151
|
del Río LA. Peroxisomes as a cellular source of reactive nitrogen species signal molecules. Arch Biochem Biophys 2011; 506:1-11. [DOI: 10.1016/j.abb.2010.10.022] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 10/26/2010] [Accepted: 10/27/2010] [Indexed: 12/13/2022]
|
152
|
Pauly N, Ferrari C, Andrio E, Marino D, Piardi S, Brouquisse R, Baudouin E, Puppo A. MtNOA1/RIF1 modulates Medicago truncatula-Sinorhizobium meliloti nodule development without affecting its nitric oxide content. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:939-948. [PMID: 21071678 DOI: 10.1093/jxb/erq323] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
AtNoa1/Rif1 (formerly referred to as AtNos1) has been shown to modulate nitric oxide (NO) content in Arabidopsis. As NO generation in the legume-rhizobium symbiosis has been shown, the involvement of an AtNoa1/Rif1 orthologue from Medicago truncatula (MtNoa1/Rif1) during its symbiotic interaction with Sinorhizobium meliloti has been studied. The expression of MtNoa1/Rif1 appeared to occur mainly in nodule vascular bundles and the meristematic zone. Using an RNA interference strategy, transgenic roots exhibiting a significantly decreased level of MtNoa1/Rif1 expression were analysed. NO production was assessed using a fluorescent probe, and the symbiotic capacities of the composite plants upon infection with Sinorhizobium meliloti were determined. The decrease in MtNoa1/Rif1 expression level resulted in a decrease in NO production in roots, but not in symbiotic nodules, indicating a different regulation of NO synthesis in these organs. However, it significantly lowered the nodule number and the nitrogen fixation capacity of the functional nodules. Although having no influence on NO production in nodules, MtNOA1/RIF1 significantly affected the establishment and the functioning of the symbiotic interaction. The impairment of plastid functioning may explain this phenotype.
Collapse
Affiliation(s)
- Nicolas Pauly
- Interactions Biotiques et Santé Végétale UMR INRA 1301-CNRS 6243-Université de Nice-Sophia Antipolis, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Chen WW, Yang JL, Qin C, Jin CW, Mo JH, Ye T, Zheng SJ. Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. PLANT PHYSIOLOGY 2010. [PMID: 20699398 DOI: 10.1104/pp110.161109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In response to iron (Fe) deficiency, dicots employ a reduction-based mechanism by inducing ferric-chelate reductase (FCR) at the root plasma membrane to enhance Fe uptake. However, the signal pathway leading to FCR induction is still unclear. Here, we found that the Fe-deficiency-induced increase of auxin and nitric oxide (NO) levels in wild-type Arabidopsis (Arabidopsis thaliana) was accompanied by up-regulation of root FCR activity and the expression of the basic helix-loop-helix transcription factor (FIT) and the ferric reduction oxidase 2 (FRO2) genes. This was further stimulated by application of exogenous auxin (α-naphthaleneacetic acid) or NO donor (S-nitrosoglutathione [GSNO]), but suppressed by either polar auxin transport inhibition with 1-naphthylphthalamic acid or NO scavenging with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, tungstate, or N(ω)-nitro-L-arginine methyl ester hydrochloride. On the other hand, the root FCR activity, NO level, and gene expression of FIT and FRO2 were higher in auxin-overproducing mutant yucca under Fe deficiency, which were sharply restrained by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide treatment. The opposite response was observed in a basipetal auxin transport impaired mutant aux1-7, which was slightly rescued by exogenous GSNO application. Furthermore, Fe deficiency or α-naphthaleneacetic acid application failed to induce Fe-deficiency responses in noa1 and nial nia2, two mutants with reduced NO synthesis, but root FCR activities in both mutants could be significantly elevated by GSNO. The inability to induce NO burst and FCR activity was further verified in a double mutant yucca noa1 with elevated auxin production and reduced NO accumulation. Therefore, we presented a novel signaling pathway where NO acts downstream of auxin to activate root FCR activity under Fe deficiency in Arabidopsis.
Collapse
Affiliation(s)
- Wei Wei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
154
|
Ma W, Smigel A, Walker RK, Moeder W, Yoshioka K, Berkowitz GA. Leaf senescence signaling: the Ca2+-conducting Arabidopsis cyclic nucleotide gated channel2 acts through nitric oxide to repress senescence programming. PLANT PHYSIOLOGY 2010; 154:733-43. [PMID: 20699402 PMCID: PMC2949008 DOI: 10.1104/pp.110.161356] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 08/02/2010] [Indexed: 05/18/2023]
Abstract
Ca(2+) and nitric oxide (NO) are essential components involved in plant senescence signaling cascades. In other signaling pathways, NO generation can be dependent on cytosolic Ca(2+). The Arabidopsis (Arabidopsis thaliana) mutant dnd1 lacks a plasma membrane-localized cation channel (CNGC2). We recently demonstrated that this channel affects plant response to pathogens through a signaling cascade involving Ca(2+) modulation of NO generation; the pathogen response phenotype of dnd1 can be complemented by application of a NO donor. At present, the interrelationship between Ca(2+) and NO generation in plant cells during leaf senescence remains unclear. Here, we use dnd1 plants to present genetic evidence consistent with the hypothesis that Ca(2+) uptake and NO production play pivotal roles in plant leaf senescence. Leaf Ca(2+) accumulation is reduced in dnd1 leaves compared to the wild type. Early senescence-associated phenotypes (such as loss of chlorophyll, expression level of senescence-associated genes, H(2)O(2) generation, lipid peroxidation, tissue necrosis, and increased salicylic acid levels) were more prominent in dnd1 leaves compared to the wild type. Application of a Ca(2+) channel blocker hastened senescence of detached wild-type leaves maintained in the dark, increasing the rate of chlorophyll loss, expression of a senescence-associated gene, and lipid peroxidation. Pharmacological manipulation of Ca(2+) signaling provides evidence consistent with genetic studies of the relationship between Ca(2+) signaling and senescence with the dnd1 mutant. Basal levels of NO in dnd1 leaf tissue were lower than that in leaves of wild-type plants. Application of a NO donor effectively rescues many dnd1 senescence-related phenotypes. Our work demonstrates that the CNGC2 channel is involved in Ca(2+) uptake during plant development beyond its role in pathogen defense response signaling. Work presented here suggests that this function of CNGC2 may impact downstream basal NO production in addition to its role (also linked to NO signaling) in pathogen defense responses and that this NO generation acts as a negative regulator during plant leaf senescence signaling.
Collapse
Affiliation(s)
| | | | | | | | | | - Gerald A. Berkowitz
- Agricultural Biotechnology Laboratory, Department of Plant Science, University of Connecticut, Storrs, Connecticut 06269–4163 (W. Ma, A.S., R.K.W., G.A.B.); Department of Cell and Systems Biology and Center for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada M5S 3B2 (W. Moeder, K.Y.)
| |
Collapse
|
155
|
Chen WW, Yang JL, Qin C, Jin CW, Mo JH, Ye T, Zheng SJ. Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. PLANT PHYSIOLOGY 2010; 154:810-9. [PMID: 20699398 PMCID: PMC2948983 DOI: 10.1104/pp.110.161109] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 08/06/2010] [Indexed: 05/17/2023]
Abstract
In response to iron (Fe) deficiency, dicots employ a reduction-based mechanism by inducing ferric-chelate reductase (FCR) at the root plasma membrane to enhance Fe uptake. However, the signal pathway leading to FCR induction is still unclear. Here, we found that the Fe-deficiency-induced increase of auxin and nitric oxide (NO) levels in wild-type Arabidopsis (Arabidopsis thaliana) was accompanied by up-regulation of root FCR activity and the expression of the basic helix-loop-helix transcription factor (FIT) and the ferric reduction oxidase 2 (FRO2) genes. This was further stimulated by application of exogenous auxin (α-naphthaleneacetic acid) or NO donor (S-nitrosoglutathione [GSNO]), but suppressed by either polar auxin transport inhibition with 1-naphthylphthalamic acid or NO scavenging with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, tungstate, or N(ω)-nitro-L-arginine methyl ester hydrochloride. On the other hand, the root FCR activity, NO level, and gene expression of FIT and FRO2 were higher in auxin-overproducing mutant yucca under Fe deficiency, which were sharply restrained by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide treatment. The opposite response was observed in a basipetal auxin transport impaired mutant aux1-7, which was slightly rescued by exogenous GSNO application. Furthermore, Fe deficiency or α-naphthaleneacetic acid application failed to induce Fe-deficiency responses in noa1 and nial nia2, two mutants with reduced NO synthesis, but root FCR activities in both mutants could be significantly elevated by GSNO. The inability to induce NO burst and FCR activity was further verified in a double mutant yucca noa1 with elevated auxin production and reduced NO accumulation. Therefore, we presented a novel signaling pathway where NO acts downstream of auxin to activate root FCR activity under Fe deficiency in Arabidopsis.
Collapse
|
156
|
Negi S, Santisree P, Kharshiing EV, Sharma R. Inhibition of the ubiquitin-proteasome pathway alters cellular levels of nitric oxide in tomato seedlings. MOLECULAR PLANT 2010; 3:854-69. [PMID: 20603380 DOI: 10.1093/mp/ssq033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nitric oxide (NO) is involved in diverse plant growth processes; however, little is known about pathways regulating NO levels in plants. In this study, we isolated a NO-overproducing mutant of tomato (Solanum lycopersicum) in which hyper-accumulation of NO, associated with increase in nitric oxide synthase (NOS)-like activity, caused diminished vegetative growth of plants and showed delayed flowering. The hyper-accumulation of NO caused drastic shortening of primary root (shr) in the seedlings, while the scavenging of NO restored root elongation in shr mutant. Inhibition of NOS-like activity reduced NO levels and stimulated root elongation in the shr mutant seedlings, while inhibition of nitrate reductase (NR) activity could not rescue shr phenotype. The stimulation of NO levels in shr mutant also conferred increased resistance to pathogen Pseudomonas syringae. Application of pharmacological inhibitors regulating ubiquitin-proteasome pathway reduced NO levels and NOS-like activity and stimulated shr root elongation. Our data indicate that a signaling pathway involving regulated protein degradation likely regulates NO synthesis in tomato.
Collapse
Affiliation(s)
- Sangeeta Negi
- School of Life Sciences, University of Hyderabad, Hyderabad-500 046, India
| | | | | | | |
Collapse
|
157
|
Gupta KJ, Igamberdiev AU, Kaiser WM. New insights into the mitochondrial nitric oxide production pathways. PLANT SIGNALING & BEHAVIOR 2010; 5:999-1001. [PMID: 20699641 PMCID: PMC3115179 DOI: 10.4161/psb.5.8.12229] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 04/29/2010] [Indexed: 05/18/2023]
Abstract
Considerable evidence has appeared over the past few years that nitric oxide (NO) is an important anoxic metabolite and a potent signal molecule in plants. Several pathways operative in different cell compartments, lead to NO production. Mitochondria, being a major NO producing compartment, can generate it by either nitrite reduction occurring at nearly anoxic conditions or by the oxidative route via nitric oxide synthase (NOS). Recently we compared both pathways by ozone collision chemiluminescence and by DAF fluorescence. We found that nitrite reduction to NO is associated with the mitochondrial membrane fraction but not with the matrix. In case of the nitric oxide synthase pathway, an L-arginine dependent fluorescence was detected but its response to NOS inhibitors and substrates was untypical. Therefore the existence of NOS or NOS-like activity in barley root mitochondria is very doubtful. We also found that mitochondria scavenge NO. In addition, we found indirect evidence that mitochondria are able to convert NO to gaseous intermediates like NO2, N2O and N2O3.
Collapse
|
158
|
Xuan Y, Zhou S, Wang L, Cheng Y, Zhao L. Nitric oxide functions as a signal and acts upstream of AtCaM3 in thermotolerance in Arabidopsis seedlings. PLANT PHYSIOLOGY 2010; 153:1895-906. [PMID: 20576787 PMCID: PMC2923878 DOI: 10.1104/pp.110.160424] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 06/23/2010] [Indexed: 05/19/2023]
Abstract
To characterize the role of nitric oxide (NO) in the tolerance of Arabidopsis (Arabidopsis thaliana) to heat shock (HS), we investigated the effects of heat on three types of Arabidopsis seedlings: wild type, noa1(rif1) (for nitric oxide associated1/resistant to inhibition by fosmidomycin1) and nia1nia2 (for nitrate reductase [NR]-defective double mutant), which both exhibit reduced endogenous NO levels, and a rescued line of noa1(rif1). After HS treatment, the survival ratios of the mutant seedlings were lower than those of wild type; however, they were partially restored in the rescued line. Treatment of the seedlings with sodium nitroprusside or S-nitroso-N-acetylpenicillamine revealed that internal NO affects heat sensitivity in a concentration-dependent manner. Calmodulin 3 (CaM3) is a key component of HS signaling in Arabidopsis. Real-time reverse transcription-polymerase chain reaction analysis after HS treatment revealed that the AtCaM3 mRNA level was regulated by the internal NO level. Sodium nitroprusside enhanced the survival of the wild-type and noa1(rif1) seedlings; however, no obvious effects were observed for cam3 single or cam3noa1(rif1) double mutant seedlings, suggesting that AtCaM3 is involved in NO signal transduction as a downstream factor. This point was verified by phenotypic analysis and thermotolerance testing using seedlings of three AtCaM3-overexpressing transgenic lines in an noa1(rif1) background. Electrophoretic mobility-shift and western-blot analyses demonstrated that after HS treatment, NO stimulated the DNA-binding activity of HS transcription factors and the accumulation of heat shock protein 18.2 (HSP18.2) through AtCaM3. These data indicate that NO functions in signaling and acts upstream of AtCaM3 in thermotolerance, which is dependent on increased HS transcription factor DNA-binding activity and HSP accumulation.
Collapse
|
159
|
Wang X, Li J, Liu J, He W, Bi Y. Nitric oxide increases mitochondrial respiration in a cGMP-dependent manner in the callus from Arabidopsis thaliana. Nitric Oxide 2010; 23:242-50. [PMID: 20633693 DOI: 10.1016/j.niox.2010.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/23/2010] [Accepted: 07/09/2010] [Indexed: 11/17/2022]
Abstract
Nitric oxide (NO) acts as a key molecule in many physiological processes in plants. In this study, the roles of NO in mitochondrial respiration were investigated in the calli from wild-type Arabidopsis and NO associated 1 mutant (Atnoa1) which has a reduced endogenous NO level. Long-term exposure of wild-type Arabidopsis callus to sodium nitroprusside (SNP) increased mitochondrial respiration in both cytochrome and alternative pathways. In Atnoa1 callus, the capacity of both the cytochrome pathway and the alternative pathway was lower than that in wild-type callus. Further study indicated that NO enhanced the transcript abundance of genes encoding mitochondrial respiration-chain proteins as well as the protein expression of the NADH-ubiquinone reductase 75 kDa subunit and the alternative oxidase 1/2 in wild-type and Atnoa1 calli. 2-Phenyl-4,4,5,5-tetremethy-limidazolinone-1-oxyl-3-oxide (PTIO), a NO scavenger, inhibited the effects of NO in both calli. Co-incubation of callus with 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a guanylate cyclase inhibitor, also abolished NO effects. The membrane-permeable cGMP analog 8Br-cGMP mimicked NO effects. Moreover, the alternative pathway showed a higher sensitivity to the cellular cGMP changes than the cytochrome pathway did in gene transcription, protein expression and O(2) consumption. Taken together, NO could enhance mitochondrial respiration in both cytochrome and alternative pathways in a cGMP-dependent manner in Arabidopsis.
Collapse
Affiliation(s)
- Xiaomin Wang
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | | | | | | | | |
Collapse
|
160
|
Liu H, Lau E, Lam MPY, Chu H, Li S, Huang G, Guo P, Wang J, Jiang L, Chu IK, Lo C, Tao Y. OsNOA1/RIF1 is a functional homolog of AtNOA1/RIF1: implication for a highly conserved plant cGTPase essential for chloroplast function. THE NEW PHYTOLOGIST 2010; 187:83-105. [PMID: 20456051 DOI: 10.1111/j.1469-8137.2010.03264.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
*The bacterial protein YqeH is a circularly permuted GTPase with homologs encoded by plant nuclear genomes. The rice homolog OsNOA1/RIF1 is encoded by the single-copy gene Os02g01440. OsNOA1/RIF1 is expressed in different tissues and is light-inducible. The OsNOA1/RIF1-EYFP fusion protein was targeted to chloroplasts in transgenic Arabidopsis plants. In addition, the rice homolog was able to rescue most of the growth phenotypes in an Arabidopsis rif1 mutant. *Rice (Oryza sativa) OsNOA1/RIF1 RNAi mutant seedlings were chlorotic with reduced pigment contents and lower photosystem II (PSII) efficiency. However, the expressions of the chloroplast-encoded genes rbcL, atpB, psaA and psbA were not affected. By contrast, reduced abundance of the chloroplast 16S rRNA was observed in the mutant. *Quantitative iTRAQ-LC-MS/MS proteomics investigations revealed proteome changes in the rice mutant consistent with the expected functional role of OsNOA1/RIF1 in chloroplast translation. The RNAi mutant showed significantly decreased expression levels of chloroplast-encoded proteins as well as nuclear-encoded components of chloroplast enzyme complexes. Conversely, upregulation of some classes of nonchloroplastic proteins, such as glycolytic and phenylpropanoid pathway enzymes, was detected. *Our work provides independent indications that a highly conserved nuclear-encoded cGTPase of likely prokaryotic origin is essential for proper chloroplast ribosome assembly and/or translation in plants.
Collapse
Affiliation(s)
- Hongjia Liu
- Crop Molecular Breeding Center, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- School of Biological Sciences
| | - Edward Lau
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Maggie P Y Lam
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | - Sujuan Li
- Crop Molecular Breeding Center, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Guo Huang
- Crop Molecular Breeding Center, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Peng Guo
- Crop Molecular Breeding Center, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Junqi Wang
- Department of Biology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Liwen Jiang
- Department of Biology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ivan K Chu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | - Yuezhi Tao
- Crop Molecular Breeding Center, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
161
|
Blokhina O, Fagerstedt KV. Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems. PHYSIOLOGIA PLANTARUM 2010; 138:447-62. [PMID: 20059731 DOI: 10.1111/j.1399-3054.2009.01340.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant mitochondria differ from their mammalian counterparts in many respects, which are due to the unique and variable surroundings of plant mitochondria. In green leaves, plant mitochondria are surrounded by ample respiratory substrates and abundant molecular oxygen, both resulting from active photosynthesis, while in roots and bulky rhizomes and fruit carbohydrates may be plenty, whereas oxygen levels are falling. Several enzymatic complexes in mitochondrial electron transport chain (ETC) are capable of reactive oxygen species (ROS) formation under physiological and pathological conditions. Inherently connected parameters such as the redox state of electron carriers in the ETC, ATP synthase activity and inner mitochondrial membrane potential, when affected by external stimuli, can give rise to ROS formation via complexes I and III, and by reverse electron transport (RET) from complex II. Superoxide radicals produced are quickly scavenged by superoxide dismutase (MnSOD), and the resulting H(2)O(2) is detoxified by peroxiredoxin-thioredoxin system or by the enzymes of ascorbate-glutathione cycle, found in the mitochondrial matrix. Arginine-dependent nitric oxide (NO)-releasing activity of enzymatic origin has been detected in plant mitochondria. The molecular identity of the enzyme is not clear but the involvement of mitochondria-localized enzymes responsible for arginine catabolism, arginase and ornithine aminotransferase has been shown in the regulation of NO efflux. Besides direct control by antioxidants, mitochondrial ROS production is tightly controlled by multiple redundant systems affecting inner membrane potential: NAD(P)H-dependent dehydrogenases, alternative oxidase (AOX), uncoupling proteins, ATP-sensitive K(+) channel and a number of matrix and intermembrane enzymes capable of direct electron donation to ETC. NO removal, on the other hand, takes place either by reactions with molecular oxygen or superoxide resulting in peroxynitrite, nitrite or nitrate ions or through interaction with non-symbiotic hemoglobins or glutathione. Mitochondrial ROS and NO production is tightly controlled by multiple redundant systems providing the regulatory mechanism for redox homeostasis and specific ROS/NO signaling.
Collapse
Affiliation(s)
- Olga Blokhina
- Department of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014 Helsinki, Finland.
| | | |
Collapse
|
162
|
Gupta KJ, Kaiser WM. Production and scavenging of nitric oxide by barley root mitochondria. PLANT & CELL PHYSIOLOGY 2010; 51:576-84. [PMID: 20185408 DOI: 10.1093/pcp/pcq022] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We examined whether root mitochondria and mitochondrial membranes produce nitric oxide (NO) exclusively by reduction of nitrite or also via a nitric oxide synthase (NOS), and to what extent direct NO measurements could become undetectable due to NO oxidation. Chemiluminescence detection of NO in the gas phase was used to monitor NO emission from suspensions (i.e. direct chemiluminescence). For comparison, diaminofluorescein (DAF) and diaminorhodamine (DAR) were used as NO indicators. NO oxidation to nitrite and nitrate was quantified after reduction of nitrite + nitrate to NO by vandium (III) with subsequent chemiluminescence detection (i.e. indirect chemiluminescence). Nitrite and NADH consumption were also measured. Anaerobic nitrite-dependent NO emission was exclusively associated with the membrane fraction, without participation of matrix components. Rates of nitrite and NADH consumption matched, whereas the rate of NO emission was lower. In air, mitochondria apparently produced no nitrite-dependent NO, and no NOS activity was detected by direct or indirect chemiluminescence. In contrast, with DAF-2 or DAR-4M, an l-arginine-dependent fluorescence increase took place. However, the response of this apparent low NOS activity to inhibitors, substrates and cofactors was untypical when compared with commercial inducible NOS (iNOS), and the existence of NOS in root mitochondria is therefore doubtful. In a solution of commercial iNOS, about two-thirds of the NO (measured as NADPH consumption) were oxidized to nitrite + nitrate. Addition of mitochondria to iNOS decreased the apparent NO emission, but without a concomitant increase in nitrite + nitrate formation. Thus, mitochondria appeared to accelerate oxidation of NO to volatile intermediates.
Collapse
Affiliation(s)
- Kapuganti J Gupta
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute for Biosciences, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany.
| | | |
Collapse
|
163
|
Moreau M, Lindermayr C, Durner J, Klessig DF. NO synthesis and signaling in plants--where do we stand? PHYSIOLOGIA PLANTARUM 2010; 138:372-83. [PMID: 19912564 DOI: 10.1111/j.1399-3054.2009.01308.x] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Over the past 20 years, nitric oxide (NO) research has generated a lot of interest in various aspects of plant biology. It is now clear that NO plays a role in a wide range of physiological processes in plants. However, in spite of the significant progress that has been made in understanding NO biosynthesis and signaling in planta, several crucial questions remain unanswered. Here we highlight several challenges in NO plant research by summarizing the latest knowledge of NO synthesis and by focusing on the potential NO source(s) and players involved. Our goal is also to provide an overview of how our understanding of NO signaling has been enhanced by the identification of array of genes and proteins regulated by NO.
Collapse
Affiliation(s)
- Magali Moreau
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
164
|
Manjunatha G, Lokesh V, Neelwarne B. Nitric oxide in fruit ripening: trends and opportunities. Biotechnol Adv 2010; 28:489-99. [PMID: 20307642 DOI: 10.1016/j.biotechadv.2010.03.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 02/22/2010] [Accepted: 03/12/2010] [Indexed: 10/19/2022]
Abstract
Monitoring ethylene is crucial in regulating post-harvest life of fruits. The concept of nitric oxide (NO) involvement in antagonizing ethylene is new. NO mediated physiologies casted through regulation of plant hormones are widely reported during developmental and stress chemistry having no direct link with ripening. Research in NO biology and understanding its interplay with other signal molecules in ripening fruits suggest ways of achieving greater synergies with NO applications. Experiments focused at convincingly demonstrating the involvement of NO in altering ripening-related ethylene profile of fruits, would help develop new processes for shelf life extension. This issue being the central theme of this review, the putative mechanisms of NO intricacies with other primary and secondary signals are hypothesized. The advantage of eliciting NO endogenously may open up various biotechnological opportunities for its precise delivery into the target tissues.
Collapse
Affiliation(s)
- G Manjunatha
- Plant Cell Biotechnology Department, Central Food Technological Research Institute, Mysore-570 020, India
| | | | | |
Collapse
|
165
|
Watanabe S, Nakagawa A, Izumi S, Shimada H, Sakamoto A. RNA interference-mediated suppression of xanthine dehydrogenase reveals the role of purine metabolism in drought tolerance in Arabidopsis. FEBS Lett 2010; 584:1181-6. [PMID: 20153325 DOI: 10.1016/j.febslet.2010.02.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 02/04/2010] [Accepted: 02/06/2010] [Indexed: 02/04/2023]
Abstract
We have previously demonstrated that RNA interference-mediated suppression of xanthine dehydrogenase (XDH), the rate-limiting enzyme in purine degradation, causes defects in the normal growth and development of Arabidopsis thaliana. Here, we investigated a possible role for XDH in drought tolerance, since this enzyme is also implicated in plant stress responses and acclimatization. When XDH-suppressed lines were subjected to drought stress, plant growth was markedly reduced in conjunction with significantly enhanced cell death and H(2)O(2) accumulation. This drought-hypersensitive phenotype was reversed by pretreatment with exogenous uric acid, the catalytic product of XDH. These results suggest that fully functional purine metabolism plays a role in the Arabidopsis drought acclimatization.
Collapse
Affiliation(s)
- Shunsuke Watanabe
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
166
|
Lozano-Juste J, León J. Enhanced abscisic acid-mediated responses in nia1nia2noa1-2 triple mutant impaired in NIA/NR- and AtNOA1-dependent nitric oxide biosynthesis in Arabidopsis. PLANT PHYSIOLOGY 2010; 152:891-903. [PMID: 20007448 PMCID: PMC2815865 DOI: 10.1104/pp.109.148023] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 12/02/2009] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) regulates a wide range of plant processes from development to environmental adaptation. Despite its reported regulatory functions, it remains unclear how NO is synthesized in plants. We have generated a triple nia1nia2noa1-2 mutant that is impaired in nitrate reductase (NIA/NR)- and Nitric Oxide-Associated1 (AtNOA1)-mediated NO biosynthetic pathways. NO content in roots of nia1nia2 and noa1-2 plants was lower than in wild-type plants and below the detection limit in nia1nia2noa1-2 plants. NIA/NR- and AtNOA1-mediated biosynthesis of NO were thus active and responsible for most of the NO production in Arabidopsis (Arabidopsis thaliana). The nia1nia2noa1-2 plants displayed reduced size, fertility, and seed germination potential but increased dormancy and resistance to water deficit. The increasing deficiency in NO of nia1nia2, noa1-2, and nia1nia2noa1-2 plants correlated with increased seed dormancy, hypersensitivity to abscisic acid (ABA) in seed germination and establishment, as well as dehydration resistance. In nia1nia2noa1-2 plants, enhanced drought tolerance was due to a very efficient stomata closure and inhibition of opening by ABA, thus uncoupling NO from ABA-triggered responses in NO-deficient guard cells. The NO-deficient mutants in NIA/NR- and AtNOA1-mediated pathways in combination with the triple mutant will be useful tools to functionally characterize the role of NO and the contribution of both biosynthetic pathways in regulating plant development and defense.
Collapse
|
167
|
Ha SJ, Kim W. Mechanism of Ischemia and Reperfusion Injury to the Heart: From the Viewpoint of Nitric Oxide and Mitochondria. Chonnam Med J 2010. [DOI: 10.4068/cmj.2010.46.3.129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Sang-Jin Ha
- Cardiology Division, Department of Internal Medicine, Kyung Hee University Hospital, Seoul, Korea
| | - Weon Kim
- Cardiology Division, Department of Internal Medicine, Kyung Hee University Hospital, Seoul, Korea
| |
Collapse
|
168
|
Gases in the mitochondria. Mitochondrion 2009; 10:83-93. [PMID: 20005988 DOI: 10.1016/j.mito.2009.12.142] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 11/03/2009] [Accepted: 12/07/2009] [Indexed: 12/20/2022]
Abstract
Gasomodulators - nitric oxide, carbon monoxide and hydrogen sulphide - are important physiological mediators that have been implicated in disorders such as neurodegeneration and sepsis. Some of their biological functions involve the mitochondria. In particular, their inhibition of cytochrome c oxidase has received much attention as this can cause energy depletion and cytotoxicity. However, reports that cellular energy production and cell survival are maintained even in the presence of gasomodulators are not uncommon. In both cases, modulation of mitochondrial targets by the gasomodulators appears to be an important event. We provide an overview of the effects of the gasomodulators on the mitochondria.
Collapse
|
169
|
|
170
|
The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death. Cell Res 2009; 19:1377-87. [DOI: 10.1038/cr.2009.117] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
171
|
Jin CW, Du ST, Zhang YS, Lin XY, Tang CX. Differential regulatory role of nitric oxide in mediating nitrate reductase activity in roots of tomato (Solanum lycocarpum). ANNALS OF BOTANY 2009; 104:9-17. [PMID: 19376780 PMCID: PMC2706727 DOI: 10.1093/aob/mcp087] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 01/26/2009] [Accepted: 03/13/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Nitric oxide (NO) has been demonstrated to stimulate the activity of nitrate reductase (NR) in plant roots supplied with a low level of nitrate, and to affect proteins differently, depending on the ratio of NO to the level of protein. Nitrate has been suggested to regulate the level of NO in plants. This present study examined interactive effects of NO and nitrate level on NR activity in roots of tomato (Solanum lycocarpum). METHODS NR activity, mRNA level of NR gene and concentration of NR protein in roots fed with 0.5 mM or 5 mM nitrate and treated with the NO donors, sodium nitroprusside (SNP) and diethylamine NONOate sodium (NONOate), and the NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (cPTIO), were measured in 25-d-old seedlings. KEY RESULTS Addition of SNP and NONOate enhanced but cPTIO decreased NR activity in the roots fed with 0.5 mm nitrate. The opposite was true for the roots fed with 5 mM nitrate. However, the mRNA level of the NR gene and the protein concentration of NR enzyme in the roots were not affected by SNP treatment, irrespective of nitrate pre-treatment. Nevertheless, a low rate of NO gas increased while cPTIO decreased the NR activities of the enzyme extracts from the roots at both nitrate levels. Increasing the rate of NO gas further increased NR activity in the enzyme extracts of the roots fed with 0.5 mM nitrate but decreased it when 5 mM nitrate was supplied. Interestingly, the stimulative effect of NO gas on NR activity could be reversed by NO removal through N(2) flushing in the enzyme extracts from the roots fed with 0.5 mM nitrate but not from those with 5 mM nitrate. CONCLUSIONS The effects of NO on NR activity in tomato roots depend on levels of nitrate supply, and probably result from direct interactions between NO and NR protein.
Collapse
Affiliation(s)
- Chong Wei Jin
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou 310029, China
| | - Shao Ting Du
- College of Environmental Engineering and Science, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yong Song Zhang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou 310029, China
| | - Xian Yong Lin
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou 310029, China
| | - Cai Xian Tang
- Department of Agricultural Sciences, La Trobe University, Bundoora, Vic 3086, Australia
| |
Collapse
|
172
|
Wang Y, Chen T, Zhang C, Hao H, Liu P, Zheng M, Baluška F, Šamaj J, Lin J. Nitric oxide modulates the influx of extracellular Ca2+ and actin filament organization during cell wall construction in Pinus bungeana pollen tubes. THE NEW PHYTOLOGIST 2009; 182:851-862. [PMID: 19646068 DOI: 10.1111/j.1469-8137.2009.02820.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) plays a key role in many physiological processes in plants, including pollen tube growth. Here, effects of NO on extracellular Ca(2+) flux and microfilaments during cell wall construction in Pinus bungeana pollen tubes were investigated. Extracellular Ca(2+) influx, the intracellular Ca(2+) gradient, patterns of actin organization, vesicle trafficking and cell wall deposition upon treatment with the NO donor S-nitroso-N-acetylpenicillamine (SNAP), the NO synthase (NOS) inhibitor N(omega)-nitro-L-arginine (L-NNA) or the NO scavenger 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) were analyzed. SNAP enhanced pollen tube growth in a dose-dependent manner, while L-NNA and cPTIO inhibited NO production and arrested pollen tube growth. Noninvasive detection and microinjection of a Ca(2+) indicator revealed that SNAP promoted extracellular Ca(2+) influx and increased the steepness of the tip-focused Ca(2+) gradient, while cPTIO and L-NNA had the opposite effect. Fluorescence labeling indicated that SNAP, cPTIO and L-NNA altered actin organization, which subsequently affected vesicle trafficking. Finally, the configuration and/or distribution of cell wall components such as pectins and callose were significantly altered in response to L-NNA. Fourier transform infrared (FTIR) microspectroscopy confirmed the changes in the chemical composition of walls. Our results indicate that NO affects the configuration and distribution of cell wall components in pollen tubes by altering extracellular Ca(2+) influx and F-actin organization.
Collapse
Affiliation(s)
- Yuhua Wang
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
- The College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Tong Chen
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chunyang Zhang
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaiqing Hao
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Peng Liu
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Maozhong Zheng
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - František Baluška
- Institute of Cellular and Molecular Botany, Rheinische Friedrich-Wilhelms-University Bonn, Department of Plant Cell Biology, Kirschallee 1, D-53115 Bonn, Germany
| | - Jozef Šamaj
- Institute of Cellular and Molecular Botany, Rheinische Friedrich-Wilhelms-University Bonn, Department of Plant Cell Biology, Kirschallee 1, D-53115 Bonn, Germany
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Akademicka 2, SK-95007, Nitra, Slovak Republic
- Palacky University Olomouc, Faculty of Natural Science, Olomouc 771 46, Czech Republic
| | - Jinxing Lin
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
173
|
Li JH, Liu YQ, Lü P, Lin HF, Bai Y, Wang XC, Chen YL. A signaling pathway linking nitric oxide production to heterotrimeric G protein and hydrogen peroxide regulates extracellular calmodulin induction of stomatal closure in Arabidopsis. PLANT PHYSIOLOGY 2009; 150:114-24. [PMID: 19321706 PMCID: PMC2675720 DOI: 10.1104/pp.109.137067] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Accepted: 03/19/2009] [Indexed: 05/18/2023]
Abstract
Extracellular calmodulin (ExtCaM) regulates stomatal movement by eliciting a cascade of intracellular signaling events including heterotrimeric G protein, hydrogen peroxide (H(2)O(2)), and Ca(2+). However, the ExtCaM-mediated guard cell signaling pathway remains poorly understood. In this report, we show that Arabidopsis (Arabidopsis thaliana) NITRIC OXIDE ASSOCIATED1 (AtNOA1)-dependent nitric oxide (NO) accumulation plays a crucial role in ExtCaM-induced stomatal closure. ExtCaM triggered a significant increase in NO levels associated with stomatal closure in the wild type, but both effects were abolished in the Atnoa1 mutant. Furthermore, we found that ExtCaM-mediated NO generation is regulated by GPA1, the Galpha-subunit of heterotrimeric G protein. The ExtCaM-dependent NO accumulation was nullified in gpa1 knockout mutants but enhanced by overexpression of a constitutively active form of GPA1 (cGalpha). In addition, cGalpha Atnoa1 and gpa1-2 Atnoa1 double mutants exhibited a similar response as did Atnoa1. The defect in gpa1 was rescued by overexpression of AtNOA1. Finally, we demonstrated that G protein activation of NO production depends on H(2)O(2). Reduced H(2)O(2) levels in guard cells blocked the stomatal response of cGalpha lines, whereas exogenously applied H(2)O(2) rescued the defect in ExtCaM-mediated stomatal closure in gpa1 mutants. Moreover, the atrbohD/F mutant, which lacks the NADPH oxidase activity in guard cells, had impaired NO generation in response to ExtCaM, and H(2)O(2)-induced stomatal closure and NO accumulation were greatly impaired in Atnoa1. These findings have established a signaling pathway leading to ExtCaM-induced stomatal closure, which involves GPA1-dependent activation of H(2)O(2) production and subsequent AtNOA1-dependent NO accumulation.
Collapse
Affiliation(s)
- Jian-Hua Li
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050016, China
| | | | | | | | | | | | | |
Collapse
|
174
|
Jin CW, Du ST, Chen WW, Li GX, Zhang YS, Zheng SJ. Elevated carbon dioxide improves plant iron nutrition through enhancing the iron-deficiency-induced responses under iron-limited conditions in tomato. PLANT PHYSIOLOGY 2009; 150:272-80. [PMID: 19329565 PMCID: PMC2675727 DOI: 10.1104/pp.109.136721] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 03/21/2009] [Indexed: 05/19/2023]
Abstract
The increases in atmospheric carbon dioxide (CO(2)) concentrations can enhance plant growth and change their nutrient demands. We report that when tomato (Lycopersicon esculentum 'Zheza 809') plants were grown in iron (Fe)-limited medium (with hydrous ferric iron oxide) and elevated CO(2) (800 microL L(-1)), their biomass and root-to-shoot ratio were greater than plants grown in ambient CO(2) (350 microL L(-1)). Furthermore, the associated increase in Fe concentrations in the shoots and roots alleviated Fe-deficiency-induced chlorosis. Despite the improved nutrient status of plants grown in Fe-limited medium under elevated CO(2), the Fe-deficiency-induced responses in roots, including ferric chelate reductase activity, proton secretion, subapical root hair development, and the expression of FER, FRO1, and IRT genes, were all greater than plants grown in the ambient CO(2). The biomass of plants grown in Fe-sufficient medium was also increased by the elevated CO(2) treatment, but changes in tissue Fe concentrations and Fe deficiency responses were not observed. These results suggest that the improved Fe nutrition and induction of Fe-deficient-induced responses in plants grown in Fe-limited medium under elevated CO(2) are caused by interactions between elevated CO(2) and Fe deprivation. Elevated CO(2) also increased the nitric oxide (NO) levels in roots, but treatment with the NO scavenger cPTIO inhibited ferric chelate reductase activity and prevented the accumulation of LeFRO1, LeIRT1, and FER transcripts in roots of the Fe-limited plants. These results implicate some involvement of NO in enhancing Fe-deficiency-induced responses when Fe limitation and elevated CO(2) occur together. We propose that the combination of elevated CO(2) and Fe limitation induces morphological, physiological, and molecular responses that enhance the capacity for plants to access and utilize Fe from sparingly soluble sources, such as Fe(III)-oxide.
Collapse
Affiliation(s)
- Chong Wei Jin
- College of Natural Resources and Environmental Science , Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | |
Collapse
|
175
|
Dedkova EN, Blatter LA. Characteristics and function of cardiac mitochondrial nitric oxide synthase. J Physiol 2009; 587:851-72. [PMID: 19103678 PMCID: PMC2669975 DOI: 10.1113/jphysiol.2008.165423] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 12/15/2008] [Indexed: 12/22/2022] Open
Abstract
We used laser scanning confocal microscopy in combination with the nitric oxide (NO)-sensitive fluorescent dye DAF-2 and the reactive oxygen species (ROS)-sensitive dyes CM-H(2)DCF and MitoSOX Red to characterize NO and ROS production by mitochondrial NO synthase (mtNOS) in permeabilized cat ventricular myocytes. Stimulation of mitochondrial Ca(2+) uptake by exposure to different cytoplasmic Ca(2+) concentrations ([Ca(2+)](i) = 1, 2 and 5 microm) resulted in a dose-dependent increase of NO production by mitochondria when L-arginine, a substrate for mtNOS, was present. Collapsing the mitochondrial membrane potential with the protonophore FCCP or blocking the mitochondrial Ca(2+) uniporter with Ru360 as well as blocking the respiratory chain with rotenone or antimycin A in combination with oligomycin inhibited mitochondrial NO production. In the absence of L-arginine, mitochondrial NO production during stimulation of Ca(2+) uptake was significantly decreased, but accompanied by increase in mitochondrial ROS production. Inhibition of mitochondrial arginase to limit L-arginine availability resulted in 50% inhibition of Ca(2+)-induced ROS production. Both mitochondrial NO and ROS production were blocked by the nNOS inhibitor (4S)-N-(4-amino-5[aminoethyl]aminopentyl)-N'-nitroguanidine and the calmodulin antagonist W-7, while the eNOS inhibitor L-N(5)-(1-iminoethyl)ornithine (L-NIO) or iNOS inhibitor N-(3-aminomethyl)benzylacetamidine, 2HCl (1400W) had no effect. The superoxide dismutase mimetic and peroxynitrite scavenger MnTBAP abolished Ca(2+)-induced ROS generation and increased NO production threefold, suggesting that in the absence of MnTBAP either formation of superoxide radicals suppressed NO production or part of the formed NO was transformed quickly to peroxynitrite. In the absence of L-arginine, mitochondrial Ca(2+) uptake induced opening of the mitochondrial permeability transition pore (PTP), which was blocked by the PTP inhibitor cyclosporin A and MnTBAP, and reversed by L-arginine supplementation. In the presence of the mtNOS cofactor (6R)-5,6,7,8,-tetrahydrobiopterin (BH(4); 100 microm) mitochondrial ROS generation and PTP opening decreased while mitochondrial NO generation slightly increased. These data demonstrate that mitochondrial Ca(2+) uptake activates mtNOS and leads to NO-mediated protection against opening of the mitochondrial PTP, provided sufficient availability of l-arginine and BH(4). In conclusion, our data show the importance of L-arginine and BH(4) for cardioprotection via regulation of mitochondrial oxidative stress and modulation of PTP opening by mtNOS.
Collapse
Affiliation(s)
- Elena N Dedkova
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL 60612, USA
| | | |
Collapse
|
176
|
Corpas FJ, Palma JM, Del Río LA, Barroso JB. Evidence supporting the existence of L-arginine-dependent nitric oxide synthase activity in plants. THE NEW PHYTOLOGIST 2009; 184:9-14. [PMID: 19659743 DOI: 10.1111/j.1469-8137.2009.02989.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Francisco J Corpas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (EEZ), CSIC, Apartado 419, E-18080 Granada, Spain
| | - José M Palma
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (EEZ), CSIC, Apartado 419, E-18080 Granada, Spain
| | - Luis A Del Río
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (EEZ), CSIC, Apartado 419, E-18080 Granada, Spain
| | - Juan B Barroso
- Grupo de Señalización Molecular y Sistemas Antioxidantes en Plantas, Unidad Asociada al CSIC (EEZ), Área de Bioquímica y Biología Molecular, Universidad de Jaén, E-23071 Jaén, Spain
| |
Collapse
|
177
|
Bright J, Hiscock SJ, James PE, Hancock JT. Pollen generates nitric oxide and nitrite: a possible link to pollen-induced allergic responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:49-55. [PMID: 18964065 DOI: 10.1016/j.plaphy.2008.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 06/16/2008] [Accepted: 09/03/2008] [Indexed: 05/20/2023]
Abstract
Reactive nitrogen species (RNS), such as nitric oxide (NO), are ubiquitous and diverse signalling molecules involved in a wide range of physiological and pathophysiological processes in both animals and plants. Nitrite, a metabolite of NO turnover, has also been recently characterised as an important mediator of fundamental physiological mechanisms in mammalian cells, and is a substrate for NO production in several plant cell signalling processes. A previous study demonstrated that during plant reproductive processes, intracellular NO is produced by pollen, and that such NO could be important in signalling interactions between pollen and stigma. The aim of this study was to establish whether pollen releases NO and nitrite, using a wide range of plant species. Using a fluorimetric assay in conjunction with electron paramagnetic resonance (EPR) spectroscopy, the present study demonstrated that all hydrating pollen examined released NO, although some appeared to have more activity than others. Additionally, gas phase ozone-based chemiluminescence data showed that nitrite is also released from hydrating pollen. Given that pollen has interactions with other cells, for example in allergenic rhinitis (hay fever) in humans, it suggests that NO might be involved in mediating the responses of both plant and animal cells to pollen. These findings may have important implications for future allergy research, as it is possible that pollen-derived NO and nitrite may impact on mammalian cells during pollen-induced allergic responses.
Collapse
Affiliation(s)
- Jo Bright
- Centre for Research in Plant Science, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | | | | | | |
Collapse
|
178
|
Snyrychová I, Ayaydin F, Hideg E. Detecting hydrogen peroxide in leaves in vivo - a comparison of methods. PHYSIOLOGIA PLANTARUM 2009; 135:1-18. [PMID: 19121095 DOI: 10.1111/j.1399-3054.2008.01176.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Four hydrogen peroxide detecting probes, 3,3'-diaminobenzidine (DAB), Amplex Red (AR), Amplex Ultra Red (AUR) and a europium-tetracycline complex (Eu(3)Tc) were infiltrated into tobacco leaves and tested for sensitivity to light, toxicity, subcellular localization and capacity to detect H(2)O(2) in vivo. In the absence of leaves, in water solutions, AUR was very much sensitive to strong light, AR showed slight light sensitivity, while DAB and Eu(3)Tc were insensitive to irradiation. When infiltrated into the leaves, the probes decreased the photochemical yield (Phi(PSII)) in the following order of effect AR > DAB > AUR > Eu(3)Tc. With the exception of Eu(3)Tc, all probes stimulated the build-up of non-photochemical quenching either temporally (DAB, AUR) or permanently (AR), showing that their presence may already limit the photosynthetic capacity of leaves, even in the absence of additional stress. This should be taken into account when using these probes in plant stress experiments. Confocal laser scanning microscopy studies with the three fluorescent H(2)O(2) probes showed that the localizations of Eu(3)Tc and AUR were mainly intercellular. AR partly penetrated into leaf chloroplasts but probably not into the thylakoid membranes. Photosynthesis-related stress applications of AR seem to be limited by the low availability of internal leaf peroxidases. Applications of AR for kinetic H(2)O(2) measurements would require a co-infiltration of external peroxidase, imposing another artificial modifying factor and thus taking experiments further from ideal, in vivo conditions. Our results suggest that the studied H(2)O(2) probes should be used in leaf studies with caution, carefully balancing benefits and artifacts.
Collapse
Affiliation(s)
- Iva Snyrychová
- Laboratory of Biophysics, Department of Experimental Physics, Faculty of Science, Palacky University Olomouc, Czech Republic
| | | | | |
Collapse
|
179
|
Gas E, Flores-Pérez U, Sauret-Güeto S, Rodríguez-Concepción M. Hunting for plant nitric oxide synthase provides new evidence of a central role for plastids in nitric oxide metabolism. THE PLANT CELL 2009; 21:18-23. [PMID: 19168714 PMCID: PMC2648077 DOI: 10.1105/tpc.108.065243] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 01/09/2009] [Accepted: 01/14/2009] [Indexed: 05/10/2023]
Abstract
Nitric oxide (NO) has emerged as a central signaling molecule in plants and animals. However, the long search for a plant NO synthase (NOS) enzyme has only encountered false leads. The first works describing a pathogen-induced NOS-like plant protein were soon retracted. New hope came from the identification of NOS1, an Arabidopsis thaliana protein with an atypical NOS activity that was found to be targeted to mitochondria in roots. Although concerns about the NO-producing activity of this protein were raised (causing the renaming of the protein to NO-associated 1), compelling data on its biological role were missing until recently. Strong evidence is now available that this protein functions as a GTPase that is actually targeted to plastids, where it might be required for ribosome function. These and other results support the argument that the defective NO production in loss-of-function mutants is an indirect effect of interfering with normal plastid functions and that plastids play an important role in regulating NO levels in plant cells.
Collapse
Affiliation(s)
- Elisabet Gas
- Departament de Genètica Molecular de Plantes, Centre for Research on Agricultural Genomics, 08034 Barcelona, Spain
| | | | | | | |
Collapse
|
180
|
Lacza Z, Pankotai E, Busija DW. Mitochondrial nitric oxide synthase: current concepts and controversies. FRONT BIOSCI-LANDMRK 2009; 14:4436-43. [PMID: 19273361 PMCID: PMC4570492 DOI: 10.2741/3539] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
New discoveries in the last decade significantly altered our view on mitochondria. They are no longer viewed as energy-making slaves but rather individual cells-within-the-cell. In particular, it has been suggested that many important cellular mechanisms involving specific enzymes and ion channels, such as nitric oxide synthase (NOS), ATP-dependent K+ (KATP) channels, and poly-(APD-ribose) polymerase (PARP), have a distinct, mitochondrial variant. Unfortunately, exploring these parallel systems in mitochondria have technical limitations and inappropriate methods often led to inconsistent results. For example, the intriguing possibility that mitochondria are significant sources of nitric oxide (NO) via a unique mitochondrial NOS variant has attracted intense interest among research groups because of the potential for NO to affect functioning of the electron transport chain. Nonetheless, conclusive evidence concerning the existence of mitochondrial NO synthesis is yet to be presented. This review summarizes the experimental evidence gathered over the last decade in this field and highlights new areas of research that reveal surprising dimensions of NO production and metabolism by mitochondria.
Collapse
Affiliation(s)
- Zsombor Lacza
- Department of Human Physiology and Clinical Experimental Research, Semmelweis University, 1082 Budapest, Hungary
| | - Eszter Pankotai
- Department of Human Physiology and Clinical Experimental Research, Semmelweis University, 1082 Budapest, Hungary
| | - David W. Busija
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, U.S.A
| |
Collapse
|
181
|
A PIIB-type Ca2+-ATPase is essential for stress adaptation in Physcomitrella patens. Proc Natl Acad Sci U S A 2008; 105:19555-60. [PMID: 19050080 DOI: 10.1073/pnas.0800864105] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transient cytosolic Ca(2+) ([Ca(2+)](cyt)) elevations are early events in plant signaling pathways including those related to abiotic stress. The restoration of [Ca(2+)](cyt) to prestimulus levels involves ATP-driven Ca(2+) pumps, but direct evidence for an essential role of a plant Ca(2+)-ATPase in abiotic stress adaptation is missing. Here, we report on a stress-responsive Ca(2+)-ATPase gene (PCA1) from the moss Physcomitrella patens. Functional analysis of PCA1 in a Ca(2+) transport-deficient yeast mutant suggests that PCA1 encodes a P(IIB)-type Ca(2+)-ATPase harboring an N-terminal autoinhibitory domain. In vivo localizations identified membranes of small vacuoles as the integration site for a PCA1:GFP fusion protein. PCA1 mRNA levels are up-regulated by dehydration, NaCl, and abscisic acid, and PCA1 loss-of-function mutants (DeltaPCA1) exhibit an enhanced susceptibility to salt stress. The DeltaPCA1 lines show sustained elevated [Ca(2+)](cyt) in response to salt treatment in contrast to WT that shows transient Ca(2+) elevations, indicating a direct role for PCA1 in the restoration of prestimulus [Ca(2+)](cyt). The altered Ca(2+) response of the DeltaPCA1 mutant lines correlates with altered expression levels of stress-induced genes, suggesting disturbance of a stress-associated signaling pathway. We propose that PCA1 is an essential component for abiotic stress adaptation in Physcomitrella involved in the generation of a specific salt-induced Ca(2+) signature.
Collapse
|
182
|
Tovar-Mendez A, Todd CD, Polacco JC. The mitochondrial connection: Arginine degradation versus arginine conversion to nitric oxide. PLANT SIGNALING & BEHAVIOR 2008; 3:1106-8. [PMID: 19704448 PMCID: PMC2634469 DOI: 10.4161/psb.3.12.7007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 09/16/2008] [Indexed: 05/28/2023]
Abstract
Arg catabolism to cytoplasmic urea and glutamate is initiated by two mitochondrial enzymes, arginase and ornithine aminotransferase. Mutation of either enzyme leads to Arg sensitivity, and at least in the former, an arginine-induced seedling morphology similar to exogenous auxin treatment. We reported that single mutants lacking either of two arginase isozymes exhibited more NO accumulation and efflux, and increased responses to auxin (measured by DR5 reporter expression and auxin-induced lateral roots). We discuss evidence for stimulation of NO by arginine, either directly, or via polyamines derived from arginine. We favor the "direct" route because mitochondria are sites of NO 'hot spots,' and the location of arginine-degrading enzymes and the NO-associated protein1. The polyamine "branch" invokes more than one cell compartment, at least two intermediates (polyamines and H(2)O(2)) between Arg and NO, and is not consistent with enhanced lateral root formation in arginine decarboxylase mutants. Genetic tools are at our disposal to test the two possible routes of arginine-derived NO.
Collapse
|
183
|
Moreau M, Lee GI, Wang Y, Crane BR, Klessig DF. AtNOS/AtNOA1 is a functional Arabidopsis thaliana cGTPase and not a nitric-oxide synthase. J Biol Chem 2008. [PMID: 18801746 DOI: 10.1074/jbc.m804838200>] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
AtNOS1 was previously identified as a potential nitric-oxide synthase (NOS) in Arabidopsis thaliana, despite lack of sequence similarity to animal NOSs. Although the dwarf and yellowish leaf phenotype of Atnos1 knock-out mutant plants can be rescued by treatment with exogenous NO, doubts have recently been raised as to whether AtNOS1 is a true NOS. Moreover, depending on the type of physiological responses studied, Atnos1 is not always deficient in NO induction and/or detection, as previously reported. Here, we present experimental evidence showing that AtNOS1 is unable to bind and oxidize arginine to NO. These results support the argument that AtNOS1 is not a NOS. We also show that the renamed NO-associated protein 1 (AtNOA1) is a member of the circularly permuted GTPase family (cGTPase). AtNOA1 specifically binds GTP and hydrolyzes it. Complementation experiments of Atnoa1 mutant plants with different constructs of AtNOA1 show that GTP hydrolysis is necessary but not sufficient for the physiological function of AtNOA1. Mutant AtNOA1 lacking the C-terminal domain, although retaining GTPase activity, failed to complement Atnoa1, suggesting that this domain plays a crucial role in planta. cGTPases appear to be RNA-binding proteins, and the closest homolog of AtNOA1, the Bacillus subtilis YqeH, has been shown to participate in ribosome assembly and stability. We propose a similar function for AtNOA1 and discuss it in the light of its potential role in NO accumulation and plant development.
Collapse
Affiliation(s)
- Magali Moreau
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
184
|
Sudhamsu J, Lee GI, Klessig DF, Crane BR. The structure of YqeH. An AtNOS1/AtNOA1 ortholog that couples GTP hydrolysis to molecular recognition. J Biol Chem 2008; 283:32968-76. [PMID: 18801747 PMCID: PMC2583316 DOI: 10.1074/jbc.m804837200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/08/2008] [Indexed: 01/10/2023] Open
Abstract
AtNOS1/AtNOA1 was identified as a nitric oxide-generating enzyme in plants, but that function has recently been questioned. To resolve issues surrounding AtNOA1 activity, we report the biochemical properties and a 2.36 A resolution crystal structure of a bacterial AtNOA1 ortholog (YqeH). Geobacillus YqeH fused to a putative AtNOA1 leader peptide complements growth and morphological defects of Atnoa1 mutant plants. YqeH does not synthesize nitric oxide from L-arginine but rather hydrolyzes GTP. The YqeH structure reveals a circularly permuted GTPase domain and an unusual C-terminal beta-domain. A small N-terminal domain, disordered in the structure, binds zinc. Structural homology among the C-terminal domain, the RNA-binding regulator TRAP, and the hypoxia factor pVHL define a recognition module for peptides and nucleic acids. TRAP residues important for RNA binding are conserved by the YqeH C-terminal domain, whose positioning is coupled to GTP hydrolysis. YqeH and AtNOA1 probably act as G-proteins that regulate nucleic acid recognition and not as nitric-oxide synthases.
Collapse
Affiliation(s)
- Jawahar Sudhamsu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
185
|
Love AJ, Milner JJ, Sadanandom A. Timing is everything: regulatory overlap in plant cell death. TRENDS IN PLANT SCIENCE 2008; 13:589-95. [PMID: 18824399 DOI: 10.1016/j.tplants.2008.08.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 08/22/2008] [Accepted: 08/28/2008] [Indexed: 05/21/2023]
Abstract
Plant development and defence are intimately connected to programmed cell death (PCD). PCD can occur after environmental cues such as pathogen infection, mechanical damage or abiotic stress. However, PCD also constitutes an essential feature of various aspects of growth and development. Despite the differences in stimuli, the subsequent steps leading to programmed cellular death show considerable commonality, reflecting the essential and overlapping roles of individual regulatory components in these processes. These components can function as positive or negative regulators and can have contrasting functions depending on the form of cell death.
Collapse
Affiliation(s)
- Andrew J Love
- Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
186
|
Qiao W, Fan LM. Nitric oxide signaling in plant responses to abiotic stresses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:1238-46. [PMID: 19017111 DOI: 10.1111/j.1744-7909.2008.00759.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO) plays important roles in diverse physiological processes in plants. NO can provoke both beneficial and harmful effects, which depend on the concentration and location of NO in plant cells. This review is focused on NO synthesis and the functions of NO in plant responses to abiotic environmental stresses. Abiotic stresses mostly induce NO production in plants. NO alleviates the harmfulness of reactive oxygen species, and reacts with other target molecules, and regulates the expression of stress responsive genes under various stress conditions.
Collapse
Affiliation(s)
- Weihua Qiao
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | |
Collapse
|
187
|
Moon S, Giglione C, Lee DY, An S, Jeong DH, Meinnel T, An G. Rice peptide deformylase PDF1B is crucial for development of chloroplasts. PLANT & CELL PHYSIOLOGY 2008; 49:1536-46. [PMID: 18718933 DOI: 10.1093/pcp/pcn121] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Because protein synthesis begins with N-formylmethionine in plant endosymbiotic organelles, removal of the formyl group by peptide deformylase (PDF) is essential to allowing the excision of the first methionine. Rice contains three copies (OsPDF1A, OsPDF1B and OsPDF1B2) of the PDF genes. Unlike OsPDF1A and OsPDF1B, OsPDF1B2 is apparently non-functional, with several deleterious substitutions and deletions. OsPDF1A is more strongly expressed in the roots, while OsPDF1B is expressed at higher levels in mature leaves. Transient expression of PDF-green fluorescent protein (GFP) fusion proteins in the protoplasts demonstrates that, unlike OsPDF1A, OsPDF1B is localized in both the chloroplasts and the mitochondria. We used T-DNA insertional alleles to elucidate functional roles associated with OsPDF1B. Homozygous plants of pdf1b/pdf1b exhibited the phenotypes of chlorina and growth retardation. Histochemical analysis showed that the length of their mesophyll cells was increased 4- to 5-fold, resulting in a reduction in the total number of cells. Transmission electron microscopy analyses revealed that chloroplasts were severely damaged and mitochondria appeared to be mildly altered in the pdf1b mutants. Expression of genes encoded in the chloroplasts and mitochondria was altered in the mutants. Based on these results, we conclude that OsPDF1B is essential for the development of chloroplast and perhaps mitochondria.
Collapse
Affiliation(s)
- Sunok Moon
- National Research Laboratory of Plant Functional Genomics, Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
188
|
Moreau M, Lee GI, Wang Y, Crane BR, Klessig DF. AtNOS/AtNOA1 is a functional Arabidopsis thaliana cGTPase and not a nitric-oxide synthase. J Biol Chem 2008; 283:32957-67. [PMID: 18801746 DOI: 10.1074/jbc.m804838200] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AtNOS1 was previously identified as a potential nitric-oxide synthase (NOS) in Arabidopsis thaliana, despite lack of sequence similarity to animal NOSs. Although the dwarf and yellowish leaf phenotype of Atnos1 knock-out mutant plants can be rescued by treatment with exogenous NO, doubts have recently been raised as to whether AtNOS1 is a true NOS. Moreover, depending on the type of physiological responses studied, Atnos1 is not always deficient in NO induction and/or detection, as previously reported. Here, we present experimental evidence showing that AtNOS1 is unable to bind and oxidize arginine to NO. These results support the argument that AtNOS1 is not a NOS. We also show that the renamed NO-associated protein 1 (AtNOA1) is a member of the circularly permuted GTPase family (cGTPase). AtNOA1 specifically binds GTP and hydrolyzes it. Complementation experiments of Atnoa1 mutant plants with different constructs of AtNOA1 show that GTP hydrolysis is necessary but not sufficient for the physiological function of AtNOA1. Mutant AtNOA1 lacking the C-terminal domain, although retaining GTPase activity, failed to complement Atnoa1, suggesting that this domain plays a crucial role in planta. cGTPases appear to be RNA-binding proteins, and the closest homolog of AtNOA1, the Bacillus subtilis YqeH, has been shown to participate in ribosome assembly and stability. We propose a similar function for AtNOA1 and discuss it in the light of its potential role in NO accumulation and plant development.
Collapse
Affiliation(s)
- Magali Moreau
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
189
|
Jing HC, Hebeler R, Oeljeklaus S, Sitek B, Stühler K, Meyer HE, Sturre MJG, Hille J, Warscheid B, Dijkwel PP. Early leaf senescence is associated with an altered cellular redox balance in Arabidopsis cpr5/old1 mutants. PLANT BIOLOGY (STUTTGART, GERMANY) 2008; 10 Suppl 1:85-98. [PMID: 18721314 DOI: 10.1111/j.1438-8677.2008.00087.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Reactive oxygen species (ROS) are the inevitable by-products of essential cellular metabolic and physiological activities. Plants have developed sophisticated gene networks of ROS generation and scavenging systems. However, ROS regulation is still poorly understood. Here, we report that mutations in the Arabidopsis CPR5/OLD1 gene may cause early senescence through deregulation of the cellular redox balance. Genetic analysis showed that blocking stress-related hormonal signalling pathways, such as ethylene, salicylic acid, jasmonic acid, abscisic acid and sugar, did not affect premature cell death and leaf senescence. We took a bioinformatics approach and analysed publicly available transcriptome data of presymptomatic cpr5/old1 mutants. The results demonstrate that many genes in the ROS gene network show at least fivefold increases in transcripts in comparison with those of wild-type plants, suggesting that presymptomatic cpr5/old1 mutants are in a state of high-cellular oxidative stress. This was further confirmed by a comparative, relative quantitative proteomics study of Arabidopsis wild-type and cpr5/old1 mutant plants, which demonstrated that several Phi family members of glutathione s-transferases significantly increased in abundance. In summary, our genetic, transcriptomic and relative quantitative proteomics analyses indicate that CPR5 plays a central role in regulating redox balance in Arabidopsis.
Collapse
Affiliation(s)
- H-C Jing
- Department of Molecular Biology of Plants, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Li QY, Niu HB, Yin J, Wang MB, Shao HB, Deng DZ, Chen XX, Ren JP, Li YC. Protective role of exogenous nitric oxide against oxidative-stress induced by salt stress in barley (Hordeum vulgare). Colloids Surf B Biointerfaces 2008; 65:220-5. [DOI: 10.1016/j.colsurfb.2008.04.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2008] [Revised: 04/08/2008] [Accepted: 04/11/2008] [Indexed: 01/03/2023]
|
191
|
Flores T, Todd CD, Tovar-Mendez A, Dhanoa PK, Correa-Aragunde N, Hoyos ME, Brownfield DM, Mullen RT, Lamattina L, Polacco JC. Arginase-negative mutants of Arabidopsis exhibit increased nitric oxide signaling in root development. PLANT PHYSIOLOGY 2008; 147:1936-46. [PMID: 18567826 PMCID: PMC2492630 DOI: 10.1104/pp.108.121459] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 06/05/2008] [Indexed: 05/18/2023]
Abstract
Mutation of either arginase structural gene (ARGAH1 or ARGAH2 encoding arginine [Arg] amidohydrolase-1 and -2, respectively) resulted in increased formation of lateral and adventitious roots in Arabidopsis (Arabidopsis thaliana) seedlings and increased nitric oxide (NO) accumulation and efflux, detected by the fluorogenic traps 3-amino,4-aminomethyl-2',7'-difluorofluorescein diacetate and diamino-rhodamine-4M, respectively. Upon seedling exposure to the synthetic auxin naphthaleneacetic acid, NO accumulation was differentially enhanced in argah1-1 and argah2-1 compared with the wild type. In all genotypes, much 3-amino,4-aminomethyl-2',7'-difluorofluorescein diacetate fluorescence originated from mitochondria. The arginases are both localized to the mitochondrial matrix and closely related. However, their expression levels and patterns differ: ARGAH1 encoded the minor activity, and ARGAH1-driven beta-glucuronidase (GUS) was expressed throughout the seedling; the ARGAH2::GUS expression pattern was more localized. Naphthaleneacetic acid increased seedling lateral root numbers (total lateral roots per primary root) in the mutants to twice the number in the wild type, consistent with increased internal NO leading to enhanced auxin signaling in roots. In agreement, argah1-1 and argah2-1 showed increased expression of the auxin-responsive reporter DR5::GUS in root tips, emerging lateral roots, and hypocotyls. We propose that Arg, or an Arg derivative, is a potential NO source and that reduced arginase activity in the mutants results in greater conversion of Arg to NO, thereby potentiating auxin action in roots. This model is supported by supplemental Arg induction of adventitious roots and increased NO accumulation in argah1-1 and argah2-1 versus the wild type.
Collapse
Affiliation(s)
- Teresita Flores
- Biochemistry Department, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
A diatom gene regulating nitric-oxide signaling and susceptibility to diatom-derived aldehydes. Curr Biol 2008; 18:895-9. [PMID: 18538570 DOI: 10.1016/j.cub.2008.05.037] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 05/05/2008] [Accepted: 05/15/2008] [Indexed: 01/27/2023]
Abstract
Diatoms are unicellular phytoplankton accounting for approximately 40% of global marine primary productivity [1], yet the molecular mechanisms underlying their ecological success are largely unexplored. We use a functional-genomics approach in the marine diatom Phaeodactylum tricornutum to characterize a novel protein belonging to the widely conserved YqeH subfamily [2] of GTP-binding proteins thought to play a role in ribosome biogenesis [3], sporulation [4], and nitric oxide (NO) generation [5]. Transgenic diatoms overexpressing this gene, designated PtNOA, displayed higher NO production, reduced growth, impaired photosynthetic efficiency, and a reduced ability to adhere to surfaces. A fused YFP-PtNOA protein was plastid localized, distinguishing it from a mitochondria-localized plant ortholog. PtNOA was upregulated in response to the diatom-derived unsaturated aldehyde 2E,4E/Z-decadienal (DD), a molecule previously shown to regulate intercellular signaling, stress surveillance [6], and defense against grazers [7]. Overexpressing cell lines were hypersensitive to sublethal levels of this aldehyde, manifested by altered expression of superoxide dismutase and metacaspases, key components of stress and death pathways [8, 9]. NOA-like sequences were found in diverse oceanic regions, suggesting that a novel NO-based system operates in diatoms and may be widespread in phytoplankton, providing a biological context for NO in the upper ocean [10].
Collapse
|
193
|
mAtNOS1 induces apoptosis of human mammary adenocarcinoma cells. Life Sci 2008; 82:1077-82. [DOI: 10.1016/j.lfs.2008.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 03/05/2008] [Accepted: 03/17/2008] [Indexed: 12/21/2022]
|
194
|
Wilson ID, Neill SJ, Hancock JT. Nitric oxide synthesis and signalling in plants. PLANT, CELL & ENVIRONMENT 2008; 31:622-31. [PMID: 18034772 DOI: 10.1111/j.1365-3040.2007.01761.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As with all organisms, plants must respond to a plethora of external environmental cues. Individual plant cells must also perceive and respond to a wide range of internal signals. It is now well-accepted that nitric oxide (NO) is a component of the repertoire of signals that a plant uses to both thrive and survive. Recent experimental data have shown, or at least implicated, the involvement of NO in reproductive processes, control of development and in the regulation of physiological responses such as stomatal closure. However, although studies concerning NO synthesis and signalling in animals are well-advanced, in plants there are still fundamental questions concerning how NO is produced and used that need to be answered. For example, there is a range of potential NO-generating enzymes in plants, but no obvious plant nitric oxide synthase (NOS) homolog has yet been identified. Some studies have shown the importance of NOS-like enzymes in mediating NO responses in plants, while other studies suggest that the enzyme nitrate reductase (NR) is more important. Still, more published work suggests the involvement of completely different enzymes in plant NO synthesis. Similarly, it is not always clear how NO mediates its responses. Although it appears that in plants, as in animals, NO can lead to an increase in the signal cGMP which leads to altered ion channel activity and gene expression, it is not understood how this actually occurs. NO is a relatively reactive compound, and it is not always easy to study. Furthermore, its biological activity needs to be considered in conjunction with that of other compounds such as reactive oxygen species (ROS) which can have a profound effect on both its accumulation and function. In this paper, we will review the present understanding of how NO is produced in plants, how it is removed when its signal is no longer required and how it may be both perceived and acted upon.
Collapse
Affiliation(s)
- Ian D Wilson
- Centre for Research in Plant Science, Faculty of Health and Life Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | | | | |
Collapse
|
195
|
Flores-Pérez U, Sauret-Güeto S, Gas E, Jarvis P, Rodríguez-Concepción M. A mutant impaired in the production of plastome-encoded proteins uncovers a mechanism for the homeostasis of isoprenoid biosynthetic enzymes in Arabidopsis plastids. THE PLANT CELL 2008; 20:1303-15. [PMID: 18469163 PMCID: PMC2438453 DOI: 10.1105/tpc.108.058768] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/18/2008] [Accepted: 04/22/2008] [Indexed: 05/20/2023]
Abstract
The plastid-localized methylerythritol phosphate (MEP) pathway synthesizes the isoprenoid precursors for the production of essential photosynthesis-related compounds and hormones. We have identified an Arabidopsis thaliana mutant, rif1, in which posttranscriptional upregulation of MEP pathway enzyme levels is caused by the loss of function of At3g47450, a gene originally reported to encode a mitochondrial protein related to nitric oxide synthesis. However, we show that nitric oxide is not involved in the regulation of the MEP pathway and that the encoded protein is a plastid-targeted homolog of the Bacillus subtilis YqeH protein, a GTPase required for proper ribosome assembly. Consistently, in rif1 seedlings, decreased levels of plastome-encoded proteins were observed, with the exception of ClpP1, a catalytic subunit of the plastidial Clp protease complex. The unexpected accumulation of ClpP1 in plastids with reduced protein synthesis suggested a compensatory mechanism in response to decreased Clp activity levels. In agreement, a negative correlation was found between Clp protease activity and MEP pathway enzyme levels in different experiments, suggesting that Clp-mediated degradation of MEP pathway enzymes might be a mechanism used by individual plastids to finely adjust plastidial isoprenoid biosynthesis to their functional and physiological states.
Collapse
Affiliation(s)
- Ursula Flores-Pérez
- Departament de Genètica Molecular de Plantes, Centre for Research on Agricultural Genomics, 08034 Barcelona, Spain
| | | | | | | | | |
Collapse
|
196
|
Brychkova G, Alikulov Z, Fluhr R, Sagi M. A critical role for ureides in dark and senescence-induced purine remobilization is unmasked in the Atxdh1 Arabidopsis mutant. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:496-509. [PMID: 18266920 DOI: 10.1111/j.1365-313x.2008.03440.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The remobilization of metabolites during stress and senescence plays an important role in optimal plant adaptation to the environment. The plant molybdenum co-factor (MoCo) and flavin-containing enzyme xanthine dehydrogenase (XDH; EC 1.2.1.37) are pivotal for purine remobilization, and catalyze the conversion of the purine catabolic products hypoxanthine and xanthine to uric acid, which is subsequently degraded to the ureides allantoin and allantoate. We observed that in wild-type plants conditions of extended darkness or increasing leaf age caused induction of transcripts related to purine catabolism, resulting in marked accumulation of the purine catabolic products allantoin and allantoate. In contrast, Arabidopsis mutants of XDH, Atxdh1, accumulated xanthine and showed premature senescence symptoms, as exemplified by enhanced chlorophyll degradation, extensive cell death and upregulation of senescence-related transcripts. When dark-treated mutant lines were re-exposed to light, they showed elevated levels of reactive oxygen species (ROS) and a higher mortality rate compared with wild-type plants. Interestingly, the level of ROS and mortality could be attenuated by the addition of allantoin and allantoate, suggesting that these metabolites can act as scavengers of ROS. The results highlight a crucial need for the controlled maintenance of ureide levels mediated by AtXDH1 activity during dark stress and ageing, and point to the dual functionality of ureides as efficient stores of nitrogen and as cellular protectants. Thus, the regulation of ureide levels by Atxdh1 has general implications for optimal plant survival during nutrient remobilization, such as occurs during normal growth, dark stress and senescence.
Collapse
Affiliation(s)
- Galina Brychkova
- The Jacob Blaustein Institutes for Desert Research, The Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University, PO Box 653, Beer Sheva 84105, Israel
| | | | | | | |
Collapse
|
197
|
Abat JK, Saigal P, Deswal R. S-Nitrosylation - another biological switch like phosphorylation? PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2008; 14:119-30. [PMID: 23572879 PMCID: PMC3550662 DOI: 10.1007/s12298-008-0011-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nitric oxide (NO) has emerged as a key-signaling molecule affecting plant growth and development right from seed germination to cell death. It is now being considered as a new plant hormone. NO is predominantly produced by nitric oxide synthase (NOS) in animal systems. NOS converts L-arginine (substrate) to citrulline and NO is a byproduct of the reaction. However, a similar biosynthetic mechanism is still not fully established in plants as NOS is still to be purified. First plant NOS gene (AtNOS1) was cloned from Arabidopsis suggesting the existence of NOS in plants. It was shown to be involved in hormonal signaling, stomatal closure, flowering, pathogen defense response, oxidative stress, senescence and salt tolerance. However, recent studies have raised critical questions/concerns about its substantial role in NO biosynthesis. Despite the ever increasing number of NO responses observed, little is known about the signal transduction pathway(s) and mechanisms by which NO interacts with different components and results in altered cellular activities. A brief overview is presented here. Proteins are one of the major bio-molecule besides DNA, RNA and lipids which are modified by NO and its derivatives. S-nitrosylation is a ubiquitous NO mediated posttranslational modification that might regulate broad spectrum of proteins. In this review S-nitrosylation formation, catabolism and its biological significance is discussed to present the current scenario of this modification in plants.
Collapse
Affiliation(s)
- Jasmeet Kaur Abat
- Plant Molecular Physiology and Biochemistry Laboratory, Department of Botany, University of Delhi, Delhi, 110 007 India
| | - Pooja Saigal
- Plant Molecular Physiology and Biochemistry Laboratory, Department of Botany, University of Delhi, Delhi, 110 007 India
| | - Renu Deswal
- Plant Molecular Physiology and Biochemistry Laboratory, Department of Botany, University of Delhi, Delhi, 110 007 India
| |
Collapse
|
198
|
Hao GP, Xing Y, Zhang JH. Role of nitric oxide dependence on nitric oxide synthase-like activity in the water stress signaling of maize seedling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:435-442. [PMID: 18713377 DOI: 10.1111/j.1744-7909.2008.00637.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Nitric oxide (NO) has been known as an important signal in plant antioxidative defense but its production and roles in water stress are less known. The present study investigated whether NO dependence on a NO synthase-like (NOS) activity is involved in the signaling of drought-induced protective responses in maize seedlings.NOS activity, rate of NO release and drought responses were analyzed when NO donor sodium nitroprusside (SNP), NO scavenger c-PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) and NOS inhibitor L-NAME (NG-nitro-L-arginine methyl ester) were applied to both detached maize leaves and whole plants. Both NOS activity and the rate of NO release increased substantially under dehydration stress. The high NOS activity induced by c-PTIO as NO scavenger and NO accumulation inhibited by NOS inhibitor L-NAME in dehydration-treated maize seedlings indicated that most NO production under water deficit stress may be generated from NOS-like activity. After dehydration stress for 3 h, detached maize leaves pretreated with NO donor SNP maintained more water content than that of control leaves pretreated with water. This result was consistent with the decrease in the transpiration rate of SNP-treated leaves subjected to drought treatment for 3 h. Membrane permeability, a cell injury index, was lower in SNP-treated maize leaves under dehydration stress for 4 h when compared with the control leaves. Also, superoxide dismutase (SOD) activity of SNP combined drought treatment maize leaves was higher than that of drought treatment alone, indicating that exogenous NO treatment alleviated the water loss and oxidative damage of maize leaves under water deficit stress. When c-PTIO as a specific NO scavenger was applied, the effects of applied SNP were overridden. Treatment with L-NAME on leaves also led to higher membrane permeability, higher transpiration rate and lower SOD activities than those of control leaves, indicating that NOS-like activity was involved in the antioxidative defense under water stress. These results suggested that NO dependence on NOS-like activity serves as a signaling component in the induction of protective responses and is associated with drought tolerance in maize seedlings.
Collapse
Affiliation(s)
- Gang-Ping Hao
- Department of Biological Science, Taishan Medical University, Taian 271000, China
| | | | | |
Collapse
|
199
|
Cross-talk between calcium-calmodulin and nitric oxide in abscisic acid signaling in leaves of maize plants. Cell Res 2008; 18:577-88. [DOI: 10.1038/cr.2008.39] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
200
|
Parihar MS, Parihar A, Chen Z, Nazarewicz R, Ghafourifar P. mAtNOS1 regulates mitochondrial functions and apoptosis of human neuroblastoma cells. Biochim Biophys Acta Gen Subj 2008; 1780:921-6. [PMID: 18359297 DOI: 10.1016/j.bbagen.2008.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Revised: 02/19/2008] [Accepted: 02/19/2008] [Indexed: 01/11/2023]
Abstract
mAtNOS1 is a novel gene recently reported in mammalian cells with functions that are not fully understood. The present study generated human neuroblastoma SHSY cells over- and underexpressing mAtNOS1 and shows that mAtNOS1 is involved in regulating mitochondrial nitric oxide, mitochondrial transmembrane potential, protein tyrosine nitration, cytochrome c release, and apoptosis of those cells.
Collapse
Affiliation(s)
- Mordhwaj S Parihar
- Department of Surgery, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | |
Collapse
|