151
|
Liu H, Cao X, Liu X, Xin R, Wang J, Gao J, Wu B, Gao L, Xu C, Zhang B, Grierson D, Chen K. UV-B irradiation differentially regulates terpene synthases and terpene content of peach. PLANT, CELL & ENVIRONMENT 2017; 40:2261-2275. [PMID: 28722114 DOI: 10.1111/pce.13029] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/29/2017] [Accepted: 07/02/2017] [Indexed: 05/06/2023]
Abstract
Plants generate protective molecules in response to ultraviolet (UV) light. In laboratory experiments, 48 h UV-B irradiation of peach fruits and leaves reduced the flavour-related monoterpene linalool by 60%. No isoprene was detected, but other terpenoids increased significantly, including a threefold accumulation of the sesquiterpene (E,E)-α-farnesene, which was also increased by jasmonic acid treatment. RNA sequencing revealed altered transcript levels for two terpene synthases (TPSs): PpTPS1, a TPS-g subfamily member, decreased by 86% and PpTPS2, a TPS-b subfamily member, increased 80-fold. Heterologous expression in Escherichia coli and transient overexpression in tobacco and peach fruits showed PpTPS1 was localized in plastids and associated with production of linalool, while PpTPS2 was responsible for (E,E)-α-farnesene biosynthesis in the cytoplasm. Candidate regulatory genes for these responses were identified. Commercial peach production in Asia involves fruit bagging to maintain marketable yield and quality. TPS gene expression and volatile terpenoid production in field experiments, using bags transmitting high UV-B radiation, showed similar effects on peach volatiles to those from laboratory experiments. Bags transmitting less UV-B light ameliorated the reduction in the flavour volatile linalool, indicating that flavour components of peach fruits can be modulated by selecting an appropriate source of environmental screening material.
Collapse
Affiliation(s)
- Hongru Liu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Xiangmei Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Xiaohong Liu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Rui Xin
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Jiaojiao Wang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Jie Gao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Boping Wu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Liuxiao Gao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Changjie Xu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Bo Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Donald Grierson
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|
152
|
İnal B, Büyük İ, İlhan E, Aras S. Genome-wide analysis of Phaseolus vulgaris C2C2-YABBY transcription factors under salt stress conditions. 3 Biotech 2017; 7:302. [PMID: 28955602 DOI: 10.1007/s13205-017-0933-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 08/29/2017] [Indexed: 01/06/2023] Open
Abstract
The aim of this study was to identify and characterize the C2C2-YABBY family of genes by a genome-wide scale in common bean. Various in silico approaches were used for the study and the results were confirmed through common molecular biology techniques. Quantitative real-time PCR (qPCR) analysis was performed for identified putative PvulYABBY genes in leaf and root tissues of two common bean cultivars, namely Yakutiye and Zulbiye under salt stress condition. Eight candidate PvulYABBY proteins were discovered and the length of these proteins ranged from 173 to 256 amino acids. The isoelectric points (pIs) of YABBY proteins were between 5.18 and 9.34 and ranged from acidic to alkaline, and the molecular weight of PvulYABBYs were between 18978.4 and 28916.8 Da. Three segmentally duplicated gene couples among the identified eight PvulYABBY genes were detected. These segmentally duplicated gene couples were PvulYABBY-1/PvulYABBY-3, PvulYABBY-5/PvulYABBY-7 and PvulYABBY-6/PvulYABBY-8. The predicted number of exons among the PvulYABBY genes varied from 6 to 8 exons. Additionally, all genes found included introns within ORFs. PvulYABBY-2, -4, -5 and -7 genes were targeted by miRNAs of five plant species and a total of five miRNA families (miR5660, miR1157, miR5769, miR5286 and miR8120) were detected. According to RNA-seq analysis, all genes were up- or down-regulated except for PvulYABBY-1 and PvulYABBY-6 after salt stress treatment in leaf and root tissues of common bean. According to the qPCR analysis, six out of eight genes were expressed in the leaves but only four out of eight genes were expressed in the roots and these genes exhibited tissue- and cultivar-specific expression patterns.
Collapse
|
153
|
Mukhtar MS, Liu X, Somssich IE. Elucidating the role of WRKY27 in male sterility in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2017; 12:e1363945. [PMID: 28816593 PMCID: PMC5640203 DOI: 10.1080/15592324.2017.1363945] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The WRKY proteins belong to a superfamily of TFs that play pivotal roles in responses to a wide range of biotic, abiotic, developmental and physiologic cues. Here, we assayed the accumulation of basal WRKY27 transcripts in diverse tissue including root, shoot, leaf and flowers. We demonstrated that plants over-expressing WRKY27 transcript levels exhibit growth aberrations and fertility defects. Scanning electron microscopic data suggest that WRKY27 overexpressor plants exhibit pollen dehiscence defects. Our fluorescein diacetate hydrolysis assay showed that flowers of plants overexpressing WRKY27 display significantly decreased pollen viability. These sterility-related phenotypes were not rescued by the exogenous applications of different phytohormones. Our results indicate the involvement of WRKY27 in particular for proper plant biomass accumulation and male fertility.
Collapse
Affiliation(s)
- M. Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, AL, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, AL, USA
- M. Shahid Mukhtar Department of Biology, Campbell Hall 369, 1300 University Blvd. University of Alabama at Birmingham, Birmingham, AL 35294-1170, USA
| | - Xiaoyu Liu
- Department of Biology, University of Alabama at Birmingham, AL, USA
| | - Imre E. Somssich
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, Koeln, Germany
- CONTACT Imre E. Somssich Department Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Koeln, Germany
| |
Collapse
|
154
|
Singh AK, Kumar SR, Dwivedi V, Rai A, Pal S, Shasany AK, Nagegowda DA. A WRKY transcription factor from Withania somnifera regulates triterpenoid withanolide accumulation and biotic stress tolerance through modulation of phytosterol and defense pathways. THE NEW PHYTOLOGIST 2017. [PMID: 28649699 DOI: 10.1111/nph.14663] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Withania somnifera produces pharmacologically important triterpenoid withanolides that are derived via phytosterol pathway; however, their biosynthesis and regulation remain to be elucidated. A jasmonate- and salicin-inducible WRKY transcription factor from W. somnifera (WsWRKY1) exhibiting correlation with withaferin A accumulation was functionally characterized employing virus-induced gene silencing and overexpression studies combined with transcript and metabolite analyses, and chromatin immunoprecipitation assay. WsWRKY1 silencing resulted in stunted plant growth, reduced transcripts of phytosterol pathway genes with corresponding reduction in phytosterols and withanolides in W. somnifera. Its overexpression elevated the biosynthesis of triterpenoids in W. somnifera (phytosterols and withanolides), as well as tobacco and tomato (phytosterols). Moreover, WsWRKY1 binds to W-box sequences in promoters of W. somnifera genes encoding squalene synthase and squalene epoxidase, indicating its direct regulation of triterpenoid pathway. Furthermore, while WsWRKY1 silencing in W. somnifera compromised the tolerance to bacterial growth, fungal infection, and insect feeding, its overexpression in tobacco led to improved biotic stress tolerance. Together these findings demonstrate that WsWRKY1 has a positive regulatory role on phytosterol and withanolides biosynthesis, and defense against biotic stress, highlighting its importance as a metabolic engineering tool for simultaneous improvement of triterpenoid biosynthesis and plant defense.
Collapse
Affiliation(s)
- Anup Kumar Singh
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants Research Centre, Allalasandra, GKVK Post, Bengaluru, 560065, India
| | - Sarma Rajeev Kumar
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants Research Centre, Allalasandra, GKVK Post, Bengaluru, 560065, India
| | - Varun Dwivedi
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants Research Centre, Allalasandra, GKVK Post, Bengaluru, 560065, India
| | - Avanish Rai
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants Research Centre, Allalasandra, GKVK Post, Bengaluru, 560065, India
| | - Shaifali Pal
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Ajit K Shasany
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants Research Centre, Allalasandra, GKVK Post, Bengaluru, 560065, India
| |
Collapse
|
155
|
Metabolic and transcriptional alternations for defense by interfering OsWRKY62 and OsWRKY76 transcriptions in rice. Sci Rep 2017; 7:2474. [PMID: 28559550 PMCID: PMC5449406 DOI: 10.1038/s41598-017-02643-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/18/2017] [Indexed: 01/10/2023] Open
Abstract
Metabolomic and transcriptomic approaches were used to dissect the enhanced disease resistance in the plants harbouring a RNA interfering construct of OsWRKY62 and OsWRKY76 (dsOW62/76) genes. The primary metabolic pathways were activated in dsOW62/76 compared with wild-type (ZH17) plants, revealed by increased accumulation of amino acids and constituents of citric acid cycle etc. Contents of phenolic acids derived from phenylpropanoid pathway were elevated in dsOW62/76 plants. Importantly, phenolamides, conjugates of the phenolic acids with amines, were detected in large number and mostly at higher levels in dsOW62/76 compared with ZH17 plants; however, the free pools of flavonoids were mostly decreased in dsOW62/76. Salicylic acid (SA) and jasmonic acid (JA)/JA-Ile contents were increased in dsOW62/76 and knockout lines of individual OsWRKY62 and OsWRKY76 genes. Transcription of isochorismate synthase (OsICS1) gene was suppressed in dsOW62/76 and in MeJA-treated rice plants, whereas the transcription level of cinnamoyl-CoA hydratase-dehydrogenase (OsCHD) gene for β-oxidation in peroxisome was increased. The calli with OsCHD mutation showed markedly decreased SA accumulation. These results indicate that OsWRKY62 and OsWRKY76 function as negative regulators of biosynthetic defense-related metabolites and provide evidence for an important role of phenylpropanoid pathway in SA production in rice.
Collapse
|
156
|
Shakya P, Marslin G, Siram K, Beerhues L, Franklin G. Elicitation as a tool to improve the profiles of high-value secondary metabolites and pharmacological properties of Hypericum perforatum. ACTA ACUST UNITED AC 2017; 71:70-82. [PMID: 28523644 PMCID: PMC6585710 DOI: 10.1111/jphp.12743] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/10/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVES In this review, we aim at updating the available information on the improvement of the Hypericum perforatum L. (Hypericaceae) phytochemical profile and pharmacological properties via elicitation. KEY FINDINGS Hypericum perforatum seedlings, shoots, roots, calli and cell suspension cultures were treated with diverse elicitors to induce the formation of secondary metabolites. The extracts of the elicitor-treated plant material containing naphthodianthrones, phloroglucinols, xanthones, flavonoids and other new compounds were quantitatively analysed and tested for their bioactivities. While hypericins were mainly produced in H. perforatum cultures containing dark nodules, namely shoots and seedlings, other classes of compounds such as xanthones, phloroglucinols and flavonoids were formed in all types of cultures. The extracts obtained from elicitor-treated samples generally possessed better bioactivities compared to the extract of control biomass. SUMMARY Although elicitation is an excellent tool for the production of valuable secondary metabolites in H. perforatum cell and tissue cultures, its exploitation is still in its infancy mainly due to the lack of reproducibility and difficulties in scaling up biomass production.
Collapse
Affiliation(s)
- Preeti Shakya
- Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of Sciences, Poznań, Wielkopolska, Poland
| | - Gregory Marslin
- Chinese-German Joint Laboratory for Natural Product Research, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Karthik Siram
- Department of Pharmaceutics, PSG College of Pharmacy, Coimbatore, Tamil Nadu, India
| | - Ludger Beerhues
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Gregory Franklin
- Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of Sciences, Poznań, Wielkopolska, Poland
| |
Collapse
|
157
|
Chen M, Yan T, Shen Q, Lu X, Pan Q, Huang Y, Tang Y, Fu X, Liu M, Jiang W, Lv Z, Shi P, Ma YN, Hao X, Zhang L, Li L, Tang K. GLANDULAR TRICHOME-SPECIFIC WRKY 1 promotes artemisinin biosynthesis in Artemisia annua. THE NEW PHYTOLOGIST 2017; 214:304-316. [PMID: 28001315 DOI: 10.1111/nph.14373] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/01/2016] [Indexed: 05/03/2023]
Abstract
Artemisinin is a type of sesquiterpene lactone well known as an antimalarial drug, and is specifically produced in glandular trichomes of Artemisia annua. However, the regulatory network for the artemisinin biosynthetic pathway remains poorly understood. Exploration of trichome-specific transcription factors would facilitate the elucidation of regulatory mechanism of artemisinin biosynthesis. The WRKY transcription factor GLANDULAR TRICHOME-SPECIFIC WRKY 1 (AaGSW1) was cloned and analysed in A. annua. AaGSW1 exhibited similar expression patterns to the trichome-specific genes of the artemisinin biosynthetic pathway and AP2/ERF transcription factor AaORA. A β-glucuronidase (GUS) staining assay further demonstrated that AaGSW1 is a glandular trichome-specific transcription factor. AaGSW1 positively regulates CYP71AV1 and AaORA expression by directly binding to the W-box motifs in their promoters. Overexpression of AaGSW1 in A. annua significantly improves artemisinin and dihydroartemisinic acid contents; moreover, AaGSW1 can be directly regulated by AaMYC2 and AabZIP1, which are positive regulators of jasmonate (JA)- and abscisic acid (ABA)-mediated artemisinin biosynthetic pathways, respectively. These results demonstrate that AaGSW1 is a glandular trichome-specific WRKY transcription factor and a positive regulator in the artemisinin biosynthetic pathway. Moreover, we propose that two trifurcate feed-forward pathways involving AaGSW1, CYP71AV1 and AaMYC2/AabZIP1 function in the JA/ABA response in A. annua.
Collapse
Affiliation(s)
- Minghui Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tingxiang Yan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Shen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xu Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, China
| | - Qifang Pan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Youran Huang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yueli Tang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueqing Fu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Meng Liu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weimin Jiang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zongyou Lv
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pu Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ya-Nan Ma
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaolong Hao
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lida Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ling Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kexuan Tang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
158
|
Yogendra KN, Dhokane D, Kushalappa AC, Sarmiento F, Rodriguez E, Mosquera T. StWRKY8 transcription factor regulates benzylisoquinoline alkaloid pathway in potato conferring resistance to late blight. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 256:208-216. [PMID: 28167034 DOI: 10.1016/j.plantsci.2016.12.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/30/2016] [Indexed: 05/05/2023]
Abstract
The resistance to late blight is either qualitative or quantitative in nature. Quantitative resistance is durable, but challenging due to polygenic inheritance. In the present study, the diploid potato genotypes resistant and susceptible to late blight, were profiled for metabolites. Tissue specific metabolite analysis of benzylisoquinoline alkaloids (BIAs) in response to pathogen infection revealed increased accumulation of morphinone, codeine-6-glucuronide and morphine-3-glucuronides. These BIAs are antimicrobial compounds and possibly involved in cell wall reinforcement, especially through cross-linking cell wall pectins. Quantitative reverse transcription-PCR studies revealed higher expressions of TyDC, NCS, COR-2 and StWRKY8 transcription factor genes, in resistant genotypes than in susceptible genotype, following pathogen inoculation. A luciferase transient expression assay confirmed the binding of the StWRKY8 TF to promoters of downstream genes, elucidating a direct regulatory role on BIAs biosynthetic genes. Sequence analysis of StWRKY8 in potato genotypes revealed polymorphism in the WRKY DNA binding domain in the susceptible genotype, which is important for the regulatory function of this gene. A complementation assay of StWRKY8 in Arabidopsis wrky33 mutant background was associated with decreased fungal biomass. In conclusion, StWRKY8 regulates the biosynthesis of BIAs that are both antimicrobial and reinforce cell walls to contain the pathogen to initial infection.
Collapse
Affiliation(s)
- Kalenahalli N Yogendra
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Dhananjay Dhokane
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Ajjamada C Kushalappa
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, Quebec, H9X 3V9, Canada.
| | - Felipe Sarmiento
- Departmento de Agronomia, Universidad National de Colombia, Bogota, Colombia
| | - Ernesto Rodriguez
- Departmento de Agronomia, Universidad National de Colombia, Bogota, Colombia
| | - Teresa Mosquera
- Departmento de Agronomia, Universidad National de Colombia, Bogota, Colombia
| |
Collapse
|
159
|
Deep sequencing and transcriptome analyses to identify genes involved in secoiridoid biosynthesis in the Tibetan medicinal plant Swertia mussotii. Sci Rep 2017; 7:43108. [PMID: 28225035 PMCID: PMC5320516 DOI: 10.1038/srep43108] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/19/2017] [Indexed: 11/08/2022] Open
Abstract
Swertia mussotii Franch. is an important traditional Tibetan medicinal plant with pharmacological properties effective in the treatment of various ailments including hepatitis. Secoiridoids are the major bioactive compounds in S. mussotii. To better understand the secoiridoid biosynthesis pathway, we generated transcriptome sequences from the root, leaf, stem, and flower tissues, and performed de novo sequence assembly, yielding 98,613 unique transcripts with an N50 of 1,085 bp. Putative functions could be assigned to 35,029 transcripts (35.52%) based on BLAST searches against annotation databases including GO and KEGG. The expression profiles of 39 candidate transcripts encoding the key enzymes for secoiridoid biosynthesis were examined in different S. mussotii tissues, validated by qRT-PCR, and compared with the homologous genes from S. japonica, a species in the same family, unveiling the gene expression, regulation, and conservation of the pathway. The examination of the accumulated levels of three bioactive compounds, sweroside, swertiamarin, and gentiopicroside, revealed their considerable variations in different tissues, with no significant correlation with the expression profiles of key genes in the pathway, suggesting complex biological behaviours in the coordination of metabolite biosynthesis and accumulation. The genomic dataset and analyses presented here lay the foundation for further research on this important medicinal plant.
Collapse
|
160
|
Jiang J, Ma S, Ye N, Jiang M, Cao J, Zhang J. WRKY transcription factors in plant responses to stresses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:86-101. [PMID: 27995748 DOI: 10.1111/jipb.12513] [Citation(s) in RCA: 572] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/16/2016] [Indexed: 05/20/2023]
Abstract
The WRKY gene family is among the largest families of transcription factors (TFs) in higher plants. By regulating the plant hormone signal transduction pathway, these TFs play critical roles in some plant processes in response to biotic and abiotic stress. Various bodies of research have demonstrated the important biological functions of WRKY TFs in plant response to different kinds of biotic and abiotic stresses and working mechanisms. However, very little summarization has been done to review their research progress. Not just important TFs function in plant response to biotic and abiotic stresses, WRKY also participates in carbohydrate synthesis, senescence, development, and secondary metabolites synthesis. WRKY proteins can bind to W-box (TGACC (A/T)) in the promoter of its target genes and activate or repress the expression of downstream genes to regulate their stress response. Moreover, WRKY proteins can interact with other TFs to regulate plant defensive responses. In the present review, we focus on the structural characteristics of WRKY TFs and the research progress on their functions in plant responses to a variety of stresses.
Collapse
Affiliation(s)
- Jingjing Jiang
- State Key Laboratory of Agrobiotechnology Shenzhen Base, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Shenghui Ma
- State Key Laboratory of Agrobiotechnology Shenzhen Base, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Nenghui Ye
- State Key Laboratory of Agrobiotechnology Shenzhen Base, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Ming Jiang
- Ecology Key Discipline of Zhejiang Province, College of Life Science, Taizhou University, Jiaojiang 318000, China
| | - Jiashu Cao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Jianhua Zhang
- State Key Laboratory of Agrobiotechnology Shenzhen Base, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
161
|
Zhang Q, Li Y, Zhang Y, Wu C, Wang S, Hao L, Wang S, Li T. Md-miR156ab and Md-miR395 Target WRKY Transcription Factors to Influence Apple Resistance to Leaf Spot Disease. FRONTIERS IN PLANT SCIENCE 2017; 8:526. [PMID: 28469624 PMCID: PMC5395612 DOI: 10.3389/fpls.2017.00526] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/24/2017] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are key regulators of gene expression that post-transcriptionally regulate transcription factors involved in plant physiological activities. Little is known about the effects of miRNAs in disease resistance in apple (Malus×domestica). We globally profiled miRNAs in the apple cultivar Golden Delicious (GD) infected or not with the apple leaf spot fungus Alternaria alternaria f. sp. mali (ALT1), and identified 58 miRNAs that exhibited more than a 2-fold upregulation upon ALT1 infection. We identified a pair of miRNAs that target protein-coding genes involved in the defense response against fungal pathogens; Md-miR156ab targets a novel WRKY transcription factor, MdWRKYN1, which harbors a TIR and a WRKY domain. Md-miR395 targets another transcription factor, MdWRKY26, which contains two WRKY domains. Real-time PCR analysis showed that Md-miR156ab and Md-miR395 levels increased, while MdWRKYN1 and MdWRKY26 expression decreased in ALT1-inoculated GD leaves; furthermore, the overexpression of Md-miR156ab and Md-miR395 resulted in a significant reduction in MdWRKYN1 and MdWRKY26 expression. To investigate whether these miRNAs and their targets play a crucial role in plant defense, we overexpressed MdWRKYN1 or knocked down Md-miR156ab activity, which in both cases enhanced the disease resistance of the plants by upregulating the expression of the WRKY-regulated pathogenesis-related (PR) protein-encoding genes MdPR3-1, MdPR3-2, MdPR4, MdPR5, MdPR10-1, and MdPR10-2. In a similar analysis, we overexpressed MdWRKY26 or suppressed Md-miR395 activity, and found that many PR protein-encoding genes were also regulated by MdWRKY26. In GD, ALT-induced Md-miR156ab and Md-miR395 suppress MdWRKYN1 and MdWRKY26 expression, thereby decreasing the expression of some PR genes, and resulting in susceptibility to ALT1.
Collapse
|
162
|
Marslin G, Sheeba CJ, Franklin G. Nanoparticles Alter Secondary Metabolism in Plants via ROS Burst. FRONTIERS IN PLANT SCIENCE 2017; 8:832. [PMID: 28580002 PMCID: PMC5437210 DOI: 10.3389/fpls.2017.00832] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 05/03/2017] [Indexed: 05/19/2023]
Abstract
The particles within the size range of 1 and 100 nm are known as nanoparticles (NPs). NP-containing wastes released from household, industrial and medical products are emerging as a new threat to the environment. Plants, being fixed to the two major environmental sinks where NPs accumulate - namely water and soil, cannot escape the impact of nanopollution. Recent studies have shown that plant growth, development and physiology are significantly affected by NPs. But, the effect of NPs on plant secondary metabolism is still obscure. The induction of reactive oxygen species (ROS) following interactions with NPs has been observed consistently across plant species. Taking into account the existing link between ROS and secondary signaling messengers that lead to transcriptional regulation of secondary metabolism, in this perspective we put forward the argument that ROS induced in plants upon their interaction with NPs will likely interfere with plant secondary metabolism. As plant secondary metabolites play vital roles in plant performance, communication, and adaptation, a comprehensive understanding of plant secondary metabolism in response to NPs is an utmost priority.
Collapse
Affiliation(s)
- Gregory Marslin
- Chinese–German Joint Laboratory for Natural Product Research, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., College of Biological Science and Engineering, Shaanxi University of TechnologyHanzhong, China
| | - Caroline J. Sheeba
- Randall Division of Cell and Molecular Biophysics, King’s College LondonLondon, United Kingdom
| | - Gregory Franklin
- Department of Integrative Plant Biology, Institute of Plant Genetics, Polish Academy of SciencesPoznan, Poland
- *Correspondence: Gregory Franklin,
| |
Collapse
|
163
|
Zhang Q, Li Y, Zhang Y, Wu C, Wang S, Hao L, Wang S, Li T. Md-miR156ab and Md-miR395 Target WRKY Transcription Factors to Influence Apple Resistance to Leaf Spot Disease. FRONTIERS IN PLANT SCIENCE 2017; 8:526. [PMID: 28469624 DOI: 10.3389/fpls.2017.0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/24/2017] [Indexed: 05/23/2023]
Abstract
MicroRNAs (miRNAs) are key regulators of gene expression that post-transcriptionally regulate transcription factors involved in plant physiological activities. Little is known about the effects of miRNAs in disease resistance in apple (Malus×domestica). We globally profiled miRNAs in the apple cultivar Golden Delicious (GD) infected or not with the apple leaf spot fungus Alternaria alternaria f. sp. mali (ALT1), and identified 58 miRNAs that exhibited more than a 2-fold upregulation upon ALT1 infection. We identified a pair of miRNAs that target protein-coding genes involved in the defense response against fungal pathogens; Md-miR156ab targets a novel WRKY transcription factor, MdWRKYN1, which harbors a TIR and a WRKY domain. Md-miR395 targets another transcription factor, MdWRKY26, which contains two WRKY domains. Real-time PCR analysis showed that Md-miR156ab and Md-miR395 levels increased, while MdWRKYN1 and MdWRKY26 expression decreased in ALT1-inoculated GD leaves; furthermore, the overexpression of Md-miR156ab and Md-miR395 resulted in a significant reduction in MdWRKYN1 and MdWRKY26 expression. To investigate whether these miRNAs and their targets play a crucial role in plant defense, we overexpressed MdWRKYN1 or knocked down Md-miR156ab activity, which in both cases enhanced the disease resistance of the plants by upregulating the expression of the WRKY-regulated pathogenesis-related (PR) protein-encoding genes MdPR3-1, MdPR3-2, MdPR4, MdPR5, MdPR10-1, and MdPR10-2. In a similar analysis, we overexpressed MdWRKY26 or suppressed Md-miR395 activity, and found that many PR protein-encoding genes were also regulated by MdWRKY26. In GD, ALT-induced Md-miR156ab and Md-miR395 suppress MdWRKYN1 and MdWRKY26 expression, thereby decreasing the expression of some PR genes, and resulting in susceptibility to ALT1.
Collapse
Affiliation(s)
- Qiulei Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural UniversityBeijing, China
| | - Yang Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural UniversityBeijing, China
| | - Yi Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural UniversityBeijing, China
| | - Chuanbao Wu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural UniversityBeijing, China
| | - Shengnan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural UniversityBeijing, China
| | - Li Hao
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural UniversityBeijing, China
| | - Shengyuan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural UniversityBeijing, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural UniversityBeijing, China
| |
Collapse
|
164
|
Cheng MN, Huang ZJ, Hua QZ, Shan W, Kuang JF, Lu WJ, Qin YH, Chen JY. The WRKY transcription factor HpWRKY44 regulates CytP450-like1 expression in red pitaya fruit ( Hylocereus polyrhizus). HORTICULTURE RESEARCH 2017; 4:17039. [PMID: 28785415 PMCID: PMC5539414 DOI: 10.1038/hortres.2017.39] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/19/2017] [Accepted: 06/26/2017] [Indexed: 05/07/2023]
Abstract
Red pitaya (Hylocereus polyrhizus) fruit is a high-value, functional food, containing a high level of betalains. Several genes potentially related to betalain biosynthesis, such as cytochrome P450-like (CytP450-like), have been identified in pitaya fruit, while their transcriptional regulation remains unclear. In this work, the potential involvement of a WRKY transcription factor, HpWRKY44, in regulating CytP450-like1 expression in pitaya fruit was examined. HpWRKY44, a member of the Group 1 WRKY family, contains two conserved WRKY motifs and is localized in the nucleus. HpWRKY44 also exhibits trans-activation ability. Gene expression analysis showed that the expression of HpCytP450-like1 and HpWRKY44 increased steadily during pitaya fruit coloration, which corresponded with the production of elevated betalain levels in the fruit. HpWRKY44 was also demonstrated to directly bind to and activate the HpCytP450-like1 promoter via the recognition of the W-box element present in the promoter. Collectively, our findings indicate that HpWRKY44 transcriptionally activates HpCytP450-like1, which perhaps, at least in part, contributes to betalain biosynthesis in pitaya fruit. The information provided in the current study provides novel insights into the regulatory network associated with betalain biosynthesis during pitaya fruit coloration.
Collapse
Affiliation(s)
- Mei-nv Cheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zi-juan Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Qing-zhu Hua
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wang-jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yong-hua Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
165
|
Hichri I, Muhovski Y, Žižková E, Dobrev PI, Gharbi E, Franco-Zorrilla JM, Lopez-Vidriero I, Solano R, Clippe A, Errachid A, Motyka V, Lutts S. The Solanum lycopersicum WRKY3 Transcription Factor SlWRKY3 Is Involved in Salt Stress Tolerance in Tomato. FRONTIERS IN PLANT SCIENCE 2017; 8:1343. [PMID: 28824679 PMCID: PMC5534461 DOI: 10.3389/fpls.2017.01343] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/18/2017] [Indexed: 05/20/2023]
Abstract
Salinity threatens productivity of economically important crops such as tomato (Solanum lycopersicum L.). WRKY transcription factors appear, from a growing body of knowledge, as important regulators of abiotic stresses tolerance. Tomato SlWRKY3 is a nuclear protein binding to the consensus CGTTGACC/T W box. SlWRKY3 is preferentially expressed in aged organs, and is rapidly induced by NaCl, KCl, and drought. In addition, SlWRKY3 responds to salicylic acid, and 35S::SlWRKY3 tomatoes showed under salt treatment reduced contents of salicylic acid. In tomato, overexpression of SlWRKY3 impacted multiple aspects of salinity tolerance. Indeed, salinized (125 mM NaCl, 20 days) 35S::SlWRKY3 tomato plants displayed reduced oxidative stress and proline contents compared to WT. Physiological parameters related to plant growth (shoot and root biomass) and photosynthesis (stomatal conductance and chlorophyll a content) were retained in transgenic plants, together with lower Na+ contents in leaves, and higher accumulation of K+ and Ca2+. Microarray analysis confirmed that many stress-related genes were already up-regulated in transgenic tomatoes under optimal conditions of growth, including genes coding for antioxidant enzymes, ion and water transporters, or plant defense proteins. Together, these results indicate that SlWRKY3 is an important regulator of salinity tolerance in tomato.
Collapse
Affiliation(s)
- Imène Hichri
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute - Agronomy, Université Catholique de LouvainLouvain-la-Neuve, Belgium
| | - Yordan Muhovski
- Département Sciences du Vivant, Centre Wallon de Recherches AgronomiquesGembloux, Belgium
| | - Eva Žižková
- Institute of Experimental Botany, Academy of Sciences of the Czech RepublicPrague, Czechia
| | - Petre I. Dobrev
- Institute of Experimental Botany, Academy of Sciences of the Czech RepublicPrague, Czechia
| | - Emna Gharbi
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute - Agronomy, Université Catholique de LouvainLouvain-la-Neuve, Belgium
| | - Jose M. Franco-Zorrilla
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad AutónomaMadrid, Spain
| | - Irene Lopez-Vidriero
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad AutónomaMadrid, Spain
| | - Roberto Solano
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad AutónomaMadrid, Spain
| | - André Clippe
- Institut des Sciences de la Vie, Université Catholique de LouvainLouvain-la-Neuve, Belgium
| | - Abdelmounaim Errachid
- Institut des Sciences de la Vie, Université Catholique de LouvainLouvain-la-Neuve, Belgium
| | - Vaclav Motyka
- Institute of Experimental Botany, Academy of Sciences of the Czech RepublicPrague, Czechia
| | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute - Agronomy, Université Catholique de LouvainLouvain-la-Neuve, Belgium
- *Correspondence: Stanley Lutts,
| |
Collapse
|
166
|
Transcriptome Dynamics during Maize Endosperm Development. PLoS One 2016; 11:e0163814. [PMID: 27695101 PMCID: PMC5047526 DOI: 10.1371/journal.pone.0163814] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/14/2016] [Indexed: 11/19/2022] Open
Abstract
The endosperm is a major organ of the seed that plays vital roles in determining seed weight and quality. However, genome-wide transcriptome patterns throughout maize endosperm development have not been comprehensively investigated to date. Accordingly, we performed a high-throughput RNA sequencing (RNA-seq) analysis of the maize endosperm transcriptome at 5, 10, 15 and 20 days after pollination (DAP). We found that more than 11,000 protein-coding genes underwent alternative splicing (AS) events during the four developmental stages studied. These genes were mainly involved in intracellular protein transport, signal transmission, cellular carbohydrate metabolism, cellular lipid metabolism, lipid biosynthesis, protein modification, histone modification, cellular amino acid metabolism, and DNA repair. Additionally, 7,633 genes, including 473 transcription factors (TFs), were differentially expressed among the four developmental stages. The differentially expressed TFs were from 50 families, including the bZIP, WRKY, GeBP and ARF families. Further analysis of the stage-specific TFs showed that binding, nucleus and ligand-dependent nuclear receptor activities might be important at 5 DAP, that immune responses, signalling, binding and lumen development are involved at 10 DAP, that protein metabolic processes and the cytoplasm might be important at 15 DAP, and that the responses to various stimuli are different at 20 DAP compared with the other developmental stages. This RNA-seq analysis provides novel, comprehensive insights into the transcriptome dynamics during early endosperm development in maize.
Collapse
|
167
|
Matoušek J, Kocábek T, Patzak J, Bříza J, Siglová K, Mishra AK, Duraisamy GS, Týcová A, Ono E, Krofta K. The "putative" role of transcription factors from HlWRKY family in the regulation of the final steps of prenylflavonid and bitter acids biosynthesis in hop (Humulus lupulus L.). PLANT MOLECULAR BIOLOGY 2016; 92:263-77. [PMID: 27392499 DOI: 10.1007/s11103-016-0510-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 07/02/2016] [Indexed: 05/20/2023]
Abstract
Lupulin glands localized in female hop (Humulus lupulus L.) cones are valuable source of bitter acids, essential oils and polyphenols. These compounds are used in brewing industry and are important for biomedical applications. In this study we describe the potential effect of transcription factors from WRKY family in the activation of the final steps of lupulin biosynthesis. In particular, lupulin gland-specific transcription factor HlWRKY1 that shows significant similarity to AtWRKY75, has ability to activate the set of promoters driving key genes of xanthohumol and bitter acids biosynthesis such as chalcone synthase H1, valerophenone synthase, prenyltransferase 1, 1L and 2 and O-methyltransferase-1. When combined with co-factor HlWDR1 and silencing suppressor p19, HlWRKY1 is able to enhance transient expression of gus gene driven by Omt1 and Chs_H1 promoters to significant level as compared to 35S promoter of CaMV in Nicotiana. benthamiana. Transformation of hop with dual Agrobacterium vector bearing HlWRKY1/HlWDR1 led to ectopic overexpression of these transgenes and further activation of lupulin-specific genes expression in hop leaves. It was further showed that (1) HlWRKY1 is endowed with promoter autoactivation; (2) It is regulated by post-transcriptional gene silencing (PTGS) mechanism; (3) It is stimulated by kinase co-expression. Since HlWRKY1 promotes expression of lupulin-specific HlMyb3 gene therefore it can constitute a significant component in hop lupulin regulation network. Putative involvement of HlWRKY1 in the regulation of lupulin biosynthesis may suggest the original physiological function of lupulin components in hop as flower and seed protective compounds.
Collapse
Affiliation(s)
- Jaroslav Matoušek
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| | - Tomáš Kocábek
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Josef Patzak
- Hop Research Institute, Co. Ltd., Kadaňská 2525, 438 46, Žatec, Czech Republic
| | - Jindřich Bříza
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Kristýna Siglová
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Ajay Kumar Mishra
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Ganesh Selvaraj Duraisamy
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Anna Týcová
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Eiichiro Ono
- Research Institute, Suntory Global Innovation Center (SIC) Ltd., 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka, 618-8503, Japan
| | - Karel Krofta
- Hop Research Institute, Co. Ltd., Kadaňská 2525, 438 46, Žatec, Czech Republic
| |
Collapse
|
168
|
Kaliyappan R, Viswanathan S, Suthanthiram B, Subbaraya U, Marimuthu Somasundram S, Muthu M. Evolutionary Expansion of WRKY Gene Family in Banana and Its Expression Profile during the Infection of Root Lesion Nematode, Pratylenchus coffeae. PLoS One 2016; 11:e0162013. [PMID: 27603787 PMCID: PMC5014340 DOI: 10.1371/journal.pone.0162013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 08/16/2016] [Indexed: 11/18/2022] Open
Abstract
The WRKY family of transcription factors orchestrate the reprogrammed expression of the complex network of defense genes at various biotic and abiotic stresses. Within the last 96 million years, three rounds of Musa polyploidization events had occurred from selective pressure causing duplication of MusaWRKYs with new activities. Here, we identified a total of 153 WRKY transcription factors available from the DH Pahang genome. Based on their phylogenetic relationship, the MusaWRKYs available with complete gene sequence were classified into the seven common WRKY sub-groups. Synteny analyses data revealed paralogous relationships, with 17 MusaWRKY gene pairs originating from the duplication events that had occurred within the Musa lineage. We also found 15 other MusaWRKY gene pairs originating from much older duplication events that had occurred along Arecales and Poales lineage of commelinids. Based on the synonymous and nonsynonymous substitution rates, the fate of duplicated MusaWRKY genes was predicted to have undergone sub-functionalization in which the duplicated gene copies retain a subset of the ancestral gene function. Also, to understand the regulatory roles of MusaWRKY during a biotic stress, Illumina sequencing was performed on resistant and susceptible cultivars during the infection of root lesion nematode, Pratylenchus coffeae. The differential WRKY gene expression analysis in nematode resistant and susceptible cultivars during challenged and unchallenged conditions had distinguished: 1) MusaWRKYs participating in general banana defense mechanism against P.coffeae common to both susceptible and resistant cultivars, 2) MusaWRKYs that may aid in the pathogen survival as suppressors of plant triggered immunity, 3) MusaWRKYs that may aid in the host defense as activators of plant triggered immunity and 4) cultivar specific MusaWRKY regulation. Mainly, MusaWRKY52, -69 and -92 are found to be P.coffeae specific and can act as activators or repressors in a defense pathway. Overall, this preliminary study in Musa provides the basis for understanding the evolution and regulatory mechanism of MusaWRKY during nematode stress.
Collapse
Affiliation(s)
- Raja Kaliyappan
- Crop Improvement Division, ICAR-National Research Centre for Banana, Tamil Nadu, Tiruchirapalli, India
| | - Sriram Viswanathan
- Crop Improvement Division, ICAR-National Research Centre for Banana, Tamil Nadu, Tiruchirapalli, India
| | - Backiyarani Suthanthiram
- Crop Improvement Division, ICAR-National Research Centre for Banana, Tamil Nadu, Tiruchirapalli, India
- * E-mail:
| | - Uma Subbaraya
- Crop Improvement Division, ICAR-National Research Centre for Banana, Tamil Nadu, Tiruchirapalli, India
| | | | - Mayilvaganan Muthu
- Crop Improvement Division, ICAR-National Research Centre for Banana, Tamil Nadu, Tiruchirapalli, India
| |
Collapse
|
169
|
Liu X, Song Y, Xing F, Wang N, Wen F, Zhu C. GhWRKY25, a group I WRKY gene from cotton, confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana. PROTOPLASMA 2016; 253:1265-81. [PMID: 26410829 DOI: 10.1007/s00709-015-0885-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 09/16/2015] [Indexed: 05/03/2023]
Abstract
WRKY transcription factors are involved in various processes, ranging from plant growth to abiotic and biotic stress responses. Group I WRKY members have been rarely reported compared with group II or III members, particularly in cotton (Gossypium hirsutum). In this study, a group I WRKY gene, namely, GhWRKY25, was cloned from cotton and characterized. Expression analysis revealed that GhWRKY25 can be induced or deduced by the treatments of abiotic stresses and multiple defense-related signaling molecules. Overexpression of GhWRKY25 in Nicotiana benthamiana reduced plant tolerance to drought stress but enhanced tolerance to salt stress. Moreover, more MDA and ROS accumulated in transgenic plants after drought treatment with lower activities of SOD, POD, and CAT. Our study further demonstrated that GhWRKY25 overexpression in plants enhanced sensitivity to the fungal pathogen Botrytis cinerea by reducing the expression of SA or ET signaling related genes and inducing the expression of genes involved in the JA signaling pathway. These results indicated that GhWRKY25 plays negative or positive roles in response to abiotic stresses, and the reduced pathogen resistance may be related to the crosstalk of the SA and JA/ET signaling pathways.
Collapse
Affiliation(s)
- Xiufang Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Yunzhi Song
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Fangyu Xing
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Ning Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Fujiang Wen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.
| |
Collapse
|
170
|
Raineri J, Hartman MD, Chan RL, Iglesias AA, Ribichich KF. A sunflower WRKY transcription factor stimulates the mobilization of seed-stored reserves during germination and post-germination growth. PLANT CELL REPORTS 2016; 35:1875-90. [PMID: 27251125 DOI: 10.1007/s00299-016-2002-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/24/2016] [Indexed: 05/08/2023]
Abstract
The sunflower transcription factor HaWRKY10 stimulates reserves mobilization in Arabidopsis. Gene expression and enzymes activity assays indicated that lipolysis and gluconeogenesis were increased. Microarray results suggested a parallelism in sunflower. Germinating oilseeds converts stored lipids into sugars, and thereafter in metabolic energy that is used in seedling growth and establishment. During germination, the induced lipolysis linked to the glyoxylate pathway and gluconeogenesis produces sucrose, which is then transported to the embryo and driven through catabolic routes. Herein, we report that the sunflower transcription factor HaWRKY10 regulates carbon partitioning by reducing carbohydrate catabolism and increasing lipolysis and gluconeogenesis. HaWRKY10 was regulated by abscisic acid and gibberellins in the embryo leaves 48 h after seed imbibition and highly expressed during sunflower seed germination and seedling growth, concomitantly with lipid mobilization. Sunflower leaf disks overexpressing HaWRKY10 showed repressed expression of genes related to sucrose cleavage and glycolysis compared with controls. Moreover, HaWRKY10 constitutive expression in Arabidopsis seeds produced higher decrease in lipid reserves, whereas starch and sucrose were more preserved compared with wild type. Gene transcripts abundance and enzyme activities involved in stored lipid mobilization and gluconeogenesis increased more in transgenic than in wild type seeds 36 h after imbibition, whereas the negative regulator of lipid mobilization, ABI4, was repressed. Altogether, the results point out a functional parallelism between tissues and plant species, and reveal HaWRKY10 as a positive regulator of storage reserve mobilization in sunflower.
Collapse
Affiliation(s)
- Jesica Raineri
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional Nº 168 km. 0, Paraje El Pozo (3000), Santa Fe, Argentina
| | - Matías D Hartman
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional Nº 168 km. 0, Paraje El Pozo (3000), Santa Fe, Argentina
| | - Raquel L Chan
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional Nº 168 km. 0, Paraje El Pozo (3000), Santa Fe, Argentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional Nº 168 km. 0, Paraje El Pozo (3000), Santa Fe, Argentina
| | - Karina F Ribichich
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Centro Científico Tecnológico CONICET Santa Fe, Colectora Ruta Nacional Nº 168 km. 0, Paraje El Pozo (3000), Santa Fe, Argentina.
| |
Collapse
|
171
|
Zhang M, Mo H, Sun W, Guo Y, Li J. Systematic Isolation and Characterization of Cadmium Tolerant Genes in Tobacco: A cDNA Library Construction and Screening Approach. PLoS One 2016; 11:e0161147. [PMID: 27579677 PMCID: PMC5007098 DOI: 10.1371/journal.pone.0161147] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/01/2016] [Indexed: 11/29/2022] Open
Abstract
Heavy metal pollution is a major limiting factor that severely affects plant growth worldwide, and the accumulation of heavy metal in the plant may be hazardous to human health. To identify the processes involved in cadmium detoxification, we constructed a cDNA library of tobacco roots acclimated to cadmium (Cd) stress. According to the results of functional screening cDNA library with a yeast Cd-sensitive mutant, ycf1Δ, we obtained a series of candidate genes that were involved in Cd response. Sequence analysis and yeast functional complementation of 24 positive cDNA clones revealed that, in addition to antioxidant genes, genes implicated in abiotic and biotic stress defenses, cellular metabolism, and signal transduction showed Cd detoxification effects in yeast. The real time RT-PCR analyses revealed that some Cd tolerance/ detoxification genes may be able to anticipate in other stresses such as biotic defense and water balance in tobacco. Taken together, our data suggest that plants' acclimation to Cd stress is a highly complex process associated with broad gene functions. Moreover, our results provide insights into the Cd detoxification mechanisms along with the antioxidant system, defense gene induction, and calcium signal pathway.
Collapse
Affiliation(s)
- Mei Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hui Mo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Wen Sun
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Yan Guo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Jing Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
172
|
Genome-wide Identification and Structural, Functional and Evolutionary Analysis of WRKY Components of Mulberry. Sci Rep 2016; 6:30794. [PMID: 27477686 PMCID: PMC4967854 DOI: 10.1038/srep30794] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/11/2016] [Indexed: 01/04/2023] Open
Abstract
Mulberry is known to be sensitive to several biotic and abiotic stresses, which in turn have a direct impact on the yield of silk, because it is the sole food source for the silk worm. WRKYs are a family of transcription factors, which play an important role in combating various biotic and abiotic stresses. In this study, we identified 54 genes with conserved WRKY motifs in the Morus notabilis genome. Motif searches coupled with a phylogenetic analysis revealed seven sub-groups as well as the absence of members of Group Ib in mulberry. Analyses of the 2K upstream region in addition to a gene ontology terms enrichment analysis revealed putative functions of mulberry WRKYs under biotic and abiotic stresses. An RNA-seq-based analysis showed that several of the identified WRKYs have shown preferential expression in the leaf, bark, root, male flower, and winter bud of M. notabilis. Finally, expression analysis by qPCR under different stress and hormone treatments revealed genotype-specific responses. Taken together, our results briefs about the genome-wide identification of WRKYs as well as their differential response to stresses and hormones. Importantly, these data can also be utilized to identify potential molecular targets for conferring tolerance to various stresses in mulberry.
Collapse
|
173
|
Bajhaiya AK, Ziehe Moreira J, Pittman JK. Transcriptional Engineering of Microalgae: Prospects for High-Value Chemicals. Trends Biotechnol 2016; 35:95-99. [PMID: 27387061 DOI: 10.1016/j.tibtech.2016.06.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 01/01/2023]
Abstract
Microalgae are diverse microorganisms that are of interest as novel sources of metabolites for various industrial, nutritional, and pharmaceutical applications. Recent studies have demonstrated transcriptional engineering of some metabolic pathways. We propose here that transcriptional engineering could be a viable means to manipulate the biosynthesis of specific high-value metabolic products.
Collapse
Affiliation(s)
- Amit K Bajhaiya
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK; Department of Plant Physiology, Umeå Plant Science Center, Umeå University, 90187 Umeå, Sweden
| | - Javiera Ziehe Moreira
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Jon K Pittman
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
174
|
Wang Q, Reddy VA, Panicker D, Mao HZ, Kumar N, Rajan C, Venkatesh PN, Chua NH, Sarojam R. Metabolic engineering of terpene biosynthesis in plants using a trichome-specific transcription factor MsYABBY5 from spearmint (Mentha spicata). PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1619-32. [PMID: 26842602 PMCID: PMC5067620 DOI: 10.1111/pbi.12525] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/26/2015] [Accepted: 12/05/2015] [Indexed: 05/07/2023]
Abstract
In many aromatic plants including spearmint (Mentha spicata), the sites of secondary metabolite production are tiny specialized structures called peltate glandular trichomes (PGT). Having high commercial values, these secondary metabolites are exploited largely as flavours, fragrances and pharmaceuticals. But, knowledge about transcription factors (TFs) that regulate secondary metabolism in PGT remains elusive. Understanding the role of TFs in secondary metabolism pathway will aid in metabolic engineering for increased yield of secondary metabolites and also the development of new production techniques for valuable metabolites. Here, we isolated and functionally characterized a novel MsYABBY5 gene that is preferentially expressed in PGT of spearmint. We generated transgenic plants in which MsYABBY5 was either overexpressed or silenced using RNA interference (RNAi). Analysis of the transgenic lines showed that the reduced expression of MsYABBY5 led to increased levels of terpenes and that overexpression decreased terpene levels. Additionally, ectopic expression of MsYABBY5 in Ocimum basilicum and Nicotiana sylvestris decreased secondary metabolite production in them, suggesting that the encoded transcription factor is probably a repressor of secondary metabolism.
Collapse
Affiliation(s)
- Qian Wang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore City, Singapore
| | - Vaishnavi Amarr Reddy
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore City, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore City, Singapore
| | - Deepa Panicker
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore City, Singapore
| | - Hui-Zhu Mao
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore City, Singapore
| | - Nadimuthu Kumar
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore City, Singapore
| | - Chakravarthy Rajan
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore City, Singapore
| | - Prasanna Nori Venkatesh
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore City, Singapore
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Rajani Sarojam
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore City, Singapore
| |
Collapse
|
175
|
Mohanty B, Lakshmanan M, Lim SH, Kim JK, Ha SH, Lee DY. Light-specific transcriptional regulation of the accumulation of carotenoids and phenolic compounds in rice leaves. PLANT SIGNALING & BEHAVIOR 2016; 11:e1184808. [PMID: 27172458 PMCID: PMC4973762 DOI: 10.1080/15592324.2016.1184808] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Carotenoids and phenolic compounds are important subgroups of secondary metabolites having an array of functional roles in the growth and development of plants. They are also major sources for health and pharmaceutical benefits, and industrially relevant biochemicals. The control of the biosynthesis of these compounds depends mainly on the quality and quantity of different light sources. Thus, to unravel their light-specific transcriptional regulation in rice leaves, we performed promoter analysis of genes upregulated in response to blue and red lights. The analysis results suggested a crosstalk between different phytohormones and the involvement of key transcription factors such as bHLH, bZIP, MYB, WRKY, ZnF and ERF [jasmonic acid inducible], in the regulation of higher accumulation of carotenoids and phenolic compounds upon blue light. Overall, the current analysis could improve our understanding of the light-specific regulatory mechanism involved in the biosynthesis of secondary metabolites via possible critical links between different TFs in rice leaves.
Collapse
Affiliation(s)
- Bijayalaxmi Mohanty
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Meiyappan Lakshmanan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore
| | - Sun-Hyung Lim
- Metabolic Engineering Division, National Academy of Agricultural Science, Rural Development Administration, Nongsaengmyeong-ro, Wansan-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Jae Kwang Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Yeonsu-gu, Incheon, Republic of Korea
| | - Sun-Hwa Ha
- Department of Genetic Engineering, College of Life Sciences, Kyung Hee University, Giheung gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Dong-Yup Lee
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore
- CONTACT Dong-Yup Lee
| |
Collapse
|
176
|
Zhou S, Okekeogbu I, Sangireddy S, Ye Z, Li H, Bhatti S, Hui D, McDonald DW, Yang Y, Giri S, Howe KJ, Fish T, Thannhauser TW. Proteome Modification in Tomato Plants upon Long-Term Aluminum Treatment. J Proteome Res 2016; 15:1670-84. [DOI: 10.1021/acs.jproteome.6b00128] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Suping Zhou
- Department
of Agricultural and Environmental Sciences, College of Agriculture,
Human and Natural Sciences, Tennessee State University, 3500 John
A Merritt Blvd, Nashville, Tennessee 37209, United States
| | - Ikenna Okekeogbu
- Department
of Agricultural and Environmental Sciences, College of Agriculture,
Human and Natural Sciences, Tennessee State University, 3500 John
A Merritt Blvd, Nashville, Tennessee 37209, United States
| | - Sasikiran Sangireddy
- Department
of Agricultural and Environmental Sciences, College of Agriculture,
Human and Natural Sciences, Tennessee State University, 3500 John
A Merritt Blvd, Nashville, Tennessee 37209, United States
| | - Zhujia Ye
- Department
of Agricultural and Environmental Sciences, College of Agriculture,
Human and Natural Sciences, Tennessee State University, 3500 John
A Merritt Blvd, Nashville, Tennessee 37209, United States
| | - Hui Li
- Department
of Agricultural and Environmental Sciences, College of Agriculture,
Human and Natural Sciences, Tennessee State University, 3500 John
A Merritt Blvd, Nashville, Tennessee 37209, United States
| | - Sarabjit Bhatti
- Department
of Agricultural and Environmental Sciences, College of Agriculture,
Human and Natural Sciences, Tennessee State University, 3500 John
A Merritt Blvd, Nashville, Tennessee 37209, United States
| | - Dafeng Hui
- Department
of Agricultural and Environmental Sciences, College of Agriculture,
Human and Natural Sciences, Tennessee State University, 3500 John
A Merritt Blvd, Nashville, Tennessee 37209, United States
| | - Daniel W. McDonald
- Phenotype Screening Corporation, 4028 Papermill Road, Knoxville, Tennessee 37909, United States
| | - Yong Yang
- RW Holley
Center for Agriculture and Health, Plant, Soil and Nutrition Research Unit, USDA-ARS, Tower Rd, Ithaca, New York 14853, United States
| | - Shree Giri
- RW Holley
Center for Agriculture and Health, Plant, Soil and Nutrition Research Unit, USDA-ARS, Tower Rd, Ithaca, New York 14853, United States
| | - Kevin J. Howe
- RW Holley
Center for Agriculture and Health, Plant, Soil and Nutrition Research Unit, USDA-ARS, Tower Rd, Ithaca, New York 14853, United States
| | - Tara Fish
- RW Holley
Center for Agriculture and Health, Plant, Soil and Nutrition Research Unit, USDA-ARS, Tower Rd, Ithaca, New York 14853, United States
| | - Theodore W. Thannhauser
- RW Holley
Center for Agriculture and Health, Plant, Soil and Nutrition Research Unit, USDA-ARS, Tower Rd, Ithaca, New York 14853, United States
| |
Collapse
|
177
|
Kumar K, Srivastava V, Purayannur S, Kaladhar VC, Cheruvu PJ, Verma PK. WRKY domain-encoding genes of a crop legume chickpea (Cicer arietinum): comparative analysis with Medicago truncatula WRKY family and characterization of group-III gene(s). DNA Res 2016; 23:225-39. [PMID: 27060167 PMCID: PMC4909309 DOI: 10.1093/dnares/dsw010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/20/2016] [Indexed: 11/16/2022] Open
Abstract
The WRKY genes have been identified as important transcriptional modulators predominantly during the environmental stresses, but they also play critical role at various stages of plant life cycle. We report the identification of WRKY domain (WD)-encoding genes from galegoid clade legumes chickpea (Cicer arietinum L.) and barrel medic (Medicago truncatula). In total, 78 and 98 WD-encoding genes were found in chickpea and barrel medic, respectively. Comparative analysis suggests the presence of both conserved and unique WRKYs, and expansion of WRKY family in M. truncatula primarily by tandem duplication. Exclusively found in galegoid legumes, CaWRKY16 and its orthologues encode for a novel protein having a transmembrane and partial Exo70 domains flanking a group-III WD. Genomic region of galegoids, having CaWRKY16, is more dynamic when compared with millettioids. In onion cells, fused CaWRKY16-EYFP showed punctate fluorescent signals in cytoplasm. The chickpea WRKY group-III genes were further characterized for their transcript level modulation during pathogenic stress and treatments of abscisic acid, jasmonic acid, and salicylic acid (SA) by real-time PCR. Differential regulation of genes was observed during Ascochyta rabiei infection and SA treatment. Characterization of A. rabiei and SA inducible gene CaWRKY50 showed that it localizes to plant nucleus, binds to W-box, and have a C-terminal transactivation domain. Overexpression of CaWRKY50 in tobacco plants resulted in early flowering and senescence. The in-depth comparative account presented here for two legume WRKY genes will be of great utility in hastening functional characterization of crop legume WRKYs and will also help in characterization of Exo70Js.
Collapse
Affiliation(s)
- Kamal Kumar
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vikas Srivastava
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Savithri Purayannur
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - V Chandra Kaladhar
- School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Purnima Jaiswal Cheruvu
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
178
|
Chen M, Tan Q, Sun M, Li D, Fu X, Chen X, Xiao W, Li L, Gao D. Genome-wide identification of WRKY family genes in peach and analysis of WRKY expression during bud dormancy. Mol Genet Genomics 2016; 291:1319-32. [PMID: 26951048 PMCID: PMC4875958 DOI: 10.1007/s00438-016-1171-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/18/2016] [Indexed: 01/05/2023]
Abstract
Bud dormancy in deciduous fruit trees is an important adaptive mechanism for their survival in cold climates. The WRKY genes participate in several developmental and physiological processes, including dormancy. However, the dormancy mechanisms of WRKY genes have not been studied in detail. We conducted a genome-wide analysis and identified 58 WRKY genes in peach. These putative genes were located on all eight chromosomes. In bioinformatics analyses, we compared the sequences of WRKY genes from peach, rice, and Arabidopsis. In a cluster analysis, the gene sequences formed three groups, of which group II was further divided into five subgroups. Gene structure was highly conserved within each group, especially in groups IId and III. Gene expression analyses by qRT-PCR showed that WRKY genes showed different expression patterns in peach buds during dormancy. The mean expression levels of six WRKY genes (Prupe.6G286000, Prupe.1G393000, Prupe.1G114800, Prupe.1G071400, Prupe.2G185100, and Prupe.2G307400) increased during endodormancy and decreased during ecodormancy, indicating that these six WRKY genes may play a role in dormancy in a perennial fruit tree. This information will be useful for selecting fruit trees with desirable dormancy characteristics or for manipulating dormancy in genetic engineering programs.
Collapse
Affiliation(s)
- Min Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Qiuping Tan
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Mingyue Sun
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China. .,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China. .,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China.
| | - Dongsheng Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China. .,State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China. .,Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, 61 Daizong Road, Tai'an, 271018, China.
| |
Collapse
|
179
|
Zou Z, Yang L, Wang D, Huang Q, Mo Y, Xie G. Gene Structures, Evolution and Transcriptional Profiling of the WRKY Gene Family in Castor Bean (Ricinus communis L.). PLoS One 2016; 11:e0148243. [PMID: 26849139 PMCID: PMC4743969 DOI: 10.1371/journal.pone.0148243] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 01/16/2016] [Indexed: 11/25/2022] Open
Abstract
WRKY proteins comprise one of the largest transcription factor families in plants and form key regulators of many plant processes. This study presents the characterization of 58 WRKY genes from the castor bean (Ricinus communis L., Euphorbiaceae) genome. Compared with the automatic genome annotation, one more WRKY-encoding locus was identified and 20 out of the 57 predicted gene models were manually corrected. All RcWRKY genes were shown to contain at least one intron in their coding sequences. According to the structural features of the present WRKY domains, the identified RcWRKY genes were assigned to three previously defined groups (I-III). Although castor bean underwent no recent whole-genome duplication event like physic nut (Jatropha curcas L., Euphorbiaceae), comparative genomics analysis indicated that one gene loss, one intron loss and one recent proximal duplication occurred in the RcWRKY gene family. The expression of all 58 RcWRKY genes was supported by ESTs and/or RNA sequencing reads derived from roots, leaves, flowers, seeds and endosperms. Further global expression profiles with RNA sequencing data revealed diverse expression patterns among various tissues. Results obtained from this study not only provide valuable information for future functional analysis and utilization of the castor bean WRKY genes, but also provide a useful reference to investigate the gene family expansion and evolution in Euphorbiaceus plants.
Collapse
Affiliation(s)
- Zhi Zou
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| | - Lifu Yang
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| | - Danhua Wang
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| | - Qixing Huang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, P. R. China
| | - Yeyong Mo
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| | - Guishui Xie
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| |
Collapse
|
180
|
Weigl S, Brandt W, Langhammer R, Roos W. The Vacuolar Proton-Cation Exchanger EcNHX1 Generates pH Signals for the Expression of Secondary Metabolism in Eschscholzia californica. PLANT PHYSIOLOGY 2016; 170:1135-48. [PMID: 26578709 PMCID: PMC4734569 DOI: 10.1104/pp.15.01570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/13/2015] [Indexed: 05/26/2023]
Abstract
Cell cultures of Eschscholzia californica react to a fungal elicitor by the overproduction of antimicrobial benzophenanthridine alkaloids. The signal cascade toward the expression of biosynthetic enzymes includes (1) the activation of phospholipase A2 at the plasma membrane, resulting in a peak of lysophosphatidylcholine, and (2) a subsequent, transient efflux of vacuolar protons, resulting in a peak of cytosolic H(+). This study demonstrates that one of the Na(+)/H(+) antiporters acting at the tonoplast of E. californica cells mediates this proton flux. Four antiporter-encoding genes were isolated and cloned from complementary DNA (EcNHX1-EcNHX4). RNA interference-based, simultaneous silencing of EcNHX1, EcNHX3, and EcNHX4 resulted in stable cell lines with largely diminished capacities of (1) sodium-dependent efflux of vacuolar protons and (2) elicitor-triggered overproduction of alkaloids. Each of the four EcNHX genes of E. californica reconstituted the lack of Na(+)-dependent H(+) efflux in a Δnhx null mutant of Saccharomyces cerevisiae. Only the yeast strain transformed with and expressing the EcNHX1 gene displayed Na(+)-dependent proton fluxes that were stimulated by lysophosphatidylcholine, thus giving rise to a net efflux of vacuolar H(+). This finding was supported by three-dimensional protein homology models that predict a plausible recognition site for lysophosphatidylcholine only in EcNHX1. We conclude that the EcNHX1 antiporter functions in the elicitor-initiated expression of alkaloid biosynthetic genes by recruiting the vacuolar proton pool for the signaling process.
Collapse
Affiliation(s)
- Sophie Weigl
- Institute of Pharmacy, Department of Pharmaceutical Biology, Laboratory of Molecular Cell Biology (S.W., W.R.), and Institute of Genetics, Department of Molecular Genetics (R.L.), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; andLeibniz Institute of Plant Biochemistry, Department of Bioorganic Chemistry, 06120 Halle (Saale), Germany (W.B.)
| | - Wolfgang Brandt
- Institute of Pharmacy, Department of Pharmaceutical Biology, Laboratory of Molecular Cell Biology (S.W., W.R.), and Institute of Genetics, Department of Molecular Genetics (R.L.), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; andLeibniz Institute of Plant Biochemistry, Department of Bioorganic Chemistry, 06120 Halle (Saale), Germany (W.B.)
| | - Renate Langhammer
- Institute of Pharmacy, Department of Pharmaceutical Biology, Laboratory of Molecular Cell Biology (S.W., W.R.), and Institute of Genetics, Department of Molecular Genetics (R.L.), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; andLeibniz Institute of Plant Biochemistry, Department of Bioorganic Chemistry, 06120 Halle (Saale), Germany (W.B.)
| | - Werner Roos
- Institute of Pharmacy, Department of Pharmaceutical Biology, Laboratory of Molecular Cell Biology (S.W., W.R.), and Institute of Genetics, Department of Molecular Genetics (R.L.), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; andLeibniz Institute of Plant Biochemistry, Department of Bioorganic Chemistry, 06120 Halle (Saale), Germany (W.B.)
| |
Collapse
|
181
|
Amato A, Cavallini E, Zenoni S, Finezzo L, Begheldo M, Ruperti B, Tornielli GB. A Grapevine TTG2-Like WRKY Transcription Factor Is Involved in Regulating Vacuolar Transport and Flavonoid Biosynthesis. FRONTIERS IN PLANT SCIENCE 2016; 7:1979. [PMID: 28105033 PMCID: PMC5214514 DOI: 10.3389/fpls.2016.01979] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/13/2016] [Indexed: 05/20/2023]
Abstract
A small set of TTG2-like homolog proteins from different species belonging to the WRKY family of transcription factors were shown to share a similar mechanism of action and to control partially conserved biochemical/developmental processes in their native species. In particular, by activating P-ATPases residing on the tonoplast, PH3 from Petunia hybrida promotes vacuolar acidification in petal epidermal cells whereas TTG2 from Arabidopsis thaliana enables the accumulation of proanthocyanidins in the seed coat. In this work we functionally characterized VvWRKY26 identified as the closest grapevine homolog of PhPH3 and AtTTG2. When constitutively expressed in petunia ph3 mutant, VvWRKY26 can fulfill the PH3 function in the regulation of vacuolar pH and restores the wild type pigmentation phenotype. By a global correlation analysis of gene expression and by transient over-expression in Vitis vinifera, we showed transcriptomic relationships of VvWRKY26 with many genes related to vacuolar acidification and transport in grapevine. Moreover, our results indicate an involvement in flavonoid pathway possibly restricted to the control of proanthocyanidin biosynthesis that is consistent with its expression pattern in grape berry tissues. Overall, the results show that, in addition to regulative mechanisms and biological roles shared with TTG2-like orthologs, VvWRKY26 can play roles in fleshy fruit development that have not been previously reported in studies from dry fruit species. This study paves the way toward the comprehension of the regulatory network controlling vacuolar acidification and flavonoid accumulation mechanisms that contribute to the final berry quality traits in grapevine.
Collapse
Affiliation(s)
| | - Erika Cavallini
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Sara Zenoni
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Laura Finezzo
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Maura Begheldo
- Department of Agriculture, Food, Natural Resources, Animals and Environment, University of PadovaPadova, Italy
| | - Benedetto Ruperti
- Department of Agriculture, Food, Natural Resources, Animals and Environment, University of PadovaPadova, Italy
| | | |
Collapse
|
182
|
Wu ZJ, Li XH, Liu ZW, Li H, Wang YX, Zhuang J. Transcriptome-wide identification of Camellia sinensis WRKY transcription factors in response to temperature stress. Mol Genet Genomics 2015; 291:255-69. [PMID: 26308611 DOI: 10.1007/s00438-015-1107-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/14/2015] [Indexed: 01/17/2023]
Abstract
Tea plant [Camellia sinensis (L.) O. Kuntze] is a leaf-type healthy non-alcoholic beverage crop, which has been widely introduced worldwide. Tea is rich in various secondary metabolites, which are important for human health. However, varied climate and complex geography have posed challenges for tea plant survival. The WRKY gene family in plants is a large transcription factor family that is involved in biological processes related to stress defenses, development, and metabolite synthesis. Therefore, identification and analysis of WRKY family transcription factors in tea plant have a profound significance. In the present study, 50 putative C. sinensis WRKY proteins (CsWRKYs) with complete WRKY domain were identified and divided into three Groups (Group I-III) on the basis of phylogenetic analysis results. The distribution of WRKY family transcription factors among plantae, fungi, and protozoa showed that the number of WRKY genes increased in higher plant, whereas the number of these genes did not correspond to the evolutionary relationships of different species. Structural feature and annotation analysis results showed that CsWRKY proteins contained WRKYGQK/WRKYGKK domains and C2H2/C2HC-type zinc-finger structure: D-X18-R-X1-Y-X2-C-X4-7-C-X23-H motif; CsWRKY proteins may be associated with the biological processes of abiotic and biotic stresses, tissue development, and hormone and secondary metabolite biosynthesis. Temperature stresses suggested that the candidate CsWRKY genes were involved in responses to extreme temperatures. The current study established an extensive overview of the WRKY family transcription factors in tea plant. This study also provided a global survey of CsWRKY transcription factors and a foundation of future functional identification and molecular breeding.
Collapse
Affiliation(s)
- Zhi-Jun Wu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing-Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi-Wei Liu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yong-Xin Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
183
|
Raineri J, Wang S, Peleg Z, Blumwald E, Chan RL. The rice transcription factor OsWRKY47 is a positive regulator of the response to water deficit stress. PLANT MOLECULAR BIOLOGY 2015; 88:401-13. [PMID: 25957211 DOI: 10.1007/s11103-015-0329-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/30/2015] [Indexed: 05/18/2023]
Abstract
OsWRKY47 is a divergent rice transcription factor belonging to the group II of the WRKY family. A transcriptomic analysis of the drought response of transgenic rice plants expressing P SARK ::IPT, validated by qPCR, indicated that OsWRKY47 expression was induced under drought stress in P SARK ::IPT plants. A PCR-assisted site selection assay (SELEX) of recombinant OsWRKY47 protein showed that the preferred sequence bound in vitro is (G/T)TTGACT. Bioinformatics analyses identified a number of gene targets of OsWRKY47; among these two genes encode a Calmodulin binding protein and a Cys-rich secretory protein. Using Oswrk47 knockout mutants and transgenic rice overexpressing OsWRKY47 we show that the transcription of these putative targets were regulated by OsWRKY47. Phenotypic analysis carried out with transgenic rice plants showed that Oswrky47 mutants displayed higher sensitivity to drought and reduced yield, while plants overexpressing OsWRKY47 were more tolerant.
Collapse
Affiliation(s)
- Jesica Raineri
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Colectora ruta 168 km 0, Paraje El Pozo, 3000, Santa Fe, Argentina
| | | | | | | | | |
Collapse
|