151
|
Acharya BR, Raina S, Maqbool SB, Jagadeeswaran G, Mosher SL, Appel HM, Schultz JC, Klessig DF, Raina R. Overexpression of CRK13, an Arabidopsis cysteine-rich receptor-like kinase, results in enhanced resistance to Pseudomonas syringae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:488-99. [PMID: 17419849 DOI: 10.1111/j.1365-313x.2007.03064.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Protein kinases play important roles in relaying information from perception of a signal to the effector genes in all organisms. Cysteine-rich receptor-like kinases (CRKs) constitute a sub-family of plant receptor-like kinases (RLKs) with more than 40 members that contain the novel C-X8-C-X2-C motif (DUF26) in the extracellular domains. Here we report molecular characterization of one member of this gene family, CRK13. Expression of this gene is induced more quickly and strongly in response to the avirulent compared with the virulent strains of Pseudomonas syringae, and peaks within 4 h after pathogen infection. In response to dexamethasone (DEX) treatment, plants expressing the CRK13 gene from a DEX-inducible promoter exhibited all tested features of pathogen defense activation, including rapid tissue collapse, accumulation of high levels of several defense-related gene transcripts including PR1, PR5 and ICS1, and accumulation of salicylic acid (SA). In addition, these plants suppressed growth of virulent pathogens by about 20-fold compared with the wild-type Col-0. CRK13-conferred pathogen resistance is salicylic acid-dependent. Gene expression analysis using custom cDNA microarrays revealed a remarkable overlap between the expression profiles of the plants overexpressing CRK13 and the plants treated with Pst DC3000 (avrRpm1). Our studies suggest that upregulation of CRK13 leads to hypersensitive response-associated cell death, and induces defense against pathogens by causing increased accumulation of salicylic acid.
Collapse
Affiliation(s)
- Biswa R Acharya
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Jelenska J, Yao N, Vinatzer BA, Wright CM, Brodsky JL, Greenberg JT. A J domain virulence effector of Pseudomonas syringae remodels host chloroplasts and suppresses defenses. Curr Biol 2007; 17:499-508. [PMID: 17350264 PMCID: PMC1857343 DOI: 10.1016/j.cub.2007.02.028] [Citation(s) in RCA: 206] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 02/09/2007] [Accepted: 02/12/2007] [Indexed: 11/15/2022]
Abstract
BACKGROUND The plant pathogen Pseudomonas syringae injects 20-40 different proteins called effectors into host plant cells, yet the functions and sites of action of these effectors in promoting pathogenesis are largely unknown. Plants in turn defend themselves against P. syringae by activating the salicylic acid (SA)-mediated signaling pathway. The P. syringae-specific HopI1 effector has a putative chloroplast-targeting sequence and a J domain. J domains function by activating 70 kDa heat-shock proteins (Hsp70). RESULTS HopI1 is a ubiquitous P. syringae virulence effector that acts inside plant cells. When expressed in plants, HopI1 localizes to chloroplasts, the site of SA synthesis. HopI1 causes chloroplast thylakoid structure remodeling and suppresses SA accumulation. HopI1's C terminus has bona fide J domain activity that is necessary for HopI1-mediated virulence and thylakoid remodeling. Furthermore, HopI1-expressing plants have increased heat tolerance, establishing that HopI1 can engage the plant stress-response machinery. CONCLUSIONS These results strongly suggest that chloroplast Hsp70 is targeted by the P. syringae HopI1 effector to promote bacterial virulence by suppressing plant defenses. The targeting of Hsp70 function through J domain proteins is known to occur in a mammalian virus, SV40. However, this is the first example of a bacterial pathogen exploiting a J domain protein to promote pathogenesis through alterations of chloroplast structure and function.
Collapse
Affiliation(s)
- Joanna Jelenska
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 1103 East 57 Street, EBC409, Chicago IL 60637, USA
| | - Nan Yao
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 1103 East 57 Street, EBC409, Chicago IL 60637, USA
- State Key Laboratory of Biocontrol, College of Life Science, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Boris A. Vinatzer
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 1103 East 57 Street, EBC409, Chicago IL 60637, USA
- Current Address: Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic Institute and State University, Latham Hall, Blacksburg, VA 24061, USA
| | - Christine M. Wright
- Department of Biological Sciences, University of Pittsburgh, 274 Crawford Hall, Pittsburgh PA 15260, USA
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, 274 Crawford Hall, Pittsburgh PA 15260, USA
| | - Jean T. Greenberg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 1103 East 57 Street, EBC409, Chicago IL 60637, USA
| |
Collapse
|
153
|
Lin Z, Yin K, Wang X, Liu M, Chen Z, Gu H, Qu LJ. Virus induced gene silencing of AtCDC5 results in accelerated cell death in Arabidopsis leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2007; 45:87-94. [PMID: 17298883 DOI: 10.1016/j.plaphy.2006.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 12/19/2006] [Indexed: 05/14/2023]
Abstract
CDC5, a Myb-related protein, is reported to be essential for the G(2) phase of cell cycle in yeast and animals, but little is known about its function in plants. In this study, Arabidopsis thaliana CDC5 (AtCDC5) is found to be nuclear localized, and the C-terminus of this protein is of transcriptional activation activity in yeast. By taking advantage of the virus induced gene silencing (VIGS) technique, we analyzed the phenotypes of the plants in which AtCDC5 is specifically silenced. The AtCDC5 VIGS plants died before bolting, in which accelerated cell death was detected. Further analysis showed that the transcripts of AtSPT and SAG13, but not SAG12, accumulated in these AtCDC5 VIGS plants, suggesting that the accelerated cell death is different from that occurred during leaf senescence. Furthermore, silencing of AtCDC5 by VIGS in either wild-type, npr1 or nahG plants all induces cell death, suggesting that SA is not crucial for the AtCDC5-associated cell death.
Collapse
Affiliation(s)
- Zhiqiang Lin
- National Laboratory for Protein Engineering and Plant Genetic Engineering, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
154
|
Zhang Y, Cheng YT, Qu N, Zhao Q, Bi D, Li X. Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:647-56. [PMID: 17076807 DOI: 10.1111/j.1365-313x.2006.02903.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
NPR1 is required for systemic acquired resistance, and there are five NPR1 paralogs in Arabidopsis. Here we report knockout analysis of two of these, NPR3 and NPR4. npr3 single mutants have elevated basal PR-1 expression and the npr3 npr4 double mutant shows even higher expression. The double mutant plants also display enhanced resistance against virulent bacterial and oomycete pathogens. This enhanced disease resistance is partially dependent on NPR1, can be in part complemented by either wild-type NPR3 or NPR4, and is not associated with an elevated level of salicylic acid. NPR3 and NPR4 interact with TGA2, TGA3, TGA5 and TGA6 in yeast two-hybrid assays. Using bimolecular fluorescence complementation analysis, we show that NPR3 interacts with TGA2 in the nucleus of onion epidermal cells and Arabidopsis mesophyll protoplasts. Combined with our previous finding that basal PR-1 levels are also elevated in the tga2 tga5 tga6 triple mutant, we propose that NPR3 and NPR4 negatively regulate PR gene expression and pathogen resistance through their association with TGA2 and its paralogs.
Collapse
Affiliation(s)
- Yuelin Zhang
- National Institute of Biological Sciences, #7 Science Park Road, Zhongguancun Life Science Park, Beijing, People's Republic of China 102206.
| | | | | | | | | | | |
Collapse
|
155
|
Ishikawa A, Kimura Y, Yasuda M, Nakashita H, Yoshida S. Salicylic acid-mediated cell death in the Arabidopsis len3 mutant. Biosci Biotechnol Biochem 2006; 70:1447-53. [PMID: 16794326 DOI: 10.1271/bbb.50683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Arabidopsis lesion initiation 3 (len3) mutant develops lesions on leaves without pathogen attack. len3 plants exhibit stunted growth, constitutively express pathogenesis-related (PR) genes, PR-1, PR-2, and PR-5, and accumulate elevated levels of salicylic acid (SA). Furthermore, len3 is a semidominant, male gametophytic lethal mutation with partial defects in female gametophytic development. To determine the signaling pathway activated in len3 plants, we crossed the len3 plants with nahG, npr1-1, and pad4-1 plants and analyzed the phenotypes of the double mutants. The len3-conferred phenotypes, including cell death and PR-1 expressions, were suppressed in the double mutants. Thus SA, NPR1, and PAD4 are required for the phenotypes. However, none of these double mutants could completely suppress the len3-conferred stunted growth. This result suggests that an SA-, NPR1-, and PAD4-independent pathway is also involved in the phenotype. Treatment with BTH (benzo(1,2,3)thiadiazole-7-carbothioic acid), an SA analog, induced cell death in len3 nahG plants but not in len3 npr1 or len3 pad4 plants, suggesting the involvement of the PAD4-dependent but SA-independent second signal pathway in cell death in len3 plants.
Collapse
|
156
|
Jambunathan N, Mahalingam R. Analysis of Arabidopsis growth factor gene 1 (GFG1) encoding a nudix hydrolase during oxidative signaling. PLANTA 2006; 224:1-11. [PMID: 16328543 DOI: 10.1007/s00425-005-0183-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Accepted: 11/08/2005] [Indexed: 05/05/2023]
Abstract
Maintenance of pyridine nucleotide homeostasis is vital for normal growth and development of plants and animals. We demonstrate that Arabidopsis Growth Factor Gene 1 (GFG1; At4g12720) encoding a nudix hydrolase, is an NADH pyrophosphatase and ADP-ribose pyrophosphatase. The affinity for NADH and ADP-ribose indicates that this enzyme could serve as a connection between sensing cellular redox changes and downstream signaling. GFG1 transcript levels were rapidly and transiently induced during both biotic stresses imposed by avirulent pathogens and abiotic stresses like ozone and osmoticum. T-DNA knock out plants of GFG1 gene, gfg1-1, exhibit pleiotropic phenotypes such as reduced size, increased levels of reactive oxygen species and NADH, microscopic cell death, constitutive expression of pathogenesis-related genes and enhanced resistance to bacterial pathogens. The recombinant protein failed to complement the mutator deficiency in SBMutT- strain of Escherichia coli, suggesting this protein may not play a role in sanitizing the nucleotide pool. Based on rapid transcriptional changes in response to various stresses, substrate specificity of the enzyme, and analysis of the knock out mutant, we propose that GFG1 is a key gene linking cellular metabolism and oxidative signaling.
Collapse
Affiliation(s)
- Niranjani Jambunathan
- Department of Biochemistry and Molecular Biology, 246 Noble Research center, Oklahoma State University, Stillwater, OK 74078, USA
| | | |
Collapse
|
157
|
Stein M, Dittgen J, Sánchez-Rodríguez C, Hou BH, Molina A, Schulze-Lefert P, Lipka V, Somerville S. Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. THE PLANT CELL 2006; 18:731-46. [PMID: 16473969 PMCID: PMC1383646 DOI: 10.1105/tpc.105.038372] [Citation(s) in RCA: 472] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Arabidopsis thaliana is a host to the powdery mildew Erysiphe cichoracearum and nonhost to Blumeria graminis f. sp hordei, the powdery mildew pathogenic on barley (Hordeum vulgare). Screening for Arabidopsis mutants deficient in resistance to barley powdery mildew identified PENETRATION3 (PEN3). pen3 plants permitted both increased invasion into epidermal cells and initiation of hyphae by B. g. hordei, suggesting that PEN3 contributes to defenses at the cell wall and intracellularly. pen3 mutants were compromised in resistance to the necrotroph Plectosphaerella cucumerina and to two additional inappropriate biotrophs, pea powdery mildew (Erysiphe pisi) and potato late blight (Phytophthora infestans). Unexpectedly, pen3 mutants were resistant to E. cichoracearum. This resistance was salicylic acid-dependent and correlated with chlorotic patches. Consistent with this observation, salicylic acid pathway genes were hyperinduced in pen3 relative to the wild type. The phenotypes conferred by pen3 result from the loss of function of PLEIOTROPIC DRUG RESISTANCE8 (PDR8), a highly expressed putative ATP binding cassette transporter. PEN3/PDR8 tagged with green fluorescent protein localized to the plasma membrane in uninfected cells. In infected leaves, the protein concentrated at infection sites. PEN3/PDR8 may be involved in exporting toxic materials to attempted invasion sites, and intracellular accumulation of these toxins in pen3 may secondarily activate the salicylic acid pathway.
Collapse
Affiliation(s)
- Mónica Stein
- Carnegie Institution, Department of Plant Biology, Stanford, California, 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Wang C, Liu Z. Arabidopsis ribonucleotide reductases are critical for cell cycle progression, DNA damage repair, and plant development. THE PLANT CELL 2006; 18:350-65. [PMID: 16399800 PMCID: PMC1356544 DOI: 10.1105/tpc.105.037044] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ribonucleotide reductase (RNR), comprising two large (R1) and two small (R2) subunits, catalyzes a rate-limiting step in the production of deoxyribonucleotides needed for DNA replication and repair. Previous studies in yeast and mammals indicated that defective RNR often led to cell cycle arrest, growth retardation, and p53-dependent apoptosis, whereas abnormally increased RNR activities led to higher mutation rates. Because plants are constantly exposed to environmental mutagens and plant cells are totipotent, an understanding of RNR function in plants is important. We isolated and characterized mutations in all three R2 genes (TSO2, RNR2A, and RNR2B) in Arabidopsis thaliana. tso2 mutants had reduced deoxyribonucleoside triphosphate (dNTP) levels and exhibited developmental defects, including callus-like floral organs and fasciated shoot apical meristems. tso2 single and tso2 rnr2a double mutants were more sensitive to UV-C light, and tso2 rnr2a seedlings exhibited increased DNA damage, massive programmed cell death, and release of transcriptional gene silencing. Analyses of single and double r2 mutants demonstrated that a normal dNTP pool and RNR function are critical for the plant response to mutagens and proper plant development. The correlation between DNA damage accumulation and the subsequent occurrence of apoptotic nuclei in tso2 rnr2a double mutants suggests that perhaps plants, like animals, can initiate programmed cell death upon sensing DNA damage.
Collapse
Affiliation(s)
| | - Zhongchi Liu
- To whom correspondence should be addressed. E-mail ; fax 301-314-9082
| |
Collapse
|
159
|
Yao N, Greenberg JT. Arabidopsis ACCELERATED CELL DEATH2 modulates programmed cell death. THE PLANT CELL 2006; 18:397-411. [PMID: 16387834 PMCID: PMC1356547 DOI: 10.1105/tpc.105.036251] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The Arabidopsis thaliana chloroplast protein ACCELERATED CELL DEATH2 (ACD2) modulates the amount of programmed cell death (PCD) triggered by Pseudomonas syringae and protoporphyrin IX (PPIX) treatment. In vitro, ACD2 can reduce red chlorophyll catabolite, a chlorophyll derivative. We find that ACD2 shields root protoplasts that lack chlorophyll from light- and PPIX-induced PCD. Thus, chlorophyll catabolism is not obligatory for ACD2 anti-PCD function. Upon P. syringae infection, ACD2 levels and localization change in cells undergoing PCD and in their close neighbors. Thus, ACD2 shifts from being largely in chloroplasts to partitioning to chloroplasts, mitochondria, and, to a small extent, cytosol. ACD2 protects cells from PCD that requires the early mitochondrial oxidative burst. Later, the chloroplasts of dying cells generate NO, which only slightly affects cell viability. Finally, the mitochondria in dying cells have dramatically altered movements and cellular distribution. Overproduction of both ACD2 (localized to mitochondria and chloroplasts) and ascorbate peroxidase (localized to chloroplasts) greatly reduces P. syringae-induced PCD, suggesting a pro-PCD role for mitochondrial and chloroplast events. During infection, ACD2 may bind to and/or reduce PCD-inducing porphyrin-related molecules in mitochondria and possibly chloroplasts that generate reactive oxygen species, cause altered organelle behavior, and activate a cascade of PCD-inducing events.
Collapse
Affiliation(s)
- Nan Yao
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
160
|
Lu H, Liu Y, Greenberg JT. Structure-function analysis of the plasma membrane- localized Arabidopsis defense component ACD6. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:798-809. [PMID: 16297071 DOI: 10.1111/j.1365-313x.2005.02567.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The ACCELERATED CELL DEATH 6 (ACD6) protein, composed of an ankyrin-repeat domain and a predicted transmembrane region, is a necessary positive regulator of Arabidopsis defenses. ACD6 overexpression confers enhanced disease resistance by priming stronger and quicker defense responses during pathogen infection, plant development or treatment with an agonist of the key defense regulator salicylic acid (SA). Modulation of ACD6 affects both SA-dependent and SA-independent defenses. ACD6 localizes to the plasma membrane and is an integral membrane protein with a cytoplasmic ankyrin domain. An activated version of ACD6 with a predicted transmembrane helix mutation called ACD6-1 has the same localization and overall topology as the wild-type protein. A genetic screen for mutants that suppress acd6-1-conferred phenotypes identified 17 intragenic mutations of ACD6. The majority of these mutations reside in the ankyrin domain and in predicted transmembrane helices, suggesting that both ankyrin and transmembrane domains are important for ACD6 function. One mutation (S638F) also identified a key residue in a putative loop between two transmembrane helices. This mutation did not alter the stability or localization of ACD6, suggesting that S635 is a critical residue for ACD6 function. Based on structural modeling, two ankyrin domain mutations are predicted to be in surface-accessible residues. As ankyrin repeats are protein interaction modules, these mutations may disrupt protein-protein interactions. A plausible scenario is that information exchange between the ankyrin and transmembrane domains is involved in activating defense signaling.
Collapse
Affiliation(s)
- Hua Lu
- Department of Molecular Genetics and Cell Biology, The University of Chicago, IL 60637, USA
| | | | | |
Collapse
|
161
|
Pegadaraju V, Knepper C, Reese J, Shah J. Premature leaf senescence modulated by the Arabidopsis PHYTOALEXIN DEFICIENT4 gene is associated with defense against the phloem-feeding green peach aphid. PLANT PHYSIOLOGY 2005; 139:1927-34. [PMID: 16299172 PMCID: PMC1310570 DOI: 10.1104/pp.105.070433] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 10/07/2005] [Accepted: 10/12/2005] [Indexed: 05/05/2023]
Abstract
Aphids, which are phloem-feeding insects, cause extensive loss of plant productivity and are vectors of plant viruses. Aphid feeding causes changes in resource allocation in the host, resulting in an increase in flow of nutrients to the insect-infested tissue. We hypothesized that leaf senescence, which is involved in the programmed degradation of cellular components and the export of nutrients out of the senescing leaf, could be utilized by plants to limit aphid growth. Using Arabidopsis (Arabidopsis thaliana) and green peach aphid (GPA; Myzus persicae Sulzer), we found that GPA feeding induced premature chlorosis and cell death, and increased the expression of SENESCENCE ASSOCIATED GENES (SAGs), all hallmarks of leaf senescence. Hypersenescence was accompanied by enhanced resistance against GPA in the Arabidopsis constitutive expresser of PR genes5 and suppressor of SA insensitivity2 mutant plants. In contrast, resistance against GPA was compromised in the phytoalexin deficient4 (pad4) mutant plant. The PAD4 gene, which is expressed at elevated level in response to GPA feeding, modulates the GPA feeding-induced leaf senescence. In comparison to the wild-type plant, GPA feeding-induced chlorophyll loss, cell death, and SAG expression were delayed in the pad4 mutant. Although PAD4 is associated with camalexin synthesis and salicylic acid (SA) signaling, camalexin and SA signaling are not important for restricting GPA growth; growth of GPA on the camalexin-biosynthesis mutant, pad3, and the SA deficient2 and NahG plants and the SA-signaling mutant, nonexpresser of PR genes1, were comparable to that on the wild-type plant. Our results suggest that PAD4 modulates the activation of senescence in the aphid-infested leaves, which contributes to basal resistance to GPA.
Collapse
Affiliation(s)
- Venkatramana Pegadaraju
- Division of Biology and the Molecular Cellular and Developmental Biology Program, Kansas State University, Manhattan, Kansas 66506-4901, USA
| | | | | | | |
Collapse
|
162
|
Park YS, Jeon MH, Lee SH, Moon JS, Cha JS, Kim HY, Cho TJ. Activation of Defense Responses in Chinese Cabbage by a Nonhost Pathogen, Pseudomonas syringae pv. tomato. BMB Rep 2005; 38:748-54. [PMID: 16336791 DOI: 10.5483/bmbrep.2005.38.6.748] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas syringae pv. tomato (Pst) causes a bacterial speck disease in tomato and Arabidopsis. In Chinese cabbage, in which host-pathogen interactions are not well understood, Pst does not cause disease but rather elicits a hypersensitive response. Pst induces localized cell death and H2O2 accumulation, a typical hypersensitive response, in infiltrated cabbage leaves. Pre-inoculation with Pst was found to induce resistance to Erwinia carotovora subsp. carotovora, a pathogen that causes soft rot disease in Chinese cabbage. An examination of the expression profiles of 12 previously identified Pst-inducible genes revealed that the majority of these genes were activated by salicylic acid or BTH; however, expressions of the genes encoding PR4 and a class IV chitinase were induced by ethephon, an ethylene-releasing compound, but not by salicylic acid, BTH, or methyl jasmonate. This implies that Pst activates both salicylate-dependent and salicylate-independent defense responses in Chinese cabbage.
Collapse
Affiliation(s)
- Yong-Soon Park
- Division of Life Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | | | | | | | | | | | | |
Collapse
|
163
|
Yang LX, Wang RY, Ren F, Liu J, Cheng J, Lu YT. AtGLB1 enhances the tolerance of Arabidopsis to hydrogen peroxide stress. PLANT & CELL PHYSIOLOGY 2005; 46:1309-16. [PMID: 15930012 DOI: 10.1093/pcp/pci140] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Hydrogen peroxide (H2O2) as a widespread molecule plays an important role in plant stress responses. Here, we showed that an Arabidopsis line overexpressing hemoglobin 1 (AtGLB1) can enhance its tolerance to severe hypoxic stress. In our research, Arabidopsis lines with different hemoglobin levels were employed to study the relationship between H2O2 level and the tolerance to hypoxic stress. The relatively low endogenous H2O2 level of AtGLB1-overexpressing plants could be one of the main factors for the increased tolerance of plants to hypoxic stress. Further investigation indicated that the activity of the antioxidant system involved in scavenging H2O2 increased in all three lines examined during hypoxic treatment, while only the line overexpressing AtGLB1 could retain these relatively high levels up to 48 h of the treatment, suggesting that the antioxidant system might play a role in the low H2O2 level of Arabidopsis overexpressing AtGLB1.
Collapse
Affiliation(s)
- Li-Xiang Yang
- Key Lab of MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | |
Collapse
|
164
|
Tang D, Christiansen KM, Innes RW. Regulation of plant disease resistance, stress responses, cell death, and ethylene signaling in Arabidopsis by the EDR1 protein kinase. PLANT PHYSIOLOGY 2005; 138:1018-26. [PMID: 15894742 PMCID: PMC1150416 DOI: 10.1104/pp.105.060400] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 03/08/2005] [Accepted: 03/08/2005] [Indexed: 05/02/2023]
Abstract
ENHANCED DISEASE RESISTANCE 1 (EDR1) encodes a CTR1-like kinase and was previously reported to function as a negative regulator of disease resistance and ethylene-induced senescence. Here, we report that the edr1 mutant displays enhanced stress responses and spontaneous necrotic lesions under drought conditions in the absence of pathogen, suggesting that EDR1 is also involved in stress response signaling and cell death regulation. Double mutant analysis revealed that these drought-induced phenotypes require salicylic acid but not ethylene signaling pathways. In addition, the edr1-mediated ethylene-induced senescence phenotype was suppressed by mutations in EIN2, but not by mutations in SID2, PAD4, EDS1, or NPR1, suggesting that EDR1 functions at a point of cross talk between ethylene and salicylic acid signaling that impinges on senescence and cell death. Two edr1-associated phenotypes, drought-induced growth inhibition and ethylene-induced senescence, were suppressed by mutations in ORE9, implicating ubiquitin-mediated protein degradation in the regulation of these phenotypes. However, the ore9 mutation did not suppress edr1-mediated enhanced disease resistance to powdery mildew or spontaneous lesions, indicating that these phenotypes are controlled by separate signaling pathways. To investigate the function of the EDR1 kinase domain, we expressed the C-terminal third of EDR1 in wild-type Columbia and edr1 backgrounds under the control of a dexamethasone-inducible promoter. Overexpression of the EDR1 kinase domain in an edr1 background had no obvious effect on edr1-associated phenotypes. However, overexpression of the EDR1 kinase domain in a wild-type Columbia background caused dominant negative phenotypes, including enhanced disease resistance to powdery mildew and enhanced ethylene-induced senescence; thus, the overexpressed EDR1 kinase domain alone does not exert EDR1 function, but rather negatively affects the function of native EDR1 protein.
Collapse
Affiliation(s)
- Dingzhong Tang
- Department of Biology, Indiana University, Bloomington, Indiana 47405-7107, USA
| | | | | |
Collapse
|
165
|
Van Damme M, Andel A, Huibers RP, Panstruga R, Weisbeek PJ, Van den Ackerveken G. Identification of arabidopsis loci required for susceptibility to the downy mildew pathogen Hyaloperonospora parasitica. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:583-92. [PMID: 15986928 DOI: 10.1094/mpmi-18-0583] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plants are susceptible to a limited number of pathogens. Most infections fail due to active defense or absence of compatibility. Many components of the plant's surveillance system and defense arsenal have been identified in the last decades. However, knowledge is limited on compatibility; in particular, the role of plant factors in the infection process. To gain insight into these processes, we have initiated an Arabidopsis thaliana mutant screen for reduced susceptibility to the downy mildew pathogen Hyaloperonospora parasitica. Ethyl methane sulfonate (EMS) mutants were generated in the highly susceptible Arabidopsis line Ler eds1-2. Eight downy mildew-resistant (dmr) mutants were analyzed in detail, corresponding to six different loci. Microscopic analysis showed that, in all mutants, H. parasitica growth was severely reduced. Resistance of dmr3, dmr4, and dmr5 was associated with constitutive expression of PR-1. Furthermore, dmr3 and dmr4, but not dmr5, also were resistant to Pseudomonas syringae and Golovinomyces orontii, respectively. However, enhanced activation of plant defense was not observed in dmr1, dmr2, and dmr6. We postulate that, in these susceptibility mutants, cellular processes are disrupted which are required for H. parasitica infection. This interesting new set of mutants provides a basis to elucidate the molecular processes underlying susceptibility to downy mildew in Arabidopsis.
Collapse
Affiliation(s)
- Mireille Van Damme
- Department of Molecular and Cellular Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
166
|
Brodersen P, Malinovsky FG, Hématy K, Newman MA, Mundy J. The role of salicylic acid in the induction of cell death in Arabidopsis acd11. PLANT PHYSIOLOGY 2005; 138:1037-45. [PMID: 15923330 PMCID: PMC1150418 DOI: 10.1104/pp.105.059303] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Salicylic acid (SA) is implicated in the induction of programmed cell death (PCD) associated with pathogen defense responses because SA levels increase in response to PCD-inducing infections, and PCD development can be inhibited by expression of salicylate hydroxylase encoded by the bacterial nahG gene. The acd11 mutant of Arabidopsis (Arabidopsis thaliana L. Heynh.) activates PCD and defense responses that are fully suppressed by nahG. To further study the role of SA in PCD induction, we compared phenotypes of acd11/nahG with those of acd11/eds5-1 and acd11/sid2-2 mutants deficient in a putative transporter and isochorismate synthase required for SA biosynthesis. We show that sid2-2 fully suppresses SA accumulation and cell death in acd11, although growth inhibition and premature leaf chlorosis still occur. In addition, application of exogenous SA to acd11/sid2-2 is insufficient to restore cell death. This indicates that isochorismate-derived compounds other than SA are required for induction of PCD in acd11 and that some acd11 phenotypes require NahG-degradable compounds not synthesized via isochorismate.
Collapse
Affiliation(s)
- Peter Brodersen
- Institute of Molecular Biology, Copenhagen University, DK-1353 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
167
|
Abstract
SUMMARY Disease resistance takes place within the context of the host developmental programme. The cellular and molecular basis of the developmental control of resistance is virtually unknown. It is clear from mutant studies that developmental processes are impacted when defence factors are altered and it is equally clear that alteration of developmental factors impacts defence functions. A review of current knowledge regarding the interplay of resistance and development is presented. Stage-specific limitations on defence represent an important target for crop improvement.
Collapse
Affiliation(s)
- Maureen C Whalen
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| |
Collapse
|
168
|
Xiao S, Calis O, Patrick E, Zhang G, Charoenwattana P, Muskett P, Parker JE, Turner JG. The atypical resistance gene, RPW8, recruits components of basal defence for powdery mildew resistance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 42:95-110. [PMID: 15773856 DOI: 10.1111/j.1365-313x.2005.02356.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Genetic studies have identified a number of components of signal transduction pathways leading to plant disease resistance and the accompanying hypersensitive response (HR) following detection of pathogens by plant resistance (R) genes. In Arabidopsis, the majority of R proteins so far characterized belong to a plant superfamily that have a central nucleotide-binding site and C-terminal leucine-rich-repeats (NB-LRRs). Another much less prevalent class comprises RPW8.1 and RPW8.2, two related proteins that possess a putative N-terminal transmembrane domain and a coiled-coil motif, and confer broad-spectrum resistance to powdery mildew. Here we investigated whether RPW8.1 and RPW8.2 engage known pathway(s) for defence signalling. We show that RPW8.1 and RPW8.2 recruit, in addition to salicylic acid and EDS1, the other NB-LRR gene-signalling components PAD4, EDS5, NPR1 and SGT1b for activation of powdery mildew resistance and HR. In contrast, NDR1, RAR1 and PBS3 that are required for function of certain NB-LRR R genes, and COI1 and EIN2 that operate, respectively, in the jasmonic acid and ethylene signalling pathways, do not contribute to RPW8.1 and RPW8.2-mediated resistance. We further demonstrate that EDR1, a gene encoding a conserved MAPKK kinase, exerts negative regulation on HR cell death and powdery mildew resistance by limiting the transcriptional amplification of RPW8.1 and RPW8.2. Our results suggest that RPW8.1 and RPW8.2 stimulate a conserved basal defence pathway that is negatively regulated by EDR1.
Collapse
Affiliation(s)
- Shunyuan Xiao
- School of Biological Science, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Nandi A, Moeder W, Kachroo P, Klessig DF, Shah J. Arabidopsis ssi2-conferred susceptibility to Botrytis cinerea is dependent on EDS5 and PAD4. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:363-70. [PMID: 15828688 DOI: 10.1094/mpmi-18-0363] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Loss of a stearoyl-ACP desaturase activity in the Arabidopsis thaliana ssi2 mutant confers susceptibility to the necrotroph, Botrytis cinerea. In contrast, the ssi2 mutant exhibits enhanced resistance to Pseudomonas syringae, Peronospora parasitica, and Cucumber mosaic virus. The altered basal resistance to these pathogens in the ssi2 mutant plant is accompanied by the constitutive accumulation of elevated salicylic acid (SA) level and expression of the pathogenesis-related 1 (PR1) gene, the inability of jasmonic acid (JA) to activate expression of the defensin gene, PDF1.2, and the spontaneous death of cells. Here, we show that presence of the eds5 and pad4 mutant alleles compromises the ssi2-conferred resistance to Pseudomonas syringae pv. maculicola. In contrast, resistance to B. cinerea was restored in the ssi2 eds5 and ssi2 pad4 double-mutant plants. However, resistance to B. cinerea was not accompanied by the restoration of JA responsiveness in the ssi2 eds5 and ssi2 pad4 plants. The ssi2 eds5 and ssi2 pad4 plants retain the ssi2-conferred spontaneous cell death phenotype, suggesting that cell death is not a major factor that predisposes the ssi2 mutant to infection by B. cinerea. Furthermore, the high SA content of the ssi2 pad4 plant, combined with our previous observation that the SA-deficient ssi2 nahG plant succumbs to infection by B. cinerea, suggests that elevated SA level does not have a causal role in the ssi2-conferred susceptibility to B. cinerea. Our results suggest that interaction between an SSI2-dependent factor or factors and an EDS5- and PAD4-dependent mechanism or mechanisms modulates defense to B. cinerea.
Collapse
Affiliation(s)
- Ashis Nandi
- Division of Biology, Cellular and Developmental Biology Program, Kansas State University, Manhattan 66506, USA
| | | | | | | | | |
Collapse
|
170
|
Stone JM, Liang X, Nekl ER, Stiers JJ. Arabidopsis AtSPL14, a plant-specific SBP-domain transcription factor, participates in plant development and sensitivity to fumonisin B1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:744-54. [PMID: 15703061 DOI: 10.1111/j.1365-313x.2005.02334.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The recessive Arabidopsis thalianafumonisin B1-resistant (fbr6) mutant was identified by its ability to survive in the presence of a programmed cell death (PCD)-inducing fungal toxin FB1. The fbr6 mutant also displays altered plant architecture in the absence of FB1, most notably elongated petioles and enhanced leaf margin serration. These phenotypes are a result of a T-DNA insertion in the SQUAMOSA promoter binding protein (SBP) domain gene, AtSPL14. AtSPL14 encodes a plant-specific protein with features characteristic of a transcriptional regulator, including a nuclear localization signal sequence, a plant-specific DNA binding domain (the SBP box), and a protein interaction motif (ankyrin repeats). A transiently expressed fusion of the AtSPL14 protein to green fluorescent protein is directed to the plant nucleus. DNA sequences immediately upstream of the translation start site direct expression of the beta-glucuronidase reporter gene primarily in the vascular tissues, consistent with the phenotypes of the fbr6 mutant. AtSPL14 activates transcription in yeast, with a transactivation domain residing within the N-terminal region of the protein. Recombinant AtSPL14 protein binds A. thaliana genomic DNA in vitro in the absence of other proteins. These results indicate that FBR6/SPL14 functions as a transcriptional regulator that plays a role not only in sensitivity to FB1, but also in the development of normal plant architecture.
Collapse
Affiliation(s)
- Julie M Stone
- Department of Biochemistry and Plant Science Initiative, University of Nebraska-Lincoln, 1901 Vine Street, Lincoln, NE 68588, USA.
| | | | | | | |
Collapse
|
171
|
Thatcher LF, Anderson JP, Singh KB. Plant defence responses: what have we learnt from Arabidopsis? FUNCTIONAL PLANT BIOLOGY : FPB 2005; 32:1-19. [PMID: 32689107 DOI: 10.1071/fp04135] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Accepted: 09/19/2004] [Indexed: 05/27/2023]
Abstract
To overcome the attack of invading pathogens, a plant's defence system relies on preformed and induced responses. The induced responses are activated following detection of a pathogen, with the subsequent transmission of signals and orchestrated cellular events aimed at eliminating the pathogen and preventing its spread. Numerous studies are proving that the activated signalling pathways are not simply linear, but rather, form complex networks where considerable cross talk takes place. This review covers the recent application of powerful genetic and genomic approaches to identify key defence signalling pathways in the model plant Arabidopsis thaliana (L.) Heynh. The identification of key regulatory components of these pathways may offer new approaches to increase the defence capabilities of crop plants.
Collapse
Affiliation(s)
- Louise F Thatcher
- CSIRO Plant Industry, Centre for Environment and Life Sciences, Private Bag 5, Wembley, WA 6913, Australia
| | - Jonathan P Anderson
- CSIRO Plant Industry, Centre for Environment and Life Sciences, Private Bag 5, Wembley, WA 6913, Australia
| | - Karam B Singh
- CSIRO Plant Industry, Centre for Environment and Life Sciences, Private Bag 5, Wembley, WA 6913, Australia
| |
Collapse
|
172
|
Bostock RM. Signal crosstalk and induced resistance: straddling the line between cost and benefit. ANNUAL REVIEW OF PHYTOPATHOLOGY 2005; 43:545-80. [PMID: 16078895 DOI: 10.1146/annurev.phyto.41.052002.095505] [Citation(s) in RCA: 315] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This review discusses recent progress in our understanding of signaling in induced plant resistance and susceptibility to pathogens and insect herbivores, with a focus on the connections and crosstalk among phytohormone signaling networks that regulate responses to these and other stresses. Multiple stresses, often simultaneous, reduce growth and yield in plants. However, prior challenge by a pathogen or insect herbivore also can induce resistance to subsequent challenge. This resistance, or failure of susceptibility, must be orchestrated within a larger physiological context that is strongly influenced by other biotic agents and by abiotic stresses such as inadequate light, temperature extremes, drought, nutrient limitation, and soil salinity. Continued research in this area is predicated on the notion that effective utilization of induced resistance in crop protection will require a functional understanding of the physiological consequences of the "induced" state of the plant, coupled with the knowledge of the specificity and compatibility of the signaling systems leading to this state. This information may guide related strategies to improve crop performance in suboptimal environments, and define the limits of induced resistance in certain agricultural contexts.
Collapse
Affiliation(s)
- Richard M Bostock
- Department of Plant Pathology, University of California, Davis, California 95616, USA.
| |
Collapse
|
173
|
Murray SL, Adams N, Kliebenstein DJ, Loake GJ, Denby KJ. A constitutive PR-1::luciferase expression screen identifies Arabidopsis mutants with differential disease resistance to both biotrophic and necrotrophic pathogens. MOLECULAR PLANT PATHOLOGY 2005; 6:31-41. [PMID: 20565636 DOI: 10.1111/j.1364-3703.2004.00261.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY A complex signal transduction network involving salicylic acid, jasmonic acid and ethylene underlies disease resistance in Arabidopsis. To understand this defence signalling network further, we identified mutants that expressed the marker gene PR-1::luciferase in the absence of pathogen infection. These cir mutants all display constitutive expression of a suite of defence-related genes but exhibit different disease resistance profiles to two biotrophic pathogens, Pseudomonas syringae pv. tomato and Peronospora parasitica NOCO2, and the necrotrophic pathogen Botrytis cinerea. We further characterized cir3, which displays enhanced resistance only to the necrotrophic pathogen. Cir3-mediated resistance to B. cinerea is dependent on accumulated salicylic acid and a functional EIN2 protein.
Collapse
Affiliation(s)
- Shane L Murray
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch, 7701, South Africa
| | | | | | | | | |
Collapse
|
174
|
Zhen XH, Li YZ. Ultrastructural changes and location of beta-1, 3-glucanase in resistant and susceptible cotton callus cells in response to treatment with toxin of Verticillium dahliae and salicylic acid. JOURNAL OF PLANT PHYSIOLOGY 2004; 161:1367-77. [PMID: 15658807 DOI: 10.1016/j.jplph.2004.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Calli from two cotton cultivars susceptible and resistant to Verticillium wilt, were treated with a crude toxin of Verticillium dahliae (VD-toxin) plus salicylic acid (SA). Cells treated with VD-toxin showed distinct ultrastructural changes. Cells from the susceptible cultivar displayed damage to plasma membrane and cytoplasm. The deleterious effect on cells of the resistant cultivar, with an accumulation of electron-dense precipitate in the vacuoles, was less noticeable. Exogenous SA protected callus cells from VD-toxin. We also report the localization of beta-1,3-glucanase in callus cells with immunofluorescence Labeling. Stronger fluorescence was observed in the extracellular space in resistant than in susceptible cotton; strongest in resistant cotton after 5 days of treatment with VD-toxin plus SA. The findings reported here indicate an important role of exogenous salicylic acid in the induction of resistance to VD-toxin in cotton. Coupled with an increase in beta-1,3-glucanase, cellular integrity is maintained and damage to cell wall and plasma membrane is avoided.
Collapse
Affiliation(s)
- Xiao-Hua Zhen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | | |
Collapse
|
175
|
Song JT, Lu H, McDowell JM, Greenberg JT. A key role for ALD1 in activation of local and systemic defenses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:200-12. [PMID: 15447647 DOI: 10.1111/j.1365-313x.2004.02200.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Arabidopsis thaliana agd2-like defense response protein1 (ald1) mutant was previously found to be hypersusceptible to the virulent bacterial pathogen Pseudomonas syringae and had reduced accumulation of the defense signal salicylic acid (SA). ALD1 was shown to possess aminotransferase activity in vitro, suggesting it generates an amino acid-derived defense signal. We now find ALD1 to be a key defense component that acts in multiple contexts and partially requires the PHYTOALEXIN DEFICIENT4 (PAD4) defense regulatory gene for its expression in response to infection. ald1 plants have increased susceptibility to avirulent P. syringae strains, are unable to activate systemic acquired resistance and are compromised for resistance to the oomycete pathogen Peronospora parasitica in mutants with constitutively active defenses. ALD1 and PAD4 can act additively to control SA, PATHOGENESIS RELATED GENE1 (PR1) transcript and camalexin (an antimicrobial metabolite) accumulation as well as disease resistance. Finally, ALD1 and PAD4 can mutually affect each other's expression in a constitutive defense mutant, suggesting that these two genes can act in a signal amplification loop.
Collapse
Affiliation(s)
- Jong Tae Song
- Department of Molecular Genetics and Cell Biology, Erman Biology Center, The University of Chicago, 1103 East 57th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
176
|
Cole AB, Király L, Lane LC, Wiggins BE, Ross K, Schoelz JE. Temporal expression of PR-1 and enhanced mature plant resistance to virus infection is controlled by a single dominant gene in a new Nicotiana hybrid. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:976-85. [PMID: 15384488 DOI: 10.1094/mpmi.2004.17.9.976] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A new variety of Nicotiana edwardsonii, designated N. edwardsonii cv. Columbia, expresses pathogenesis-related (PR) proteins in a temporal manner 45 to 49 days postplanting and also exhibits enhanced resistance to Tobacco mosaic virus, Tobacco necrosis virus, and Tomato bushy stunt virus. In contrast, PR proteins were not expressed in the original N. edwardsonii variety at comparable ages but were induced after onset of a hypersensitive response to viral infection. The temporal induction of PR proteins in 'Columbia' was correlated with increases in salicylic acid and glycosylated salicylic acid. Earlier studies noted that some Nicotiana hybrids derived from interspecific crosses constitutively express PR proteins, but the genetic basis of this phenomenon had not been investigated, likely because many interspecific Nicotiana crosses are sterile. However, the close genetic relationship between N. edwardsonii and 'Columbia' indicated that a hybrid between these two plants might be fertile, and this proved to be true. Genetic crosses between 'Columbia' and N. edwardsonii demonstrated that a single, dominant gene conditioned temporal expression of PR proteins and enhanced resistance. This gene was designated TPR1 (for temporal expression of PR proteins).
Collapse
Affiliation(s)
- Anthony B Cole
- Department of Plant Microbiology and Pathology, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|
177
|
Zhou F, Menke FLH, Yoshioka K, Moder W, Shirano Y, Klessig DF. High humidity suppresses ssi4-mediated cell death and disease resistance upstream of MAP kinase activation, H2O2 production and defense gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:920-32. [PMID: 15341634 DOI: 10.1111/j.1365-313x.2004.02180.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The Arabidopsis ssi4 mutant, which exhibits spontaneous lesion formation, constitutive expression of pathogenesis-related (PR) genes and enhanced resistance to virulent bacterial and oomycete pathogens, contains a gain-of-function mutation in a TIR-NBS-LRR type R gene. Epistatic analyses revealed that both PR gene expression and disease resistance are activated via a salicylic acid (SA)- and EDS1-dependent, but NPR1- and NDR1-independent signaling pathway. In this study, we demonstrate that in moderate relative humidity (RH; 60%), the ssi4 mutant accumulates H(2)O(2) and SA prior to lesion formation and displays constitutive activation of the MAP kinases AtMPK6 and AtMPK3. It also constitutively expresses a variety of defense-associated genes, including those encoding the WRKY transcription factors AtWRKY29 and AtWRKY6, the MAP kinases AtMPK6 and AtMPK3, the powdery mildew R proteins RPW8.1 and RPW8.2, EDS1 and PR proteins. All of these ssi4-induced responses, as well as the chlorotic, stunted morphology and enhanced disease resistance phenotype, are suppressed by high RH (95%) growth conditions. Thus, a humidity sensitive factor (HSF) appears to function at an early point in the ssi4 signaling pathway. All ssi4 phenotypes, except for MAP kinase activation, also were suppressed by the eds1-1 mutation. Thus, ssi4-induced MAP kinase activation occurs downstream of the HSF but either upstream of EDS1 or on a separate branch of the ssi4 signaling pathway. SA is a critical signaling component in ssi4-mediated defense responses. However, exogenously supplied SA failed to restore lesion formation in high RH-grown ssi4 plants, although it induced defense gene expression. Thus, additional signals also are involved.
Collapse
Affiliation(s)
- Fasong Zhou
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
178
|
Affiliation(s)
- Eric Lam
- Biotechnology Center and the Department of Plant Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA.
| |
Collapse
|
179
|
Jurkowski GI, Smith RK, Yu IC, Ham JH, Sharma SB, Klessig DF, Fengler KA, Bent AF. Arabidopsis DND2, a second cyclic nucleotide-gated ion channel gene for which mutation causes the "defense, no death" phenotype. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:511-20. [PMID: 15141955 DOI: 10.1094/mpmi.2004.17.5.511] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A previous mutant screen identified Arabidopsis dnd1 and dnd2 "defense, no death" mutants, which exhibit loss of hypersensitive response (HR) cell death without loss of gene-for-gene resistance. The dnd1 phenotype is caused by mutation of the gene encoding cyclic nucleotide-gated (CNG) ion channel AtCNGC2. This study characterizes dnd2 plants. Even in the presence of high titers of Pseudomonas syringae expressing avrRpt2, most leaf mesophyll cells in the dnd2 mutant exhibited no HR. These plants retained strong RPS2-, RPM1-, or RPS4-mediated restriction of P. syringae pathogen growth. Mutant dnd2 plants also exhibited enhanced broad-spectrum resistance against virulent P. syringae and constitutively elevated levels of salicylic acid, and pathogenesis-related (PR) gene expression. Unlike the wild type, dnd2 plants responding to virulent and avirulent P. syringae exhibited elevated expression of both salicylate-dependent PR-1 and jasmonate and ethylene-dependent PDF1.2. Introduction of nahG+ (salicylate hydroxylase) into the dnd2 background, which removes salicylic acid and causes other defense alterations, eliminated constitutive disease resistance and PR gene expression but only weakly impacted the HR- phenotype. Map-based cloning revealed that dnd2 phenotypes are caused by mutation of a second CNG ion channel gene, AtCNGC4. Hence, loss of either of two functionally nonredundant CNG ion channels can cause dnd phenotypes. The dnd mutants provide a unique genetic background for dissection of defense signaling.
Collapse
Affiliation(s)
- Grace I Jurkowski
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
180
|
Zhang C, Gutsche AT, Shapiro AD. Feedback control of the Arabidopsis hypersensitive response. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:357-365. [PMID: 15077668 DOI: 10.1094/mpmi.2004.17.4.357] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The plant hypersensitive response (HR) to avirulent bacterial pathogens results from programmed cell death of plant cells in the infected region. Ion leakage and changes in signaling components associated with HR progression were measured. These studies compared Arabidopsis mutants affecting feedback loops with wild-type plants, with timepoints taken hourly. In response to Pseudomonas syringae pv. tomato DC3000 x avrB, npr1-2 mutant plants showed increased ion leakage relative to wild-type plants. Hydrogen peroxide accumulation was similar to that in wild type, but salicylic acid accumulation was reduced at some timepoints. With DC3000 x avrRpt2, similar trends were seen. In response to DC3000 x avrB, ndr1-1 mutant plants showed more ion leakage than wild-type or npr1-2 plants. Hydrogen peroxide accumulation was delayed by approximately 1 h and reached half the level seen with wild-type plants. Salicylic acid accumulation was similar to npr1-2 mutant plants. With DC3000 x avrRpt2, ndr1-1 mutant plants showed no ion leakage, no hydrogen peroxide accumulation, and minimal salicylic acid accumulation. Results with a ndr1-1 and npr1-2 double mutant were similar to ndr1-1. A model consistent with these data is presented, in which one positive and two negative regulatory circuits control HR progression. Understanding this circuitry will facilitate HR manipulation for enhanced disease resistance.
Collapse
Affiliation(s)
- Chu Zhang
- Department of Plant and Soil Sciences, Delaware Agricultural Experiment Station, College of Agriculture and Natural Resources, University of Delaware, Newark, DE 19716-2170, USA
| | | | | |
Collapse
|
181
|
Dong X. The role of membrane-bound ankyrin-repeat protein ACD6 in programmed cell death and plant defense. Sci Signal 2004; 2004:pe6. [PMID: 14983101 DOI: 10.1126/stke.2212004pe6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Programmed cell death (PCD) is a common defense response in plants against pathogen infection. The recently cloned ACD6 gene was identified in an Arabidopsis mutant, accelerated cell death 6 (acd6), that undergoes PCD in the absence of a pathogen challenge. ACD6 is a founding member of a large family of genes that encode proteins with a short amino-terminal region, nine ankyrin repeats in the middle, and five putative transmembrane domains in the carboxyl-terminal region. Characterization of the original gain-of-function acd6 mutant and a transferred-DNA knockout mutant acd6-T showed that ACD6 is an activator of the defense pathway against bacterial pathogens and plays a role in PCD through regulation of the defense signal salicylic acid (SA). SA mediates not only downstream pathogenesis-related (PR) genes, which encode proteins with antimicrobial activities, but also ACD6, forming a feedback signal amplification loop.
Collapse
Affiliation(s)
- Xinnian Dong
- Developmental, Cell and Molecular Biology Group, LSRC Building, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
182
|
Nandi A, Welti R, Shah J. The Arabidopsis thaliana dihydroxyacetone phosphate reductase gene SUPPRESSSOR OF FATTY ACID DESATURASE DEFICIENCY1 is required for glycerolipid metabolism and for the activation of systemic acquired resistance. THE PLANT CELL 2004; 16:465-77. [PMID: 14729910 PMCID: PMC341917 DOI: 10.1105/tpc.016907] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Accepted: 11/09/2003] [Indexed: 05/18/2023]
Abstract
Systemic acquired resistance (SAR) is a broad-spectrum resistance mechanism in plants that is activated in naive organs after exposure of another organ to a necrotizing pathogen. The organs manifesting SAR exhibit an increase in levels of salicylic acid (SA) and expression of the PATHOGENESIS-RELATED1 (PR1) gene. SA signaling is required for the manifestation of SAR. We demonstrate here that the Arabidopsis thaliana suppressor of fatty acid desaturase deficiency1 (sfd1) mutation compromises the SAR-conferred enhanced resistance to Pseudomonas syringae pv maculicola. In addition, the sfd1 mutation diminished the SAR-associated accumulation of elevated levels of SA and PR1 gene transcript in the distal leaves of plants previously exposed to an avirulent pathogen. However, the basal resistance to virulent and avirulent strains of P. syringae and the accumulation of elevated levels of SA and PR1 gene transcript in the pathogen-inoculated leaves of sfd1 were not compromised. Furthermore, the application of the SA functional analog benzothiadiazole enhanced disease resistance in the sfd1 mutant plants. SFD1 encodes a putative dihydroxyacetone phosphate (DHAP) reductase, which complemented the glycerol-3-phosphate auxotrophy of the DHAP reductase-deficient Escherichia coli gpsA mutant. Plastid glycerolipid composition was altered in the sfd1 mutant plant, suggesting that SFD1 is involved in lipid metabolism and that an SFD1 product lipid(s) is important for the activation of SAR.
Collapse
Affiliation(s)
- Ashis Nandi
- Division of Biology and Molecular, Cellular, and Developmental Biology Program, Kansas State University, Manhattan, Kansas 66506-4901
| | | | | |
Collapse
|
183
|
Kachroo A, Lapchyk L, Fukushige H, Hildebrand D, Klessig D, Kachroo P. Plastidial fatty acid signaling modulates salicylic acid- and jasmonic acid-mediated defense pathways in the Arabidopsis ssi2 mutant. THE PLANT CELL 2003; 15:2952-65. [PMID: 14615603 PMCID: PMC282837 DOI: 10.1105/tpc.017301] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Accepted: 10/06/2003] [Indexed: 05/18/2023]
Abstract
A mutation in the Arabidopsis gene ssi2/fab2, which encodes stearoyl-acyl carrier protein desaturase (S-ACP-DES), results in the reduction of oleic acid (18:1) levels in the mutant plants and also leads to the constitutive activation of NPR1-dependent and -independent defense responses. By contrast, ssi2 plants are compromised in the induction of the jasmonic acid (JA)-responsive gene PDF1.2 and in resistance to the necrotrophic pathogen Botrytis cinerea. Although S-ACP-DES catalyzes the initial desaturation step required for JA biosynthesis, a mutation in ssi2 does not alter the levels of the JA precursor linolenic acid (18:3), the perception of JA or ethylene, or the induced endogenous levels of JA. This finding led us to postulate that the S-ACP-DES-derived fatty acid (FA) 18:1 or its derivative is required for the activation of certain JA-mediated responses and the repression of the salicylic acid (SA) signaling pathway. Here, we report that alteration of the prokaryotic FA signaling pathway in plastids, leading to increased levels of 18:1, is required for the rescue of ssi2-triggered phenotypes. 18:1 levels in ssi2 plants were increased by performing epistatic analyses between ssi2 and several mutants in FA pathways that cause an increase in the levels of 18:1 in specific compartments of the cell. A loss-of-function mutation in the soluble chloroplastic enzyme glycerol-3-phosphate acyltransferase (ACT1) completely reverses SA- and JA-mediated phenotypes in ssi2. In contrast to the act1 mutation, a loss-of-function mutation in the endoplasmic reticulum-localized omega6 oleate desaturase (FAD2) does not alter SA- or JA-related phenotypes of ssi2. However, a mutation in the plastidial membrane-localized omega6 desaturase (FAD6) mediates a partial rescue of ssi2-mediated phenotypes. Although ssi2 fad6 plants are rescued in their morphological phenotypes, including larger size, absence of visible lesions, and straight leaves, these plants continue to exhibit microscopic cell death and express the PR-1 gene constitutively. In addition, these plants are unable to induce the expression of PDF1.2 in response to the exogenous application of JA. Because the act1 mutation rescues all of these phenotypes in ssi2 fad6 act1 triple-mutant plants, act1-mediated reversion may be mediated largely by an increase in the free 18:1 content within the chloroplasts. The reversion of JA responsiveness in ssi2 act1 plants is abolished in the ssi2 act1 coi1 triple-mutant background, suggesting that both JA- and act1-generated signals are required for the expression of the JA-inducible PDF1.2 gene. Our conclusion that FA signaling in plastids plays an essential role in the regulation of SSI2-mediated defense signaling is further substantiated by the fact that overexpression of the N-terminal-deleted SSI2, which lacks the putative plastid-localizing transit peptide, is unable to rescue ssi2-triggered phenotypes, as opposed to overexpression of the full-length protein.
Collapse
Affiliation(s)
- Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA
| | | | | | | | | | | |
Collapse
|
184
|
Kachroo P, Kachroo A, Lapchyk L, Hildebrand D, Klessig DF. Restoration of defective cross talk in ssi2 mutants: role of salicylic acid, jasmonic acid, and fatty acids in SSI2-mediated signaling. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:1022-9. [PMID: 14601670 DOI: 10.1094/mpmi.2003.16.11.1022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The Arabidopsis mutants ssi2 and fab2 are defective in stearoyl ACP desaturase, which causes altered salicylic acid (SA)- and jasmonic acid (JA)-mediated defense signaling. Both ssi2 and fab2 plants show spontaneous cell death, express PR genes constitutively, accumulate high levels of SA, and exhibit enhanced resistance to bacterial and oomycete pathogens. In contrast to constitutive activation of the SA pathway, ssi2 and fab2 plants are repressed in JA-mediated induction of the PDF1.2 gene, which suggests that the SSI2-mediated signaling pathway modulates cross talk between the SA and JA pathways. In this study, we have characterized two recessive nonallelic mutants in the ssi2 background, designated as rdc (restorer of defective cross talk) 2 and rdc8. Both ssi2 rdc mutants are suppressed in constitutive SA signaling, show basal level expression of PR-1 gene, and induce high levels of PDF1.2 in response to exogenous application of JA. Interestingly, while the rdc8 mutation completely abolishes spontaneous cell death in ssi2 rdc8 plants, the ssi2 rdc2 plants continue to show some albeit reduced cell death. Fatty acid (FA) analysis showed a reduction in 16:3 levels in ssi2 rdc8 plants, which suggests that this mutation may limit the flux of FAs into the prokaryotic pathway of glycerolipid biosynthesis. Both rdc2 and rdc8 continue to accumulate high levels of 18:0, which suggests that 18:0 levels were responsible for neither constitutive SA signaling nor repression of JA-induced expression of the PDF1.2 gene in ssi2 plants. We also analyzed SA and JA responses of the fab2-derived shs1 mutant, which accumulates levels of 18:0 over 50% lower than those in the fab2 plants. Even though fab2 shs1 plants were morphologically bigger than fab2 plants, they expressed PR genes constitutively, showed HR-like cell death, and accumulated elevated levels of SA. However, unlike the ssi2 rdc plants, fab2 shs1 plants were unable to induce high levels of PDF1.2 expression in response to exogenous application of JA. Together, these results show that defective cross talk in ssi2 can be restored by second site mutations and is independent of morphological size of the plants, cell death, and elevated levels of 18:0.
Collapse
Affiliation(s)
- Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington 40546, USA.
| | | | | | | | | |
Collapse
|
185
|
Campbell EJ, Schenk PM, Kazan K, Penninckx IAMA, Anderson JP, Maclean DJ, Cammue BPA, Ebert PR, Manners JM. Pathogen-responsive expression of a putative ATP-binding cassette transporter gene conferring resistance to the diterpenoid sclareol is regulated by multiple defense signaling pathways in Arabidopsis. PLANT PHYSIOLOGY 2003; 133:1272-84. [PMID: 14526118 PMCID: PMC281622 DOI: 10.1104/pp.103.024182] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The ATP-binding cassette (ABC) transporters are encoded by large gene families in plants. Although these proteins are potentially involved in a number of diverse plant processes, currently, very little is known about their actual functions. In this paper, through a cDNA microarray screening of anonymous cDNA clones from a subtractive library, we identified an Arabidopsis gene (AtPDR12) putatively encoding a member of the pleiotropic drug resistance (PDR) subfamily of ABC transporters. AtPDR12 displayed distinct induction profiles after inoculation of plants with compatible and incompatible fungal pathogens and treatments with salicylic acid, ethylene, or methyl jasmonate. Analysis of AtPDR12 expression in a number of Arabidopsis defense signaling mutants further revealed that salicylic acid accumulation, NPR1 function, and sensitivity to jasmonates and ethylene were all required for pathogen-responsive expression of AtPDR12. Germination assays using seeds from an AtPDR12 insertion line in the presence of sclareol resulted in lower germination rates and much stronger inhibition of root elongation in the AtPDR12 insertion line than in wild-type plants. These results suggest that AtPDR12 may be functionally related to the previously identified ABC transporters SpTUR2 and NpABC1, which transport sclareol. Our data also point to a potential role for terpenoids in the Arabidopsis defensive armory.
Collapse
Affiliation(s)
- Emma J Campbell
- Cooperative Research Centre for Tropical Plant Protection, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Liang H, Yao N, Song JT, Luo S, Lu H, Greenberg JT. Ceramides modulate programmed cell death in plants. Genes Dev 2003; 17:2636-41. [PMID: 14563678 PMCID: PMC280613 DOI: 10.1101/gad.1140503] [Citation(s) in RCA: 280] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The balance between the bioactive sphingolipid ceramide and its phosphorylated derivative has been proposed to modulate the amount of programmed cell death (PCD) in eukaryotes. We characterized the first ceramide kinase (CERK) mutant in any organism. The Arabidopsis CERK mutant, called accelerated cell death 5, accumulates CERK substrates and shows enhanced disease symptoms during pathogen attack and apoptotic-like cell death dependent on defense signaling late in development. ACD5 protein shows high specificity for ceramides in vitro. Strikingly, C2 ceramide induces, whereas its phosphorylated derivative partially blocks, plant PCD, supporting a role for ceramide phosphorylation in modulating cell death in plants.
Collapse
Affiliation(s)
- Hua Liang
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | |
Collapse
|
187
|
Nandi A, Krothapalli K, Buseman CM, Li M, Welti R, Enyedi A, Shah J. Arabidopsis sfd mutants affect plastidic lipid composition and suppress dwarfing, cell death, and the enhanced disease resistance phenotypes resulting from the deficiency of a fatty acid desaturase. THE PLANT CELL 2003; 15:2383-98. [PMID: 14507997 PMCID: PMC197303 DOI: 10.1105/tpc.015529] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Accepted: 08/03/2003] [Indexed: 05/18/2023]
Abstract
A loss-of-function mutation in the Arabidopsis SSI2/FAB2 gene, which encodes a plastidic stearoyl-acyl-carrier protein desaturase, has pleiotropic effects. The ssi2 mutant plant is dwarf, spontaneously develops lesions containing dead cells, accumulates increased salicylic acid (SA) levels, and constitutively expresses SA-mediated, NPR1-dependent and -independent defense responses. In parallel, jasmonic acid-regulated signaling is compromised in the ssi2 mutant. In an effort to discern the involvement of lipids in the ssi2-conferred developmental and defense phenotypes, we identified suppressors of fatty acid (stearoyl) desaturase deficiency (sfd) mutants. The sfd1, sfd2, and sfd4 mutant alleles suppress the ssi2-conferred dwarfing and lesion development, the NPR1-independent expression of the PATHOGENESIS-RELATED1 (PR1) gene, and resistance to Pseudomonas syringae pv maculicola. The sfd1 and sfd4 mutant alleles also depress ssi2-conferred PR1 expression in NPR1-containing sfd1 ssi2 and sfd4 ssi2 plants. By contrast, the sfd2 ssi2 plant retains the ssi2-conferred high-level expression of PR1. In parallel with the loss of ssi2-conferred constitutive SA signaling, the ability of jasmonic acid to activate PDF1.2 expression is reinstated in the sfd1 ssi2 npr1 plant. sfd4 is a mutation in the FAD6 gene that encodes a plastidic omega6-desaturase that is involved in the synthesis of polyunsaturated fatty acid-containing lipids. Because the levels of plastid complex lipid species containing hexadecatrienoic acid are depressed in all of the sfd ssi2 npr1 plants, we propose that these lipids are involved in the manifestation of the ssi2-conferred phenotypes.
Collapse
Affiliation(s)
- Ashis Nandi
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | | | | | | | |
Collapse
|
188
|
Zhang W, Wang C, Qin C, Wood T, Olafsdottir G, Welti R, Wang X. The oleate-stimulated phospholipase D, PLDdelta, and phosphatidic acid decrease H2O2-induced cell death in Arabidopsis. THE PLANT CELL 2003; 15:2285-95. [PMID: 14508007 PMCID: PMC197295 DOI: 10.1105/tpc.013961] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2003] [Accepted: 07/20/2003] [Indexed: 05/17/2023]
Abstract
Hydrolysis of common membrane phospholipids occurs in response to various environmental stresses, but the control and cellular function of this hydrolysis are not fully understood. Hydrogen peroxide (H2O2) is a pivotal signaling molecule involved in various stress responses. Here, we show that the plasma membrane-bound phospholipase D, PLDdelta, is activated in response to H2O2 and that the resulting phosphatidic acid (PA) functions to decrease H2O2-promoted programmed cell death. The Arabidopsis genome has 12 PLD genes, and knockout of PLDdelta abolishes specifically the oleate-stimulated PLD activity. H2O2 treatment of Arabidopsis cells activates PLD enzyme activity, and ablation of PLDdelta abolishes that activation. PLDdelta-null cells display increased sensitivity to H2O2-induced cell death. The addition of PA to PLDdelta-null cells mitigates the H2O2 effect, whereas suppression of the H2O2-induced PA formation in wild-type cells increases the effect. PLDdelta-ablated plants exhibit increased susceptibility to stress. These results demonstrate that activation of oleate-stimulated PLDdelta constitutes an important step in the plant response to H2O2 and increasing plant stress tolerance.
Collapse
Affiliation(s)
- Wenhua Zhang
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | | | | | | | |
Collapse
|
189
|
Lu H, Rate DN, Song JT, Greenberg JT. ACD6, a novel ankyrin protein, is a regulator and an effector of salicylic acid signaling in the Arabidopsis defense response. THE PLANT CELL 2003; 15:2408-20. [PMID: 14507999 PMCID: PMC197305 DOI: 10.1105/tpc.015412] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Accepted: 08/01/2003] [Indexed: 05/18/2023]
Abstract
The previously reported Arabidopsis dominant gain-of-function mutant accelerated cell death6-1 (acd6-1) shows spontaneous cell death and increased disease resistance. acd6-1 also confers increased responsiveness to the major defense signal salicylic acid (SA). To further explore the role of ACD6 in the defense response, we cloned and characterized the gene. ACD6 encodes a novel protein with putative ankyrin and transmembrane regions. It is a member of one of the largest uncharacterized gene families in higher plants. Steady state basal expression of ACD6 mRNA required light, SA, and an intact SA signaling pathway. Additionally, ACD6 mRNA levels were increased in the systemic, uninfected tissue of Pseudomonas syringae-infected plants as well as in plants treated with the SA agonist benzothiazole (BTH). A newly isolated ACD6 loss-of-function mutant was less responsive to BTH and upon P. syringae infection had reduced SA levels and increased susceptibility. Conversely, plants overexpressing ACD6 showed modestly increased SA levels, increased resistance to P. syringae, and BTH-inducible and/or a low level of spontaneous cell death. Thus, ACD6 is a necessary and dose-dependent activator of the defense response against virulent bacteria and can activate SA-dependent cell death.
Collapse
Affiliation(s)
- Hua Lu
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
190
|
Shapiro AD, Gutsche AT. Capillary electrophoresis-based profiling and quantitation of total salicylic acid and related phenolics for analysis of early signaling in Arabidopsis disease resistance. Anal Biochem 2003; 320:223-33. [PMID: 12927828 DOI: 10.1016/s0003-2697(03)00405-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A capillary electrophoresis-based method for quantitation of total salicylic acid levels in Arabidopsis leaves was developed. Direct comparison to previous high-performance liquid chromatography (HPLC)-based measurements showed similar levels of salicylic acid. Simultaneous quantitation of trans-cinnamic acid, benzoic acid, sinapic acid, and an internal recovery standard was achieved. A rapid, streamlined protocol with requirements for plant tissue reduced relative to those of HPLC-based protocols is presented. Complicated, multiparameter experiments were thus possible despite the labor-intensive nature of inoculating plants with bacterial pathogens. As an example of this sort of experiment, detailed time course studies of total salicylic acid accumulation by wild-type Arabidopsis and two lines with mutations affecting salicylic acid accumulation in response to either of two avirulent bacterial strains were performed. Accumulation in the first 12h was biphasic. The first phase was partially SID2 and NDR1 dependent with both bacterial strains. The second phase was largely independent of both genes with bacteria carrying avrB, but dependent upon both genes with bacteria carrying avrRpt2. Virulent bacteria did not elicit salicylic acid accumulation at these time points. Application of this method to various Arabidopsis pathosystems and the wealth of available disease resistance signaling mutants will refine knowledge of disease resistance and associated signal transduction.
Collapse
Affiliation(s)
- Allan D Shapiro
- College of Agriculture and Natural Resources, University of Delaware, Newark, DE 19716, USA.
| | | |
Collapse
|
191
|
Shadle GL, Wesley SV, Korth KL, Chen F, Lamb C, Dixon RA. Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of L-phenylalanine ammonia-lyase. PHYTOCHEMISTRY 2003; 64:153-61. [PMID: 12946414 DOI: 10.1016/s0031-9422(03)00151-1] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tobacco plants over-expressing L-phenylalanine ammonia-lyase (PAL(+)) produce high levels of chlorogenic acid (CGA) and exhibit markedly reduced susceptibility to infection with the fungal pathogen Cercospora nicotianae, although their resistance to tobacco mosaic virus (TMV) is unchanged. Levels of the signal molecule salicylic acid (SA) were similar in uninfected PAL(+) and control plants and also following TMV infection. In crosses of PAL(+) tobacco with tobacco harboring the bacterial NahG salicylate hydroxylase gene, progeny harboring both transgenes lost resistance to TMV, indicating that SA is critical for resistance to TMV and that increased production of phenylpropanoid compounds such as CGA cannot substitute for the reduction in SA levels. In contrast, PAL(+)/NahG plants showed strongly reduced susceptibility to Cercospora nicotianae compared to the NahG parent line. These results are consistent with a recent report questioning the role of PAL in SA biosynthesis in Arabidopsis, and highlight the importance of phenylpropanoid compounds such as CGA in plant disease resistance.
Collapse
Affiliation(s)
- Gail L Shadle
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73402, USA
| | | | | | | | | | | |
Collapse
|
192
|
Veronese P, Narasimhan ML, Stevenson RA, Zhu JK, Weller SC, Subbarao KV, Bressan RA. Identification of a locus controlling Verticillium disease symptom response in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:574-87. [PMID: 12940951 DOI: 10.1046/j.1365-313x.2003.01830.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Verticillium dahliae Klebahn is a soil-borne fungal pathogen causing vascular diseases. The pathogen penetrates the host through the roots, spreads through the xylem, and systemically colonizes both resistant and susceptible genotypes. To elucidate the genetic and molecular bases of plant-Verticillium interactions, we have developed a pathosystem utilizing Arabidopsis thaliana and an isolate of V. dahliae pathogenic to both cruciferous and non-cruciferous crops. Relative tolerance (based on symptom severity) but no immunity was found in a survey of Arabidopsis ecotypes. Anthocyanin accumulation, stunting, and chlorosis were common symptoms. Specific responses of the more susceptible ecotype Columbia were induction of early flowering and dying. The more tolerant ecotype C-24 was characterized by pathogen-induced delay of transition to flowering and mild chlorosis symptoms. Genetic analysis indicated that a single dominant locus, Verticillium dahliae-tolerance (VET1), likely functioning also as a negative regulator of the transition to flowering, was able to convey increased tolerance. VET1 was mapped on chromosome IV. The differential symptom responses observed between ecotypes were not correlated with different rates of fungal tissue colonization or with differential transcript accumulation of PR-1 and PDF1.2 defense genes whose activation was not detected during the Arabidopsis-V. dahliae interaction. Impairment in salicylic acid (SA)- or jasmonic acid (JA)-dependent signaling did not cause hypersensitivity to the fungal infection, whereas ethylene insensitivity led to reduced chlorosis and ABA deficiency to reduced anthocyanin accumulation. The results of this study clearly indicated that the ability of V. dahliae to induce disease symptoms is also connected to the genetic control of development and life span in Arabidopsis.
Collapse
Affiliation(s)
- Paola Veronese
- Center for Plant Environmental Stress Physiology, 625 Agriculture Mall Drive, Purdue University, West Lafayette, IN 47907-2010, USA
| | | | | | | | | | | | | |
Collapse
|
193
|
Martinez de Ilarduya O, Xie Q, Kaloshian I. Aphid-induced defense responses in Mi-1-mediated compatible and incompatible tomato interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:699-708. [PMID: 12906114 DOI: 10.1094/mpmi.2003.16.8.699] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The tomato Mi-1 gene confers resistance to three species of root-knot nematode and potato aphid. We studied changes in expression of jasmonic acid (JA)- and salicylic acid (SA)-dependent defense genes in response to potato and green peach aphids. We determined changes in three PR proteins, lipoxygenase and proteinase inhibitors I and II transcripts, locally and systemically in both compatible and incompatible interactions in tomato. Transcripts for PR-1 were detected earlier and accumulated to higher levels in the incompatible than in the compatible potato aphid/tomato interactions. The transcript profiles of the other genes were similar in compatible compared with incompatible interactions. Pin1 and Pin2 RNAs were detected early and transiently in both compatible and incompatible interactions. In tomato plants containing Mi-1, systemic expression of PR-1 and GluB was detected in both compatible and incompatible interactions at 48 h after infestations with either aphid. These results suggest that aphid feeding involves both SA and JA/ethylene plant defense signaling pathways and that Mi-1-mediated resistance might involve a SA-dependent signaling pathway. Potato aphid feeding generated reactive oxygen species in both compatible and incompatible interactions. However, a hypersensitive response was absent in the Mi-1-mediated resistance response to potato aphids. Reciprocal grafting experiments revealed that resistance is cell autonomous, and local expression of Mi-1 is required for Mi-1-mediated resistance against the potato aphid.
Collapse
|
194
|
Nandi A, Kachroo P, Fukushige H, Hildebrand DF, Klessig DF, Shah J. Ethylene and jasmonic acid signaling affect the NPR1-independent expression of defense genes without impacting resistance to Pseudomonas syringae and Peronospora parasitica in the Arabidopsis ssi1 mutant. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:588-599. [PMID: 12848424 DOI: 10.1094/mpmi.2003.16.7.588] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Salicylic acid (SA), ethylene, and jasmonic acid (JA) are important signaling molecules in plant defense to biotic stress. An intricate signaling network involving SA, ethylene, and JA fine tunes plant defense responses. SA-dependent defense responses in Arabidopsis thaliana are mediated through NPR1-dependent and -independent mechanisms. We have previously shown that activation of an NPR1-independent defense mechanism confers enhanced disease resistance and constitutive expression of the pathogenesis-related (PR) genes in the Arabidopsis ssi1 mutant. In addition, the ssi1 mutant constitutively expresses the defensin gene PDF1.2. Moreover, SA is required for the ssi1-conferred constitutive expression of PDF1.2 in addition to PR genes. Hence, the ssi1 mutant appears to target a step common to SA- and ethylene- or JA-regulated defense pathways. In the present study, we show that, in addition to SA, ethylene and JA signaling also are required for the ssi1-conferred constitutive expression of PDF1.2 and the NPR1-independent expression of PR-1. Furthermore, the ethylene-insensitive ein2 and JA-insensitive jar1 mutants enhance susceptibility of ssi1 plants to the necrotrophic fungus Botrytis cinerea. However, defects in either the ethylene- or JA-signaling pathways do not compromise ssi1-conferred resistance to the bacterial pathogen Pseudomonas synringae pv. maculicola and the oomycete pathogen Peronospora parasitica. Interestingly, ssi1 exhibits a marginal increase in the levels of ethylene and JA, suggesting that low endogenous levels of these phytohormones are sufficient to activate expression of defense genes. Taken together, our results indicate that although cross talk in ssi1 renders expression of ethylene- or JA-responsive defense genes sensitive to SA and vice versa, it does not affect downstream signaling leading to resistance.
Collapse
Affiliation(s)
- Ashis Nandi
- Division of Biology, Kansas State University, Manhattan 66506, USA
| | | | | | | | | | | |
Collapse
|
195
|
Jambunathan N, McNellis TW. Regulation of Arabidopsis COPINE 1 gene expression in response to pathogens and abiotic stimuli. PLANT PHYSIOLOGY 2003; 132:1370-81. [PMID: 12857819 PMCID: PMC167077 DOI: 10.1104/pp.103.022970] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2003] [Revised: 03/19/2003] [Accepted: 04/03/2003] [Indexed: 05/18/2023]
Abstract
The copines are a widely distributed class of calcium-dependent, phospholipid-binding proteins of undetermined biological function. Mutation of the Arabidopsis CPN1 (COPINE 1) gene causes a humidity-sensitive lesion mimic phenotype with increased resistance to a bacterial and an oomyceteous pathogen, constitutive pathogenesis-related gene expression, and an accelerated hypersensitive cell death defense response. Here, we show that the disease resistance phenotype of the cpn1-1 mutant was also temperature sensitive, demonstrate increased CPN1 gene transcript accumulation in wild-type plants under low-humidity conditions, and present a detailed analysis of CPN1 gene transcript accumulation in response to bacterial pathogens. In wild-type plants, CPN1 transcript accumulation was rapidly, locally, and transiently induced by both avirulent and virulent strains of Pseudomonas syringae pv tomato bacteria. However, induction of CPN1 transcript accumulation by avirulent bacteria was much faster and stronger than that induced by virulent bacteria. Bacterial induction of CPN1 transcript accumulation was dependent on a functional type III bacterial protein secretion system. In planta expression of the avrRpt2 avirulence gene was sufficient to trigger rapid CPN1 transcript accumulation. CPN1 transcript accumulation was induced by salicylic acid treatment but was not observed during lesion formation in the lesion mimic mutants lsd1 and lsd5. These results are consistent with CPN1 playing a role in plant disease resistance responses, possibly as a suppressor of defense responses including the hypersensitive cell death defense response. The results also suggest that CPN1 may represent a link between plant disease resistance and plant acclimation to low-humidity and low-temperature conditions.
Collapse
Affiliation(s)
- Niranjani Jambunathan
- Department of Plant Pathology and Intercollege Graduate Program in Plant Physiology, 212 Buckhout Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
196
|
Díaz M, Achkor H, Titarenko E, Martínez MC. The gene encoding glutathione-dependent formaldehyde dehydrogenase/GSNO reductase is responsive to wounding, jasmonic acid and salicylic acid. FEBS Lett 2003; 543:136-9. [PMID: 12753920 DOI: 10.1016/s0014-5793(03)00426-5] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It has recently been discovered that glutathione-dependent formaldehyde dehydrogenase (FALDH) exhibits a strong S-nitrosoglutathione reductase activity. Plants use NO and S-nitrosothiols as signaling molecules to activate defense mechanisms. Therefore, it is interesting to investigate the regulation of FALDH by mechanical wounding and plant hormones involved in signal transduction. Our results show that the gene encoding FALDH in Arabidopsis (ADH2) is down-regulated by wounding and activated by salicylic acid (SA). In tobacco, FALDH levels and enzymatic activity decreased after jasmonate treatment, and increased in response to SA. This is the first time that regulation of FALDH in response to signals associated with plant defense has been demonstrated.
Collapse
Affiliation(s)
- Maykelis Díaz
- Departamento de Bioqui;mica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Barcelona, 08193, Barcelona, Bellaterra, Spain
| | | | | | | |
Collapse
|
197
|
Zhang Y, Chen K, Zhang S, Ferguson I. The role of salicylic acid in postharvest ripening of kiwifruit. POSTHARVEST BIOLOGY AND TECHNOLOGY 2003; 28:67-74. [PMID: 0 DOI: 10.1016/s0925-5214(02)00172-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
|
198
|
Balagué C, Lin B, Alcon C, Flottes G, Malmström S, Köhler C, Neuhaus G, Pelletier G, Gaymard F, Roby D. HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. THE PLANT CELL 2003; 15:365-79. [PMID: 12566578 PMCID: PMC141207 DOI: 10.1105/tpc.006999] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2002] [Accepted: 11/14/2002] [Indexed: 05/17/2023]
Abstract
The hypersensitive response (HR) in plants is a programmed cell death that is commonly associated with disease resistance. A novel mutation in Arabidopsis, hlm1, which causes aberrant regulation of cell death, manifested by a lesion-mimic phenotype and an altered HR, segregated as a single recessive allele. Broad-spectrum defense mechanisms remained functional or were constitutive in the mutant plants, which also exhibited increased resistance to a virulent strain of Pseudomonas syringae pv tomato. In response to avirulent strains of the same pathogen, the hlm1 mutant showed differential abilities to restrict bacterial growth, depending on the avirulence gene expressed by the pathogen. The HLM1 gene encodes a cyclic nucleotide-gated channel, CNGC4. Preliminary study of the HLM1/CNGC4 gene pro-duct in Xenopus oocytes (inside-out patch-clamp technique) showed that CNGC4 is permeable to both K(+) and Na(+) and is activated by both cGMP and cAMP. HLM1 gene expression is induced in response to pathogen infection and some pathogen-related signals. Thus, HLM1 might constitute a common downstream component of the signaling pathways leading to HR/resistance.
Collapse
Affiliation(s)
- Claudine Balagué
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique 215, BP 27, 31326 Castanet-Tolosan cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Tao Y, Xie Z, Chen W, Glazebrook J, Chang HS, Han B, Zhu T, Zou G, Katagiri F. Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. THE PLANT CELL 2003; 15:317-30. [PMID: 12566575 PMCID: PMC141204 DOI: 10.1105/tpc.007591] [Citation(s) in RCA: 491] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2002] [Accepted: 12/02/2002] [Indexed: 05/17/2023]
Abstract
We performed large-scale mRNA expression profiling using an Affymetrix GeneChip to study Arabidopsis responses to the bacterial pathogen Pseudomonas syringae. The interactions were compatible (virulent bacteria) or incompatible (avirulent bacteria), including a nonhost interaction and interactions mediated by two different avirulence gene-resistance (R) gene combinations. Approximately 2000 of the approximately 8000 genes monitored showed reproducible significant expression level changes in at least one of the interactions. Analysis of biological variation suggested that the system behavior of the plant response in an incompatible interaction was robust but that of a compatible interaction was not. A large part of the difference between incompatible and compatible interactions can be explained quantitatively. Despite high similarity between responses mediated by the R genes RPS2 and RPM1 in wild-type plants, RPS2-mediated responses were strongly suppressed by the ndr1 mutation and the NahG transgene, whereas RPM1-mediated responses were not. This finding is consistent with the resistance phenotypes of these plants. We propose a simple quantitative model with a saturating response curve that approximates the overall behavior of this plant-pathogen system.
Collapse
Affiliation(s)
- Yi Tao
- Torrey Mesa Research Institute, Syngenta Research and Technology, San Diego, California 92121, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Gray J, Janick-Buckner D, Buckner B, Close PS, Johal GS. Light-dependent death of maize lls1 cells is mediated by mature chloroplasts. PLANT PHYSIOLOGY 2002; 130:1894-907. [PMID: 12481072 PMCID: PMC166700 DOI: 10.1104/pp.008441] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2002] [Revised: 06/25/2002] [Accepted: 08/30/2002] [Indexed: 05/18/2023]
Abstract
We reported previously the isolation of a novel cell death-suppressing gene from maize (Zea mays) encoded by the Lls1 (Lethal leaf spot-1) gene. Although the exact metabolic function of LLS1 remains elusive, here we provide insight into mechanisms that underlie the initiation and propagation of cell death associated with lls1 lesions. Our data indicate that lls1 lesions are triggered in response to a cell-damaging event caused by any biotic or abiotic agent or intrinsic metabolic imbalance--as long as the leaf tissue is developmentally competent to develop lls1 lesions. Continued expansion of these lesions, however, depends on the availability of light, with fluence rate being more important than spectral quality. Double-mutant analysis of lls1 with two maize mutants oil-yellow and iojap, both compromised photosynthetically and unable to accumulate normal levels of chlorophyll, indicated that it was the light harvested by the plant that energized lls1 lesion development. Chloroplasts appear to be the key mediators of lls1 cell death; their swelling and distortion occurs before any other changes normally associated with dying cells. In agreement with these results are indications that LLS1 is a chloroplast-localized protein whose transcript was detected only in green tissues. The propagative nature of light-dependent lls1 lesions predicts that cell death associated with these lesions is caused by a mobile agent such as reactive oxidative species. LLS1 may act to prevent reactive oxidative species formation or serve to remove a cell death mediator so as to maintain chloroplast integrity and cell survival.
Collapse
Affiliation(s)
- John Gray
- Department of Biological Sciences, The University of Toledo, Ohio 43606, USA.
| | | | | | | | | |
Collapse
|