2023]
Abstract
To gain insight into the molecular basis contributing to overwintering hardiness, a comprehensive proteomic analysis comparing crowns of octoploid strawberry (Fragaria × ananassa) cultivars that differ in freezing tolerance was conducted. Four cultivars were examined for freeze tolerance and the most cold-tolerant cultivar ('Jonsok') and least-tolerant cultivar ('Frida') were compared with a goal to reveal how freezing tolerance is achieved in this distinctive overwintering structure and to identify potential cold-tolerance-associated biomarkers. Supported by univariate and multivariate analysis, a total of 63 spots from two-dimensional electrophoresis analysis and 135 proteins from label-free quantitative proteomics were identified as significantly differentially expressed in crown tissue from the two strawberry cultivars exposed to 0-, 2-, and 42-d cold treatment. Proteins identified as cold-tolerance-associated included molecular chaperones, antioxidants/detoxifying enzymes, metabolic enzymes, pathogenesis-related proteins, and flavonoid pathway proteins. A number of proteins were newly identified as associated with cold tolerance. Distinctive mechanisms for cold tolerance were characterized for two cultivars. In particular, the 'Frida' cold response emphasized proteins specific to flavonoid biosynthesis, while the more freezing-tolerant 'Jonsok' had a more comprehensive suite of known stress-responsive proteins including those involved in antioxidation, detoxification, and disease resistance. The molecular basis for 'Jonsok'-enhanced cold tolerance can be explained by the constitutive level of a number of proteins that provide a physiological stress-tolerant poise.
Collapse
|
170
|
Developmental changes in the metabolic network of snapdragon flowers. PLoS One 2012; 7:e40381. [PMID: 22808147 PMCID: PMC3394800 DOI: 10.1371/journal.pone.0040381] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/05/2012] [Indexed: 01/27/2023] Open
Abstract
Evolutionary and reproductive success of angiosperms, the most diverse group of land plants, relies on visual and olfactory cues for pollinator attraction. Previous work has focused on elucidating the developmental regulation of pathways leading to the formation of pollinator-attracting secondary metabolites such as scent compounds and flower pigments. However, to date little is known about how flowers control their entire metabolic network to achieve the highly regulated production of metabolites attracting pollinators. Integrative analysis of transcripts and metabolites in snapdragon sepals and petals over flower development performed in this study revealed a profound developmental remodeling of gene expression and metabolite profiles in petals, but not in sepals. Genes up-regulated during petal development were enriched in functions related to secondary metabolism, fatty acid catabolism, and amino acid transport, whereas down-regulated genes were enriched in processes involved in cell growth, cell wall formation, and fatty acid biosynthesis. The levels of transcripts and metabolites in pathways leading to scent formation were coordinately up-regulated during petal development, implying transcriptional induction of metabolic pathways preceding scent formation. Developmental gene expression patterns in the pathways involved in scent production were different from those of glycolysis and the pentose phosphate pathway, highlighting distinct developmental regulation of secondary metabolism and primary metabolic pathways feeding into it.
Collapse
|
171
|
Czemmel S, Heppel SC, Bogs J. R2R3 MYB transcription factors: key regulators of the flavonoid biosynthetic pathway in grapevine. PROTOPLASMA 2012; 249 Suppl 2:S109-18. [PMID: 22307206 DOI: 10.1007/s00709-012-0380-z] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/19/2012] [Indexed: 05/21/2023]
Abstract
Flavonoids compose one of the most abundant and important subgroups of secondary metabolites with more than 6,000 compounds detected so far in higher plants. They are found in various compositions and concentrations in nearly all plant tissues. Besides the attraction of pollinators and dispersers to fruits and flowers, flavonoids also protect against a plethora of stresses including pathogen attack, wounding and UV irradiation. Flavonoid content and composition of fruits such as grapes, bilberries, strawberries and apples as well as food extracts such as green tea, wine and chocolate have been associated with fruit quality including taste, colour and health-promoting effects. To unravel the beneficial potentials of flavonoids on fruit quality, research has been focused recently on the molecular basis of flavonoid biosynthesis and regulation in economically important fruit-producing plants such as grapevine (Vitis vinifera L.). Transcription factors and genes encoding biosynthetic enzymes have been characterized, studies that set a benchmark for future research on the regulatory networks controlling flavonoid biosynthesis and diversity. This review summarizes recent advances in the knowledge of regulatory cascades involved in flavonoid biosynthesis in grapevine. Transcriptional regulation of flavonoid biosynthesis during berry development is highlighted, with a particular focus on MYB transcription factors as molecular clocks, key regulators and powerful biotechnological tools to identify novel pathway enzymes to optimize flavonoid content and composition in grapes.
Collapse
Affiliation(s)
- Stefan Czemmel
- Centre for Organismal Studies Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
172
|
Vandeputte OM, Kiendrebeogo M, Rasamiravaka T, Stévigny C, Duez P, Rajaonson S, Diallo B, Mol A, Baucher M, El Jaziri M. The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Microbiology (Reading) 2011; 157:2120-2132. [DOI: 10.1099/mic.0.049338-0] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Preliminary screening of the Malagasy plant Combretum albiflorum for compounds attenuating the production of quorum sensing (QS)-controlled virulence factors in bacteria led to the identification of active fractions containing flavonoids. In the present study, several flavonoids belonging to the flavone, flavanone, flavonol and chalcone structural groups were screened for their capacity to reduce the production of QS-controlled factors in the opportunistic pathogen Pseudomonas aeruginosa (strain PAO1). Flavanones (i.e. naringenin, eriodictyol and taxifolin) significantly reduced the production of pyocyanin and elastase in P. aeruginosa without affecting bacterial growth. Consistently, naringenin and taxifolin reduced the expression of several QS-controlled genes (i.e. lasI, lasR, rhlI, rhlR, lasA, lasB, phzA1 and rhlA) in P. aeruginosa PAO1. Naringenin also dramatically reduced the production of the acylhomoserine lactones N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL) and N-butanoyl-l-homoserine lactone (C4-HSL), which is driven by the lasI and rhlI gene products, respectively. In addition, using mutant strains deficient for autoinduction (ΔlasI and ΔrhlI) and LasR- and RhlR-based biosensors, it was shown that QS inhibition by naringenin not only is the consequence of a reduced production of autoinduction compounds but also results from a defect in the proper functioning of the RlhR–C4-HSL complex. Widely distributed in the plant kingdom, flavonoids are known for their numerous and determinant roles in plant physiology, plant development and in the success of plant–rhizobia interactions, but, as shown here, some of them also have a role as inhibitors of the virulence of pathogenic bacteria by interfering with QS mechanisms.
Collapse
Affiliation(s)
- Olivier M. Vandeputte
- Plant Biotechnology Unit, BioVallée, rue Adrienne Bolland 8, B-6041 Gosselies, Belgium
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Martin Kiendrebeogo
- Laboratoire de Biochimie et de Chimie Appliquées, Université de Ouagadougou, 09 BP 848 Ouagadougou 09, Burkina Faso
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Tsiry Rasamiravaka
- Laboratoire de Physiologie Végétale, Université d'Antananarivo, BP 906 Antananarivo 101, Madagascar
| | - Caroline Stévigny
- Laboratoire de Pharmacognosie, de Bromatologie et de Nutrition Humaine, Université Libre de Bruxelles, CP 205/9, Boulevard du Triomphe, B-1050 Brussels, Belgium
| | - Pierre Duez
- Laboratoire de Pharmacognosie, de Bromatologie et de Nutrition Humaine, Université Libre de Bruxelles, CP 205/9, Boulevard du Triomphe, B-1050 Brussels, Belgium
| | - Sanda Rajaonson
- Laboratoire de Physiologie Végétale, Université d'Antananarivo, BP 906 Antananarivo 101, Madagascar
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Billo Diallo
- Plant Biotechnology Unit, BioVallée, rue Adrienne Bolland 8, B-6041 Gosselies, Belgium
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Adeline Mol
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Marie Baucher
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | - Mondher El Jaziri
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| |
Collapse
|
173
|
Pollier J, Morreel K, Geelen D, Goossens A. Metabolite profiling of triterpene saponins in Medicago truncatula hairy roots by liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry. JOURNAL OF NATURAL PRODUCTS 2011; 74:1462-76. [PMID: 21615146 DOI: 10.1021/np200218r] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Triterpenes are one of the largest classes of plant natural products, with an enormous variety in structure and bioactivities. Here, triterpene saponins from hairy roots of the model legume Medicago truncatula were profiled with reversed-phase liquid chromatography coupled to negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (LC ESI FT-ICR MS). Owing to the accuracy of the FT-ICR MS, reliable molecular formulas of the detected compounds could be predicted, which, together with the generated MS(n) spectra, allowed the tentative identification of 79 different saponins, of which 61 had not been detected previously in M. truncatula. Upon collision-induced dissociation of saponins that contain a uronic acid residue in the sugar chain, fragment ions resulting from cross-ring cleavages of the uronic acid residues were observed. The identified saponins are glycosides of 10 different sapogenins, of which three were not detected before in M. truncatula. Zanhic acid glycosides, which are prevalent in the aerial parts of M. truncatula, were absent in the hairy root extracts. This metabolite compendium will facilitate future functional genomic studies of triterpene saponin biosynthesis in M. truncatula.
Collapse
Affiliation(s)
- Jacob Pollier
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
| | | | | | | |
Collapse
|