151
|
Zhang J, Huang GQ, Zou D, Yan JQ, Li Y, Hu S, Li XB. The cotton (Gossypium hirsutum) NAC transcription factor (FSN1) as a positive regulator participates in controlling secondary cell wall biosynthesis and modification of fibers. THE NEW PHYTOLOGIST 2018; 217:625-640. [PMID: 29105766 DOI: 10.1111/nph.14864] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/24/2017] [Indexed: 05/18/2023]
Abstract
Cotton (Gossypium hirsutum) fibers are the highly elongated and thickened single-cell trichomes on the seed epidermis. However, little is known about the molecular base of fiber cell wall thickening in detail. In this study, a cotton NAC transcription factor (GhFSN1) that is specifically expressed in secondary cell wall (SCW) thickening fibers was functionally characterized. The GhFSN1 transgenic cotton plants were generated to study how FSN1 regulates fiber SCW formation. Up-regulation of GhFSN1 expression in cotton resulted in an increase in SCW thickness of fibers but a decrease in fiber length. Transcriptomic analysis revealed that GhFSN1 activates or represses numerous downstream genes. GhFSN1 has the ability to form homodimers, binds to its promoter to activate itself, and might be degraded by the ubiquitin-mediated proteasome pathway. The direct targets of GhFSN1 include the fiber SCW-related GhDUF231L1, GhKNL1, GhMYBL1, GhGUT1 and GhIRX12 genes. GhFSN1 binds directly to a consensus sequence (GhNBS), (C/T)(C/G/T)TN(A/T)(G/T)(A/C/G)(A/G)(A/T/G)(A/T/G)AAG, which exists in the promoters of these SCW-related genes. Our data demonstrate that GhFSN1 acts as a positive regulator in controlling SCW formation of cotton fibers by activating its downstream SCW-related genes. Thus, these findings give us novel insights into comprehensive understanding of GhFSN1 function in fiber development.
Collapse
Affiliation(s)
- Jie Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Geng-Qing Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Dan Zou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jing-Qiu Yan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Shan Hu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
152
|
Li N, Huang B, Tang N, Jian W, Zou J, Chen J, Cao H, Habib S, Dong X, Wei W, Gao Y, Li Z. The MADS-Box Gene SlMBP21 Regulates Sepal Size Mediated by Ethylene and Auxin in Tomato. PLANT & CELL PHYSIOLOGY 2017; 58:2241-2256. [PMID: 29069449 DOI: 10.1093/pcp/pcx158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/14/2017] [Indexed: 05/21/2023]
Abstract
Normal organ size is achieved by successful co-ordination of cell proliferation and cell expansion, which are modulated by multiple factors such as ethylene and auxin. In our work, SlMBP21-RNAi (RNA interference) tomato exhibited longer sepals and improved fruit set. Histological analysis indicated that longer sepals were attributed to cell expansion. To explore how SlMBP21 regulates sepal size, we compared the transcriptomes of sepals between SlMBP21-RNAi and the wild type by RNA sequencing and found that the differentially expressed genes were dominantly related to cell expansion, ethylene and auxin, and photosynthesis. Down-regulation of SlMBP21 affected ethylene production and the free IAA and IAA-Val intensity in sepals. Hormone treatment further indicated that SlMBP21 was involved in the ethylene and auxin pathways. As reported, ethylene and auxin were important factors for cell expansion. Hence, SlMBP21 negatively regulated cell expansion to control sepal size, and ethylene and auxin may mediate this process. Additionally, the contents of Chl and the activity of ribulose-1, 5-bisphosphate carboxylase/oxygenase, the key photosynthetic enzyme, were both increased in SlMBP21-RNAi sepals, which indicated that photosynthesis might be enhanced in transgenic longer sepals. Therefore, the longer sepal, with better protection and enhanced photosynthesis, may contribute to improve fruit set. Altogether, these results suggested that SlMBP21 was a novel factor involved in organ size control. Moreover, our study provided potential application value for improving fruit set.
Collapse
Affiliation(s)
- Ning Li
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Baowen Huang
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Ning Tang
- Collaborative Innovation Center of Special Plant Industry in Chongqing; Institute of Special Plants, Chongqing University of Arts and Sciences; Yongchuan 402160, Chongqing, China
| | - Wei Jian
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Jian Zou
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Jing Chen
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Haohao Cao
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Sidra Habib
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Xuekui Dong
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Wen Wei
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Yanqiang Gao
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Zhengguo Li
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| |
Collapse
|
153
|
Transcriptome Analysis Suggests That Chromosome Introgression Fragments from Sea Island Cotton ( Gossypium barbadense) Increase Fiber Strength in Upland Cotton ( Gossypium hirsutum). G3-GENES GENOMES GENETICS 2017; 7:3469-3479. [PMID: 28874383 PMCID: PMC5633395 DOI: 10.1534/g3.117.300108] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As high-strength cotton fibers are critical components of high quality cotton, developing cotton cultivars with high-strength fibers as well as high yield is a top priority for cotton development. Recently, chromosome segment substitution lines (CSSLs) have been developed from high-yield Upland cotton (Gossypium hirsutum) crossed with high-quality Sea Island cotton (G. barbadense). Here, we constructed a CSSL population by crossing CCRI45, a high-yield Upland cotton cultivar, with Hai1, a Sea Island cotton cultivar with superior fiber quality. We then selected two CSSLs with significantly higher fiber strength than CCRI45 (MBI7747 and MBI7561), and one CSSL with lower fiber strength than CCRI45 (MBI7285), for further analysis. We sequenced all four transcriptomes at four different time points postanthesis, and clustered the 44,678 identified genes by function. We identified 2200 common differentially-expressed genes (DEGs): those that were found in both high quality CSSLs (MBI7747 and MBI7561), but not in the low quality CSSL (MBI7285). Many of these genes were associated with various metabolic pathways that affect fiber strength. Upregulated DEGs were associated with polysaccharide metabolic regulation, single-organism localization, cell wall organization, and biogenesis, while the downregulated DEGs were associated with microtubule regulation, the cellular response to stress, and the cell cycle. Further analyses indicated that three genes, XLOC_036333 [mannosyl-oligosaccharide-α-mannosidase (MNS1)], XLOC_029945 (FLA8), and XLOC_075372 (snakin-1), were potentially important for the regulation of cotton fiber strength. Our results suggest that these genes may be good candidates for future investigation of the molecular mechanisms of fiber strength formation and for the improvement of cotton fiber quality through molecular breeding.
Collapse
|
154
|
Colle M, Weng Y, Kang Y, Ophir R, Sherman A, Grumet R. Variation in cucumber (Cucumis sativus L.) fruit size and shape results from multiple components acting pre-anthesis and post-pollination. PLANTA 2017. [PMID: 28623561 DOI: 10.1007/s00425-017-2721-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Morphological, QTL, and gene expression analyses indicate variation in cucumber fruit size and shape results from orientation, timing, and extent of cell division and expansion, and suggest candidate gene factors. Variation in cucumber (Cucumis sativus L.) fruit size and shape is highly quantitative, implicating interplay of multiple components. Recent studies have identified numerous fruit size and shape quantitative trait loci (QTL); however, underlying factors remain to be determined. We examined ovary and fruit development of two sequenced cucumber genotypes with extreme differences in fruit size and shape, Chinese Long '9930' (CL9930), and pickling type 'Gy14'. Differences were observed in several independent factors that can influence size and shape: ovule number, rate and period of cell division in longitudinal and cross section in ovaries and fruit, timing and rate of fruit expansion in length and diameter, and cell shape. Level and timing of expression of select fruit growth stage marker genes and candidate fruit size gene homologs associated with cucumber fruit size and shape QTL were examined from 5-day pre-anthesis to 20-day post-pollination. Our results indicate that variation in fruit size and shape results from differences in cell number and shape in longitudinal and cross section, driven in turn by differences in orientation, timing, and duration of cell division and expansion, both pre- and post-anthesis, and suggest candidate genes contributing to determination of cucumber fruit size and shape.
Collapse
Affiliation(s)
- Marivi Colle
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Plant and Soil Science Building, Michigan State University, 1066 Bogue Street, East Lansing, MI, 48824, USA
| | - Yiqun Weng
- Department of Horticulture, University of Wisconsin, Madison, WI, 53706, USA
- USDA-ARS Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Yunyan Kang
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Plant and Soil Science Building, Michigan State University, 1066 Bogue Street, East Lansing, MI, 48824, USA
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ron Ophir
- Department of Fruit Trees Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Amir Sherman
- Department of Fruit Trees Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Rebecca Grumet
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Plant and Soil Science Building, Michigan State University, 1066 Bogue Street, East Lansing, MI, 48824, USA.
| |
Collapse
|
155
|
Najeeb U, Sarwar M, Atwell BJ, Bange MP, Tan DKY. Endogenous Ethylene Concentration Is Not a Major Determinant of Fruit Abscission in Heat-Stressed Cotton ( Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1615. [PMID: 28983303 PMCID: PMC5613130 DOI: 10.3389/fpls.2017.01615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 09/04/2017] [Indexed: 05/22/2023]
Abstract
We investigated the role of ethylene in the response of cotton to high temperature using cotton genotypes with genetically interrupted ethylene metabolism. In the first experiment, Sicot 71BRF and 5B (a lintless variant with compromised ethylene metabolism) were exposed to 45°C, either by instantaneous heat shock or by ramping temperatures by 3°C daily for 1 week. One day prior to the start of heat treatment, half the plants were sprayed with 0.8 mM of the ethylene synthesis inhibitor, aminoethoxyvinylglycine (AVG). In a subsequent experiment, Sicot 71BRF and a putatively heat-tolerant line, CIM 448, were exposed to 36 or 45°C for 1 week, and half the plants were sprayed with 20 μM of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid, (ACC). High temperature exposure of plants in both experiments was performed at the peak reproductive phase (65-68 days after sowing). Elevated temperature (heat shock or ramping to 45°C) significantly reduced production and retention of fruits in all cotton lines used in this study. At the termination of heat treatment, cotton plants exposed to 45°C had at least 50% fewer fruits than plants under optimum temperature in all three genotypes, while plants at 36°C remained unaffected. Heat-stressed plants continued producing new squares (fruiting buds) after termination of heat stress but these squares did not turn into cotton bolls due to pollen infertility. In vitro inhibition of pollen germination by high temperatures supported this observation. Leaf photosynthesis (Pn) of heat-stressed plants (45°C) measured at the end of heat treatments remained significantly inhibited, despite an increased leaf stomatal conductance (gs), suggesting that high temperature impairs Pn independently of stomatal behavior. Metabolic injury was supported by high relative cellular injury and low photosystem II yield of the heat-stressed plants, indicating that high temperature impaired photosynthetic electron transport. Both heat shock and ramping of heat significantly reduced ethylene release from cotton leaf tissues measured at the end of heat treatment but modulating ethylene production via AVG or ACC application had no significant effect on fruit production or retention in heat-stressed cotton plants. Instead, high temperature accelerated fruit abortion by impairing pollen development and/or restricting leaf photosynthesis.
Collapse
Affiliation(s)
- Ullah Najeeb
- Faculty of Science, Plant Breeding Institute, Sydney Institute of Agriculture, School of Life and Environmental Sciences, University of SydneySydney, NSW, Australia
| | - Muhammad Sarwar
- Agronomic Research Institute, Ayub Agricultural Research InstituteFaisalabad, Pakistan
| | - Brian J. Atwell
- Faculty of Science, Plant Breeding Institute, Sydney Institute of Agriculture, School of Life and Environmental Sciences, University of SydneySydney, NSW, Australia
- Department of Biological Sciences, Faculty of Science and Engineering, Macquarie UniversitySydney NSW, Australia
| | - Michael P. Bange
- Faculty of Science, Plant Breeding Institute, Sydney Institute of Agriculture, School of Life and Environmental Sciences, University of SydneySydney, NSW, Australia
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Australian Cotton Research InstituteNarrabri, NSW, Australia
| | - Daniel K. Y. Tan
- Faculty of Science, Plant Breeding Institute, Sydney Institute of Agriculture, School of Life and Environmental Sciences, University of SydneySydney, NSW, Australia
| |
Collapse
|
156
|
Li PT, Wang M, Lu QW, Ge Q, Rashid MHO, Liu AY, Gong JW, Shang HH, Gong WK, Li JW, Song WW, Guo LX, Su W, Li SQ, Guo XP, Shi YZ, Yuan YL. Comparative transcriptome analysis of cotton fiber development of Upland cotton (Gossypium hirsutum) and Chromosome Segment Substitution Lines from G. hirsutum × G. barbadense. BMC Genomics 2017; 18:705. [PMID: 28886694 PMCID: PMC5591532 DOI: 10.1186/s12864-017-4077-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/21/2017] [Indexed: 12/15/2022] Open
Abstract
Background How to develop new cotton varieties possessing high yield traits of Upland cotton and superior fiber quality traits of Sea Island cotton remains a key task for cotton breeders and researchers. While multiple attempts bring in little significant progresses, the development of Chromosome Segment Substitution Lines (CSSLs) from Gossypium barbadense in G. hirsutum background provided ideal materials for aforementioned breeding purposes in upland cotton improvement. Based on the excellent fiber performance and relatively clear chromosome substitution segments information identified by Simple Sequence Repeat (SSR) markers, two CSSLs, MBI9915 and MBI9749, together with the recurrent parent CCRI36 were chosen to conduct transcriptome sequencing during the development stages of fiber elongation and Secondary Cell Wall (SCW) synthesis (from 10DPA and 28DPA), aiming at revealing the mechanism of fiber development and the potential contribution of chromosome substitution segments from Sea Island cotton to fiber development of Upland cotton. Results In total, 15 RNA-seq libraries were constructed and sequenced separately, generating 705.433 million clean reads with mean GC content of 45.13% and average Q30 of 90.26%. Through multiple comparisons between libraries, 1801 differentially expressed genes (DEGs) were identified, of which the 902 up-regulated DEGs were mainly involved in cell wall organization and response to oxidative stress and auxin, while the 898 down-regulated ones participated in translation, regulation of transcription, DNA-templated and cytoplasmic translation based on GO annotation and KEGG enrichment analysis. Subsequently, STEM software was performed to explicate the temporal expression pattern of DEGs. Two peroxidases and four flavonoid pathway-related genes were identified in the “oxidation-reduction process”, which could play a role in fiber development and quality formation. Finally, the reliability of RNA-seq data was validated by quantitative real-time PCR of randomly selected 20 genes. Conclusions The present report focuses on the similarities and differences of transcriptome profiles between the two CSSLs and the recurrent parent CCRI36 and provides novel insights into the molecular mechanism of fiber development, and into further exploration of the feasible contribution of G. barbadense substitution segments to fiber quality formation, which will lay solid foundation for simultaneously improving fiber yield and quality of upland cotton through CSSLs. Electronic supplementary material The online version of this article (10.1186/s12864-017-4077-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peng-Tao Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China.,National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Mi Wang
- College of Agriculture, Yangtze University, Jingzhou, Hubei, 434025, China
| | - Quan-Wei Lu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Md Harun Or Rashid
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Ai-Ying Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Ju-Wu Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Hai-Hong Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Wan-Kui Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Jun-Wen Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Wei-Wu Song
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Li-Xue Guo
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Wei Su
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China.,College of Agriculture, Yangtze University, Jingzhou, Hubei, 434025, China
| | - Shao-Qi Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Xiao-Ping Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Yu-Zhen Shi
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China.
| | - You-Lu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China.
| |
Collapse
|
157
|
Hande AS, Katageri IS, Jadhav MP, Adiger S, Gamanagatti S, Padmalatha KV, Dhandapani G, Kanakachari M, Kumar PA, Reddy VS. Transcript profiling of genes expressed during fibre development in diploid cotton (Gossypium arboreum L.). BMC Genomics 2017; 18:675. [PMID: 28859611 PMCID: PMC5580217 DOI: 10.1186/s12864-017-4066-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 08/16/2017] [Indexed: 11/18/2022] Open
Abstract
Background Cotton fibre is a single cell and it is one of the best platforms for unraveling the genes express during various stages of fibre development. There are reports devoted to comparative transcriptome study on fiber cell initiation and elongation in tetraploid cultivated cotton. However, in the present investigation, comparative transcriptome study was made in diploid cultivated cotton using isogenic fuzzy-lintless (Fl) and normal fuzzy linted (FL) lines belong to Gossypium arboreum, diploid species at two stages, 0 and 10 dpa (days post anthesis), using Affymetrix cotton GeneChip genome array. Result Scanning electron microscopy (SEM) analysis uncovered the occurrence of few fibre cell initials in the Fl line as compared to many in Normal FL at −2 and 0 dpa. However, at 10 dpa there were no fibre cells found elongated in Fl but many elongated cells were found in FL line. Up-regulation of transcription factors, AP2-EREBP, C2H2, C3H, HB and WRKY was observed at 0 dpa whereas in 10 dpa transcription factors, AP2-EREBP, AUX/IAA, bHLH, C2H2, C3H, HB, MYB, NAC, Orphans, PLATZ and WRKY were found down regulated in Fl line. These transcription factors were mainly involved in metabolic pathways such as phytohormone signaling, energy metabolism of cell, fatty acid metabolism, secondary metabolism and other signaling pathways and are related directly or indirectly in fiber development. Quantitative real-time PCR was performed to check fold up or down-regulation of these genes and transcription factors (TFs) down regulated in mutants as compared to normal at 0 and 10 dpa. Conclusion This study elucidates that the up-regulation of transcription factors like AP2-EREBP, C2H2, C3H, HB, WRKY and phytohormone signaling genes at 0 dpa and their down-regulation at the 10 dpa might have constrain the fibre elongation in fuzzy-lintless line. Along with this the down-regulation of genes involved in synthesis of VLCFA chain, transcripts necessary for energy and cell wall metabolism, EXPANSINs, arabinogalactan proteins (AGPs), tubulin might also be the probable reason for reduced growth of fibres in the Fl. Plant receptor-like kinases (RLKs), Leucine Rich Repeats) LRR- family protein and signal transduction coding for mitogen-activated protein kinase (MAPK) cascade, have been engaged in coordination of cell elongation and SCW biosynthesis, down-regulation of these might loss the function leads to reduced fibre growth. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4066-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Atul S Hande
- University of Agricultural Sciences, Dharwad, Karnataka, India
| | | | | | - Sateesh Adiger
- University of Agricultural Sciences, Dharwad, Karnataka, India
| | | | | | - Gurusamy Dhandapani
- National Research Centre on Plant Biotechnology (NRCPB), IARI, New Delhi, India
| | | | | | - Vanga Siva Reddy
- Plant Transformation Group, International Centre for Genetic Engineering & Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
158
|
Qin Y, Wei H, Sun H, Hao P, Wang H, Su J, Yu S. Proteomic Analysis of Differences in Fiber Development between Wild and Cultivated Gossypium hirsutum L. J Proteome Res 2017; 16:2811-2824. [PMID: 28683551 DOI: 10.1021/acs.jproteome.7b00122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Upland cotton (Gossypium hirsutum L.) is one of the world's most important fiber crops, accounting for more than 90% of all cotton production. While their wild progenitors have relatively short and coarse, often tan-colored fibers, modern cotton cultivars possess longer, finer, stronger, and whiter fiber. In this study, the wild and cultivated cottons (YU-3 and TM-1) selected show significant differences on fibers at 10 days postanthesis (DPA), 20 DPA, and mature stages at the morphological level. To explore the effects of domestication, reveal molecular mechanisms underlying these phenotypic differences, and better inform our efforts to further enhance cotton fiber quality, isobaric tags for relative and absolute protein quantification-facilitated proteomic methods were performed on developing fibers. There were 6990 proteins identified; among them, 336 were defined as differentially expressed proteins between fibers of wild versus domesticated cotton. The down- or up-regulated proteins in wild cotton were involved in phenylpropanoid biosynthesis, zeatin biosynthesis, fatty acid elongation, and other processes. Association analysis between transcriptome and proteome showed positive correlations between transcripts and proteins at both 10 DPA and 20 DPA. Differences in proteomics have been verified at the mRNA level by quantitative real-time polymerase chain reaction and have been validated at the physiological and biochemical levels by POD (peroxidase) activity assays and ZA (zeatin) content estimates. This work corroborates the major pathways involved in cotton fiber development and demonstrates that POD activity and zeatin content have a great potential related to fiber elongation and thickening.
Collapse
Affiliation(s)
- Yuan Qin
- College of Agronomy, Northwest A&F University , No. 3 Taicheng Road, Yangling, Shaanxi 712100, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences , No. 38 Huanghe Road, Anyang, Henan 455000, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences , No. 38 Huanghe Road, Anyang, Henan 455000, China
| | - Huiru Sun
- College of Agronomy, Northwest A&F University , No. 3 Taicheng Road, Yangling, Shaanxi 712100, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences , No. 38 Huanghe Road, Anyang, Henan 455000, China
| | - Pengbo Hao
- College of Agronomy, Northwest A&F University , No. 3 Taicheng Road, Yangling, Shaanxi 712100, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences , No. 38 Huanghe Road, Anyang, Henan 455000, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences , No. 38 Huanghe Road, Anyang, Henan 455000, China
| | - Junji Su
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences , No. 38 Huanghe Road, Anyang, Henan 455000, China
| | - Shuxun Yu
- College of Agronomy, Northwest A&F University , No. 3 Taicheng Road, Yangling, Shaanxi 712100, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences , No. 38 Huanghe Road, Anyang, Henan 455000, China
| |
Collapse
|
159
|
Miao Q, Deng P, Saha S, Jenkins JN, Hsu CY, Abdurakhmonov IY, Buriev ZT, Pepper A, Ma DP. Genome-wide identification and characterization of microRNAs differentially expressed in fibers in a cotton phytochrome A1 RNAi line. PLoS One 2017; 12:e0179381. [PMID: 28614407 PMCID: PMC5470697 DOI: 10.1371/journal.pone.0179381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/28/2017] [Indexed: 02/07/2023] Open
Abstract
Cotton fiber is an important commodity throughout the world. Fiber property determines fiber quality and commercial values. Previous studies showed that silencing phytochrome A1 gene (PHYA1) by RNA interference in Upland cotton (Gossypium hirsutum L. cv. Coker 312) had generated PHYA1 RNAi lines with simultaneous improvements in fiber quality (longer, stronger and finer fiber) and other key agronomic traits. Characterization of the altered molecular processes in these RNAi genotypes and its wild-type controls is a great interest to better understand the PHYA1 RNAi phenotypes. In this study, a total of 77 conserved miRNAs belonging to 61 families were examined in a PHYA1 RNAi line and its parental Coker 312 genotype by using multiplex sequencing. Of these miRNAs, seven (miR7503, miR7514, miR399c, miR399d, miR160, miR169b, and miR2950) were found to be differentially expressed in PHYA1 RNAi cotton. The target genes of these differentially expressed miRNAs were involved in the metabolism and signaling pathways of phytohormones, which included Gibberellin, Auxin and Abscisic Acid. The expression of several MYB transcription factors was also affected by miRNAs in RNAi cotton. In addition, 35 novel miRNAs (novel miR1-novel miR35) were identified in fibers for the first time in this study. Target genes of vast majority of these novel miRNAs were also predicted. Of these, nine novel miRNAs (novel-miR1, 2, 16, 19, 26, 27, 28, 31 and 32) were targeted to cytochrome P450-like TATA box binding protein (TBP). The qRT-PCR confirmed expression levels of several differentially regulated miRNAs. Expression patterns of four miRNAs-targets pairs were also examined via RNA deep sequencing. Together, the results imply that the regulation of miRNA expression might confer to the phenotype of the PHYA1 RNAi line(s) with improved fiber quality.
Collapse
Affiliation(s)
- Qing Miao
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, United States of America
| | - Peng Deng
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, United States of America
| | - Sukumar Saha
- USDA-ARS, Crop Science Research Laboratory, Mississippi State, MS, United States of America
| | - Johnie N. Jenkins
- USDA-ARS, Crop Science Research Laboratory, Mississippi State, MS, United States of America
| | - Chuan-Yu Hsu
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS, United States of America
| | | | - Zabardast T. Buriev
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
| | - Alan Pepper
- Department of Biology, Texas A & M University, College Station, TX, United States of America
| | - Din-Pow Ma
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, United States of America
| |
Collapse
|
160
|
Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat Genet 2017; 49:1089-1098. [DOI: 10.1038/ng.3887] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 05/03/2017] [Indexed: 12/18/2022]
|
161
|
Xu P, Gao J, Cao Z, Chee PW, Guo Q, Xu Z, Paterson AH, Zhang X, Shen X. Fine mapping and candidate gene analysis of qFL-chr1, a fiber length QTL in cotton. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1309-1319. [PMID: 28361363 DOI: 10.1007/s00122-017-2890-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/02/2017] [Indexed: 05/20/2023]
Abstract
A fiber length QTL, qFL-chr1, was fine mapped to a 0.9 cM interval of cotton chromosome 1. Two positional candidate genes showed positive correlation between gene expression level and fiber length. Prior analysis of a backcross-self mapping population derived from a cross between Gossypium hirsutum L. and G. barbadense L. revealed a QTL on chromosome 1 associated with increased fiber length (qFL-chr1), which was confirmed in three independent populations of near-isogenic introgression lines (NIILs). Here, a single NIIL, R01-40-08, was used to develop a large population segregating for the target region. Twenty-two PCR-based polymorphic markers used to genotype 1672 BC4F2 plants identified 432 recombinants containing breakpoints in the target region. Substitution mapping using 141 informative recombinants narrowed the position of qFL-chr1 to a 1.0-cM interval between SSR markers MUSS084 and CIR018. To exclude possible effects of non-target introgressions on fiber length, different heterozygous BC4F3 plants introgressed between SSR markers NAU3384 and CGR5144 were selected to develop sub-NILs. The qFL-chr1 was further mapped at 0.9-cM interval between MUSS422 and CIR018 by comparisons of sub-NIL phenotype, and increased fiber length by ~1 mm. The 2.38-Mb region between MUSS422 and CIR018 in G. barbadense contained 19 annotated genes. Expression levels of two of these genes, GOBAR07705 (encoding 1-aminocyclopropane-1-carboxylate synthase) and GOBAR25992 (encoding amino acid permease), were positively correlated with fiber length in a small F2 population, supporting these genes as candidates for qFL-chr1.
Collapse
Affiliation(s)
- Peng Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, People's Republic of China
- The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Jin Gao
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, People's Republic of China
- The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Zhibin Cao
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, People's Republic of China
- The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Peng W Chee
- Molecular Cotton Breeding Laboratory, University of Georgia, Tifton, GA, 3179, USA
| | - Qi Guo
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, People's Republic of China
- The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Zhenzhen Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, People's Republic of China
- The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA
| | - Xianggui Zhang
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, People's Republic of China
- The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Xinlian Shen
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, People's Republic of China.
- The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.
| |
Collapse
|
162
|
Identification of candidate genes for fiber length quantitative trait loci through RNA-Seq and linkage and physical mapping in cotton. BMC Genomics 2017; 18:427. [PMID: 28569138 PMCID: PMC5452627 DOI: 10.1186/s12864-017-3812-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 05/23/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Cotton (Gossypium spp.) fibers are single-celled elongated trichomes, the molecular aspects of genetic variation in fiber length (FL) among genotypes are currently unknown. In this study, two backcross inbred lines (BILs), i.e., NMGA-062 ("Long") and NMGA-105 ("Short") with 32.1 vs. 27.2 mm in FL, respectively, were chosen to perform RNA-Seq on developing fibers at 10 days post anthesis (DPA). The two BILs differed in 4 quantitative trait loci (QTL) for FL and were developed from backcrosses between G. hirsutum as the recurrent parent and G. barbadense. RESULTS In total, 51.7 and 54.3 million reads were obtained and assembled to 49,508 and 49,448 transcripts in the two genotypes, respectively. Of 1551 differentially expressed genes (DEGs) between the two BILs, 678 were up-regulated and 873 down-regulated in "Long"; and 703 SNPs were identified in 339 DEGs. Further physical mapping showed that 8 DEGs were co-localized with the 4 FL QTL identified in the BIL population containing the two BILs. Four SNP markers in 3 DEGs that showed significant correlations with FL were developed. Among the three candidate genes encoding for proline-rich protein, D-cysteine desulfhydrase, and thaumatin-like protein, a SNP of thaumatin-like protein gene showed consistent correlations with FL across all testing environments. CONCLUSIONS This study represents one of the first investigations of positional candidate gene approach of QTL in cotton in integrating transcriptome and SNP identification based on RNA-Seq with linkage and physical mapping of QTL and genes, which will facilitate eventual cloning and identification of genes responsible for FL QTL. The candidate genes may serve as the foundation for further in-depth studies of the molecular mechanism of natural variation in fiber elongation.
Collapse
|
163
|
Genome-wide analysis of gene expression of EMS-induced short fiber mutant Ligon lintless-y (li y) in cotton (Gossypium hirsutum L.). Genomics 2017; 109:320-329. [PMID: 28577792 DOI: 10.1016/j.ygeno.2017.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/18/2017] [Accepted: 05/30/2017] [Indexed: 12/31/2022]
Abstract
In this work we describe a chemically-induced short fiber mutant cotton line, Ligon-lintless-y (liy), which is controlled by a single recessive locus and affects multiple traits, including height of the plant, and length and maturity of fiber. An RNAseq analysis was used to evaluate global transcriptional changes during cotton fiber development at 3, 8 and 16days post anthesis. We found that 613, 2629 and 3397 genes were significantly down-regulated, while 2700, 477 and 3260 were significantly up-regulated in liy at 3, 8 and 16 DPA. Gene set enrichment analysis revealed that many metabolic pathways, including carbohydrate, cell wall, hormone metabolism and transport were substantially altered in liy developing fibers. We discuss perturbed expression of genes involved in signal transduction and biosynthesis of phytohormones, such as auxin, abscisic acid, gibberellin and ethylene. The results of this study provide new insights into transcriptional regulation of cotton fiber development.
Collapse
|
164
|
Zhang B, Wang Y, Liu JY. Genome-wide identification and characterization of phospholipase C gene family in cotton (Gossypium spp.). SCIENCE CHINA-LIFE SCIENCES 2017; 61:88-99. [PMID: 28547583 DOI: 10.1007/s11427-017-9053-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/01/2017] [Indexed: 01/05/2023]
Abstract
Phospholipase C (PLC) are important regulatory enzymes involved in several lipid and Ca2+-dependent signaling pathways. Previous studies have elucidated the versatile roles of PLC genes in growth, development and stress responses of many plants, however, the systematic analyses of PLC genes in the important fiber-producing plant, cotton, are still deficient. In this study, through genome-wide survey, we identified twelve phosphatidylinositol-specific PLC (PI-PLC) and nine non-specific PLC (NPC) genes in the allotetraploid upland cotton Gossypium hirsutum and nine PI-PLC and six NPC genes in two diploid cotton G. arboretum and G.raimondii, respectively. The PI-PLC and NPC genes of G. hirsutum showed close phylogenetic relationship with their homologous genes in the diploid cottons and Arabidopsis. Segmental and tandem duplication contributed greatly to the formation of the gene family. Expression profiling indicated that few of the PLC genes are constitutely expressed, whereas most of the PLC genes are preferentially expressed in specific tissues and abiotic stress conditions. Promoter analyses further implied that the expression of these PLC genes might be regulated by MYB transcription factors and different phytohormones. These results not only suggest an important role of phospholipase C members in cotton plant development and abiotic stress response but also provide good candidate targets for future molecular breeding of superior cotton cultivars.
Collapse
Affiliation(s)
- Bing Zhang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanmei Wang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jin-Yuan Liu
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
165
|
Zhang M, Xiao Y, Zeng J, Pei Y. PIN-formed protein, a door to reveal the mechanism for auxin-triggered initiation of cotton fiber. PLANT SIGNALING & BEHAVIOR 2017; 12:e1319031. [PMID: 28426370 PMCID: PMC5501223 DOI: 10.1080/15592324.2017.1319031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/09/2017] [Indexed: 05/31/2023]
Abstract
Cotton fibers are differentiated ovule epidermal cells that provide an ideal model to study cell differentiation and elongation. Establishment of auxin maximum in fiber cells is crucial for cotton-fiber protrusion from ovule surface. However, it is unclear where the auxin originates from and how the auxin accumulates in fiber cells. Our recent results indicate that the auxin is mainly imported from the outside of ovules, and transported to fiber cells through GhPIN (homolog of PIN-formed proteins in cotton) -mediated polar auxin transport, rather than in situ synthesis. Based on our finding in GhPINs, we discuss here briefly how auxin flow to fiber cells and auxin gradient in ovule epidermis is established mainly by GhPIN3a protein.
Collapse
Affiliation(s)
- Mi Zhang
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P.R. China
| | - Yuehua Xiao
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P.R. China
| | - Jianyan Zeng
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P.R. China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, Beibei, Chongqing, P.R. China
| |
Collapse
|
166
|
Zhang Y, He P, Yang Z, Huang G, Wang L, Pang C, Xiao H, Zhao P, Yu J, Xiao G. A Genome-Scale Analysis of the PIN Gene Family Reveals Its Functions in Cotton Fiber Development. FRONTIERS IN PLANT SCIENCE 2017; 8:461. [PMID: 28424725 PMCID: PMC5371604 DOI: 10.3389/fpls.2017.00461] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/16/2017] [Indexed: 05/25/2023]
Abstract
The PIN-FORMED (PIN) protein, the most important polar auxin transporter, plays a critical role in the distribution of auxin and controls multiple biological processes. However, characterizations and functions of this gene family have not been identified in cotton. Here, we identified the PIN family in Gossypium hirsutum, Gossypium arboreum, and Gossypium raimondii. This gene family was divided into seven subgroups. A chromosomal distribution analysis showed that GhPIN genes were evenly distributed in eight chromosomes and that the whole genome and dispersed duplications were the main duplication events for GhPIN expansion. qRT-PCR analysis showed a tissue-specific expression pattern for GhPIN. Likely due to the cis-element variations in their promoters, transcripts of PIN6 and PIN8 genes from the At (tetraploid genome orginated from G. arboreum) subgenome and PIN1a from the Dt (tetraploid genome orginated from G. raimondii) subgenome in G. hirsutum was significantly increased compared to the transcripts in the diploids. The differential regulation of these PIN genes after the polyploidization may be conducive to fiber initiation and elongation. Exogenously applied auxin polar transport inhibitor significantly suppressed fiber growth, which is consistent with the essential function of these PIN genes for regulating cotton fiber development. Furthermore, the overexpression of GhPIN1a_Dt, GhPIN6_At, and GhPIN8_At in Arabidopsis promoted the density and length of trichomes in leaves.
Collapse
Affiliation(s)
- Yuzhou Zhang
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
- Institute for Advanced Studies/College of Life Sciences, Wuhan UniversityWuhan, China
| | - Peng He
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Cotton Research Institute – Chinese Academy of Agricultural SciencesAnyang, China
| | - Gai Huang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking UniversityBeijing, China
| | - Limin Wang
- National Key Lab of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Cotton Research Institute – Chinese Academy of Agricultural SciencesAnyang, China
| | - Hui Xiao
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
| | - Peng Zhao
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
| | - Jianing Yu
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
| | - Guanghui Xiao
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
| |
Collapse
|
167
|
Kong F, Zhang T, Liu J, Heng S, Shi Q, Zhang H, Wang Z, Ge L, Li P, Lu X, Li G. Regulation of Leaf Angle by Auricle Development in Maize. MOLECULAR PLANT 2017; 10:516-519. [PMID: 28216423 DOI: 10.1016/j.molp.2017.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 05/09/2023]
Affiliation(s)
- Fanying Kong
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Tingting Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jisheng Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China; Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, Shandong 250200, China
| | - Siqi Heng
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Qingbiao Shi
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Haisen Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Zeli Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Lei Ge
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Pinghua Li
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xiaoduo Lu
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, Shandong 250200, China
| | - Gang Li
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
168
|
Zhang M, Zeng JY, Long H, Xiao YH, Yan XY, Pei Y. Auxin Regulates Cotton Fiber Initiation via GhPIN-Mediated Auxin Transport. PLANT & CELL PHYSIOLOGY 2017; 58:385-397. [PMID: 28034911 DOI: 10.1093/pcp/pcw203] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 11/17/2016] [Indexed: 05/24/2023]
Abstract
Cotton fibers are seed trichomes that make cotton unique compared with other plants. At anthesis, IAA, a major auxin in plants, accumulates in the fiber cell to promote cell initiation. However, many important aspects of this process are not clear. Here, auxin distribution patterns indicated by auxin-dependent DR5::GUS (β-glucuronidase) expression in cotton ovules were studied during fiber cell differentiation and cell initiation [-2 to 2 DPA (days post-anthesis)]. The nucellus and fiber cell were two major sites where auxin accumulates. The accumulation in the nucellus started from -1 DPA, and that in fiber cells from 0 DPA. Immunolocalization analysis further suggests that the IAA accumulation in fiber initials began before flower opening. Furthermore, we demonstrate that accumulated IAA in fiber initials was mainly from efflux transport and not from in situ synthesis. Eleven auxin efflux carrier (GhPIN) genes were identified, and their expression during ovule and fiber development was investigated. Ovule-specific suppression of multiple GhPIN genes in transgenic cotton inhibited both fiber initiation and elongation. In 0 DPA ovules, GhPIN3a, unlike other GhPIN genes, showed additional localization of the transcript in the outer integument. Collectively, these results demonstrate the important role of GhPIN-mediated auxin transport in fiber-specific auxin accumulation for fiber initiation.
Collapse
Affiliation(s)
- Mi Zhang
- Biotechnology Research Center, Southwest University, Tiansheng Road, Beibei, Chongqing, PR China
| | - Jian-Yan Zeng
- Biotechnology Research Center, Southwest University, Tiansheng Road, Beibei, Chongqing, PR China
| | - Hui Long
- Biotechnology Research Center, Southwest University, Tiansheng Road, Beibei, Chongqing, PR China
| | - Yue-Hua Xiao
- Biotechnology Research Center, Southwest University, Tiansheng Road, Beibei, Chongqing, PR China
| | - Xing-Ying Yan
- Biotechnology Research Center, Southwest University, Tiansheng Road, Beibei, Chongqing, PR China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, Tiansheng Road, Beibei, Chongqing, PR China
| |
Collapse
|
169
|
Guo Y, Pang C, Jia X, Ma Q, Dou L, Zhao F, Gu L, Wei H, Wang H, Fan S, Su J, Yu S. An NAM Domain Gene, GhNAC79, Improves Resistance to Drought Stress in Upland Cotton. FRONTIERS IN PLANT SCIENCE 2017; 8:1657. [PMID: 28993786 PMCID: PMC5622203 DOI: 10.3389/fpls.2017.01657] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/08/2017] [Indexed: 05/18/2023]
Abstract
Plant-specific NAC proteins comprise one of the largest transcription factor families in plants and play important roles in plant development and the stress response. Gossypium hirsutum L. is a major source of fiber, but its growth and productivity are limited by many biotic and abiotic stresses. In this study, the NAC domain gene GhNAC79 was functionally characterized in detail, and according to information about the cotton genome sequences, it was located on scaffold42.1, containing three exons and two introns. Promoter analysis indicated that the GhNAC79 promoter contained both basic and stress-related elements, and it was especially expressed in the cotyledon of Arabidopsis. A transactivation assay in yeast demonstrated that GhNAC79 was a transcription activator, and its activation domain was located at its C-terminus. The results of qRT-PCR proved that GhNAC79 was preferentially expressed at later stages of cotyledon and fiber development, and it showed high sensitivity to ethylene and meJA treatments. Overexpression of GhNAC79 resulted in an early flowering phenotype in Arabidopsis, and it also improved drought tolerance in both Arabidopsis and cotton. Furthermore, VIGS-induced silencing of GhNAC79 in cotton led to a drought-sensitive phenotype. In summary, GhNAC79 positively regulates drought stress, and it also responds to ethylene and meJA treatments, making it a candidate gene for stress studies in cotton.
Collapse
Affiliation(s)
- Yaning Guo
- College of Agronomy, Northwest A&F UniversityYangling, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
- School of Life Science, Yulin UniversityYulin, China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Xiaoyun Jia
- College of Agronomy, Northwest A&F UniversityYangling, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Lingling Dou
- College of Agronomy, Northwest A&F UniversityYangling, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Fengli Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Lijiao Gu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Junji Su
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Shuxun Yu
- College of Agronomy, Northwest A&F UniversityYangling, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
- *Correspondence: Shuxun Yu,
| |
Collapse
|
170
|
Miao Q, Deng P, Saha S, Jenkins JN, Hsu CY, Abdurakhmonov IY, Buriev ZT, Pepper A, Ma DP. Transcriptome Analysis of Ten-DPA Fiber in an Upland Cotton (<i>Gossypium hirsutum</i>) Line with Improved Fiber Traits from Phytochrome A1 RNAi Plants. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ajps.2017.810172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
171
|
Wang H, Huang C, Zhao W, Dai B, Shen C, Zhang B, Li D, Lin Z. Identification of QTL for Fiber Quality and Yield Traits Using Two Immortalized Backcross Populations in Upland Cotton. PLoS One 2016; 11:e0166970. [PMID: 27907098 PMCID: PMC5131980 DOI: 10.1371/journal.pone.0166970] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022] Open
Abstract
Two immortalized backcross populations (DHBCF1s and JMBCF1s) were developed using a recombinant inbred line (RIL) population crossed with the two parents DH962 and Jimian5 (as the males), respectively. The fiber quality and yield component traits of the two backcross populations were phenotyped at four environments (two locations, two years). One hundred seventy-eight quantitative trait loci (QTL) were detected including 76 for fiber qualities and 102 for yield components, explaining 4.08–17.79% of the phenotypic variation (PV). Among the 178 QTL, 22 stable QTL were detected in more than one environment or population. A stable QTL, qFL-c10-1, was detected in the previous F2 population, a RIL population in 3 environments and the current two BCF1 populations in this study, explaining 5.79–37.09% of the PV. Additionally, 117 and 110 main-effect QTL (M-QTL) and 47 and 191 digenic epistatic QTL (E-QTL) were detected in the DHBCF1s and JMBCF1s populations, respectively. The effect of digenic epistasis played a more important role on lint percentage, fiber length and fiber strength. These results obtained in the present study provided more resources to obtain stable QTL, confirming the authenticity and reliability of the QTL for molecular marker-assisted selection breeding and QTL cloning.
Collapse
Affiliation(s)
- Hantao Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Cong Huang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wenxia Zhao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Baosheng Dai
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chao Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Beibei Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dingguo Li
- Institute of Crop Genetic and Breeding, College of Agriculture, Yangtze University, Jingzhou, Hubei, China
- * E-mail: (ZXL); (DGL)
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- * E-mail: (ZXL); (DGL)
| |
Collapse
|
172
|
Tao C, Jin X, Zhu L, Li H. Two-Dimensional Gel Electrophoresis-Based Proteomic Analysis Reveals N-terminal Truncation of the Hsc70 Protein in Cotton Fibers In Vivo. Sci Rep 2016; 6:36961. [PMID: 27833127 PMCID: PMC5105075 DOI: 10.1038/srep36961] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/21/2016] [Indexed: 11/09/2022] Open
Abstract
On two-dimensional electrophoresis gels, six protein spots from cotton ovules and fibers were identified as heat shock cognate 70 kD protein (Hsc70). Three spots corresponded to an experimental molecular weight (MW) of 70 kD (spots 1, 2 and 3), and the remaining three spots corresponded to an experimental MW slightly greater than 45 kD (spots 4, 5 and 6). Protein spots 1, 2 and 3 were abundant on gels of 0-day (the day of anthesis) wild-type (WT) ovules, 0-day fuzzless-lintless mutant ovules and 10-day WT ovules but absent from gels of 10-day WT fibers. Three individual transcripts encoding these six protein spots were obtained by using rapid amplification of cDNA ends (RACE). Edman degradation and western blotting confirmed that the three 45 kD Hsc70 protein spots had the same N-terminal, which started from the T271 amino acid in the intact Hsc70 protein. Furthermore, quadrupole time-of-flight mass spectrometry analysis identified a methylation modification on the arginine at position 475 for protein spots 4 and 5. Our data demonstrate that site-specific in vivo N-terminal truncation of the Hsc70 protein was particularly prevalent in cotton fibers, indicating that post-translational regulation might play an important role in cotton fiber development.
Collapse
Affiliation(s)
- Chengcheng Tao
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, 832003, China.,Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xiang Jin
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, 832003, China.,Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Liping Zhu
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, 832003, China
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, 832003, China
| |
Collapse
|
173
|
Imran M, Tang K, Liu JY. Comparative Genome-Wide Analysis of the Malate Dehydrogenase Gene Families in Cotton. PLoS One 2016; 11:e0166341. [PMID: 27829020 PMCID: PMC5102359 DOI: 10.1371/journal.pone.0166341] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/27/2016] [Indexed: 11/19/2022] Open
Abstract
Malate dehydrogenases (MDHs) play crucial roles in the physiological processes of plant growth and development. In this study, 13 and 25 MDH genes were identified from Gossypium raimondii and Gossypium hirsutum, respectively. Using these and 13 previously reported Gossypium arboretum MDH genes, a comparative molecular analysis between identified MDH genes from G. raimondii, G. hirsutum, and G. arboretum was performed. Based on multiple sequence alignments, cotton MDHs were divided into five subgroups: mitochondrial MDH, peroxisomal MDH, plastidial MDH, chloroplastic MDH and cytoplasmic MDH. Almost all of the MDHs within the same subgroup shared similar gene structure, amino acid sequence, and conserved motifs in their functional domains. An analysis of chromosomal localization suggested that segmental duplication played a major role in the expansion of cotton MDH gene families. Additionally, a selective pressure analysis indicated that purifying selection acted as a vital force in the evolution of MDH gene families in cotton. Meanwhile, an expression analysis showed the distinct expression profiles of GhMDHs in different vegetative tissues and at different fiber developmental stages, suggesting the functional diversification of these genes in cotton growth and fiber development. Finally, a promoter analysis indicated redundant but typical cis-regulatory elements for the potential functions and stress activity of many MDH genes. This study provides fundamental information for a better understanding of cotton MDH gene families and aids in functional analyses of the MDH genes in cotton fiber development.
Collapse
Affiliation(s)
- Muhammad Imran
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kai Tang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jin-Yuan Liu
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- * E-mail:
| |
Collapse
|
174
|
Identification of candidate genes from the SAD gene family in cotton for determination of cottonseed oil composition. Mol Genet Genomics 2016; 292:173-186. [DOI: 10.1007/s00438-016-1265-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/25/2016] [Indexed: 10/20/2022]
|
175
|
Analysis of the Complete Mitochondrial Genome Sequence of the Diploid Cotton Gossypium raimondii by Comparative Genomics Approaches. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5040598. [PMID: 27847816 PMCID: PMC5099484 DOI: 10.1155/2016/5040598] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/26/2016] [Indexed: 11/17/2022]
Abstract
Cotton is one of the most important economic crops and the primary source of natural fiber and is an important protein source for animal feed. The complete nuclear and chloroplast (cp) genome sequences of G. raimondii are already available but not mitochondria. Here, we assembled the complete mitochondrial (mt) DNA sequence of G. raimondii into a circular genome of length of 676,078 bp and performed comparative analyses with other higher plants. The genome contains 39 protein-coding genes, 6 rRNA genes, and 25 tRNA genes. We also identified four larger repeats (63.9 kb, 10.6 kb, 9.1 kb, and 2.5 kb) in this mt genome, which may be active in intramolecular recombination in the evolution of cotton. Strikingly, nearly all of the G. raimondii mt genome has been transferred to nucleus on Chr1, and the transfer event must be very recent. Phylogenetic analysis reveals that G. raimondii, as a member of Malvaceae, is much closer to another cotton (G. barbadense) than other rosids, and the clade formed by two Gossypium species is sister to Brassicales. The G. raimondii mt genome may provide a crucial foundation for evolutionary analysis, molecular biology, and cytoplasmic male sterility in cotton and other higher plants.
Collapse
|
176
|
Zhang B, Liu JY. Cotton cytosolic pyruvate kinase GhPK6 participates in fast fiber elongation regulation in a ROS-mediated manner. PLANTA 2016; 244:915-26. [PMID: 27316434 DOI: 10.1007/s00425-016-2557-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/11/2016] [Indexed: 05/18/2023]
Abstract
Cotton cytosolic pyruvate kinase GhPK6 is preferentially expressed in the late stage of fiber elongation process, transgenic experiments indicated that its expression level was negatively correlated to cell expansion rate. Pyruvate kinase (PK) plays vital regulatory roles in rapid cell growth in mammals. However, the function of PK in plant cell growth remains unclear. In allotetraploid upland cotton (Gossypium hirsutum L.), a total of 33 PK genes are encoded by the genome. Analysis of the transcriptome data indicated that only two cytosolic PK genes, GhPK6 and its duplicated gene GhPK26, are preferentially expressed in elongating cotton fiber cells. RT-qPCR and western blot analyses revealed that the expression of GhPK6 was negatively correlated with fiber elongation rate, which well explains the observed sharp increase of cytosolic PK activity at the end of fast fiber elongation process. Furthermore, virus-induced gene silencing of GhPK6 in cotton plants resulted in increased fiber cell elongation and reduced reactive oxygen species (ROS) accumulation. On the contrary, Arabidopsis plants ectopically expressing GhPK6 exhibited ROS-mediated growth inhibition, whereas the addition of ROS scavenging reagents could partly rescue this inhibition. These data collectively suggested that GhPK6 might play an important role in regulating cotton fiber elongation in a ROS-dependent inhibition manner.
Collapse
Affiliation(s)
- Bing Zhang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, 100084, China
| | - Jin-Yuan Liu
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
177
|
Genome-Wide Characterization and Expression Profiles of the Superoxide Dismutase Gene Family in Gossypium. Int J Genomics 2016; 2016:8740901. [PMID: 27660755 PMCID: PMC5021877 DOI: 10.1155/2016/8740901] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/03/2016] [Indexed: 01/01/2023] Open
Abstract
Superoxide dismutase (SOD) as a group of significant and ubiquitous enzymes plays a critical function in plant growth and development. Previously this gene family has been investigated in Arabidopsis and rice; it has not yet been characterized in cotton. In our study, it was the first time for us to perform a genome-wide analysis of SOD gene family in cotton. Our results showed that 10 genes of SOD gene family were identified in Gossypium arboreum and Gossypium raimondii, including 6 Cu-Zn-SODs, 2 Fe-SODs, and 2 Mn-SODs. The chromosomal distribution analysis revealed that SOD genes are distributed across 7 chromosomes in Gossypium arboreum and 8 chromosomes in Gossypium raimondii. Segmental duplication is predominant duplication event and major contributor for expansion of SOD gene family. Gene structure and protein structure analysis showed that SOD genes have conserved exon/intron arrangement and motif composition. Microarray-based expression analysis revealed that SOD genes have important function in abiotic stress. Moreover, the tissue-specific expression profile reveals the functional divergence of SOD genes in different organs development of cotton. Taken together, this study has imparted new insights into the putative functions of SOD gene family in cotton. Findings of the present investigation could help in understanding the role of SOD gene family in various aspects of the life cycle of cotton.
Collapse
|
178
|
Genome-wide identification of cassava R2R3 MYB family genes related to abscission zone separation after environmental-stress-induced abscission. Sci Rep 2016; 6:32006. [PMID: 27573926 PMCID: PMC5004182 DOI: 10.1038/srep32006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/01/2016] [Indexed: 11/09/2022] Open
Abstract
Cassava plants (Manihot esculenta Crantz) resist environmental stresses by shedding leaves in leaf pulvinus abscission zones (AZs), thus leading to adaptation to new environmental conditions. Little is known about the roles of cassava R2R3 MYB factors in regulating AZ separation. Herein, 166 cassava R2R3 MYB genes were identified. Evolutionary analysis indicated that the 166 R2R3 MYB genes could be divided into 11 subfamilies. Transcriptome analysis indicated that 26 R2R3 MYB genes were expressed in AZs across six time points during both ethylene- and water-deficit stress-induced leaf abscission. Comparative expression profile analysis of similar SOTA (Self Organizing Tree Algorithm) clusters demonstrated that 10 R2R3 MYB genes had similar expression patterns at six time points in response to both treatments. GO (Gene Ontology) annotation confirmed that all 10 R2R3 MYB genes participated in the responses to stress and ethylene and auxin stimuli. Analysis of the putative 10 R2R3 MYB promoter regions showed that those genes primarily contained ethylene- and stress-related cis-elements. The expression profiles of the genes acting downstream of the selected MYBs were confirmed to be involved in cassava abscission zone separation. All these results indicated that R2R3 MYB plays an important regulatory role in AZ separation.
Collapse
|
179
|
Zeng YD, Sun JL, Bu SH, Deng KS, Tao T, Zhang YM, Zhang TZ, Du XM, Zhou BL. EcoTILLING revealed SNPs in GhSus genes that are associated with fiber- and seed-related traits in upland cotton. Sci Rep 2016; 6:29250. [PMID: 27385639 PMCID: PMC4935865 DOI: 10.1038/srep29250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/14/2016] [Indexed: 12/16/2022] Open
Abstract
Cotton is the most important textile crop in the world due to its cellulose-enriched fibers. Sucrose synthase genes (Sus) play pivotal roles in cotton fiber and seed development. To mine and pyramid more favorable alleles for cotton molecular breeding, single nucleotide polymorphisms (SNPs) of GhSus family genes were investigated across 277 upland cotton accessions by EcoTILLING. As a result, a total of 24 SNPs in the amplified regions of eight GhSus genes were identified. These SNPs were significantly associated with at least one fiber- or seed-related trait measured in Nanjing, Anyang and Kuche in 2007-2009. Four main-effect quantitative trait nucleotides (QTNs) and five epistatic QTNs, with 0.76-3.56% of phenotypic variances explained by each QTN (PVE), were found to be associated with yield-related traits; six epistatic QTNs, with the 0.43-3.48% PVE, were found to be associated with fiber quality-related traits; and one main-effect QTN and one epistatic QTN, with the PVE of 1.96% and 2.53%, were found to be associated with seed oil content and protein content, respectively. Therefore, this study provides new information for molecular breeding in cotton.
Collapse
Affiliation(s)
- Yan-Da Zeng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun-Ling Sun
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Su-Hong Bu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang-Sheng Deng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Tao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan-Ming Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tian-Zhen Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiong-Ming Du
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Bao-Liang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
180
|
GhLTPG1, a cotton GPI-anchored lipid transfer protein, regulates the transport of phosphatidylinositol monophosphates and cotton fiber elongation. Sci Rep 2016; 6:26829. [PMID: 27311358 PMCID: PMC4911556 DOI: 10.1038/srep26829] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/09/2016] [Indexed: 11/18/2022] Open
Abstract
The cotton fibers are seed trichomes that elongate from the ovule epidermis. Polar lipids are required for the quick enlargement of cell membrane and fiber cell growth, however, how lipids are transported from the ovules into the developing fibers remains less known. Here, we reported the functional characterization of GhLTPG1, a GPI-anchored lipid transport protein, during cotton fiber elongation. GhLTPG1 was abundantly expressed in elongating cotton fibers and outer integument of the ovules, and GhLTPG1 protein was located on cell membrane. Biochemical analysis showed that GhLTPG1 specifically bound to phosphatidylinositol mono-phosphates (PtdIns3P, PtdIns4P and PtdIns5P) in vitro and transported PtdInsPs from the synthesis places to the plasma membranes in vivo. Expression of GhLTPG1 in Arabidopsis caused an increased number of trichomes, and fibers in GhLTPG1-knockdown cotton plants exhibited significantly reduced length, decreased polar lipid content, and repression of fiber elongation-related genes expression. These results suggested that GhLTPG1 protein regulates the cotton fiber elongation through mediating the transport of phosphatidylinositol monophosphates.
Collapse
|
181
|
Man W, Zhang L, Li X, Xie X, Pei W, Yu J, Yu S, Zhang J. A comparative transcriptome analysis of two sets of backcross inbred lines differing in lint-yield derived from a Gossypium hirsutum × Gossypium barbadense population. Mol Genet Genomics 2016; 291:1749-67. [PMID: 27256327 DOI: 10.1007/s00438-016-1216-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 05/13/2016] [Indexed: 01/23/2023]
Abstract
Upland cotton (Gossypium hirsutum L.) is the most important fiber crop, and its lint-yield improvement is impeded due to its narrow genetic base and the lack of understanding of the genetic basis of yield. Backcross inbred lines (BILs) or near-isogenic lines (NILs) in the same genetic background differing in lint yield, developed through advanced backcrossing, provide an important genomic resource to study the molecular genetic basis of lint yield. In the present study, a high-yield (HY) group and a low-yield (LY) group each with three BILs were selected from a BIL population between G. hirsutum and G. barbadense. Using a microarray-based comparative transcriptome analysis on developing fibers at 10 days post-anthesis (DPA) between the two groups, 1486 differentially expressed genes (DEGs) were identified. A total of 212 DEGs were further mapped in the regions of 24 yield QTL and 11 yield trait QTL hotspots as reported previously, and 81 DEGs mapped with the 7 lint-yield QTL identified in the BIL population from which the two sets of BILs were selected. Gene Ontology annotations and Blast-Mapping-Annotation-KEGG analysis via Blast2GO revealed that more DEGs were associated with catalytic activity and binding, followed by transporters, nucleic acid binding transcription factors, structural molecules and molecular transducer activities. Six DEGs were chosen for a quantitative RT-PCR assay, and the results were consistent with the microarray analysis. The development of DEGs-based markers revealed that 7 single strand conformation polymorphism-based single nucleotide polymorphic (SSCP-SNP) markers were associated with yield traits, and 3 markers with lint yield. In the present study, we identified a number of yield and yield component QTL-co-localizing DEGs and developed several DEG-based SSCP-SNP markers for the traits, thereby providing a set of candidate genes for molecular breeding and genetic manipulation of lint yield in cotton.
Collapse
Affiliation(s)
- Wu Man
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Liyuan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Xihua Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Xiaobing Xie
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China.,Wuyang A & F Bureau, Luohe, Henan, China
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China.
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China.
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA.
| |
Collapse
|
182
|
Xiao GH, Wang K, Huang G, Zhu YX. Genome-scale analysis of the cotton KCS gene family revealed a binary mode of action for gibberellin A regulated fiber growth. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:577-89. [PMID: 26399709 PMCID: PMC5061104 DOI: 10.1111/jipb.12429] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/22/2015] [Indexed: 05/05/2023]
Abstract
Production of β-ketoacyl-CoA, which is catalyzed by 3-ketoacyl-CoA synthase (KCS), is the first step in very long chain fatty acid (VLCFA) biosynthesis. Here we identified 58 KCS genes from Gossypium hirsutum, 31 from G. arboreum and 33 from G. raimondii by searching the assembled cotton genomes. The gene family was divided into the plant-specific FAE1-type and the more general ELO-type. KCS transcripts were widely expressed and 32 of them showed distinct subgenome-specific expressions in one or more cotton tissues/organs studied. Six GhKCS genes rescued the lethality of elo2Δelo3Δ yeast double mutant, indicating that this gene family possesses diversified functions. Most KCS genes with GA-responsive elements (GAREs) in the promoters were significantly upregulated by gibberellin A3 (GA). Exogenous GA3 not only promoted fiber length, but also increased the thickness of cell walls significantly. GAREs present also in the promoters of several cellulose synthase (CesA) genes required for cell wall biosynthesis and they were all induced significantly by GA3 . Because GA treatment resulted in longer cotton fibers with thicker cell walls and higher dry weight per unit cell length, we suggest that it may regulate fiber elongation upstream of the VLCFA-ethylene pathway and also in the downstream steps towards cell wall synthesis.
Collapse
Affiliation(s)
- Guang-Hui Xiao
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Kun Wang
- Institute for Advanced Studies/College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Gai Huang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yu-Xian Zhu
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
- Institute for Advanced Studies/College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
183
|
Salih H, Leng X, He SP, Jia YH, Gong WF, Du XM. Characterization of the early fiber development gene, Ligon-lintless 1 (Li1), using microarray. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.plgene.2016.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
184
|
Tang K, Dong CJ, Liu JY. Genome-Wide Comparative Analysis of the Phospholipase D Gene Families among Allotetraploid Cotton and Its Diploid Progenitors. PLoS One 2016; 11:e0156281. [PMID: 27213891 PMCID: PMC4877076 DOI: 10.1371/journal.pone.0156281] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/11/2016] [Indexed: 01/19/2023] Open
Abstract
In this study, 40 phospholipase D (PLD) genes were identified from allotetraploid cotton Gossypium hirsutum, and 20 PLD genes were examined in diploid cotton Gossypium raimondii. Combining with 19 previously identified Gossypium arboreum PLD genes, a comparative analysis was performed among the PLD gene families among allotetraploid and two diploid cottons. Based on the orthologous relationships, we found that almost each G. hirsutum PLD had a corresponding homolog in the G. arboreum and G. raimondii genomes, except for GhPLDβ3A, whose homolog GaPLDβ3 may have been lost during the evolution of G. arboreum after the interspecific hybridization. Phylogenetic analysis showed that all of the cotton PLDs were unevenly classified into six numbered subgroups: α, β/γ, δ, ε, ζ and φ. An N-terminal C2 domain was found in the α, β/γ, δ and ε subgroups, while phox homology (PX) and pleckstrin homology (PH) domains were identified in the ζ subgroup. The subgroup φ possessed a single peptide instead of a functional domain. In each phylogenetic subgroup, the PLDs showed high conservation in gene structure and amino acid sequences in functional domains. The expansion of GhPLD and GrPLD gene families were mainly attributed to segmental duplication and partly attributed to tandem duplication. Furthermore, purifying selection played a critical role in the evolution of PLD genes in cotton. Quantitative RT-PCR documented that allotetraploid cotton PLD genes were broadly expressed and each had a unique spatial and developmental expression pattern, indicating their functional diversification in cotton growth and development. Further analysis of cis-regulatory elements elucidated transcriptional regulations and potential functions. Our comparative analysis provided valuable information for understanding the putative functions of the PLD genes in cotton fiber.
Collapse
Affiliation(s)
- Kai Tang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Chun-Juan Dong
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jin-Yuan Liu
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
185
|
Guo K, Du X, Tu L, Tang W, Wang P, Wang M, Liu Z, Zhang X. Fibre elongation requires normal redox homeostasis modulated by cytosolic ascorbate peroxidase in cotton (Gossypium hirsutum). JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3289-301. [PMID: 27091877 PMCID: PMC4892722 DOI: 10.1093/jxb/erw146] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
High-quality cotton fibre equates to a more comfortable textile. Fibre length is an important index of fibre quality. Hydrogen peroxide (H2O2) acts as a signalling molecule in the regulation of fibre elongation. Results from in vitro ovule culture suggest that the alteration of fibre cell H2O2 levels affects fibre development. Ascorbate peroxidase (APX) is an important reactive oxygen species (ROS) scavenging enzyme, and we found that GhAPX1AT/DT encoded one member of the previously unrealized group of cytosolic APXs (cAPXs) that were preferentially expressed during the fibre elongation stage. Transgenic cottons with up- and down-regulation of GhAPX1AT/DT were generated to control fibre endogenous levels of H2O2 Suppression of all cAPX (IAO) resulted in a 3.5-fold increase in H2O2 level in fibres and oxidative stress, which significantly suppressed fibre elongation. The fibre length of transgenic lines with over-expression or specific down-regulation of GhAPX1AT/DT did not show any obvious change. However, the fibres in the over-expression lines exhibited higher tolerance to oxidative stress. Differentially expressed genes (DEGs) in fibres at 10 days post-anthesis (DPA) of IAO lines identified by RNA-seq were related to redox homeostasis, signalling pathways, stress responses and cell wall synthesis, and the DEGs that were up-regulated in IAO lines were also up-regulated in the 10 DPA and 20 DPA fibres of wild cotton compared with domesticated cotton. These results suggest that optimal H2O2 levels and redox state regulated by cytosolic APX are key mechanisms regulating fibre elongation, and dysregulation of the increase in H2O2 induces oxidative stress and results in shorter fibres by initiating secondary cell wall-related gene expression.
Collapse
Affiliation(s)
- Kai Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xueqiong Du
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Wenxin Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Pengcheng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhen Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
186
|
Liu X, Sun G, Sun X. RNA interference-mediated silencing of speckle-type POZ protein promotes apoptosis of renal cell cancer cells. Onco Targets Ther 2016; 9:2393-402. [PMID: 27143934 PMCID: PMC4846068 DOI: 10.2147/ott.s91097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study aimed to investigate the effects of silencing the speckle-type POZ protein (SPOP) gene on renal cell cancer (RCC) cells and to explore its possible mechanism. The A498 and ACHN RCC cells were transfected with small interference RNA (siRNA)-SPOP by lipofection methods. The silencing efficiency was monitored by quantitative real-time polymerase chain reaction and Western blot. The effects of SPOP silencing on cell apoptosis, cell viability, colony formation ability, cell migration ability, and chemosensitivity to Sorafenib were assessed by flow cytometry, an MTT assay, a colony formation assay, a trans-well migration assay, and a CCK-8 assay, respectively. Its effects on the expression of several cytokines were determined by a protein microarray. Relevant signaling pathways were also analyzed. Compared with the control group, the cell apoptosis rate was significantly higher; the cell viability, the colony formation, and migration ability were significantly decreased in the siRNA-SPOP group. The protein microarray screening showed that the expression of vascular endothelial growth factor receptor, matrix metallopeptidase-9, vascular cell adhesion molecule-1, and stromal cell-derived factor-1 in the siRNA group was significantly decreased and that the expression of granulocyte-macrophage colony-stimulating factor and E-cadherin was significantly increased (P<0.05). The relevant signaling pathways were the integrin-mediated cell surface interactions pathway and extracellular matrix organization signal pathway. SPOP gene silencing induced cell apoptosis, decreased cell viability, colony formation, and migration ability, and elevated the drug sensitivity in the RCC cells. A possible mechanism is that silencing SPOP induces the differential expression of E-cadherin, vascular endothelial growth factor receptor, matrix metallopeptidase-9, and vascular cell adhesion molecule, which are related to the integrin-mediated cell surface interactions and extracellular matrix organization signaling pathway.
Collapse
Affiliation(s)
- Xiaoxia Liu
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, People's Republic of China
| | - Guiling Sun
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, People's Republic of China
| | - Xiuju Sun
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, People's Republic of China
| |
Collapse
|
187
|
Zhou B, Zhang L, Ullah A, Jin X, Yang X, Zhang X. Identification of Multiple Stress Responsive Genes by Sequencing a Normalized cDNA Library from Sea-Land Cotton (Gossypium barbadense L.). PLoS One 2016; 11:e0152927. [PMID: 27031331 PMCID: PMC4816313 DOI: 10.1371/journal.pone.0152927] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/20/2016] [Indexed: 11/18/2022] Open
Abstract
Background Plants often face multiple stresses including drought, extreme temperature, salinity, nutrition deficiency and biotic stresses during growth and development. All the stresses result in a series of physiological and metabolic reactions and then generate reversible inhibition of metabolism and growth and can cause seriously irreversible damage, even death. At each stage of cotton growth, environmental stress conditions pose devastating threats to plant growth and development, especially yield and quality. Due to the complex stress conditions and unclear molecular mechanisms of stress response, there is an urgent need to explore the mechanisms of cotton response against abiotic stresses. Methodology and Principal Findings A normalized cDNA library was constructed using Gossypium barbadense Hai-7124 treated with different stress conditions (heat, cold, salt, drought, potassium and phosphorus deficit and Verticillium dahliae infection). Random sequencing of this library generated 6,047 high-quality expressed sequence tags (ESTs). The ESTs were clustered and assembled into 3,135 uniESTs, composed of 2,497 contigs and 638 singletons. The blastx results demonstrated 2,746 unigenes showing significant similarity to known genes, 74 uniESTs displaying significant similarity to genes of predicted proteins, and 315 uniESTs remain uncharacterized. Functional classification unveiled the abundance of uniESTs in binding, catalytic activity, and structural molecule activity. Annotations of the uniESTs by the plant transcription factor database (PlantTFDB) and Plant Stress Protein Database (PSPDB) disclosed that transcription factors and stress-related genes were enriched in the current library. The expression of some transcription factors and specific stress-related genes were verified by RT-PCR under various stress conditions. Conclusions/Significance Annotation results showed that a huge number of genes respond to stress in our study, such as MYB-related, C2H2, FAR1, bHLH, bZIP, MADS, and mTERF. These results will improve our knowledge of stress tolerance in cotton. In addition, they are also helpful in discovering candidate genes related to stress tolerance. The publicly available ESTs from G. barbadense are a valuable genomic resource that will facilitate further molecular study and breeding of stress-tolerant cotton.
Collapse
Affiliation(s)
- Bin Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Lin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Abid Ullah
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Xin Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
- * E-mail:
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| |
Collapse
|
188
|
Nie Z, Kang G, Duan C, Li Y, Dai L, Zeng R. Profiling Ethylene-Responsive Genes Expressed in the Latex of the Mature Virgin Rubber Trees Using cDNA Microarray. PLoS One 2016; 11:e0152039. [PMID: 26985821 PMCID: PMC4795647 DOI: 10.1371/journal.pone.0152039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 02/22/2016] [Indexed: 12/19/2022] Open
Abstract
Ethylene is commonly used as a latex stimulant of Hevea brasiliensis by application of ethephon (chloro-2-ethylphosphonic acid); however, the molecular mechanism by which ethylene increases latex production is not clear. To better understand the effects of ethylene stimulation on the laticiferous cells of rubber trees, a latex expressed sequence tag (EST)-based complementary DNA microarray containing 2,973 unique genes (probes) was first developed and used to analyze the gene expression changes in the latex of the mature virgin rubber trees after ethephon treatment at three different time-points: 8, 24 and 48 h. Transcript levels of 163 genes were significantly altered with fold-change values ≥ 2 or ≤ –2 (q-value < 0.05) in ethephon-treated rubber trees compared with control trees. Of the 163 genes, 92 were up-regulated and 71 down-regulated. The microarray results were further confirmed using real-time quantitative reverse transcript-PCR for 20 selected genes. The 163 ethylene-responsive genes were involved in several biological processes including organic substance metabolism, cellular metabolism, primary metabolism, biosynthetic process, cellular response to stimulus and stress. The presented data suggest that the laticifer water circulation, production and scavenging of reactive oxygen species, sugar metabolism, and assembly and depolymerization of the latex actin cytoskeleton might play important roles in ethylene-induced increase of latex production. The results may provide useful insights into understanding the molecular mechanism underlying the effect of ethylene on latex metabolism of H. brasiliensis.
Collapse
Affiliation(s)
- Zhiyi Nie
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, China
| | - Guijuan Kang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, China
| | - Cuifang Duan
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, China
| | - Yu Li
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, China
| | - Longjun Dai
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, China
| | - Rizhong Zeng
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, China
| |
Collapse
|
189
|
Chen N, Su M, Chi X, Zhang Z, Pan L, Chen M, Wang T, Wang M, Yang Z, Yu S. Transcriptome analysis reveals salt-stress-regulated biological processes and key pathways in roots of peanut (Arachis hypogaea L.). Genes Genomics 2016. [DOI: 10.1007/s13258-016-0395-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
190
|
Liao W, Wang G, Li Y, Wang B, Zhang P, Peng M. Reactive oxygen species regulate leaf pulvinus abscission zone cell separation in response to water-deficit stress in cassava. Sci Rep 2016; 6:21542. [PMID: 26899473 PMCID: PMC4761936 DOI: 10.1038/srep21542] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/26/2016] [Indexed: 12/26/2022] Open
Abstract
Cassava (Manihot esculenta Crantz) plant resists water-deficit stress by shedding leaves leading to adaptive water-deficit condition. Transcriptomic, physiological, cellular, molecular, metabolic, and transgenic methods were used to study the mechanism of cassava abscission zone (AZ) cell separation under water-deficit stress. Microscopic observation indicated that AZ cell separation initiated at the later stages during water-deficit stress. Transcriptome profiling of AZ suggested that differential expression genes of AZ under stress mainly participate in reactive oxygen species (ROS) pathway. The key genes involved in hydrogen peroxide biosynthesis and metabolism showed significantly higher expression levels in AZ than non-separating tissues adjacent to the AZ under stress. Significantly higher levels of hydrogen peroxide correlated with hydrogen peroxide biosynthesis related genes and AZ cell separation was detected by microscopic observation, colorimetric detection and GC-MS analyses under stress. Co-overexpression of the ROS-scavenging proteins SOD and CAT1 in cassava decreased the levels of hydrogen peroxide in AZ under water-deficit stress. The cell separation of the pulvinus AZ also delayed in co-overexpression of the ROS-scavenging proteins SOD and CAT1 plants both in vitro and at the plant level. Together, the results indicated that ROS play an important regulatory role in the process of cassava leaf abscission under water-deficit stress.
Collapse
Affiliation(s)
- Wenbin Liao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Gan Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yayun Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Bin Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200032, China
| | - Ming Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
191
|
Islam MS, Fang DD, Thyssen GN, Delhom CD, Liu Y, Kim HJ. Comparative fiber property and transcriptome analyses reveal key genes potentially related to high fiber strength in cotton (Gossypium hirsutum L.) line MD52ne. BMC PLANT BIOLOGY 2016; 16:36. [PMID: 26833213 PMCID: PMC4736178 DOI: 10.1186/s12870-016-0727-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/28/2016] [Indexed: 05/25/2023]
Abstract
BACKGROUND Individual fiber strength is an important quality attribute that greatly influences the strength of the yarn spun from cotton fibers. Fiber strength is usually measured from bundles of fibers due to the difficulty of reliably measuring strength from individual cotton fibers. However, bundle fiber strength (BFS) is not always correlated with yarn strength since it is affected by multiple fiber properties involved in fiber-to-fiber interactions within a bundle in addition to the individual fiber strength. Molecular mechanisms responsible for regulating individual fiber strength remain unknown. Gossypium hirsutum near isogenic lines (NILs), MD52ne and MD90ne showing variations in BFS provide an opportunity for dissecting the regulatory mechanisms involved in individual fiber strength. RESULTS Comprehensive fiber property analyses of the NILs revealed that the superior bundle strength of MD52ne fibers resulted from high individual fiber strength with minor contributions from greater fiber length. Comparative transcriptome analyses of the NILs showed that the superior bundle strength of MD52ne fibers was potentially related to two signaling pathways: one is ethylene and the interconnected phytohormonal pathways that are involved in cotton fiber elongation, and the other is receptor-like kinases (RLKs) signaling pathways that are involved in maintaining cell wall integrity. Multiple RLKs were differentially expressed in MD52ne fibers and localized in genomic regions encompassing the strength quantitative trait loci (QTLs). Several candidate genes involved in crystalline cellulose assembly were also up-regulated in MD52ne fibers while the secondary cell wall was produced. CONCLUSION Comparative phenotypic and transcriptomic analyses revealed differential expressions of the genes involved in crystalline cellulose assembly, ethylene and RLK signaling pathways between the MD52ne and MD90ne developing fibers. Ethylene and its phytohormonal network might promote the elongation of MD52ne fibers and indirectly contribute to the bundle strength by potentially improving fiber-to-fiber interactions. RLKs that were suggested to mediate a coordination of cell elongation and SCW biosynthesis in other plants might be candidate genes for regulating cotton fiber cell wall assembly and strength.
Collapse
Affiliation(s)
- Md S Islam
- USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, LA, 70124, USA.
| | - David D Fang
- USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, LA, 70124, USA.
| | - Gregory N Thyssen
- USDA-ARS, Southern Regional Research Center, Cotton Chemistry and Utilization Research Unit, New Orleans, LA, 70124, USA.
| | - Chris D Delhom
- USDA-ARS, Southern Regional Research Center, Cotton Structure and Quality Research Unit, New Orleans, LA, 70124, USA.
| | - Yongliang Liu
- USDA-ARS, Southern Regional Research Center, Cotton Structure and Quality Research Unit, New Orleans, LA, 70124, USA.
| | - Hee Jin Kim
- USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, LA, 70124, USA.
| |
Collapse
|
192
|
Deng S, Wei T, Tan K, Hu M, Li F, Zhai Y, Ye S, Xiao Y, Hou L, Pei Y, Luo M. Phytosterol content and the campesterol:sitosterol ratio influence cotton fiber development: role of phytosterols in cell elongation. SCIENCE CHINA-LIFE SCIENCES 2016; 59:183-93. [PMID: 26803301 DOI: 10.1007/s11427-015-4992-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/20/2015] [Indexed: 11/29/2022]
Abstract
Phytosterols play an important role in plant growth and development, including cell division, cell elongation, embryogenesis, cellulose biosynthesis, and cell wall formation. Cotton fiber, which undergoes synchronous cell elongation and a large amount of cellulose synthesis, is an ideal model for the study of plant cell elongation and cell wall biogenesis. The role of phytosterols in fiber growth was investigated by treating the fibers with tridemorph, a sterol biosynthetic inhibitor. The inhibition of phytosterol biosynthesis resulted in an apparent suppression of fiber elongation in vitro or in planta. The determination of phytosterol quantity indicated that sitosterol and campesterol were the major phytosterols in cotton fibers; moreover, higher concentrations of these phytosterols were observed during the period of rapid elongation of fibers. Furthermore, the decrease and increase in campesterol:sitosterol ratio was associated with the increase and decease in speed of elongation, respectively, during the elongation stage. The increase in the ratio was associated with the transition from cell elongation to secondary cell wall synthesis. In addition, a number of phytosterol biosynthetic genes were down-regulated in the short fibers of ligon lintless-1 mutant, compared to its near-isogenic wild-type TM-1. These results demonstrated that phytosterols play a crucial role in cotton fiber development, and particularly in fiber elongation.
Collapse
Affiliation(s)
- Shasha Deng
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, 400716, China
| | - Ting Wei
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, 400716, China
| | - Kunling Tan
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, 400716, China
| | - Mingyu Hu
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, 400716, China
| | - Fang Li
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, 400716, China
| | - Yunlan Zhai
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, 400716, China
| | - Shue Ye
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, 400716, China
| | - Yuehua Xiao
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, 400716, China
| | - Lei Hou
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, 400716, China
| | - Yan Pei
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, 400716, China
| | - Ming Luo
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
193
|
Zhu Y. The post-genomics era of cotton. SCIENCE CHINA-LIFE SCIENCES 2016; 59:109-11. [PMID: 26803303 DOI: 10.1007/s11427-016-5017-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/12/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Yuxian Zhu
- Institute for Advanced Studies and College of Life Science, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
194
|
Zou C, Wang Q, Lu C, Yang W, Zhang Y, Cheng H, Feng X, Prosper MA, Song G. Transcriptome analysis reveals long noncoding RNAs involved in fiber development in cotton (Gossypium arboreum). SCIENCE CHINA-LIFE SCIENCES 2016; 59:164-71. [DOI: 10.1007/s11427-016-5000-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/20/2015] [Indexed: 02/02/2023]
|
195
|
Jin X, Wang L, He L, Feng W, Wang X. Two-dimensional gel electrophoresis-based analysis provides global insights into the cotton ovule and fiber proteomes. SCIENCE CHINA-LIFE SCIENCES 2016; 59:154-63. [PMID: 26803300 DOI: 10.1007/s11427-016-4999-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/20/2015] [Indexed: 12/29/2022]
Abstract
Proteomic analysis of upland cotton was performed to profile the global detectable proteomes of ovules and fibers using two-dimensional electrophoresis (2DE). A total of 1,203 independent protein spots were collected from representative 2DE gels, which were digested with trypsin and identified by matrix-assisted laser desorption and ionization-time-offlight/ time-of-flight (MALDI-TOF/TOF) mass spectrometry. The mass spectrometry or tandem mass spectrometry (MS or MS/MS) data were then searched against a local database constructed from Gossypium hirsutum genome sequences, resulting in successful identification of 975 protein spots (411 for ovules and 564 for fibers). Functional annotation analysis of the 975 identified proteins revealed that ovule-specific proteins were mainly enriched in functions related to fatty acid elongation, sulfur amino acid metabolism and post-replication repair, while fiber-specific proteins were enriched in functions related to root hair elongation, galactose metabolism and D-xylose metabolic processes. Further annotation analysis of the most abundant protein spots showed that 28.96% of the total proteins in the ovule were mainly located in the Golgi apparatus, endoplasmic reticulum, mitochondrion and ribosome, whereas in fibers, 27.02% of the total proteins were located in the cytoskeleton, nuclear envelope and cell wall. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses of the ovule-specific protein spots P61, P93 and P198 and fiber-specific protein spots 230, 477 and 511 were performed to validate the proteomics data. Protein-protein interaction network analyses revealed very different network cluster patterns between ovules and fibers. This work provides the largest protein identification dataset of 2DE-detectable proteins in cotton ovules and fibers and indicates potentially important roles of tissue-specific proteins, thus providing insights into the cotton ovule and fiber proteomes on a global scale.
Collapse
Affiliation(s)
- Xiang Jin
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Limin Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,College of Horticulture and Landscape, Hainan University, Haikou, 570228, China
| | - Liping He
- College of Horticulture and Landscape, Hainan University, Haikou, 570228, China
| | - Weiqiang Feng
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,College of Horticulture and Landscape, Hainan University, Haikou, 570228, China
| | - Xuchu Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China. .,The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
196
|
Han L, Li Y, Sun Y, Wang H, Kong Z, Xia G. The two domains of cotton WLIM1a protein are functionally divergent. SCIENCE CHINA-LIFE SCIENCES 2016; 59:206-12. [PMID: 26803305 DOI: 10.1007/s11427-016-5002-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/20/2015] [Indexed: 01/27/2023]
Affiliation(s)
- Libo Han
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yuanbao Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongduo Sun
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyun Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guixian Xia
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
197
|
Wang K, Huang G, Zhu Y. Transposable elements play an important role during cotton genome evolution and fiber cell development. SCIENCE CHINA-LIFE SCIENCES 2015; 59:112-21. [PMID: 26687725 DOI: 10.1007/s11427-015-4928-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/20/2015] [Indexed: 11/26/2022]
Abstract
Transposable elements (TEs) usually occupy largest fractions of plant genome and are also the most variable part of the structure. Although traditionally it is hallmarked as "junk and selfish DNA", today more and more evidence points out TE's participation in gene regulations including gene mutation, duplication, movement and novel gene creation via genetic and epigenetic mechanisms. The recently sequenced genomes of diploid cottons Gossypium arboreum (AA) and Gossypium raimondii (DD) together with their allotetraploid progeny Gossypium hirsutum (AtAtDtDt) provides a unique opportunity to compare genome variations in the Gossypium genus and to analyze the functions of TEs during its evolution. TEs accounted for 57%, 68.5% and 67.2%, respectively in DD, AA and AtAtDtDt genomes. The 1,694 Mb A-genome was found to harbor more LTR(long terminal repeat)-type retrotransposons that made cardinal contributions to the twofold increase in its genome size after evolution from the 775.2 Mb D-genome. Although the 2,173 Mb AtAtDtDt genome showed similar TE content to the A-genome, the total numbers of LTR-gypsy and LTR-copia type TEs varied significantly between these two genomes. Considering their roles on rewiring gene regulatory networks, we believe that TEs may somehow be involved in cotton fiber cell development. Indeed, the insertion or deletion of different TEs in the upstream region of two important transcription factor genes in At or Dt subgenomes resulted in qualitative differences in target gene expression. We suggest that our findings may open a window for improving cotton agronomic traits by editing TE activities.
Collapse
Affiliation(s)
- Kun Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Gai Huang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yuxian Zhu
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
198
|
Mittal A, Jiang Y, Ritchie GL, Burke JJ, Rock CD. AtRAV1 and AtRAV2 overexpression in cotton increases fiber length differentially under drought stress and delays flowering. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:78-95. [PMID: 26706061 DOI: 10.1016/j.plantsci.2015.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/11/2015] [Accepted: 09/16/2015] [Indexed: 05/23/2023]
Abstract
There is a longstanding problem of an inverse relationship between cotton fiber qualities versus high yields. To better understand drought stress signaling and adaptation in cotton (Gossypium hirsutum) fiber development, we expressed the Arabidopsis transcription factors RELATED_TO_ABA-INSENSITIVE3/VIVIPAROUS1/(RAV1) and AtRAV2, which encode APETALA2-Basic3 domain proteins shown to repress transcription of FLOWERING_LOCUS_T (FT) and to promote stomatal opening cell-autonomously. In three years of field trials, we show that AtRAV1 and AtRAV2-overexpressing cotton had ∼5% significantly longer fibers with only marginal decreases in yields under well-watered or drought stress conditions that resulted in 40-60% yield penalties and 3-7% fiber length penalties in control plants. The longer transgenic fibers from drought-stressed transgenics could be spun into yarn which was measurably stronger and more uniform than that from well-watered control fibers. The transgenic AtRAV1 and AtRAV2 lines flowered later and retained bolls at higher nodes, which correlated with repression of endogenous GhFT-Like (FTL) transcript accumulation. Elevated expression early in development of ovules was observed for GhRAV2L, GhMYB25-Like (MYB25L) involved in fiber initiation, and GhMYB2 and GhMYB25 involved in fiber elongation. Altered expression of RAVs controlling critical nodes in developmental and environmental signaling hierarchies has the potential for phenotypic modification of crops.
Collapse
Affiliation(s)
- Amandeep Mittal
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, United States.
| | - Yingwen Jiang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, United States.
| | - Glen L Ritchie
- Department of Plant and Soils Science, Texas Tech University, Lubbock, TX 79409-2122, United States.
| | - John J Burke
- USDA-ARS Plant Stress and Germplasm Laboratory, Lubbock, TX 79415, United States.
| | - Christopher D Rock
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, United States.
| |
Collapse
|
199
|
Zhang B. A genome-wide survey of glycolytic genes in diploid Asian cotton (Gossypium arboreum). ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.plgene.2015.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
200
|
Liang W, Fang L, Xiang D, Hu Y, Feng H, Chang L, Zhang T. Transcriptome Analysis of Short Fiber Mutant Ligon lintless-1 (Li1) Reveals Critical Genes and Key Pathways in Cotton Fiber Elongation and Leaf Development. PLoS One 2015; 10:e0143503. [PMID: 26600249 PMCID: PMC4658197 DOI: 10.1371/journal.pone.0143503] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/05/2015] [Indexed: 01/12/2023] Open
Abstract
For efficient spinning and superior fabric production, long fiber length is a desired trait for cotton production. To unveil the molecular basis of the cotton fiber length regulation, a short fiber mutant, Ligon lintless-1 (Li1), is selected to compare with its corresponding wild type (WT). Li1 is a monogenic dominant cotton mutant causing extremely short fibers (<6mm) on mature seeds with visible pleiotropic effects on vegetative growth and development. In this research, we compared the transcriptome of fiber bearing ovules at 1 DPA, 3 DPA, 8 DPA and leaf between Li1 mutant and WT. A total of 7,852 differentially expressed genes (DEGs) were detected in ovules and leaves, which mainly participated in sugar, secondary metabolite and lipid metabolism pathways based on KEGG analysis. The common DEGs at 1 DPA and 3 DPA were involved in the responses to endogenous stimulus, signal transduction and long-chain fatty acid biosynthesis. For 3 DPA, 8 DPA and leaf, the common DEGs were involved in the responses to auxin and receptor kinases related pathway. Further analysis showed that 37 genes involved in very-long-chain fatty acid biosynthesis were suppressed in Li1 mutant during fiber fast elongation development. Most of the DEGs involved in cell wall metabolism, such cellulose synthase, expansin family, and glycosyl hydrolase were differentially expressed at 3 DPA and 8 DPA. Our results provide new insights into the mechanisms of fiber elongation, and offer novel genes as potential objects for fiber length improvement.
Collapse
Affiliation(s)
- Wenhua Liang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center, the Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center, the Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dan Xiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center, the Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center, the Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center, the Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lijing Chang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center, the Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center, the Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
- * E-mail:
| |
Collapse
|