151
|
Mikami K, Uji T, Li L, Takahashi M, Yasui H, Saga N. Visualization of phosphoinositides via the development of the transient expression system of a cyan fluorescent protein in the red alga Porphyra yezoensis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:563-9. [PMID: 19153794 DOI: 10.1007/s10126-008-9172-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 12/11/2008] [Indexed: 05/11/2023]
Abstract
Phosphoinositides (PIs) play important roles in signal transduction pathways and the regulation of cytoskeleton and membrane functions in eukaryotes. Subcellular localization of individual PI derivative is successfully visualized in yeast, animal, and green plant cells using PI derivative-specific pleckstrin homology (PH) domains fused with a variety of fluorescent proteins; however, expression of fluorescent proteins has not yet been reported in any red algal cells. In the present study, we developed the system to visualize these PIs using human PH domains fused with a humanized cyan fluorescent protein (AmCFP) in the red alga Porphyra yezoensis. Plasma membrane localization of AmCFP fused with the PH domain from phospholipase Cdelta1 and Akt1, but not Bruton's tyrosine kinase, was observed in cell wall-free monospores, demonstrating the presence of phosphatidylinositol-4,5-bisphosphate and phosphatidylinositol-3,4-bisphosphate in P. yezoensis cells. This is the first report of the successful expression of fluorescent protein and the monitoring of PI derivatives in red algal cells. Our system, based on transient expression of AmCFP, could be applicable for the analysis of subcellular localization of other proteins in P. yezoensis and other red algal cells.
Collapse
Affiliation(s)
- Koji Mikami
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan.
| | | | | | | | | | | |
Collapse
|
152
|
Moscatelli A, Idilli AI. Pollen tube growth: a delicate equilibrium between secretory and endocytic pathways. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:727-39. [PMID: 19686370 DOI: 10.1111/j.1744-7909.2009.00842.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Although pollen tube growth is a prerequisite for higher plant fertilization and seed production, the processes leading to pollen tube emission and elongation are crucial for understanding the basic mechanisms of tip growth. It was generally accepted that pollen tube elongation occurs by accumulation and fusion of Golgi-derived secretory vesicles (SVs) in the apical region, or clear zone, where they were thought to fuse with a restricted area of the apical plasma membrane (PM), defining the apical growth domain. Fusion of SVs at the tip reverses outside cell wall material and provides new segments of PM. However, electron microscopy studies have clearly shown that the PM incorporated at the tip greatly exceeds elongation and a mechanism of PM retrieval was already postulated in the mid-nineteenth century. Recent studies on endocytosis during pollen tube growth showed that different endocytic pathways occurred in distinct zones of the tube, including the apex, and led to a new hypothesis to explain vesicle accumulation at the tip; namely, that endocytic vesicles contribute substantially to V-shaped vesicle accumulation in addition to SVs and that exocytosis does not involve the entire apical domain. New insights suggested the intriguing hypothesis that modulation between exo- and endocytosis in the apex contributes to maintain PM polarity in terms of lipid/protein composition and showed distinct degradation pathways that could have different functions in the physiology of the cell. Pollen tube growth in vivo is closely regulated by interaction with style molecules. The study of endocytosis and membrane recycling in pollen tubes opens new perspectives to studying pollen tube-style interactions in vivo.
Collapse
Affiliation(s)
- Alessandra Moscatelli
- Dipartimento di Biologia L. Gorini, Università degli Studi di Milano, Milano, Italy.
| | | |
Collapse
|
153
|
Abstract
As an important metabolic pathway, phosphatidylinositol metabolism generates both constitutive and signalling molecules that are crucial for plant growth and development. Recent studies using genetic and molecular approaches reveal the important roles of phospholipid molecules and signalling in multiple processes of higher plants, including root growth, pollen and vascular development, hormone effects and cell responses to environmental stimuli plants. The present review summarizes the current progress in our understanding of the functional mechanism of phospholipid signalling, with an emphasis on the regulation of Ins(1,4,5)P3-Ca2+ oscillation, the second messenger molecule phosphatidic acid and the cytoskeleton.
Collapse
|
154
|
Li L, Saga N, Mikami K. Ca2+ influx and phosphoinositide signalling are essential for the establishment and maintenance of cell polarity in monospores from the red alga Porphyra yezoensis. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3477-89. [PMID: 19531546 PMCID: PMC2724695 DOI: 10.1093/jxb/erp183] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 05/12/2009] [Accepted: 05/13/2009] [Indexed: 05/16/2023]
Abstract
The asymmetrical distribution of F-actin directed by cell polarity has been observed during the migration of monospores from the red alga Porphyra yezoensis. The significance of Ca2+ influx and phosphoinositide signalling during the formation of cell polarity in migrating monospores was analysed pharmacologically. The results indicate that the inhibition of the establishment of cell polarity, as judged by the ability of F-actin to localize asymmetrically, cell wall synthesis, and development into germlings, occurred when monospores were treated with inhibitors of the Ca2+ permeable channel, phospholipase C (PLC), diacylglycerol kinase, and inositol-1,4,5-trisphosphate receptor. Moreover, it was also found that light triggered the establishment of cell polarity via photosynthetic activity but not its direction, indicating that the Ca2+ influx and PLC activation required for the establishment of cell polarity are light dependent. By contrast, inhibition of phospholipase D (PLD) prevented the migration of monospores but not the asymmetrical localization of F-actin. Taken together, these findings suggest that there is functional diversity between the PLC and PLD signalling systems in terms of the formation of cell polarity; the former being critical for the light-dependent establishment of cell polarity and the latter playing a role in the maintenance of established cell polarity.
Collapse
Affiliation(s)
- Lin Li
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan
| | - Naotsune Saga
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Koji Mikami
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| |
Collapse
|
155
|
Zonia L, Munnik T. Uncovering hidden treasures in pollen tube growth mechanics. TRENDS IN PLANT SCIENCE 2009; 14:318-27. [PMID: 19446491 DOI: 10.1016/j.tplants.2009.03.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 02/22/2009] [Accepted: 03/03/2009] [Indexed: 05/08/2023]
Abstract
The long-standing model of tip growth in pollen tubes considers that exocytosis and growth occur at the apex and that the pool of very small vesicles in the apical dome contains secretory (exocytic) vesicles. However, recent work on vesicle trafficking dynamics in tobacco pollen tubes shows that exocytosis occurs in the subapical region. Taking these and other new results into account, we set out to resolve specific problems that are endemic in current models and present a two-part ACE (apical cap extension)-H (hydrodynamics) growth model. The ACE model involves delivery and recycling of materials required for new cell synthesis and the H model involves mechanisms that integrate and regulate key cellular pathways and drive cell elongation during growth.
Collapse
Affiliation(s)
- Laura Zonia
- Swammerdam Institute for Life Sciences, Plant Physiology Section, University of Amsterdam, Kruislaan 904, 1098 XH Amsterdam, The Netherlands.
| | | |
Collapse
|
156
|
Zhang Y, He J, McCormick S. Two Arabidopsis AGC kinases are critical for the polarized growth of pollen tubes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:474-84. [PMID: 19144004 DOI: 10.1111/j.1365-313x.2009.03792.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Reproduction of flowering plants requires the growth of pollen tubes to deliver immotile sperm for fertilization. Pollen tube growth resembles that of polarized metazoan cells, in that some molecular mechanisms underlying cell polarization and growth are evolutionarily conserved, including the functions of Rho GTPases and the dynamics of the actin cytoskeleton. However, a role for AGC kinases, crucial signaling mediators in polarized metazoan cells, has yet to be shown in pollen tubes. Here we demonstrate that two Arabidopsis AGC kinases are critical for polarized growth of pollen tubes. AGC1.5 and AGC1.7 are pollen-specific genes expressed during late developmental stages. Pollen tubes of single mutants had no detectable phenotypes during in vitro or in vivo germination, whereas those of double mutants were wider and twisted, due to frequent changes of growth trajectory in vitro. Pollen tubes of the double mutant also had reduced growth and were probably compromised in response to guidance cues in vivo. In the agc1.5 background, downregulation of AGC1.7 using an antisense construct phenocopied the growth defect of double mutant pollen tubes, providing additional support for a redundant function of AGC1.5/1.7 in pollen tube growth. Using the actin marker mouse Talin, we show that pollen tubes of double mutants had relatively unaffected longitudinal actin cables but had ectopic filamentous actin, indicating disturbed control of polarity. Our results demonstrate that AGC1.5 and AGC1.7 are critical components of the internal machinery of the pollen tube leading to polarized growth of pollen tubes.
Collapse
Affiliation(s)
- Yan Zhang
- Plant Gene Expression Center, United States Department of Agriculture/Agricultural Research Service, University of California at Berkeley, 800 Buchanan Street, Albany, CA 94710, USA.
| | | | | |
Collapse
|
157
|
Heilmann I. Using genetic tools to understand plant phosphoinositide signalling. TRENDS IN PLANT SCIENCE 2009; 14:171-9. [PMID: 19217341 DOI: 10.1016/j.tplants.2008.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Revised: 11/28/2008] [Accepted: 12/09/2008] [Indexed: 05/07/2023]
Abstract
Phosphoinositides (PIs) are regulatory lipids that control various physiological processes in eukaryotic organisms. As in other eukaryotes, the plant PI system is a central regulator of metabolism. The analysis of mutant plants that lack certain PI species has revealed their physiological relevance; however, knowledge of the factors controlling the distribution of PIs and the effects on their target proteins is still limited. To understand PI functions better, genetic approaches should be combined with biochemical analyses and cell biology, as has been done in several recent publications. Here, I highlight plant-specific physiological processes that are controlled by PIs and suggest future avenues of research. A detailed understanding of the functions and effects of PIs might offer new opportunities for modulating plant growth and hardiness against environmental influences.
Collapse
Affiliation(s)
- Ingo Heilmann
- Department of Plant Biochemistry, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| |
Collapse
|
158
|
Ma X, Shor O, Diminshtein S, Yu L, Im YJ, Perera I, Lomax A, Boss WF, Moran N. Phosphatidylinositol (4,5)bisphosphate inhibits K+-efflux channel activity in NT1 tobacco cultured cells. PLANT PHYSIOLOGY 2009; 149:1127-40. [PMID: 19052153 PMCID: PMC2633837 DOI: 10.1104/pp.108.129007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 11/24/2008] [Indexed: 05/18/2023]
Abstract
In the animal world, the regulation of ion channels by phosphoinositides (PIs) has been investigated extensively, demonstrating a wide range of channels controlled by phosphatidylinositol (4,5)bisphosphate (PtdInsP2). To understand PI regulation of plant ion channels, we examined the in planta effect of PtdInsP2 on the K+-efflux channel of tobacco (Nicotiana tabacum), NtORK (outward-rectifying K channel). We applied a patch clamp in the whole-cell configuration (with fixed "cytosolic" Ca2+ concentration and pH) to protoplasts isolated from cultured tobacco cells with genetically manipulated plasma membrane levels of PtdInsP2 and cellular inositol (1,4,5)trisphosphate: "Low PIs" had depressed levels of these PIs, and "High PIs" had elevated levels relative to controls. In all of these cells, K channel activity, reflected in the net, steady-state outward K+ currents (IK), was inversely related to the plasma membrane PtdInsP2 level. Consistent with this, short-term manipulations decreasing PtdInsP2 levels in the High PIs, such as pretreatment with the phytohormone abscisic acid (25 microM) or neutralizing the bath solution from pH 5.6 to pH 7, increased IK (i.e. NtORK activity). Moreover, increasing PtdInsP2 levels in controls or in abscisic acid-treated high-PI cells, using the specific PI-phospholipase C inhibitor U73122 (2.5-4 microM), decreased NtORK activity. In all cases, IK decreases stemmed largely from decreased maximum attainable NtORK channel conductance and partly from shifted voltage dependence of channel gating to more positive potentials, making it more difficult to activate the channels. These results are consistent with NtORK inhibition by the negatively charged PtdInsP2 in the internal plasma membrane leaflet. Such effects are likely to underlie PI signaling in intact plant cells.
Collapse
Affiliation(s)
- Xiaohong Ma
- Robert H. Smith Institute for Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
159
|
|
160
|
Signaling in Vesicle Traffic: Protein-Lipid Interface in Regulation of Plant Endomembrane Dynamics. SIGNALING IN PLANTS 2009. [DOI: 10.1007/978-3-540-89228-1_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
161
|
Cai G, Cresti M. Organelle motility in the pollen tube: a tale of 20 years. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:495-508. [PMID: 19112169 DOI: 10.1093/jxb/ern321] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Organelle movement is an evident feature of pollen tubes and is essential for the process of tube growth because it enables the proper distribution of organelles and the accumulation of secretory vesicles in the tube apex. Organelles move along the actin filaments through dynamic interactions with myosin but other proteins are probably responsible for control of this activity. The role of microtubules and microtubule-based motors is less clear and somewhat enigmatic. Nevertheless, the pollen tube is an excellent cell model in which to study and analyse the molecular mechanisms that drive and control organelle motility in relation to plant cell expansion. Current knowledge and the main scientific discoveries in this field of research over the last 20 years are summarized here. Future prospects in the study of the molecular mechanisms that mediate organelle transport and vesicle accumulation during pollen tube elongation are also discussed.
Collapse
Affiliation(s)
- Giampiero Cai
- Dipartimento Scienze Ambientali, Università di Siena, via Mattioli 4, I-53100 Siena, Italy.
| | | |
Collapse
|
162
|
Vermeer JEM, Thole JM, Goedhart J, Nielsen E, Munnik T, Gadella TWJ. Imaging phosphatidylinositol 4-phosphate dynamics in living plant cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:356-72. [PMID: 18785997 DOI: 10.1111/j.1365-313x.2008.03679.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Polyphosphoinositides represent a minor group of phospholipids, accounting for less than 1% of the total. Despite their low abundance, these molecules have been implicated in various signalling and membrane trafficking events. Phosphatidylinositol 4-phosphate (PtdIns4P) is the most abundant polyphosphoinositide. (32)Pi-labelling studies have shown that the turnover of PtdIns4P is rapid, but little is known about where in the cell or plant this occurs. Here, we describe the use of a lipid biosensor that monitors PtdIns4P dynamics in living plant cells. The biosensor consists of a fusion between a fluorescent protein and a lipid-binding domain that specifically binds PtdIns4P, i.e. the pleckstrin homology domain of the human protein phosphatidylinositol-4-phosphate adaptor protein-1 (FAPP1). YFP-PH(FAPP1) was expressed in four plant systems: transiently in cowpea protoplasts, and stably in tobacco BY-2 cells, Medicago truncatula roots and Arabidopsis thaliana seedlings. All systems allowed YFP-PH(FAPP1) expression without detrimental effects. Two distinct fluorescence patterns were observed: labelling of motile punctate structures and the plasma membrane. Co-expression studies with organelle markers revealed strong co-labelling with the Golgi marker STtmd-CFP, but not with the endocytic/pre-vacuolar marker GFP-AtRABF2b. Co-expression with the Ptdins3P biosensor YFP-2 x FYVE revealed totally different localization patterns. During cell division, YFP-PH(FAPP1) showed strong labelling of the cell plate, but PtdIns3P was completely absent from the newly formed cell membrane. In root hairs of M. truncatula and A. thaliana, a clear PtdIns4P gradient was apparent in the plasma membrane, with the highest concentration in the tip. This only occurred in growing root hairs, indicating a role for PtdIns4P in tip growth.
Collapse
Affiliation(s)
- Joop E M Vermeer
- Department of Molecular Cytology, Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
163
|
Žárský V, Cvrčková F, Potocký M, Hála M. Exocytosis and cell polarity in plants - exocyst and recycling domains. THE NEW PHYTOLOGIST 2009; 183:255-272. [PMID: 19496948 DOI: 10.1111/j.1469-8137.2009.02880.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In plants, exocytosis is a central mechanism of cell morphogenesis. We still know surprisingly little about some aspects of this process, starting with exocytotic vesicle formation, which may take place at the trans-Golgi network even without coat assistance, facilitated by the local regulation of membrane lipid organization. The RabA4b guanosine triphosphatase (GTPase), recruiting phosphatidylinositol-4-kinase to the trans-Golgi network, is a candidate vesicle formation organizer. However, in plant cells, there are obviously additional endosomal source compartments for secretory vesicles. The Rho/Rop GTPase regulatory module is central for the initiation of exocytotically active domains in plant cell cortex (activated cortical domains). Most plant cells exhibit several distinct plasma membrane domains, established and maintained by endocytosis-driven membrane recycling. We propose the concept of a 'recycling domain', uniting the activated cortical domain and the connected endosomal compartments, as a dynamic spatiotemporal entity. We have recently described the exocyst tethering complex in plant cells. As a result of the multiplicity of its putative Exo70 subunits, this complex may belong to core regulators of recycling domain organization, including the generation of multiple recycling domains within a single cell. The conventional textbook concept that the plant secretory pathway is largely constitutive is misleading.
Collapse
Affiliation(s)
- Viktor Žárský
- Department of Plant Physiology, Charles University, Viničná 5, 128 44 Praha 2, Czech Republic
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Praha 6, Czech Republic
| | - Fatima Cvrčková
- Department of Plant Physiology, Charles University, Viničná 5, 128 44 Praha 2, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Praha 6, Czech Republic
| | - Michal Hála
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Praha 6, Czech Republic
| |
Collapse
|
164
|
Abstract
Since the discovery of the phosphoinositide/phospholipase C (PI/PLC) system in animal systems, we know that phospholipids are much more then just structural components of biological membranes. In the beginning, this idea was fairly straightforward. Receptor stimulation activates PLC, which hydrolyses phosphatidylinositol4,5-bisphosphate [PtdIns(4,5)P2] into two second messengers: inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DG). While InsP3 difuses into the cytosol and triggers the release of calcium from an internal store via ligand-gated calcium channels, DG remains in the membrane where it recruits and activates members of the PKC family. The increase in calcium, together with the change in phosphorylation status, (in)activates a variety of protein targets, leading to a massive reprogramming, allowing the cell to appropriately respond to the extracellular stimulus. Later, it became obvious that not just PLC, but a variety of other phospholipid-metabolizing enzymes were activated, including phospholipase A, phospholipase D, and PI 3-kinase. More recently, it has become apparent that PtdIns4P and PtdIns(4,5)P2 are not just signal precursors but can also function as signaling molecules themselves. While plants contain most of the components described above, and evidence for their role in cell signaling is progressively increasing, major differences between plants and the mammalian paradigms exist. Below, these are described "in a nutshell."
Collapse
Affiliation(s)
- Teun Munnik
- Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, NL-1098SM, Amsterdam, The Netherlands.
| | | |
Collapse
|
165
|
Abstract
Cell polarization is intimately linked to plant development, growth, and responses to the environment. Major advances have been made in our understanding of the signaling pathways and networks that regulate cell polarity in plants owing to recent studies on several model systems, e.g., tip growth in pollen tubes, cell morphogenesis in the leaf epidermis, and polar localization of PINs. From these studies we have learned that plant cells use conserved mechanisms such as Rho family GTPases to integrate both plant-specific and conserved polarity cues and to coordinate the cytoskeketon dynamics/reorganization and vesicular trafficking required for polarity establishment and maintenance. This review focuses upon signaling mechanisms for cell polarity formation in Arabidopsis, with an emphasis on Rho GTPase signaling in polarized cell growth and how these mechanisms compare with those for cell polarity signaling in yeast and animal systems.
Collapse
Affiliation(s)
- Zhenbiao Yang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521-0124, USA.
| |
Collapse
|
166
|
Ischebeck T, Stenzel I, Heilmann I. Type B phosphatidylinositol-4-phosphate 5-kinases mediate Arabidopsis and Nicotiana tabacum pollen tube growth by regulating apical pectin secretion. THE PLANT CELL 2008; 20:3312-30. [PMID: 19060112 PMCID: PMC2630452 DOI: 10.1105/tpc.108.059568] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 11/13/2008] [Accepted: 11/21/2008] [Indexed: 05/18/2023]
Abstract
Phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P(2)] occurs in the apical plasma membrane of growing pollen tubes. Because enzymes responsible for PtdIns(4,5)P(2) production at that location are uncharacterized, functions of PtdIns(4,5)P(2) in pollen tube tip growth are unresolved. Two candidate genes encoding pollen-expressed Arabidopsis thaliana phosphatidylinositol-4-phosphate 5-kinases (PI4P 5-kinases) of Arabidopsis subfamily B were identified (PIP5K4 and PIP5K5), and their recombinant proteins were characterized as being PI4P 5-kinases. Pollen of T-DNA insertion lines deficient in both PIP5K4 and PIP5K5 exhibited reduced pollen germination and defects in pollen tube elongation. Fluorescence-tagged PIP5K4 and PIP5K5 localized to an apical plasma membrane microdomain in Arabidopsis and tobacco (Nicotiana tabacum) pollen tubes, and overexpression of either PIP5K4 or PIP5K5 triggered multiple tip branching events. Further studies using the tobacco system revealed that overexpression caused massive apical pectin deposition accompanied by plasma membrane invaginations. By contrast, callose deposition and cytoskeletal structures were unaltered in the overexpressors. Morphological effects depended on PtdIns(4,5)P(2) production, as an inactive enzyme variant did not produce any effects. The data indicate that excessive PtdIns(4,5)P(2) production by type B PI4P 5-kinases disturbs the balance of membrane trafficking and apical pectin deposition. Polar tip growth of pollen tubes may thus be modulated by PtdIns(4,5)P(2) via regulatory effects on membrane trafficking and/or apical pectin deposition.
Collapse
Affiliation(s)
- Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, 37077 Göttingen, Germany
| | | | | |
Collapse
|
167
|
Lee YJ, Yang Z. Tip growth: signaling in the apical dome. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:662-71. [PMID: 18977167 PMCID: PMC2613292 DOI: 10.1016/j.pbi.2008.10.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 09/04/2008] [Accepted: 10/03/2008] [Indexed: 05/17/2023]
Abstract
Signaling molecules, such as ROP/RAC GTPases and their regulators, reactive oxygen species (ROS) and phospholipids, play pivotal roles in the control of tip growth in pollen tubes and root hairs. They are often localized to the apical growing region of these cells, where their functions are tightly interconnected with cytoskeletal rearrangement and polar vesicle trafficking, which participate in tip growth as well as affect the generation and maintenance of the apical growing region. Recent advances in our understanding of the interface between these cellular activities and signaling in tip growth will be discussed.
Collapse
Affiliation(s)
- Yong Jik Lee
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California-Riverside, Riverside, CA 92521
| | - Zhenbiao Yang
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California-Riverside, Riverside, CA 92521
| |
Collapse
|
168
|
Thole JM, Nielsen E. Phosphoinositides in plants: novel functions in membrane trafficking. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:620-31. [PMID: 19028349 DOI: 10.1016/j.pbi.2008.10.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 09/23/2008] [Accepted: 10/28/2008] [Indexed: 05/07/2023]
Abstract
Tight regulation of membrane trafficking is crucial to the proper maintenance of the endomembrane trafficking system of eukaryotic cells. Distinct organelles must maintain their identities while at the same time continuously accepting, sorting, and exchanging membrane and luminal cargo constituents. Additionally, many of these organelles differentiate specialized subdomains containing distinct sets of lipids and proteins and restrict certain aspects of membrane trafficking to these regions of the organelle. Phosphoinositides (PIs) are a class of membrane lipids that have emerged as key components in some of these membrane trafficking events. The ability of these lipids to be rapidly produced, modified, and hydrolyzed by distinct classes of phosphatidylinositol (PtdIns) kinases, phosphatases, and phospholipases, allows for their use as finely tuned spatial and temporal landmarks for organelle and sub-organelle domains. In this review we will attempt to highlight some of the recent studies of the roles of this class of lipids in plant membrane trafficking, particularly on their important roles in polarized membrane trafficking in plants.
Collapse
Affiliation(s)
- Julie M Thole
- Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63130, United States
| | | |
Collapse
|
169
|
Apostolakos P, Panteris E, Galatis B. The involvement of phospholipases C and D in the asymmetric division of subsidiary cell mother cells of Zea mays. ACTA ACUST UNITED AC 2008; 65:863-75. [PMID: 18785264 DOI: 10.1002/cm.20308] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the present study, the involvement of phospholipase C and D (PLC and PLD) pathways in the asymmetric divisions that produce the stomatal complexes of Zea mays was investigated. In particular, the polar organization of microtubules (MTs) and actin filaments (AFs) and the process of asymmetric division were studied in subsidiary cell mother cells (SMCs) treated with PLC and PLD modulators. In SMCs treated with butanol-1 (but-1), which blocks phosphatidic acid (PA) production via PLDs, AF-patch formation laterally to the inducing guard cell mother cell (GMC) and the subsequent asymmetric division were inhibited. In these SMCs, cell division plane determination, as expressed by MT preprophase band (MT-PPB) formation, was not disturbed. Exogenously applied PA partially relieved the but-1 effects on SMCs. In contrast to SMCs, but-1 did not affect the symmetric GMC division. Inhibition of the PLC catalytic activity by neomycin or U73122 resulted in inhibition of asymmetric SMC division, while AF-patch and MT-PPB were organized as in control SMCs. These data show that the PLC and PLD signaling pathways are involved in the transduction and/or perception of the inductive stimulus that is emitted by the GMCs and induces the polar AF organization and asymmetric SMC division. In contrast, division plane determination in SMCs, as expressed by MT-PPB formation, does not depend on PLC and PLD signaling pathways.
Collapse
|
170
|
Sousa E, Kost B, Malhó R. Arabidopsis phosphatidylinositol-4-monophosphate 5-kinase 4 regulates pollen tube growth and polarity by modulating membrane recycling. THE PLANT CELL 2008; 20:3050-64. [PMID: 19033528 PMCID: PMC2613665 DOI: 10.1105/tpc.108.058826] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 10/19/2008] [Accepted: 11/09/2008] [Indexed: 05/18/2023]
Abstract
Phosphatidylinositol-4-monophosphate 5-kinases produce phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P(2)] and have been implicated in vesicle trafficking and cytoskeletal rearrangements. Here, we adopted a reverse genetics approach to investigate the function of the Arabidopsis thaliana pollen-expressed gene encoding phosphatidylinositol-4-monophosphate 5-kinase 4 (PIP5K4). Pollen germination, tube growth, and polarity were significantly impaired in homozygous mutant plants lacking PIP5K4 transcript. In vitro, supplementation with PtdIns(4,5)P(2) rescued these phenotypes. In vivo, mutant pollen fertilized ovules, leading to normal seed set and silique length. However, fertilization took longer than in wild-type plants, and the pip5k4 null mutant allele was transmitted through the pollen at a reduced frequency. Analysis of endocytic events using FM1-43 (or FM4-64) suggested a reduction in endocytosis and membrane recycling in pip5k4 null mutant pollen tubes. Imaging of elongating tobacco (Nicotiana tabacum) pollen tubes transiently transformed with a PIP5K4-green fluorescent protein fusion construct revealed that the protein localized to the plasma membrane, particularly in the subapical region. Overexpression of PIP5K4-GFP delocalized the protein to the apical region of the plasma membrane, perturbed pollen tube growth, and caused apical cell wall thickening. Thus, PIP5K4 plays a crucial role in regulating the polarity of pollen tubes. This study supports a model for membrane secretion and recycling where the apical and subapical regions appear to contain the components required to promote and sustain growth.
Collapse
Affiliation(s)
- Eva Sousa
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, Instituto Ciéncia Aplicada e Tecnologia, 1749-016 Lisboa, Portugal
| | | | | |
Collapse
|
171
|
Li S, Gu Y, Yan A, Lord E, Yang ZB. RIP1 (ROP Interactive Partner 1)/ICR1 marks pollen germination sites and may act in the ROP1 pathway in the control of polarized pollen growth. MOLECULAR PLANT 2008; 1:1021-35. [PMID: 19825600 PMCID: PMC9345201 DOI: 10.1093/mp/ssn051] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 07/23/2008] [Indexed: 05/20/2023]
Abstract
Rho family small GTPases are universal signaling switches in the control of cell polarity in eukaryotic cells. Their polar distribution to the cell cortex is critical for the execution of their functions, yet the mechanism for this distribution is poorly understood. Using a yeast two-hybrid method, we identified RIP1 (ROP interactive partner 1), which belongs to a family of five members of novel proteins that share a C-terminal region that interacts with ROP. When expressed in Arabidopsis pollen, green fluorescence protein GFP-tagged RIP1 was localized to the nucleus of mature pollen. When pollen grains were hydrated in germination medium, GFP-RIP1 switched from the nucleus to the cell cortex at the future pollen germination site and was maintained in the apical cortex of germinating pollen and growing pollen tubes. RIP1 was found to interact with ROP1 in pollen tubes, and the cortical RIP1 localization was influenced by the activity of ROP1. Overexpression of RIP1 induced growth depolarization in pollen tubes, a phenotype similar to that induced by ROP1 overexpression. Interestingly, RIP1 overexpression enhanced GFP-ROP1 recruitment to the plasma membrane (PM) of pollen tubes. Based on these observations, we hypothesize that RIP1 is involved in the positive feedback regulation of ROP1 localization to the PM, leading to the establishment of a polar site for pollen germination and pollen tube growth.
Collapse
Affiliation(s)
- Shundai Li
- Center for Plant Cell Biology, Institute of Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Present address: Energy Biosciences Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Ying Gu
- Center for Plant Cell Biology, Institute of Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Present address: Energy Biosciences Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - An Yan
- Center for Plant Cell Biology, Institute of Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Elizabeth Lord
- Center for Plant Cell Biology, Institute of Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Zhen-Biao Yang
- Center for Plant Cell Biology, Institute of Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
172
|
Dyachok J, Shao MR, Vaughn K, Bowling A, Facette M, Djakovic S, Clark L, Smith L. Plasma membrane-associated SCAR complex subunits promote cortical F-actin accumulation and normal growth characteristics in Arabidopsis roots. MOLECULAR PLANT 2008; 1:990-1006. [PMID: 19825598 DOI: 10.1093/mp/ssn059] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The ARP2/3 complex, a highly conserved nucleator of F-actin polymerization, and its activator, the SCAR complex, have been shown to play important roles in leaf epidermal cell morphogenesis in Arabidopsis. However, the intracellular site(s) and function(s) of SCAR and ARP2/3 complex-dependent actin polymerization in plant cells remain unclear. We demonstrate that putative SCAR complex subunits BRK1 and SCAR1 are localized to the plasma membrane at sites of cell growth and wall deposition in expanding cells of leaves and roots. BRK1 localization is SCAR-dependent, providing further evidence of an association between these proteins in vivo. Consistent with plasma membrane localization of SCAR complex subunits, cortical F-actin accumulation in root tip cells is reduced in brk1 mutants. Moreover, mutations disrupting the SCAR or ARP2/3 complex reduce the growth rate of roots and their ability to penetrate semi-solid medium, suggesting reduced rigidity. Cell walls of mutant roots exhibit abnormal structure and composition at intercellular junctions where BRK1 and SCAR1 are enriched in the adjacent plasma membrane. Taken together, our results suggest that SCAR and ARP2/3 complex-dependent actin polymerization promotes processes at the plasma membrane that are important for normal growth and wall assembly.
Collapse
Affiliation(s)
- Julia Dyachok
- University of California San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Song M, Liu S, Zhou Z, Han Y. TfPLC1, a gene encoding phosphoinositide-specific phospholipase C, is predominantly expressed in reproductive organs in Torenia fournieri. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s00497-008-0081-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
174
|
Wang HJ, Wan AR, Jauh GY. An actin-binding protein, LlLIM1, mediates calcium and hydrogen regulation of actin dynamics in pollen tubes. PLANT PHYSIOLOGY 2008; 147:1619-36. [PMID: 18480376 PMCID: PMC2492651 DOI: 10.1104/pp.108.118604] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Actin microfilaments are crucial for polar cell tip growth, and their configurations and dynamics are regulated by the actions of various actin-binding proteins (ABPs). We explored the function of a lily (Lilium longiflorum) pollen-enriched LIM domain-containing protein, LlLIM1, in regulating the actin dynamics in elongating pollen tube. Cytological and biochemical assays verified LlLIM1 functioning as an ABP, promoting filamentous actin (F-actin) bundle assembly and protecting F-actin against latrunculin B-mediated depolymerization. Overexpressed LlLIM1 significantly disturbed pollen tube growth and morphology, with multiple tubes protruding from one pollen grain and coaggregation of FM4-64-labeled vesicles and Golgi apparatuses at the subapex of the tube tip. Moderate expression of LlLIM1 induced an oscillatory formation of asterisk-shaped F-actin aggregates that oscillated with growth period but in different phases at the subapical region. These results suggest that the formation of LlLIM1-mediated overstabilized F-actin bundles interfered with endomembrane trafficking to result in growth retardation. Cosedimentation assays revealed that the binding affinity of LlLIM1 to F-actin was simultaneously regulated by both pH and Ca(2+): LlLIM1 showed a preference for F-actin binding under low pH and low Ca(2+) concentration. The potential functions of LlLIM1 as an ABP sensitive to pH and calcium in integrating endomembrane trafficking, oscillatory pH, and calcium circumstances to regulate tip-focused pollen tube growth are discussed.
Collapse
Affiliation(s)
- Huei-Jing Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
| | | | | |
Collapse
|
175
|
Yalovsky S, Bloch D, Sorek N, Kost B. Regulation of membrane trafficking, cytoskeleton dynamics, and cell polarity by ROP/RAC GTPases. PLANT PHYSIOLOGY 2008; 147:1527-43. [PMID: 18678744 PMCID: PMC2492628 DOI: 10.1104/pp.108.122150] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2008] [Accepted: 06/12/2008] [Indexed: 05/18/2023]
Affiliation(s)
- Shaul Yalovsky
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | | | | |
Collapse
|
176
|
Coelho SM, Brownlee C, Bothwell JH. Feedback control of reactive oxygen and Ca signaling during brown algal embryogenesis. PLANT SIGNALING & BEHAVIOR 2008; 3:570-2. [PMID: 19704472 PMCID: PMC2634500 DOI: 10.4161/psb.3.8.5730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 02/15/2008] [Indexed: 05/11/2023]
Abstract
In a recent paper in Planta, we combined novel confocal reflectance imaging of intracellular reactive oxygen species (ROS) with inhibition-of-growth experiments to show that ROS help to direct polarized growth in brown algal zygotes. Using confocal fluorescence imaging of intracellular Ca(2+) distributions, we were also able to show an interaction between ROS and Ca(2+) signaling. The modulation of intracellular Ca(2+) signals by reactive oxygen species (ROS) is a common motif in many plant and algal systems, but our Planta paper is its first demonstration during early development. We explain here how our findings complement a number of recent studies on polarized growth in plant and algal systems.
Collapse
Affiliation(s)
- Susana Mb Coelho
- UMR7139; Station Biologique; Centre National de la Recherche Scientifique; Université Pierre & Marie Curie Paris VI; Roscoff, France
| | | | | |
Collapse
|
177
|
Ercetin ME, Ananieva EA, Safaee NM, Torabinejad J, Robinson JY, Gillaspy GE. A phosphatidylinositol phosphate-specific myo-inositol polyphosphate 5-phosphatase required for seedling growth. PLANT MOLECULAR BIOLOGY 2008; 67:375-88. [PMID: 18392779 DOI: 10.1007/s11103-008-9327-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 03/19/2008] [Indexed: 05/19/2023]
Abstract
The phosphatidylinositol phosphate signaling pathway is involved in many crucial cellular functions. The myo-inositol polyphosphate 5-phosphatases (5PTases) (E.C. 3.1.3.56) comprise a large protein family that hydrolyze 5-phosphates from a variety of phosphatidylinositol phosphate and inositol phosphate substrates. We previously reported that the At5PTase11 enzyme (At1g47510), which is one of the smallest predicted 5PTases found in any organism, encodes an active 5PTase whose activity is restricted to tris- and bis-, but not mono-phosphorylated phosphatidylinositol phosphate substrates containing a 5-phosphate. This is in contrast to other unrestricted Arabidopsis 5PTases, which also hydrolyze tris- and bis inositol phosphate molecules. To further explore the function of At5PTase11, we have characterized two T-DNA mutants in the At5PTase11 gene, and have complemented this mutant. Seed from 5ptase11 mutants germinate slower than wildtype seed and mutant seedlings have decreased hypocotyl growth as compared to wildtype seedlings when grown in the dark. This phenotype is the opposite of the increased hypocotyl growth phenotype previously described for other 5ptase mutants defective in inositol phosphate-specific 5PTase enzymes. By labeling the endogenous myo-inositol pool in 5ptase11 mutants, we correlated these hypocotyl growth changes with a small increase in the 5PTase11 substrate, phosphatidylinositol (4,5) bisphosphate, and decreases in the potential products of 5PTase11, phosphatidylinositol (3) phosphate and phosphatidylinositol (4) phosphate. Surprisingly, we also found that dark-grown 5ptase11 mutants contain increases in inositol (1,4,5) trisphosphate and an inositol bisphosphate that is not a substrate for recombinant 5PTase11. We present a model for regulation of hypocotyl growth by specific molecules found in this pathway.
Collapse
Affiliation(s)
- Mustafa E Ercetin
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | | | | | |
Collapse
|
178
|
Moscatelli A. Endocytic pathways in pollen tube: Implications for in vivo growth regulation. PLANT SIGNALING & BEHAVIOR 2008; 3:325-7. [PMID: 19841660 PMCID: PMC2634272 DOI: 10.4161/psb.3.5.5340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 11/28/2007] [Indexed: 05/05/2023]
Abstract
By endocytosis eukaryotic cells can take up extracellular components and/or plasma membrane proteins for further delivering to endosomes. Although in animal cells different endocytic pathways were identified based on the requirement of a clathrin coating for vesicle internalization, endocytosis in plant cells still require to be fully characterized. The use of positively and negatively charged nanogold in combination with Ika, an inhibitor of the clathrindependent endocytosis, allowed to dissect the endocytic pathway and revealed the presence of clathrin-dependent and clathrin-independent degradative pathways.
Collapse
|
179
|
Wang CR, Yang AF, Yue GD, Gao Q, Yin HY, Zhang JR. Enhanced expression of phospholipase C 1 (ZmPLC1) improves drought tolerance in transgenic maize. PLANTA 2008; 227:1127-40. [PMID: 18214529 DOI: 10.1007/s00425-007-0686-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 12/17/2007] [Indexed: 05/04/2023]
Abstract
Phosphatidylinositol-specific phospholipase C (PI-PLC) plays an important role in a variety of physiological processes in plants, including drought tolerance. It has been reported that the ZmPLC1 gene cloned from maize (Zea mays L.) encoded a PI-PLC and up-regulated the expression in maize roots under dehydration conditions (Zhai SM, Sui ZH, Yang AF, Zhang JR in Biotechnol Lett 27:799-804, 2005). In this paper, transgenic maize expressing ZmPLC1 transgenes in sense or antisense orientation were generated by Agrobacterium-mediated transformation and confirmed by Southern blot analysis. High-level expression of the transgene was confirmed by real-time RT-PCR and PI-PLC activity assay. The tolerance to drought stress (DS) of the homogenous transgenic maize plants was investigated at two developmental stages. The results demonstrated that, under DS conditions, the sense transgenic plants had higher relative water content, better osmotic adjustment, increased photosynthesis rates, lower percentage of ion leakage and less lipid membrane peroxidation, higher grain yield than the WT; whereas those expressing the antisense transgene exhibited inferior characters compared with the WT. It was concluded that enhanced expression of sense ZmPLC1 improved the drought tolerance of maize.
Collapse
Affiliation(s)
- Chun-Rong Wang
- School of Life Science, Shandong University, Jinan, Shandong, China
| | | | | | | | | | | |
Collapse
|
180
|
Cárdenas L, Lovy-Wheeler A, Kunkel JG, Hepler PK. Pollen tube growth oscillations and intracellular calcium levels are reversibly modulated by actin polymerization. PLANT PHYSIOLOGY 2008; 146:1611-21. [PMID: 18263780 PMCID: PMC2287337 DOI: 10.1104/pp.107.113035] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 02/04/2008] [Indexed: 05/17/2023]
Abstract
Prevention of actin polymerization with low concentrations of latrunculin B (Lat-B; 2 nm) exerts a profound inhibitory effect on pollen tube growth. Using flow-through chambers, we show that growth retardation starts after 10 min treatment with 2 nm Lat-B, and by 15 to 20 min reaches a basal rate of 0.1 to 0.2 microm/s, during which the pollen tube exhibits relatively few oscillations. If treated for 30 min, complete stoppage of growth can occur. Studies on the intracellular Ca(2+) concentration indicate that the tip-focused gradient declines in parallel with the inhibition of growth. Tubes exhibiting nonoscillating growth display a similarly reduced and nonoscillating Ca(2+) gradient. Studies on the pH gradient indicate that Lat-B eliminates the acidic domain at the extreme apex, and causes the alkaline band to move more closely to the tip. Removing Lat-B and returning the cells to control medium reverses these effects. Phalloidin staining of F-actin reveals that 2 nm Lat-B degrades the cortical fringe; it also disorganizes the microfilaments in the shank causing the longitudinally oriented elements to be disposed in swirls. Cytoplasmic streaming continues under these conditions, however the clear zone is obliterated with all organelles moving into and through the extreme apex of the tube. We suggest that actin polymerization promotes pollen tube growth through extension of the cortical actin fringe, which serves as a track to target cell wall vesicles to preferred exocytotic sites on the plasma membrane.
Collapse
Affiliation(s)
- Luis Cárdenas
- Departamento de Biología Molecular de Plantas Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62271, Mexico.
| | | | | | | |
Collapse
|
181
|
Coelho SMB, Brownlee C, Bothwell JHF. A tip-high, Ca(2+) -interdependent, reactive oxygen species gradient is associated with polarized growth in Fucus serratus zygotes. PLANTA 2008; 227:1037-46. [PMID: 18087716 DOI: 10.1007/s00425-007-0678-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Accepted: 12/04/2007] [Indexed: 05/05/2023]
Abstract
We report the existence of a tip-high reactive oxygen species (ROS) gradient in growing Fucus serratus zygotes, using both 5-(and 6-) chloromethyl-2',7'-dichlorodihydrofluorescein and nitroblue tetrazolium staining to report ROS generation. Suppression of the ROS gradient inhibits polarized zygotic growth; conversely, exogenous ROS generation can redirect zygotic polarization following inhibition of endogenous ROS. Confocal imaging of fluo-4 dextran distributions suggests that the ROS gradient is interdependent on the tip-high [Ca(2+)](cyt) gradient which is known to be associated with polarized growth. Our data support a model in which localized production of ROS at the rhizoid tip stimulates formation of a localized tip-high [Ca(2+)](cyt) gradient. Such modulation of intracellular [Ca(2+)](cyt) signals by ROS is a common motif in many plant and algal systems and this study extends this mechanism to embryogenesis.
Collapse
Affiliation(s)
- Susana M B Coelho
- UMR7139, Station Biologique, Centre National de la Recherche Scientifique, Université Pierre & Marie Curie Paris VI, Place Georges Teissier, Roscoff Cedex, France
| | | | | |
Collapse
|
182
|
Spatial control of Rho (Rac-Rop) signaling in tip-growing plant cells. Trends Cell Biol 2008; 18:119-27. [PMID: 18280158 DOI: 10.1016/j.tcb.2008.01.003] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 12/29/2007] [Accepted: 01/03/2008] [Indexed: 12/20/2022]
Abstract
Spatially restricted signaling by Rho GTPases is essential for the polarization of eukaryotic cells, which is required for the morphogenesis, mobility and division of single cells, and for the development of multicellular organisms. Rac-Rop GTPases, which constitute a plant-specific Rho GTPase subfamily, accumulate at the apical plasma membrane of pollen tubes and root hairs, where they control rapid polar cell expansion by a process known as tip growth. Here, recent insights into the spatial control of Rac-Rop-dependent signaling in tip-growing plant cells by regulatory proteins (i.e. Rho GTPase-activating proteins, Rho guanine nucleotide dissociation inhibitors, Rho guanine nucleotide-exchange factors and phosphoinositide-specific phospholipase C) and lipids [phosphatidylinositol (4,5)-bisphosphate and diacyl glycerol] are summarized. A model is presented, which integrates the current knowledge concerning the molecular mechanisms that maintain the polarization of Rho signaling in plant cells.
Collapse
|
183
|
Thole JM, Vermeer JEM, Zhang Y, Gadella TWJ, Nielsen E. Root hair defective4 encodes a phosphatidylinositol-4-phosphate phosphatase required for proper root hair development in Arabidopsis thaliana. THE PLANT CELL 2008; 20:381-95. [PMID: 18281508 PMCID: PMC2276440 DOI: 10.1105/tpc.107.054304] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Polarized expansion of root hair cells in Arabidopsis thaliana is improperly controlled in root hair-defective rhd4-1 mutant plants, resulting in root hairs that are shorter and randomly form bulges along their length. Using time-lapse fluorescence microscopy in rhd4-1 root hairs, we analyzed membrane dynamics after labeling with RabA4b, a marker for polarized membrane trafficking in root hairs. This revealed stochastic loss and recovery of the RabA4b compartment in the tips of growing root hairs, consistent with a role for the RHD4 protein in regulation of polarized membrane trafficking in these cells. The wild-type RHD4 gene was identified by map-based cloning and was found to encode a Sac1p-like phosphoinositide phosphatase. RHD4 displayed a preference for phosphatidylinositol-4-phosphate [PI(4)P] in vitro, and rhd4-1 roots accumulated higher levels of PI(4)P in vivo. In wild-type root hairs, PI(4)P accumulated primarily in a tip-localized plasma membrane domain, but in rhd4-1 mutants, significant levels of PI(4)P were detected associated with internal membranes. A fluorescent RHD4 fusion protein localized to membranes at the tips of growing root hairs. We propose that RHD4 is selectively recruited to RabA4b-labeled membranes that are involved in polarized expansion of root hair cells and that, in conjunction with the phosphoinositide kinase PI-4Kbeta1, RHD4 regulates the accumulation of PI(4)P on membrane compartments at the tips of growing root hairs.
Collapse
Affiliation(s)
- Julie M Thole
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | | | | | | | |
Collapse
|
184
|
Kusano H, Testerink C, Vermeer JEM, Tsuge T, Shimada H, Oka A, Munnik T, Aoyama T. The Arabidopsis Phosphatidylinositol Phosphate 5-Kinase PIP5K3 is a key regulator of root hair tip growth. THE PLANT CELL 2008; 20:367-80. [PMID: 18281506 PMCID: PMC2276443 DOI: 10.1105/tpc.107.056119] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] functions as a site-specific signal on membranes to promote cytoskeletal reorganization and membrane trafficking. Localization of PtdIns(4,5)P2 to apices of growing root hairs and pollen tubes suggests that it plays an important role in tip growth. However, its regulation and mode of action remain unclear. We found that Arabidopsis thaliana PIP5K3 (for Phosphatidylinositol Phosphate 5-Kinase 3) encodes a phosphatidylinositol 4-phosphate 5-kinase, a key enzyme producing PtdIns(4,5)P2, that is preferentially expressed in growing root hairs. T-DNA insertion mutations that substantially reduced the expression of PIP5K3 caused significantly shorter root hairs than in the wild type. By contrast, overexpression caused longer root hairs and multiple protruding sites on a single trichoblast. A yellow fluorescent protein (YFP) fusion of PIP5K3, driven by the PIP5K3 promoter, complemented the short-root-hair phenotype. PIP5K3-YFP localized to the plasma membrane and cytoplasmic space of elongating root hair apices, to growing root hair bulges, and, notably, to sites about to form root hair bulges. The signal was greatest in rapidly growing root hairs and quickly disappeared when elongation ceased. These results provide evidence that PIP5K3 is involved in localizing PtdIns(4,5)P2 to the elongating root hair apex and is a key regulator of the machinery that initiates and promotes root hair tip growth.
Collapse
Affiliation(s)
- Hiroaki Kusano
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Tuteja N, Sopory SK. Plant signaling in stress: G-protein coupled receptors, heterotrimeric G-proteins and signal coupling via phospholipases. PLANT SIGNALING & BEHAVIOR 2008; 3:79-86. [PMID: 19516978 PMCID: PMC2633988 DOI: 10.4161/psb.3.2.5303] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 11/13/2007] [Indexed: 05/20/2023]
Abstract
Plant growth and development are coordinalely controlled by several internal factors and environmental signals. To sense these environmental signals, the higher plants have evolved a complex signaling network, which may also cross talk with each other. Plants can respond to the signals as individual cells and as whole organisms. Various receptors including phytochromes, G-proteins coupled receptors (GPCR), kinase and hormone receptors play important role in signal transduction but very few have been characterized in plant system. The heterotrimeric G-proteins mediate the coupling of signal transduction from activated GPCR to appropriate downstream effectors and thereby play an important role in signaling. In this review we have focused on some of the recent work on G-proteins and two of the effectors, PLC and PLD, which have been shown to interact with Galpha subunit and also discussed their role in abiotic stress tolerance.
Collapse
Affiliation(s)
- Narendra Tuteja
- Plant Molecular Biology Group; International Centre for Genetic Engineering and Biotechnology (ICGEB); Aruna Asaf Ali Marg; New Delhi, India
| | | |
Collapse
|
186
|
Li L, Saga N, Mikami K. Phosphatidylinositol 3-kinase activity and asymmetrical accumulation of F-actin are necessary for establishment of cell polarity in the early development of monospores from the marine red alga Porphyra yezoensis. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3575-86. [PMID: 18703492 PMCID: PMC2561153 DOI: 10.1093/jxb/ern207] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The polarized distribution of F-actin is important in providing the driving force for directional migration in mammalian leukocytes and Dictyostelium cells, in which compartmentation of phosphatidylinositol 3-kinase (PI3K) and phosphatidylinositol phosphatase is critical for the establishment of cell polarity. Since monospores from the red alga Porphyra yezoensis are a real example of migrating plant cells, the involvement of the cytoskeleton and PI3K was investigated during their early development. Our results indicate that the asymmetrical localization of F-actin at the leading edge is fixed by the establishment of the anterior-posterior axis in migrating monospores, which is PI3K-dependent and protein synthesis-independent. After migration, monospores adhere to the substratum and then become upright, developing into multicellular thalli via the establishment of the apical-basal axis. In this process, F-actin usually accumulates at the bottom of the basal cell and development after migration requires new protein synthesis. These findings suggest that the establishment of anterior-posterior and apical-basal axes are differentially regulated during the early development of monospores. Our results also indicate that PI3K-dependent F-actin asymmetry is evolutionally conserved in relation to the establishment of cell polarity in migrating eukaryotic cells.
Collapse
Affiliation(s)
- Lin Li
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Naotsune Saga
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Koji Mikami
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
187
|
Röckel N, Wolf S, Kost B, Rausch T, Greiner S. Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:133-43. [PMID: 17971035 DOI: 10.1111/j.1365-313x.2007.03325.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In dicots, pectins are the major structural determinant of the cell wall at the pollen tube tip. Recently, immunological studies revealed that esterified pectins are prevalent at the apex of growing pollen tubes, where the cell wall needs to be expandable. In contrast, lateral regions of the cell wall contain mostly de-esterified pectins, which can be cross-linked to rigid gels by Ca(2+) ions. In pollen tubes, several pectin methylesterases (PMEs), enzymes that de-esterify pectins, are co-expressed with different PME inhibitors (PMEIs). This raises the possibility that interactions between PMEs and PMEIs play a key role in the regulation of cell-wall stability at the pollen tube tip. Our data establish that the PME isoform AtPPME1 (At1g69940) and the PMEI isoform AtPMEI2 (At3g17220), which are both specifically expressed in Arabidopsis pollen, physically interact, and that AtPMEI2 inactivates AtPPME1 in vitro. Furthermore, transient expression in tobacco pollen tubes revealed a growth-promoting activity of AtPMEI2, and a growth-inhibiting effect of AtPPME1. Interestingly, AtPPME1:YFP accumulated to similar levels throughout the cell wall of tobacco pollen tubes, including the tip region, whereas AtPMEI2:YFP was exclusively detected at the apex. In contrast to AtPPME1, AtPMEI2 localized to Brefeldin A-induced compartments, and was found in FYVE-induced endosomal aggregates. Our data strongly suggest that the polarized accumulation of PMEI isoforms at the pollen tube apex, which depends at least in part on local PMEI endocytosis at the flanks of the tip, regulates cell-wall stability by locally inhibiting PME activity.
Collapse
Affiliation(s)
- Nina Röckel
- Heidelberg Institute for Plant Sciences, INF 360, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
188
|
Cheung AY, Wu HM. Structural and signaling networks for the polar cell growth machinery in pollen tubes. ANNUAL REVIEW OF PLANT BIOLOGY 2008; 59:547-72. [PMID: 18444907 DOI: 10.1146/annurev.arplant.59.032607.092921] [Citation(s) in RCA: 276] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pollen tubes elongate within the pistil to transport sperms to the female gametophytes for fertilization. Pollen tubes grow at their tips through a rapid and polarized cell growth process. This tip growth process is supported by an elaborate and dynamic actin cytoskeleton and a highly active membrane trafficking system that together provide the driving force and secretory activities needed for growth. A polarized cytoplasm with an abundance of vesicles and tip-focused Ca(2+) and H(+) concentration gradients are important for the polar cell growth process. Apical membrane-located Rho GTPases regulate Ca(2+) concentration and actin dynamics in the cytoplasm and are crucial for maintaining pollen tube polarity. Pollen tube growth is marked by periods of rapid and slow growth phases. Activities that regulate and support this tip growth process also show oscillatory fluctuations. How these activities correlate with the rapid, polar, and oscillatory pollen tube growth process is discussed.
Collapse
Affiliation(s)
- Alice Y Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | |
Collapse
|
189
|
Stenzel I, Ischebeck T, König S, Hołubowska A, Sporysz M, Hause B, Heilmann I. The type B phosphatidylinositol-4-phosphate 5-kinase 3 is essential for root hair formation in Arabidopsis thaliana. THE PLANT CELL 2008; 20:124-41. [PMID: 18178770 PMCID: PMC2254927 DOI: 10.1105/tpc.107.052852] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Root hairs are extensions of root epidermal cells and a model system for directional tip growth of plant cells. A previously uncharacterized Arabidopsis thaliana phosphatidylinositol-4-phosphate 5-kinase gene (PIP5K3) was identified and found to be expressed in the root cortex, epidermal cells, and root hairs. Recombinant PIP5K3 protein was catalytically active and converted phosphatidylinositol-4-phosphate to phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2]. Arabidopsis mutant plants homozygous for T-DNA-disrupted PIP5K3 alleles were compromised in root hair formation, a phenotype complemented by expression of wild-type PIP5K3 cDNA under the control of a 1500-bp PIP5K3 promoter fragment. Root hair-specific PIP5K3 overexpression resulted in root hair deformation and loss of cell polarity with increasing accumulation of PIP5K3 transcript. Using reestablishment of root hair formation in T-DNA mutants as a bioassay for physiological functionality of engineered PIP5K3 variants, catalytic activity was found to be essential for physiological function, indicating that PtdIns(4,5)P2 formation is required for root hair development. An N-terminal domain containing membrane occupation and recognition nexus repeats, which is not required for catalytic activity, was found to be essential for the establishment of root hair growth. Fluorescence-tagged PIP5K3 localized to the periphery of the apical region of root hair cells, possibly associating with the plasma membrane and/or exocytotic vesicles. Transient heterologous expression of full-length PIP5K3 in tobacco (Nicotiana tabacum) pollen tubes increased plasma membrane association of a PtdIns(4,5)P2-specific reporter in these tip-growing cells. The data demonstrate that root hair development requires PIP5K3-dependent PtdIns(4,5)P2 production in the apical region of root hair cells.
Collapse
Affiliation(s)
- Irene Stenzel
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
190
|
Okumoto S, Takanaga H, Frommer WB. Quantitative imaging for discovery and assembly of the metabo-regulome. THE NEW PHYTOLOGIST 2008. [PMID: 19138219 DOI: 10.1111/nph.2008.180.issue-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Little is known about regulatory networks that control metabolic flux in plant cells. Detailed understanding of regulation is crucial for synthetic biology. The difficulty of measuring metabolites with cellular and subcellular precision is a major roadblock. New tools have been developed for monitoring extracellular, cytosolic, organellar and vacuolar ion and metabolite concentrations with a time resolution of milliseconds to hours. Genetically encoded sensors allow quantitative measurement of steady-state concentrations of ions, signaling molecules and metabolites and their respective changes over time. Fluorescence resonance energy transfer (FRET) sensors exploit conformational changes in polypeptides as a proxy for analyte concentrations. Subtle effects of analyte binding on the conformation of the recognition element are translated into a FRET change between two fused green fluorescent protein (GFP) variants, enabling simple monitoring of analyte concentrations using fluorimetry or fluorescence microscopy. Fluorimetry provides information averaged over cell populations, while microscopy detects differences between cells or populations of cells. The genetically encoded sensors can be targeted to subcellular compartments or the cell surface. Confocal microscopy ultimately permits observation of gradients or local differences within a compartment. The FRET assays can be adapted to high-throughput analysis to screen mutant populations in order to systematically identify signaling networks that control individual steps in metabolic flux.
Collapse
Affiliation(s)
- Sakiko Okumoto
- Plant Pathology, Physiology, and Weed Science Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Hitomi Takanaga
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
| | - Wolf B Frommer
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
- Joint Bioenergy Institute, Feedstocks Division, Emerystation East, 5885 Hollis Street Emeryville, CA 94608, USA
| |
Collapse
|
191
|
Okumoto S, Takanaga H, Frommer WB. Quantitative imaging for discovery and assembly of the metabo-regulome. THE NEW PHYTOLOGIST 2008; 180:271-295. [PMID: 19138219 PMCID: PMC2663047 DOI: 10.1111/j.1469-8137.2008.02611.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Little is known about regulatory networks that control metabolic flux in plant cells. Detailed understanding of regulation is crucial for synthetic biology. The difficulty of measuring metabolites with cellular and subcellular precision is a major roadblock. New tools have been developed for monitoring extracellular, cytosolic, organellar and vacuolar ion and metabolite concentrations with a time resolution of milliseconds to hours. Genetically encoded sensors allow quantitative measurement of steady-state concentrations of ions, signaling molecules and metabolites and their respective changes over time. Fluorescence resonance energy transfer (FRET) sensors exploit conformational changes in polypeptides as a proxy for analyte concentrations. Subtle effects of analyte binding on the conformation of the recognition element are translated into a FRET change between two fused green fluorescent protein (GFP) variants, enabling simple monitoring of analyte concentrations using fluorimetry or fluorescence microscopy. Fluorimetry provides information averaged over cell populations, while microscopy detects differences between cells or populations of cells. The genetically encoded sensors can be targeted to subcellular compartments or the cell surface. Confocal microscopy ultimately permits observation of gradients or local differences within a compartment. The FRET assays can be adapted to high-throughput analysis to screen mutant populations in order to systematically identify signaling networks that control individual steps in metabolic flux.
Collapse
Affiliation(s)
- Sakiko Okumoto
- Plant Pathology, Physiology, and Weed Science Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Hitomi Takanaga
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
| | - Wolf B. Frommer
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
- Joint Bioenergy Institute, Feedstocks Division, Emerystation East, 5885 Hollis Street Emeryville, CA 94608, USA
| |
Collapse
|
192
|
Moscatelli A, Ciampolini F, Rodighiero S, Onelli E, Cresti M, Santo N, Idilli A. Distinct endocytic pathways identified in tobacco pollen tubes using charged nanogold. J Cell Sci 2007; 120:3804-19. [PMID: 17940063 DOI: 10.1242/jcs.012138] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In an attempt to dissect endocytosis in Nicotiana tabacum L. pollen tubes, two different probes--positively or negatively charged nanogold--were employed. The destiny of internalized plasma membrane domains, carrying negatively or positively charged residues, was followed at the ultrastructural level and revealed distinct endocytic pathways. Time-course experiments and electron microscopy showed internalization of subapical plasma-membrane domains that were mainly recycled to the secretory pathway through the Golgi apparatus and a second mainly degradative pathway involving plasma membrane retrieval at the tip. In vivo time-lapse experiments using FM4-64 combined with quantitative analysis confirmed the existence of distinct internalization regions. Ikarugamycin, an inhibitor of clathrin-dependent endocytosis, allowed us to further dissect the endocytic process: electron microscopy and time-lapse studies suggested that clathrin-dependent endocytosis occurs in the tip and subapical regions, because recycling of positively charged nanogold to the Golgi bodies and the consignment of negatively charged nanogold to vacuoles were affected. However, intact positively charged-nanogold transport to vacuoles supports the idea that an endocytic pathway that does not require clathrin is also present in pollen tubes.
Collapse
Affiliation(s)
- Alessandra Moscatelli
- Dipartimento di Biologia L. Gorini, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
193
|
Wilsen KL, Hepler PK. Sperm Delivery in Flowering Plants: The Control of Pollen Tube Growth. Bioscience 2007. [DOI: 10.1641/b571006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
194
|
Yu GH, Sun MX. Deciphering the Possible Mechanism of GABA in Tobacco Pollen Tube Growth and Guidance. PLANT SIGNALING & BEHAVIOR 2007; 2:393-5. [PMID: 19704611 PMCID: PMC2634224 DOI: 10.4161/psb.2.5.4265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 04/12/2007] [Indexed: 05/04/2023]
Abstract
gamma-Aminobutyric acid (GABA) is an inhibitory transmitter in animal central and peripheral nervous systems, and also plays an important role in pollen tube growth and guidance. However, the mechanisms underlying these effects in plants are poorly understood, mainly because the GABA receptor in plants has not been elucidated. To address this issue, we recently created quantum dot probes to identify possible GABA receptors on the membrane surfaces of pollen protoplasts. We found that GABA bound to cell membranes and regulated downstream Ca(2+) oscillation in the cells. These results provide important clues to further specifying the nature of the binding sites and deciphering the role of GABA as a signal molecule in pollen tube growth and orientation.
Collapse
Affiliation(s)
- Guang-Hui Yu
- College of Life Sciences; South-Central University for Nationalities; Wuhan, China
- Key Laboratory of MOE for Plant Developmental Biology; College of Life Sciences; Wuhan University; Wuhan, China
| | - Meng-Xiang Sun
- Key Laboratory of MOE for Plant Developmental Biology; College of Life Sciences; Wuhan University; Wuhan, China
| |
Collapse
|
195
|
Im YJ, Perera IY, Brglez I, Davis AJ, Stevenson-Paulik J, Phillippy BQ, Johannes E, Allen NS, Boss WF. Increasing plasma membrane phosphatidylinositol(4,5)bisphosphate biosynthesis increases phosphoinositide metabolism in Nicotiana tabacum. THE PLANT CELL 2007; 19:1603-16. [PMID: 17496116 PMCID: PMC1913725 DOI: 10.1105/tpc.107.051367] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2007] [Revised: 04/18/2007] [Accepted: 04/23/2007] [Indexed: 05/15/2023]
Abstract
A genetic approach was used to increase phosphatidylinositol(4,5)bisphosphate [PtdIns(4,5)P2] biosynthesis and test the hypothesis that PtdInsP kinase (PIPK) is flux limiting in the plant phosphoinositide (PI) pathway. Expressing human PIPKIalpha in tobacco (Nicotiana tabacum) cells increased plasma membrane PtdIns(4,5)P2 100-fold. In vivo studies revealed that the rate of 32Pi incorporation into whole-cell PtdIns(4,5)P2 increased >12-fold, and the ratio of [3H]PtdInsP2 to [3H]PtdInsP increased 6-fold, but PtdInsP levels did not decrease, indicating that PtdInsP biosynthesis was not limiting. Both [3H]inositol trisphosphate and [3H]inositol hexakisphosphate increased 3-and 1.5-fold, respectively, in the transgenic lines after 18 h of labeling. The inositol(1,4,5)trisphosphate [Ins(1,4,5)P3] binding assay showed that total cellular Ins(1,4,5)P3/g fresh weight was >40-fold higher in transgenic tobacco lines; however, even with this high steady state level of Ins(1,4,5)P3, the pathway was not saturated. Stimulating transgenic cells with hyperosmotic stress led to another 2-fold increase, suggesting that the transgenic cells were in a constant state of PI stimulation. Furthermore, expressing Hs PIPKIalpha increased sugar use and oxygen uptake. Our results demonstrate that PIPK is flux limiting and that this high rate of PI metabolism increased the energy demands in these cells.
Collapse
Affiliation(s)
- Yang Ju Im
- Department of Plant Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Davis AJ, Im YJ, Dubin JS, Tomer KB, Boss WF. Arabidopsis phosphatidylinositol phosphate kinase 1 binds F-actin and recruits phosphatidylinositol 4-kinase beta1 to the actin cytoskeleton. J Biol Chem 2007; 282:14121-31. [PMID: 17379598 DOI: 10.1074/jbc.m611728200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The actin cytoskeleton can be influenced by phospholipids and lipid-modifying enzymes. In animals the phosphatidylinositol phosphate kinases (PIPKs) are associated with the cytoskeleton through a scaffold of proteins; however, in plants such an interaction was not clear. Our approach was to determine which of the plant PIPKs interact with actin and determine whether the PIPK-actin interaction is direct. Our results indicate that AtPIPK1 interacts directly with actin and that the binding is mediated through a predicted linker region in the lipid kinase. AtPIPK1 also recruits AtPI4Kbeta1 to the cytoskeleton. Recruitment of AtPI4Kbeta1 to F-actin was dependent on the C-terminal catalytic domain of phosphatidylinositol-4-phosphate 5-kinase but did not require the presence of the N-terminal 251 amino acids, which includes 7 putative membrane occupation and recognition nexus motifs. In vivo studies confirm the interaction of plant lipid kinases with the cytoskeleton and suggest a role for actin in targeting PIPKs to the membrane.
Collapse
Affiliation(s)
- Amanda J Davis
- Plant Biology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|