151
|
Shi CY, Hussain SB, Guo LX, Yang H, Ning DY, Liu YZ. Genome-wide identification and transcript analysis of vacuolar-ATPase genes in citrus reveal their possible involvement in citrate accumulation. PHYTOCHEMISTRY 2018; 155:147-154. [PMID: 30121429 DOI: 10.1016/j.phytochem.2018.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/26/2018] [Accepted: 08/12/2018] [Indexed: 06/08/2023]
Abstract
The vacuolar H+-ATPase (V-ATPase) proton pump plays an important role in the acidification of vacuoles; however, genes encoding V-ATPase in the citrus genome and their roles in citric acid accumulation remain unclear in citrus fruit. In this study, we found at least one gene encoding subunit A, B, C, D, G, c'', d or e; two genes encoding the subunit E, F, H or a; and four genes encoding subunit c in the citrus genome. Spatial expression analysis showed that most genes were predominantly expressed in the mature leaves and/or flowers but were less expressed in root and juice cells. Two sweet orange (Citrus sinensis) cultivars, 'Anliu' (AL) and 'Hong Anliu' (HAL), which differ in terms of fruit acidity, were used in this study. The citric acid content was significantly higher in 'AL' fruits than in 'HAL' fruits over the entire experimental period (82 days-236 days after full blossom, DAFB). Transcript analysis showed that the transcript levels of most subunit genes, including V1-A, V1-B, V1-C, V1-E1, V1-G, V1-H2 and V0-a2, V0-c", V0-c4, and V0-d, were significantly lower in 'HAL' than in 'AL' fruits during fruit development and ripening. Moreover, ABA injection significantly increased the citric acid content, simultaneously accompanied by the obvious induction of V1-A, V1-C, V1-E1, V1-F1, V1-H2, V0-a1, V0-a2, V0-c1, V0-c2, V0-c4, and V0-d transcription levels. In conclusion, the results demonstrated that V1-A, V1-C, V1-E1, V1-H2, V0-a2, V0-c4, and V0-d may play more roles than other subunit genes in the vacuole acidification of citrus fruits. The lower activity of V-ATPase caused by the transcript reduction of some subunit genes may be one reason for the low citrate accumulation in 'HAL' juice sacs.
Collapse
Affiliation(s)
- Cai-Yun Shi
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Syed Bilal Hussain
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ling-Xia Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Huan Yang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Dong-Yuan Ning
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yong-Zhong Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
152
|
Carmona L, Alquézar B, Tárraga S, Peña L. Protein analysis of moro blood orange pulp during storage at low temperatures. Food Chem 2018; 277:75-83. [PMID: 30502212 DOI: 10.1016/j.foodchem.2018.10.108] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 11/18/2022]
Abstract
A protein analysis in the pulp of Moro blood oranges (Citrus sinensis L. Osbeck) at the onset and after 30 days of storage at either 4 or 9 °C was performed. All differential proteins belonged to different functional classes (sugar, amino acid and secondary metabolism, defense, stress response, oxidative process, transport and cellular component biogenesis), displaying a differential accumulation in those Moro oranges kept at 9 versus 4 °C, and in those stored at 4 °C versus onset. Anthocyanin biosynthesis structural proteins chalcone synthases and flavonone 3-hydroxylase and different glutathione S-transferases related with their vacuolar transport were up-accumulated in fruits kept at 9 versus 4 °C and versus the onset. Proteins related with defense and oxidative stress displayed a similar pattern, concomitant with a higher anthocyanin content, denoting a possible role of defense and other stress response pathways in anthocyanin production/accumulation.
Collapse
Affiliation(s)
- L Carmona
- Fundo de Defesa da Citricultura (Fundecitrus), Av. Adhemar P. Barros, Araraquara, São Paulo, Brazil.
| | - B Alquézar
- Fundo de Defesa da Citricultura (Fundecitrus), Av. Adhemar P. Barros, Araraquara, São Paulo, Brazil; Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, Valencia, Spain.
| | - S Tárraga
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, Valencia, Spain.
| | - L Peña
- Fundo de Defesa da Citricultura (Fundecitrus), Av. Adhemar P. Barros, Araraquara, São Paulo, Brazil; Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, Valencia, Spain.
| |
Collapse
|
153
|
An JP, Wang XF, Li YY, Song LQ, Zhao LL, You CX, Hao YJ. EIN3-LIKE1, MYB1, and ETHYLENE RESPONSE FACTOR3 Act in a Regulatory Loop That Synergistically Modulates Ethylene Biosynthesis and Anthocyanin Accumulation. PLANT PHYSIOLOGY 2018; 178:808-823. [PMID: 29925585 PMCID: PMC6181056 DOI: 10.1104/pp.18.00068] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/13/2018] [Indexed: 05/20/2023]
Abstract
Ethylene regulates climacteric fruit ripening, and EIN3-LIKE1 (EIL1) plays an important role in this process. In apple (Malus domestica), fruit coloration is accompanied by ethylene release during fruit ripening, but the molecular mechanism that underlies these two physiological processes is unknown. In this study, we found that ethylene treatment markedly induced fruit coloration as well as the expression of MdMYB1, a positive regulator of anthocyanin biosynthesis and fruit coloration. In addition, we found that MdEIL1 directly bound to the promoter of MdMYB1 and transcriptionally activated its expression, which resulted in anthocyanin biosynthesis and fruit coloration. Furthermore, MdMYB1 interacted with the promoter of ETHYLENE RESPONSE FACTOR3, a key regulator of ethylene biosynthesis, thereby providing a positive feedback for ethylene biosynthesis regulation. Overall, our findings provide insight into a mechanism involving the synergistic interaction of the ethylene signal with the MdMYB1 transcription factor to regulate ethylene biosynthesis and fruit coloration in apple.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Lai-Qing Song
- Yantai Academy of Agricultural Sciences, Yan-Tai 265599, Shandong, China
| | - Ling-Ling Zhao
- Yantai Academy of Agricultural Sciences, Yan-Tai 265599, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| |
Collapse
|
154
|
Wang XF, An JP, Liu X, Su L, You CX, Hao YJ. The Nitrate-Responsive Protein MdBT2 Regulates Anthocyanin Biosynthesis by Interacting with the MdMYB1 Transcription Factor. PLANT PHYSIOLOGY 2018; 178:890-906. [PMID: 29807931 PMCID: PMC6181044 DOI: 10.1104/pp.18.00244] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/17/2018] [Indexed: 05/19/2023]
Abstract
In addition to scavenging reactive oxygen species, anthocyanins are pigments that give organs their color. In apple (Malus domestica), R2R3-MYB transcription factor MdMYB1 is a master regulator of anthocyanin biosynthesis and fruit coloration. In this study, we found that MdMYB1 was degraded via a ubiquitin-dependent pathway in response to nitrate, an inhibitor of anthocyanin synthesis. Using a yeast two-hybrid (Y2H) approach, we found that the BTB-TAZ protein encoded by the nitrate-responsive gene MdBT2 interacts with MdMYB1. Pull-down and coimmunoprecipitation assays supported this conclusion. In vivo and in vitro experiments revealed that MdBT2 promoted the ubiquitination and degradation of MdMYB1 through a cullin protein MdCUL3-independent pathway. Expression analysis demonstrated that MdBT2 and MdMYB1 were inversely regulated by nitrate and other environmental signals. Furthermore, we used transgenic approaches in apple and Arabidopsis (Arabidopsis thaliana) to characterize the function of MdBT2 in regulating anthocyanin biosynthesis in response to nitrate. Our findings provide insight into a mechanism involving the MdBT2-MdMYB1 pathway that regulates anthocyanin accumulation in apple and possibly in other plant species.
Collapse
Affiliation(s)
- Xiao-Fei Wang
- National Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An 271018, Shandong, China
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai-An 271018, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Jian-Ping An
- National Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An 271018, Shandong, China
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai-An 271018, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Xin Liu
- National Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An 271018, Shandong, China
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai-An 271018, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Ling Su
- National Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An 271018, Shandong, China
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai-An 271018, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An 271018, Shandong, China
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai-An 271018, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An 271018, Shandong, China
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai-An 271018, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| |
Collapse
|
155
|
Allan AC, Espley RV. MYBs Drive Novel Consumer Traits in Fruits and Vegetables. TRENDS IN PLANT SCIENCE 2018; 23:693-705. [PMID: 30033210 DOI: 10.1016/j.tplants.2018.06.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 05/27/2023]
Abstract
Eating plant-derived compounds can lead to a longer and healthier life and also benefits the environment. Innovation in the fresh food sector, as well as new cultivars, can improve consumption of fruit and vegetables, with MYB transcription factors being a target to drive this novelty. Plant MYB transcription factors are implicated in diverse roles including development, hormone signalling, and metabolite biosynthesis. The reds and blues of fruit and vegetables provided by anthocyanins, phlobaphenes, and betalains are controlled by specific R2R3 MYBs. New studies are now revealing that MYBs also control carotenoid biosynthesis and other quality traits, such as flavour and texture. Future breeding techniques may manipulate or create alleles of key MYB transcription factors.
Collapse
Affiliation(s)
- Andrew C Allan
- New Zealand Institute for Plant and Food Research, Mt Albert, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | - Richard V Espley
- New Zealand Institute for Plant and Food Research, Mt Albert, Auckland, New Zealand
| |
Collapse
|
156
|
Jia D, Shen F, Wang Y, Wu T, Xu X, Zhang X, Han Z. Apple fruit acidity is genetically diversified by natural variations in three hierarchical epistatic genes: MdSAUR37, MdPP2CH and MdALMTII. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:427-443. [PMID: 29750477 DOI: 10.1111/tpj.13957] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 05/21/2023]
Abstract
Many efforts have been made to map quantitative trait loci (QTLs) to facilitate practical marker-assisted selection (MAS) in plants. In the present study, using MapQTL and BSA-seq (bulk segregant analysis using next generation sequencing) with two independent pedigree-based populations, we identified four major genome-wide QTLs responsible for apple fruit acidity. Candidate genes were screened in major QTL regions, and three functional gene markers, including a non-synonymous A/G single-nucleotide polymorphism (SNP) in the coding region of MdPP2CH, a 36-bp insertion in the promoter of MdSAUR37 and a previously reported SNP in MdALMTII, were validated to influence the malate content of apple fruits. In addition, MdPP2CH inactivated three vacuolar H+ -ATPases (MdVHA-A3, MdVHA-B2 and MdVHA-D2) and one aluminium-activated malate transporter (MdALMTII) via dephosphorylation and negatively influenced fruit malate accumulation. The dephosphotase activity of MdPP2CH was suppressed by MdSAUR37, which implied a higher hierarchy of genetic interaction. Therefore, the MdSAUR37/MdPP2CH/MdALMTII chain cascaded hierarchical epistatic genetic effects to precisely determine apple fruit malate content. An A/G SNP (-1010) on the MdMYB44 promoter region from a major QTL (qtl08.1) was closely associated with fruit malate content. The predicted phenotype values (PPVs) were estimated using the tentative genotype values of the gene markers, and the PPVs were significantly correlated with the observed phenotype values. Our findings provide an insight into plant genome-based selection in apples and will aid in conducting research to understand the fundamental physiological basis of quantitative genetics.
Collapse
Affiliation(s)
- Dongjie Jia
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Fei Shen
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yi Wang
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ting Wu
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuefeng Xu
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xinzhong Zhang
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhenhai Han
- Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
157
|
de Brito Francisco R, Martinoia E. The Vacuolar Transportome of Plant Specialized Metabolites. PLANT & CELL PHYSIOLOGY 2018; 59:1326-1336. [PMID: 29452376 DOI: 10.1093/pcp/pcy039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/05/2018] [Indexed: 05/21/2023]
Abstract
The plant vacuole is a cellular compartment that is essential to plant development and growth. Often plant vacuoles accumulate specialized metabolites, also called secondary metabolites, which constitute functionally and chemically diverse compounds that exert in planta many essential functions and improve the plant's fitness. These metabolites provide, for example, chemical defense against herbivorous and pathogens or chemical attractants (color and fragrance) to attract pollinators. The chemical composition of the vacuole is dynamic, and is altered during development and as a response to environmental changes. To some extent these alterations rely on vacuolar transporters, which import and export compounds into and out of the vacuole, respectively. During the past decade, significant progress was made in the identification and functional characterization of the transporters implicated in many aspects of plant specialized metabolism. Still, deciphering the molecular players underlying such processes remains a challenge for the future. In this review, we present a comprehensive summary of the most recent achievements in this field.
Collapse
Affiliation(s)
| | - Enrico Martinoia
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
158
|
Manganaris GA, Goulas V, Mellidou I, Drogoudi P. Antioxidant Phytochemicals in Fresh Produce: Exploitation of Genotype Variation and Advancements in Analytical Protocols. Front Chem 2018; 5:95. [PMID: 29468146 PMCID: PMC5807909 DOI: 10.3389/fchem.2017.00095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/24/2017] [Indexed: 01/27/2023] Open
Abstract
Horticultural commodities (fruit and vegetables) are the major dietary source of several bioactive compounds of high nutraceutical value for humans, including polyphenols, carotenoids and vitamins. The aim of the current review was dual. Firstly, toward the eventual enhancement of horticultural crops with bio-functional compounds, the natural genetic variation in antioxidants found in different species and cultivars/genotypes is underlined. Notably, some landraces and/or traditional cultivars have been characterized by substantially higher phytochemical content, i.e., small tomato of Santorini island (cv. "Tomataki Santorinis") possesses appreciably high amounts of ascorbic acid (AsA). The systematic screening of key bioactive compounds in a wide range of germplasm for the identification of promising genotypes and the restoration of key gene fractions from wild species and landraces may help in reducing the loss of agro-biodiversity, creating a healthier "gene pool" as the basis of future adaptation. Toward this direction, large scale comparative studies in different cultivars/genotypes of a given species provide useful insights about the ones of higher nutritional value. Secondly, the advancements in the employment of analytical techniques to determine the antioxidant potential through a convenient, easy and fast way are outlined. Such analytical techniques include electron paramagnetic resonance (EPR) and infrared (IR) spectroscopy, electrochemical, and chemometric methods, flow injection analysis (FIA), optical sensors, and high resolution screening (HRS). Taking into consideration that fruits and vegetables are complex mixtures of water- and lipid-soluble antioxidants, the exploitation of chemometrics to develop "omics" platforms (i.e., metabolomics, foodomics) is a promising tool for researchers to decode and/or predict antioxidant activity of fresh produce. For industry, the use of optical sensors and IR spectroscopy is recommended to estimate the antioxidant activity rapidly and at low cost, although legislation does not allow its correlation with health claims.
Collapse
Affiliation(s)
- George A. Manganaris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Vlasios Goulas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Ifigeneia Mellidou
- Hellenic Agricultural Organization ‘Demeter’, Institute of Plant Breeding and Genetic Resources, Thessaloniki, Greece
| | - Pavlina Drogoudi
- Hellenic Agricultural Organization ‘Demeter’, Department of Deciduous Fruit Trees, Institute of Plant Breeding and Genetic Resources, Naoussa, Greece
| |
Collapse
|
159
|
Sun CH, Yu JQ, Wen LZ, Guo YH, Sun X, Hao YJ, Hu DG, Zheng CS. Chrysanthemum MADS-box transcription factor CmANR1 modulates lateral root development via homo-/heterodimerization to influence auxin accumulation in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 266:27-36. [PMID: 29241564 DOI: 10.1016/j.plantsci.2017.09.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 05/20/2023]
Abstract
Root system architecture is an important agronomic trait by which plants both acquire water and nutrients from the soil and adapt to survive in a complex environment. The adaptation of plant root systems to environmental constraints largely depends on the growth and development of lateral roots (LRs). MADS-box transcription factors (TFs) are important known regulators of plant growth, development, and response to environmental stimuli. However, the potential mechanisms by which they regulate LRs development remain poorly understood. Here, we identified a MADS-box chrysanthemum gene CmANR1, homologous to the Arabidopsis gene AtANR1, which plays a key role in the regulation of LR development. qRT-PCR assays indicated that CmANR1 was primarily expressed in chrysanthemum roots and was rapidly induced by exposure to high nitrate concentrations. Ectopic expression of CmANR1 in Arabidopsis significantly increased the number and length of emerged LRs compared to the wild-type (col) control, but had no obvious affect on primary root (PR) development. We also found that CmANR1 positively influenced auxin accumulation in LRs at least partly by improving auxin biosynthesis and transport, thereby promoting LR development. Furthermore, we found that ANR1 formed homo- and heterodimers through interactions with itself and AGL21 at its C-terminal domain. Overall, our findings provide considerable new information about the mechanisms by which the chrysanthemum MADS-box TF CmANR1 mediates LR development by directly altering auxin accumulation.
Collapse
Affiliation(s)
- Cui-Hui Sun
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Jian-Qiang Yu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Li-Zhu Wen
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yun-Hui Guo
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xia Sun
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Da-Gang Hu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China.
| | - Cheng-Shu Zheng
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China.
| |
Collapse
|
160
|
Qiao L, Cao M, Zheng J, Zhao Y, Zheng ZL. Gene coexpression network analysis of fruit transcriptomes uncovers a possible mechanistically distinct class of sugar/acid ratio-associated genes in sweet orange. BMC PLANT BIOLOGY 2017; 17:186. [PMID: 29084509 PMCID: PMC5663102 DOI: 10.1186/s12870-017-1138-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/22/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND The ratio of sugars to organic acids, two of the major metabolites in fleshy fruits, has been considered the most important contributor to fruit sweetness. Although accumulation of sugars and acids have been extensively studied, whether plants evolve a mechanism to maintain, sense or respond to the fruit sugar/acid ratio remains a mystery. In a prior study, we used an integrated systems biology tool to identify a group of 39 acid-associated genes from the fruit transcriptomes in four sweet orange varieties (Citrus sinensis L. Osbeck) with varying fruit acidity, Succari (acidless), Bingtang (low acid), and Newhall and Xinhui (normal acid). RESULTS We reanalyzed the prior sweet orange fruit transcriptome data, leading to the identification of 72 genes highly correlated with the fruit sugar/acid ratio. The majority of these sugar/acid ratio-related genes are predicted to be involved in regulatory functions such as transport, signaling and transcription or encode enzymes involved in metabolism. Surprisingly, only three of these sugar/acid ratio-correlated genes are weakly correlated with sugar level and none of them overlaps with the acid-associated genes. Weighted Gene Coexpression Network Analysis (WGCNA) has revealed that these genes belong to four modules, Blue, Grey, Brown and Turquoise, with the former two modules being unique to the sugar/acid ratio control. CONCLUSION Our results indicate that orange fruits contain a possible mechanistically distinct class of genes that may potentially be involved in maintaining fruit sugar/acid ratios and/or responding to the cellular sugar/acid ratio status. Therefore, our analysis of orange transcriptomes provides an intriguing insight into the potentially novel genetic or molecular mechanisms controlling the sugar/acid ratio in fruits.
Collapse
Affiliation(s)
- Liang Qiao
- Plant Nutrient Signaling and Fruit Quality Improvement Laboratory, National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing, 400712 China
| | - Minghao Cao
- Plant Nutrient Signaling and Fruit Quality Improvement Laboratory, National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing, 400712 China
| | - Jian Zheng
- Plant Nutrient Signaling and Fruit Quality Improvement Laboratory, National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing, 400712 China
| | - Yihong Zhao
- Division of Biostatistics, Department of Child and Adolescent Psychiatry, New York University Langone Medical Center, New York, NY 10016 USA
| | - Zhi-Liang Zheng
- Plant Nutrient Signaling and Fruit Quality Improvement Laboratory, National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing, 400712 China
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY 10468 USA
| |
Collapse
|
161
|
Li K, Xing C, Yao Z, Huang X. PbrMYB21, a novel MYB protein of Pyrus betulaefolia, functions in drought tolerance and modulates polyamine levels by regulating arginine decarboxylase gene. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1186-1203. [PMID: 28190292 PMCID: PMC5552480 DOI: 10.1111/pbi.12708] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 11/26/2016] [Accepted: 02/05/2017] [Indexed: 05/18/2023]
Abstract
MYB comprises a large family of transcription factors that play significant roles in plant development and stress response in plants. However, knowledge concerning the functions of MYBs and the target genes remains poorly understood. Here, we report the identification and functional characterization of a novel stress-responsive MYB gene from Pyrus betulaefolia. The MYB gene, designated as PbrMYB21, belongs to the R2R3-type and shares high degree of sequence similarity to MdMYB21. The transcript levels of PbrMYB21 were up-regulated under various abiotic stresses, particularly dehydration. PbrMYB21 was localized in the nucleus with transactivation activity. Overexpression of PbrMYB21 in tobacco conferred enhanced tolerance to dehydration and drought stresses, whereas down-regulation of PbrMYB21 in Pyrus betulaefolia by virus-induced gene silencing (VIGS) resulted in elevated drought sensitivity. Transgenic tobacco exhibited higher expression levels of ADC (arginine decarboxylase) and accumulated larger amount of polyamine in comparison with wild type (WT). VIGS of PbrMYB21 in Pyrus betulaefolia down-regulated ADC abundance and decreased polyamine level, accompanied by compromised drought tolerance. The promoter region of PbrADC contains one MYB-recognizing cis-element, which was shown to be interacted with PbrMYB21, indicating the ADC may be a target gene of PbrMYB21. Take together, these results demonstrated that PbrMYB21 plays a positive role in drought tolerance, which may be, at least in part, due to the modulation of polyamine synthesis by regulating the ADC expression.
Collapse
Affiliation(s)
- Kongqing Li
- Department of Rural DevelopmentNanjing Agricultural UniversityNanjingChina
| | - Caihua Xing
- College of HorticultureState Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Zhenghong Yao
- College of HorticultureState Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Xiaosan Huang
- College of HorticultureState Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
162
|
Rehman RNU, You Y, Zhang L, Goudia BD, Khan AR, Li P, Ma F. High Temperature Induced Anthocyanin Inhibition and Active Degradation in Malus profusion. FRONTIERS IN PLANT SCIENCE 2017; 8:1401. [PMID: 28848597 PMCID: PMC5552711 DOI: 10.3389/fpls.2017.01401] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/27/2017] [Indexed: 05/21/2023]
Abstract
The red fleshed fruits of Malus profusion represent gradual color loss during high temperature in summer, potentially due to active degradation of anthocyanin. The objective of this study was to examine both physiological and molecular evidence of anthocyanin degradation. Malus crabapple fruits were exposed to either room temperature (RT = 18 ± 2°C: 25 ± 2°C) or high temperature (HT = 33 ± 2°C: 25 ± 2°C) regimens (12 h: 12 h) under hypoxic (2%) or normoxic (21%) oxygen levels. The results showed that the concentration of cyanidin 3-galactoside (cy-3-gal) was dramatically reduced following HT treatments due to a significant down-regulation of anthocyanin biosynthetic genes (MpCHS, MpDFR, MpLDOX, MpUFGT, and MpMYB10). Among other repressor MYBs, MpMYB15 expression was high following HT treatment of the fruit. HT led to the generation of a substantial concentration of H2O2 due to enhanced activities of superoxide dismutase (SOD), methane dicarboxylic aldehyde (MDA) content and cell sap pH value. Similarly, transcript levels of MpVHA-B1 and MpVHA-B2 were reduced which are involved in the vacuolar transportation of anthocyanin. The enzymatic degradation of anthocyanin was eventually enhanced coupled with the oxidative activities of peroxidase (POD) and H2O2. Conversely, the RT treatments potentially enhanced anthocyanin content by stabilizing physiological attributes (such as MDA, H2O2, and pH, among others) and sustaining sufficient biosynthetic gene expression levels. Quantitative real-time PCR analysis indicated that the transcription of MpPOD1, MpPOD8 and MpPOD9 genes in fruit tissues was up-regulated due to HT treatment and that hypoxic conditions seems more compatible with the responsible POD isoenzymes involved in active anthocyanin degradation. The results of the current study could be useful for understanding as well as elucidating the physiological phenomenon and molecular signaling cascade underlying active anthocyanin degradation in Malus crops.
Collapse
Affiliation(s)
- Rana Naveed Ur Rehman
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
| | - Yaohua You
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
| | - Lei Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
| | - Bachir Daoura Goudia
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| | | | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
| | - Fangwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
| |
Collapse
|
163
|
Hu DG, Li YY, Zhang QY, Li M, Sun CH, Yu JQ, Hao YJ. The R2R3-MYB transcription factor MdMYB73 is involved in malate accumulation and vacuolar acidification in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:443-454. [PMID: 28423209 DOI: 10.1111/tpj.13579] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/07/2017] [Accepted: 04/12/2017] [Indexed: 05/19/2023]
Abstract
Malate, the predominant organic acid in many fruits, is a crucial component of the organoleptic quality of fruit, including taste and flavor. The genetic and environmental mechanisms affecting malate metabolism in fruit cells have been studied extensively. However, the transcriptional regulation of malate-metabolizing enzymes and vacuolar transporters remains poorly understood. Our previous studies demonstrated that MdMYB1 modulates anthocyanin accumulation and vacuolar acidification by directly activating vacuolar transporters, including MdVHA-B1, MdVHA-E, MdVHP1 and MdtDT. Interestingly, we isolated and identified a MYB transcription factor, MdMYB73, a distant relative of MdMYB1 in this study. It was subsequently found that MdMYB73 protein bound directly to the promoters of MdALMT9 (aluminum-activated malate transporter 9), MdVHA-A (vacuolar ATPase subunit A) and MdVHP1 (vacuolar pyrophosphatase 1), transcriptionally activating their expression and thereby enhancing their activities. Analyses of transgenic apple calli demonstrated that MdMYB73 influenced malate accumulation and vacuolar pH. Furthermore, MdCIbHLH1 interacted with MdMYB73 and enhanced its activity upon downstream target genes. These findings help to elucidate how MdMYB73 directly modulates the vacuolar transport system to affect malate accumulation and vacuolar pH in apple.
Collapse
Affiliation(s)
- Da-Gang Hu
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Yuan-Yuan Li
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Quan-Yan Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Ming Li
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Cui-Hui Sun
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Jian-Qiang Yu
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| |
Collapse
|
164
|
Ma QJ, Sun MH, Lu J, Liu YJ, Hu DG, Hao YJ. Transcription Factor AREB2 Is Involved in Soluble Sugar Accumulation by Activating Sugar Transporter and Amylase Genes. PLANT PHYSIOLOGY 2017; 174:2348-2362. [PMID: 28600345 PMCID: PMC5543958 DOI: 10.1104/pp.17.00502] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/07/2017] [Indexed: 05/18/2023]
Abstract
Sugars play important roles in plant growth and development, crop yield and quality, as well as responses to abiotic stresses. Abscisic acid (ABA) is a multifunctional hormone. However, the exact mechanism by which ABA regulates sugar accumulation is largely unknown in plants. Here, we tested the expression profile of several sugar transporter and amylase genes in response to ABA treatment. MdSUT2 and MdAREB2 were isolated and genetically transformed into apple (Malus domestica) to investigate their roles in ABA-induced sugar accumulation. The MdAREB2 transcription factor was found to bind to the promoters of the sugar transporter and amylase genes and activate their expression. Both MdAREB2 and MdSUT2 transgenic plants produced more soluble sugars than controls. Furthermore, MdAREB2 promoted the accumulation of sucrose and soluble sugars in an MdSUT2-dependent manner. Our results demonstrate that the ABA-responsive transcription factor MdAREB2 directly activates the expression of amylase and sugar transporter genes to promote soluble sugar accumulation, suggesting a mechanism by which ABA regulates sugar accumulation in plants.
Collapse
Affiliation(s)
- Qi-Jun Ma
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Mei-Hong Sun
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Jing Lu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Ya-Jing Liu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Da-Gang Hu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| |
Collapse
|
165
|
Yang JF, Chen YZ, Kawabata S, Li YH, Wang Y. Identification of Light-Independent Anthocyanin Biosynthesis Mutants Induced by Ethyl Methane Sulfonate in Turnip "Tsuda" (Brassica rapa). Int J Mol Sci 2017. [PMID: 28640193 PMCID: PMC5535824 DOI: 10.3390/ijms18071288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The epidermis of swollen storage roots in purple cultivars of turnip “Tsuda” (Brassica rapa) accumulates anthocyanin in a light-dependent manner, especially in response to UV-A light, of which the mechanism is unclear. In this study, we mutagenized 15,000 seeds by 0.5% (v/v) ethyl methane sulfonate (EMS) and obtained 14 mutants with abnormal anthocyanin production in their epidermis of swollen storage roots. These mutants were classified into two groups: the red mutants with constitutive anthocyanin accumulation in their epidermis of storage roots even in underground parts in darkness and the white mutants without anthocyanin accumulation in the epidermis of storage roots in aboveground parts exposed to sunlight. Test cross analysis demonstrated that w9, w68, w204, r15, r21, r30 and r57 contained different mutations responsible for their phenotypic variations. Further genetic analysis of four target mutants (w9, w68, w204 and r15) indicated that each of them was controlled by a different recessive gene. Intriguingly, the expression profiles of anthocyanin biosynthesis genes, including structural and regulatory genes, coincided with their anthocyanin levels in the epidermis of storage roots in the four target mutants. We proposed that potential genes responsible for the mutations should be upstream factors of the anthocyanin biosynthesis pathway in turnips, which provided resources to further investigate the mechanisms of light-induced anthocyanin accumulation.
Collapse
Affiliation(s)
- Jian-Fei Yang
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Yun-Zhu Chen
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Saneyuki Kawabata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo Tokyo 113-8654, Japan.
| | - Yu-Hua Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| | - Yu Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
166
|
Li SJ, Yin XR, Wang WL, Liu XF, Zhang B, Chen KS. Citrus CitNAC62 cooperates with CitWRKY1 to participate in citric acid degradation via up-regulation of CitAco3. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68. [PMID: 28633340 PMCID: PMC5853897 DOI: 10.1093/jxb/erx187] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Citric acid is the predominant organic acid of citrus fruit. Degradation of citric acid occurs during fruit development, influencing fruit acidity. Associations of CitAco3 transcripts and citric acid degradation have been reported for citrus fruit. Here, transient overexpression of CitAco3 significantly reduced the citric acid content of citrus leaves and fruits. Using dual luciferase assays, it was shown that CitNAC62 and CitWRKY1 could transactivate the promoter of CitAco3. Subcellular localization results showed that CitWRKY1 was located in the nucleus and CitNAC62 was not. Yeast two-hybrid analysis and bimolecular fluorescence complementation (BiFC) assays indicated that the two differently located transcription factors could interact with each other. Furthermore, BiFC showed that the protein-protein interaction occurred only in the nucleus, indicating the potential mobility of CitNAC62 in plant cells. A synergistic effect on citrate content was observed between CitNAC62 and CitWRKY1. Transient overexpression of CitNAC62 or CitWRKY1 led to significantly lower citrate content in citrus fruit. The combined expression of CitNAC62 and CitWRKY1 resulted in lower citrate content compared with the expression of CitNAC62 or CitWRKY1 alone. The transcript abundance of CitAco3 was consistent with the citrate content. Thus, we propose that a complex of CitWRKY1 and CitNAC62 contributes to citric acid degradation in citrus fruit, potentially via modulation of CitAco3.
Collapse
Affiliation(s)
- Shao-jia Li
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - Xue-ren Yin
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - Wen-li Wang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - Xiao-fen Liu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - Bo Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - Kun-song Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, China
- Correspondence:
| |
Collapse
|
167
|
Sun T, Xu L, Sun H, Yue Q, Zhai H, Yao Y. VvVHP1; 2 Is Transcriptionally Activated by VvMYBA1 and Promotes Anthocyanin Accumulation of Grape Berry Skins via Glucose Signal. FRONTIERS IN PLANT SCIENCE 2017; 8:1811. [PMID: 29104582 PMCID: PMC5655013 DOI: 10.3389/fpls.2017.01811] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/05/2017] [Indexed: 05/14/2023]
Abstract
In this work, four vacuolar H+-PPase (VHP) genes were identified in the grape genome. Among them, VvVHP1; 2 was strongly expressed in berry skin and its expression exhibited high correlations to anthocyanin content of berry skin during berry ripening and under ABA and UVB treatments. VvVHP1; 2 was transcriptionally activated directly by VvMYBA1, and VvVHP1; 2 overexpression promoted anthocyanin accumulation in berry skins and Arabidopsis leaves; therefore, VvVHP1; 2 mediated VvMYBA1-regulated berry pigmentation. On the other hand, RNA-Seq analysis of WT and transgenic berry skins revealed that carbohydrate metabolism, flavonoid metabolism and regulation and solute carrier family expression were the most clearly altered biological processes. Further experiments elucidated that VvVHP1; 2 overexpression up-regulated the expression of the genes related to anthocyanin biosynthesis and transport via hexokinase-mediated glucose signal and thereby promoted anthocyanin accumulation in berry skins and Arabidopsis leaves. Additionally, modifications of sugar status caused by enhanced hexokinase activities likely play a key role in VvVHP1; 2-induced sugar signaling.
Collapse
|
168
|
De Novo transcriptome characterization of Dracaena cambodiana and analysis of genes involved in flavonoid accumulation during formation of dragon's blood. Sci Rep 2016; 6:38315. [PMID: 27922066 PMCID: PMC5138819 DOI: 10.1038/srep38315] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
Dragon’s blood is a red resin mainly extracted from Dracaena plants, and has been widely used as a traditional medicine in East and Southeast Asia. The major components of dragon’s blood are flavonoids. Owing to a lack of Dracaena plants genomic information, the flavonoids biosynthesis and regulation in Dracaena plants remain unknown. In this study, three cDNA libraries were constructed from the stems of D. cambodiana after injecting the inducer. Approximately 266.57 million raw sequencing reads were de novo assembled into 198,204 unigenes, of which 34,873 unique sequences were annotated in public protein databases. Many candidate genes involved in flavonoid accumulation were identified. Differential expression analysis identified 20 genes involved in flavonoid biosynthesis, 27 unigenes involved in flavonoid modification and 68 genes involved in flavonoid transport that were up-regulated in the stems of D. cambodiana after injecting the inducer, consistent with the accumulation of flavonoids. Furthermore, we have revealed the differential expression of transcripts encoding for transcription factors (MYB, bHLH and WD40) involved in flavonoid metabolism. These de novo transcriptome data sets provide insights on pathways and molecular regulation of flavonoid biosynthesis and transport, and improve our understanding of molecular mechanisms of dragon’s blood formation in D. cambodiana.
Collapse
|
169
|
Hu DG, Sun CH, Zhang QY, An JP, You CX, Hao YJ. Glucose Sensor MdHXK1 Phosphorylates and Stabilizes MdbHLH3 to Promote Anthocyanin Biosynthesis in Apple. PLoS Genet 2016; 12:e1006273. [PMID: 27560976 PMCID: PMC4999241 DOI: 10.1371/journal.pgen.1006273] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 08/02/2016] [Indexed: 01/03/2023] Open
Abstract
Glucose induces anthocyanin accumulation in many plant species; however, the molecular mechanism involved in this process remains largely unknown. Here, we found that apple hexokinase MdHXK1, a glucose sensor, was involved in sensing exogenous glucose and regulating anthocyanin biosynthesis. In vitro and in vivo assays suggested that MdHXK1 interacted directly with and phosphorylated an anthocyanin-associated bHLH transcription factor (TF) MdbHLH3 at its Ser361 site in response to glucose. Furthermore, both the hexokinase_2 domain and signal peptide are crucial for the MdHXK1-mediated phosphorylation of MdbHLH3. Moreover, phosphorylation modification stabilized MdbHLH3 protein and enhanced its transcription of the anthocyanin biosynthesis genes, thereby increasing anthocyanin biosynthesis. Finally, a series of transgenic analyses in apple calli and fruits demonstrated that MdHXK1 controlled glucose-induced anthocyanin accumulation at least partially, if not completely, via regulating MdbHLH3. Overall, our findings provide new insights into the mechanism of the glucose sensor HXK1 modulation of anthocyanin accumulation, which occur by directly regulating the anthocyanin-related bHLH TFs in response to a glucose signal in plants.
Collapse
Affiliation(s)
- Da-Gang Hu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Cui-Hui Sun
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Quan-Yan Zhang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Jian-Ping An
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| |
Collapse
|
170
|
Passeri V, Koes R, Quattrocchio FM. New Challenges for the Design of High Value Plant Products: Stabilization of Anthocyanins in Plant Vacuoles. FRONTIERS IN PLANT SCIENCE 2016; 7:153. [PMID: 26909096 PMCID: PMC4754442 DOI: 10.3389/fpls.2016.00153] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/29/2016] [Indexed: 05/18/2023]
Abstract
In the last decade plant biotechnologists and breeders have made several attempt to improve the antioxidant content of plant-derived food. Most efforts concentrated on increasing the synthesis of antioxidants, in particular anthocyanins, by inducing the transcription of genes encoding the synthesizing enzymes. We present here an overview of economically interesting plant species, both food crops and ornamentals, in which anthocyanin content was improved by traditional breeding or transgenesis. Old genetic studies in petunia and more recent biochemical work in brunfelsia, have shown that after synthesis and compartmentalization in the vacuole, anthocyanins need to be stabilized to preserve the color of the plant tissue over time. The final yield of antioxidant molecules is the result of the balance between synthesis and degradation. Therefore the understanding of the mechanism that determine molecule stabilization in the vacuolar lumen is the next step that needs to be taken to further improve the anthocyanin content in food. In several species a phenomenon known as fading is responsible for the disappearance of pigmentation which in some case can be nearly complete. We discuss the present knowledge about the genetic and biochemical factors involved in pigment preservation/destabilization in plant cells. The improvement of our understanding of the fading process will supply new tools for both biotechnological approaches and marker-assisted breeding.
Collapse
Affiliation(s)
| | | | - Francesca M. Quattrocchio
- Plant Development and (Epi)Genetics, Swammerdam Institute of Life Sciences, University of AmsterdamAmsterdam, Netherlands
| |
Collapse
|
171
|
Sun CH, Zhang QY, Sun MH, Hu DG. MdSOS2L1 forms a complex with MdMYB1 to control vacuolar pH by transcriptionally regulating MdVHA-B1 in apples. PLANT SIGNALING & BEHAVIOR 2016; 11:e1146846. [PMID: 26910596 PMCID: PMC4883882 DOI: 10.1080/15592324.2016.1146846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 06/05/2023]
Abstract
Vacuolar pH is important and involves in many different physiological processes in plants. A recent paper published in Plant Physiology reveals that MdMYB1 regulates vacuolar pH by directly transcriptionally regulating proton pump genes and malate transporters genes, such as V-ATPase subunit gene MdVHA-B1. Here, we found that MdSOS2L1 in vitro did not directly interact with MdMYB1, however, in vivo formed a complex with MdMYB1 in the nucleus to regulate MdVHA-B1-mediated vacuolar acidification. This finding shed light on the role of MdSOS2L1 in transcriptionally regulating MdVHA-B1 in addition to its post-modified function in apples.
Collapse
Affiliation(s)
- Cui-Hui Sun
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong China
| | - Quan-Yan Zhang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong China
| | - Mei-Hong Sun
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong China
| | - Da-Gang Hu
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong China
| |
Collapse
|