151
|
Zhuo F, Xiong F, Deng K, Li Z, Ren M. Target of Rapamycin (TOR) Negatively Regulates Ethylene Signals in Arabidopsis. Int J Mol Sci 2020; 21:E2680. [PMID: 32290539 PMCID: PMC7215648 DOI: 10.3390/ijms21082680] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022] Open
Abstract
Target of rapamycin (TOR) acts as a master regulator in coordination of cell growth with energy and nutrient availability. Despite the increased appreciation of the essential role of the TOR complex in interaction with phytohormone signaling, little is known about its function on ethylene signaling. Here, through expression analysis, genetic and biochemical approaches, we reveal that TOR functions in the regulation of ethylene signals. Transcriptional analysis indicates that TOR inhibition by AZD8055 upregulated senescence- and ethylene-related genes expression. Furthermore, ethylene insensitive mutants like etr1-1, ein2-5 and ein3 eil1, showed more hyposensitivity to AZD8055 than that of WT in hypocotyl growth inhibition. Similarly, blocking ethylene signals by ethylene action inhibitor Ag+ or biosynthesis inhibitor aminoethoxyvinylglycine (AVG) largely rescued hypocotyl growth even in presence of AZD8055. In addition, we also demonstrated that Type 2A phosphatase-associated protein of 46 kDa (TAP46), a downstream component of TOR signaling, physically interacts with 1-aminocy-clopropane-1-carboxylate (ACC) synthase ACS2 and ACS6. Arabidopsis overexpressing ACS2 or ACS6 showed more hypersensitivity to AZD8055 than WT in hypocotyl growth inhibition. Moreover, ACS2/ACS6 protein was accumulated under TOR suppression, implying TOR modulates ACC synthase protein levels. Taken together, our results indicate that TOR participates in negatively modulating ethylene signals and the molecular mechanism is likely involved in the regulation of ethylene biosynthesis by affecting ACSs in transcription and protein levels.
Collapse
Affiliation(s)
- Fengping Zhuo
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (F.Z.); (F.X.); (K.D.)
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Fangjie Xiong
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (F.Z.); (F.X.); (K.D.)
| | - Kexuan Deng
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (F.Z.); (F.X.); (K.D.)
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (F.Z.); (F.X.); (K.D.)
| | - Maozhi Ren
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (F.Z.); (F.X.); (K.D.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 455001, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| |
Collapse
|
152
|
Guo J, Ling N, Chen Z, Xue C, Li L, Liu L, Gao L, Wang M, Ruan J, Guo S, Vandenkoornhuyse P, Shen Q. Soil fungal assemblage complexity is dependent on soil fertility and dominated by deterministic processes. THE NEW PHYTOLOGIST 2020; 225:1618-1634. [PMID: 31574168 DOI: 10.1111/nph.16233] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/23/2019] [Indexed: 05/18/2023]
Abstract
In the processes controlling ecosystem fertility, fungi are increasingly acknowledged as key drivers. However, our understanding of the rules behind fungal community assembly regarding the effect of soil fertility level remains limited. Using soil samples from typical tea plantations spanning c. 2167 km north-east to south-west across China, we investigated the assemblage complexity and assembly processes of 140 fungal communities along a soil fertility gradient. The community dissimilarities of total fungi and fungal functional guilds increased with increasing soil fertility index dissimilarity. The symbiotrophs were more sensitive to variations in soil fertility compared with pathotrophs and saprotrophs. Fungal networks were larger and showed higher connectivity as well as greater potential for inter-module connection in more fertile soils. Environmental factors had a slightly greater influence on fungal community composition than spatial factors. Species abundance fitted the Zipf-Mandelbrot distribution (niche-based mechanisms), which provided evidence for deterministic-based processes. Overall, the soil fungal communities in tea plantations responded in a deterministic manner to soil fertility, with high fertility correlated with complex fungal community assemblages. This study provides new insights that might contribute to predictions of fungal community complexity.
Collapse
Affiliation(s)
- Junjie Guo
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ning Ling
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- UMR 6553 EcoBio, Universite de Rennes 1, CNRS, campus Beaulieu, Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - Zhaojie Chen
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chao Xue
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Li
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lisheng Liu
- Hengyang Red Soil Experimental Station, Chinese Academy of Agricultural Sciences, Hengyang, 421001, China
| | - Limin Gao
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Wang
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianyun Ruan
- Key Laboratory of Tea Plant Biology and Resources Utilization (Ministry of Agriculture), Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Shiwei Guo
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Philippe Vandenkoornhuyse
- UMR 6553 EcoBio, Universite de Rennes 1, CNRS, campus Beaulieu, Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - Qirong Shen
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
153
|
Zhang Z, Li W, Gao X, Xu M, Guo Y. DEAR4, a Member of DREB/CBF Family, Positively Regulates Leaf Senescence and Response to Multiple Stressors in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:367. [PMID: 32296455 PMCID: PMC7136848 DOI: 10.3389/fpls.2020.00367] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/13/2020] [Indexed: 05/25/2023]
Abstract
Leaf senescence is a programmed developmental process regulated by various endogenous and exogenous factors. Here we report the characterization of the senescence-regulating role of DEAR4 (AT4G36900) from the DREB1/CBF (dehydration-responsive element binding protein 1/C-repeat binding factor) family in Arabidopsis. The expression of DEAR4 is associated with leaf senescence and can be induced by ABA, JA, darkness, drought and salt stress. Transgenic plants over-expressing DEAR4 showed a dramatically enhanced leaf senescence phenotype under normal and dark conditions while the dear4 knock-down mutant displayed delayed senescence. DEAR4 over-expressing plants showed decreased seed germination rate under ABA and salt stress conditions as well as decreased drought tolerance, indicating that DEAR4 was involved in both senescence and stress response processes. Furthermore, we found that DEAR4 protein displayed transcriptional repressor activities in yeast cells. DEAR4 could directly repress the expression of a subset of COLD-REGULATED (COR) and RESPONSIVE TO DEHYDRATION (RD) genes which have been shown to be involved in leaf longevity and stress response. Also we found that DERA4 could induce the production of Reactive oxygen species (ROS), the common signal of senescence and stress responses, which gives us the clue that DEAR4 may play an integrative role in senescence and stress response via regulating ROS production.
Collapse
|
154
|
Liu J, Fan H, Wang Y, Han C, Wang X, Yu J, Li D, Zhang Y. Genome-Wide microRNA Profiling Using Oligonucleotide Microarray Reveals Regulatory Networks of microRNAs in Nicotiana benthamiana During Beet Necrotic Yellow Vein Virus Infection. Viruses 2020; 12:E310. [PMID: 32178444 PMCID: PMC7150760 DOI: 10.3390/v12030310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 01/15/2023] Open
Abstract
Beet necrotic yellow vein virus (BNYVV) infections induce stunting and leaf curling, as well as root and floral developmental defects and leaf senescence in Nicotiana benthamiana. A microarray analysis with probes capable of detecting 1596 candidate microRNAs (miRNAs) was conducted to investigate differentially expressed miRNAs and their targets upon BNYVV infection of N. benthamiana plants. Eight species-specific miRNAs of N. benthamiana were identified. Comprehensive characterization of the N. benthamiana microRNA profile in response to the BNYVV infection revealed that 129 miRNAs were altered, including four species-specific miRNAs. The targets of the differentially expressed miRNAs were predicted accordingly. The expressions of miR164, 160, and 393 were up-regulated by BNYVV infection, and those of their target genes, NAC21/22, ARF17/18, and TIR, were down-regulated. GRF1, which is a target of miR396, was also down-regulated. Further genetic analysis of GRF1, by Tobacco rattle virus-induced gene silencing, assay confirmed the involvement of GRF1 in the symptom development during BNYVV infection. BNYVV infection also induced the up-regulation of miR168 and miR398. The miR398 was predicted to target umecyanin, and silencing of umecyanin could enhance plant resistance against viruses, suggesting the activation of primary defense response to BNYVV infection in N. benthamiana. These results provide a global profile of miRNA changes induced by BNYVV infection and enhance our understanding of the mechanisms underlying BNYVV pathogenesis.
Collapse
Affiliation(s)
- Junying Liu
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (J.L.); (H.F.); (Y.W.)
- Laboratory of Phytopathology, College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi 653100, China
| | - Huiyan Fan
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (J.L.); (H.F.); (Y.W.)
| | - Ying Wang
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (J.L.); (H.F.); (Y.W.)
| | - Chenggui Han
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (J.L.); (H.F.); (Y.W.)
| | - Xianbing Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (X.W.); (J.Y.); (D.L.)
| | - Jialin Yu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (X.W.); (J.Y.); (D.L.)
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (X.W.); (J.Y.); (D.L.)
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (X.W.); (J.Y.); (D.L.)
| |
Collapse
|
155
|
Jin J, Duan J, Shan C, Mei Z, Chen H, Feng H, Zhu J, Cai W. Ethylene insensitive3-like2 (OsEIL2) confers stress sensitivity by regulating OsBURP16, the β subunit of polygalacturonase (PG1β-like) subfamily gene in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110353. [PMID: 32005373 DOI: 10.1016/j.plantsci.2019.110353] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 11/09/2019] [Accepted: 11/21/2019] [Indexed: 05/21/2023]
Abstract
The transcription factors EIN3 (ETHYLENE-INSENSITIVE 3) and EILs (EIN3-Likes) play important roles in plant development and defense responses; however, their mechanism in these processes remain unclear. Here, we report that OsEIL2, an EIN3-like transcription factor from rice (Oryza sativa), plays important roles in abiotic stress and leaf senescence. OsEIL2 is a nuclear-localized protein with transactivation activity in the C-terminus (amino acids 344-583) and can be induced by NaCl, polyethylene glycol (PEG), dark, and abscisic acid (ABA) treatment. Transgenic plants of overexpressing OsEIL2 (OsEIL2-OX) show reduced tolerance to salt and drought stress compared with the controls. While the transgenic plants of overexpressing OsEIL2-RNA interference (OsEIL2-RNAi) exhibit enhanced tolerance to salt and drought stress compared with the controls. Moreover, seedlings of OsEIL2-overexpressing transgenic plants exhibit delayed leaf development and an accelerated dark-induced senescence phenotype, whereas OsEIL2-RNAi plants display the opposite phenotype. We further found that OsEIL2 functions upstream of OsBURP14 and OsBURP16. OsBURP14 and OsBURP16 are the members of the β subunit of polygalacturonase subfamilies. OsBURP16 overexpression reduced pectin content and cell adhesion and increased abiotic stress sensitivity in rice. OsEIL2 binds directly to the promoter of OsBURP14 and OsBURP16 and activates their transcript levels. We also found that OsEIL2 overexpression decreased the pectin content by increasing polygalacturonase (PG) activity. Taken together, these results revealed a new mechanism of OsEIL2 in abiotic stress responses. These findings provide new insights into plant resistance to abiotic stress.
Collapse
Affiliation(s)
- Jing Jin
- Tongji University, No. 1239 Siping Road, Shanghai, 200092, China; Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai, 200032, China; University of Chinese Academy of Science, China
| | - Jianli Duan
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai, 200032, China; University of Chinese Academy of Science, China
| | - Chi Shan
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai, 200032, China; University of Chinese Academy of Science, China
| | - Zhiling Mei
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai, 200032, China; University of Chinese Academy of Science, China
| | - Haiying Chen
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai, 200032, China
| | - Huafeng Feng
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai, 200032, China
| | - Jian Zhu
- Tongji University, No. 1239 Siping Road, Shanghai, 200092, China.
| | - Weiming Cai
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai, 200032, China; University of Chinese Academy of Science, China.
| |
Collapse
|
156
|
Miguel VN, Manavella PA, Chan RL, Capella MA. The AtHB1 Transcription Factor Controls the miR164-CUC2 Regulatory Node to Modulate Leaf Development. PLANT & CELL PHYSIOLOGY 2020; 61:659-670. [PMID: 31868910 DOI: 10.1093/pcp/pcz233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
The presence of small tooth-like indentations, or serrations, characterizes leaf margins of Arabidopsis thaliana plants. The NAC family member CUP-SHAPED COTYLEDON 2 (CUC2), which undergoes post-transcriptional gene silencing by three micro-RNA genes (MIR164A, B and C), controls the extension of leaf serration. Here, we analyzed the role of AtHB1, a transcription factor (TF) belonging to the homeodomain-leucine zipper subfamily I, in shaping leaf margins. Using mutants with an impaired silencing pathway as background, we obtained transgenic plants expressing AtHB1 over 100 times compared to controls. These plants presented an atypical developmental phenotype characterized by leaves with deep serration. Transcript measurements revealed that CUC2 expression was induced in plants overexpressing AtHB1 and repressed in athb1 mutants, indicating a positive regulation exerted by this TF. Moreover, molecular analyses of AtHB1 overexpressing and mutant plants revealed that AtHB1 represses MIR164 transcription. We found that overexpression of MIR164B was able to reverse the serration phenotype of plants overexpressing AtHB1. Finally, chromatin immunoprecipitation assays revealed that AtHB1 was able to bind in vivo the promoter regions of all three MIR164 encoding loci. Altogether, our results indicate that AtHB1 directly represses MIR164 expression to enhance leaf serration by increasing CUC2 levels.
Collapse
Affiliation(s)
- Virginia N Miguel
- Instituto de Agrobiotecnolog�a del Litoral, Facultad de Bioqu�mica y Ciencias Biol�gicas, Universidad Nacional del Litoral - CONICET, Colectora Ruta Nacional 168 km 0, Santa Fe, Argentina
| | - Pablo A Manavella
- Instituto de Agrobiotecnolog�a del Litoral, Facultad de Bioqu�mica y Ciencias Biol�gicas, Universidad Nacional del Litoral - CONICET, Colectora Ruta Nacional 168 km 0, Santa Fe, Argentina
| | - Raquel L Chan
- Instituto de Agrobiotecnolog�a del Litoral, Facultad de Bioqu�mica y Ciencias Biol�gicas, Universidad Nacional del Litoral - CONICET, Colectora Ruta Nacional 168 km 0, Santa Fe, Argentina
| | - Matï As Capella
- Instituto de Agrobiotecnolog�a del Litoral, Facultad de Bioqu�mica y Ciencias Biol�gicas, Universidad Nacional del Litoral - CONICET, Colectora Ruta Nacional 168 km 0, Santa Fe, Argentina
| |
Collapse
|
157
|
Kim Y, Park SU, Shin DM, Pham G, Jeong YS, Kim SH. ATBS1-INTERACTING FACTOR 2 negatively regulates dark- and brassinosteroid-induced leaf senescence through interactions with INDUCER OF CBF EXPRESSION 1. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1475-1490. [PMID: 31783407 PMCID: PMC7031079 DOI: 10.1093/jxb/erz533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/28/2019] [Indexed: 05/25/2023]
Abstract
ATBS1-INTERACTING FACTOR 2 (AIF2) is a non-DNA-binding basic helix-loop-helix (bHLH) transcription factor. We demonstrated that AIF2 retards dark-triggered and brassinosteroid (BR)-induced leaf senescence in Arabidopsis thaliana. Dark-triggered BR synthesis and the subsequent activation of BRASSINAZOLE RESISTANT 1 (BZR1), a BR signaling positive regulator, result in BZR1 binding to the AIF2 promoter in a dark-dependent manner, reducing AIF2 transcript levels and accelerating senescence. BR-induced down-regulation of AIF2 protein stability partly contributes to the progression of dark-induced leaf senescence. Furthermore, AIF2 interacts with INDUCER OF CBF EXPRESSION 1 (ICE1) via their C-termini. Formation of the AIF2-ICE1 complex and subsequent up-regulation of C-REPEAT BINDING FACTORs (CBFs) negatively regulates dark-triggered, BR-induced leaf senescence. This involves antagonistic down-regulation of PHYTOCHROME INTERACTING FACTOR 4 (PIF4), modulated through AIF2-dependent inhibition of ICE1's binding to the promoter. PIF4-dependent activities respond to dark-induced early senescence and may promote BR synthesis and BZR1 activation to suppress AIF2 and accelerate dark-induced senescence. Taken together, these findings suggest a coordination of AIF2 and ICE1 functions in maintaining stay-green traits.
Collapse
Affiliation(s)
- Yoon Kim
- Division of Biological Science and Technology, Yonsei University, Wonju-Si, Republic of Korea
| | - Seon-U Park
- Division of Biological Science and Technology, Yonsei University, Wonju-Si, Republic of Korea
| | - Dong-Min Shin
- Division of Biological Science and Technology, Yonsei University, Wonju-Si, Republic of Korea
| | - Giang Pham
- Division of Biological Science and Technology, Yonsei University, Wonju-Si, Republic of Korea
| | - You Seung Jeong
- Division of Biological Science and Technology, Yonsei University, Wonju-Si, Republic of Korea
| | - Soo-Hwan Kim
- Division of Biological Science and Technology, Yonsei University, Wonju-Si, Republic of Korea
| |
Collapse
|
158
|
Abd-Hamid NA, Ahmad-Fauzi MI, Zainal Z, Ismail I. Diverse and dynamic roles of F-box proteins in plant biology. PLANTA 2020; 251:68. [PMID: 32072251 DOI: 10.1007/s00425-020-03356-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/05/2020] [Indexed: 05/23/2023]
Abstract
The SCF complex is a widely studied multi-subunit ring E3 ubiquitin ligase that tags targeted proteins with ubiquitin for protein degradation by the ubiquitin 26S-proteasome system (UPS). The UPS is an important system that generally keeps cellular events tightly regulated by purging misfolded or damaged proteins and selectively degrading important regulatory proteins. The specificity of this post-translational regulation is controlled by F-box proteins (FBPs) via selective recognition of a protein-protein interaction motif at the C-terminal domain. Hence, FBPs are pivotal proteins in determining the plant response in multiple scenarios. It is not surprising that the FBP family is one of the largest protein families in the plant kingdom. In this review, the roles of FBPs, specifically in plants, are compiled to provide insights into their involvement in secondary metabolites, plant stresses, phytohormone signalling, plant developmental processes and miRNA biogenesis.
Collapse
Affiliation(s)
- Nur-Athirah Abd-Hamid
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Muhammad-Izzat Ahmad-Fauzi
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Zamri Zainal
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Ismanizan Ismail
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
159
|
Han Q, Qi J, Hao G, Zhang C, Wang C, Dirk LMA, Downie AB, Zhao T. ZmDREB1A Regulates RAFFINOSE SYNTHASE Controlling Raffinose Accumulation and Plant Chilling Stress Tolerance in Maize. PLANT & CELL PHYSIOLOGY 2020; 61:331-341. [PMID: 31638155 DOI: 10.1093/pcp/pcz200] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Raffinose accumulation is positively correlated with plant chilling stress tolerance; however, the understanding of the function and regulation of raffinose metabolism under chilling stress remains in its infancy. RAFFINOSE SYNTHASE (RAFS) is the key enzyme for raffinose biosynthesis. In this study, we report that two independent maize (Zea mays) zmrafs mutant lines, in which raffinose was completely abolished, were more sensitive to chilling stress and their net photosynthetic product (total soluble sugars and starch) accumulation was significantly decreased compared with controls after chilling stress. A similar characterization of the maize dehydration responsive element (DRE)-binding protein 1A mutant (zmdreb1a) showed that ZmRAFS expression and raffinose content were significantly decreased compared with its control under chilling stress. Overexpression of maize ZmDREB1A in maize leaf protoplasts increased ZmDREB1A amounts, which consequently upregulated the expression of maize ZmRAFS and the Renilla LUCIFERASE (Rluc), which was controlled by the ZmRAFS promoter. Deletion of the single dehydration-responsive element (DRE) in the ZmRAFS promoter abolished ZmDREB1A's influence on Rluc expression, while addition of three copies of the DRE in the ZmRAFS promoter dramatically increased Rluc expression when ZmDREB1A was simultaneously overexpressed. Electrophoretic mobility shift assays and chromatin immunoprecipitation-quantitative PCR demonstrated that ZmDREB1A directly binds to the DRE motif in the promoter of ZmRAFS both in vitro and in vivo. These data demonstrate that ZmRAFS, which was directly regulated by ZmDREB1A, enhances both raffinose biosynthesis and plant chilling stress tolerance.
Collapse
Affiliation(s)
- Qinghui Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junlong Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guanglong Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunxia Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunmei Wang
- The Biology Teaching and Research Core Facility, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lynnette M A Dirk
- Department of Horticulture, Seed Biology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - A Bruce Downie
- Department of Horticulture, Seed Biology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Tianyong Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
160
|
Ueda H, Ito T, Inoue R, Masuda Y, Nagashima Y, Kozuka T, Kusaba M. Genetic Interaction Among Phytochrome, Ethylene and Abscisic Acid Signaling During Dark-Induced Senescence in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:564. [PMID: 32508856 PMCID: PMC7253671 DOI: 10.3389/fpls.2020.00564] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/15/2020] [Indexed: 05/18/2023]
Abstract
Leaf senescence is induced by various internal and external stimuli. Dark-induced senescence has been extensively investigated, but the detailed mechanism underlying it is not well understood. The red light/far-red light receptor phytochrome B and its downstream transcription factors, PYHTOCHROME INTERACTING FACTORs (PIFs) 4 and 5, are known to play an important role in dark-induced senescence. Furthermore, the senescence-inducing phytohormones, ethylene and abscisic acid (ABA) are reported to be involved in dark-induced senescence. In this study, we analyzed the relationship between ethylene, ABA and PIFs in dark-induced leaf senescence. A triple mutant of the core ABA signaling components; SNF1-related protein kinases 2D (SRK2D), SRK2E, and SRK2I, displayed an ABA insensitive phenotype in ABA-induced senescence, whilst the ethylene insensitive mutant ein2 demonstrated low sensitivity to ABA, suggesting that ethylene signaling is involved in ABA-induced senescence. However, the pif4 pif5 mutant did not display low sensitivity to ABA, suggesting that PIF4 and PIF5 act upstream of ABA signaling. Although PIF4 and PIF5 reportedly regulate ethylene production, the triple mutant ein2 pif4 pif5 showed a stronger delayed senescence phenotype than ein2 or pif4 pif5, suggesting that EIN2 and PIF4/PIF5 partially regulate leaf senescence independently of each other. While direct target genes for PIF4 and PIF5, such as LONG HYPOCOTYL IN FAR-RED1 (HFR1) and PHYTOCHROME INTERACTING FACTOR 3-LIKE 1 (PIL1), showed transient upregulation under dark conditions (as is seen in the shade avoidance response), expression of STAY GREEN1 (SGR1), ORESARA1 (ORE1) and other direct target genes of PIF5, continued to increase during dark incubation. It is possible that transcription factors other than PIF4 and PIF5 are involved in the upregulation of SGR1 and ORE1 at a later stage of dark-induced senescence. Possible candidates are senescence-induced senescence regulators (SIRs), which include the NAC transcription factors ORE1 and AtNAP. In fact, ORE1 is known to bind to the SGR1 promoter and promotes its expression. It is therefore inferred that the phytochrome-PIF pathway regulates initial activation of senescence and subsequently, induced SIRs reinforce leaf senescence during dark-induced senescence.
Collapse
|
161
|
Park CH, Seo C, Park YJ, Youn JH, Roh J, Moon J, Kim SK. BES1 directly binds to the promoter of the ACC oxidase 1 gene to regulate gravitropic response in the roots of Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2020; 15:1690724. [PMID: 31718454 PMCID: PMC7012152 DOI: 10.1080/15592324.2019.1690724] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 05/22/2023]
Abstract
Brassinosteroids (BRs) are known to be endogenous regulators of ethylene production, suggesting that some BR activity in plant growth and development is associated with ethylene. Here, we demonstrated that ethylene production in Arabidopsis thaliana roots is increased by BR signaling via the ethylene biosynthetic gene for ACC oxidase 1 (ACO1). Electrophoretic mobility shift and chromatin immune-precipitation assays showed that the BR transcription factor BES1 directly binds to two E-box sequences located in the intergenic region of ACO1. GUS expression using site mutations of the E-box sequences verified that ACO1 is normally expressed only when BES1 binds to the E-boxes in the putative promoter of ACO1, indicating that this binding is essential for ACO1 expression and the subsequent production of ethylene in A. thaliana roots. BR exogenously applied to A. thaliana roots enhanced the gravitropic response. Additionally, bes1-D exhibited a greater gravitropic response than did the wild-type specimens, proving that BR is a positive regulator of the gravitropic response in A. thaliana roots. The knock-down mutant aco1-1 showed a slightly lower gravitropic response than did the wild-type specimens, while bes1-D X aco1-1 exhibited a lower gravitropic response than did bes1-D. Therefore, ACO1 is a direct downstream target for BR transcription factor BES1, which controls ethylene production for gravitropism in A. thaliana roots.
Collapse
Affiliation(s)
- Chan-Ho Park
- Department of Life Science, Chung-Ang University, Seoul, Korea
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Chaiweon Seo
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Yeon Ju Park
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Ji-Hyun Youn
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Jeehee Roh
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Jinyoung Moon
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Seong-Ki Kim
- Department of Life Science, Chung-Ang University, Seoul, Korea
- CONTACT Seong-Ki Kim Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
162
|
Ciacka K, Krasuska U, Staszek P, Wal A, Zak J, Gniazdowska A. Effect of Nitrogen Reactive Compounds on Aging in Seed. FRONTIERS IN PLANT SCIENCE 2020; 11:1011. [PMID: 32733516 PMCID: PMC7360797 DOI: 10.3389/fpls.2020.01011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/19/2020] [Indexed: 05/07/2023]
Abstract
Reactive nitrogen species (RNS) are universal compounds that are constantly present in plant cells. RNS function depends on their actual level (the "nitrosative door" concept), duration of plant exposure to RNS and the context of the exposure. RNS are involved in the nitration of nucleic acids and fatty acids, posttranslational protein modifications (nitration and S-nitrosylation), and modulation of reactive oxygen species metabolism. RNS are regulatory molecules of various physiological processes in plants, including seed formation, maturation, dormancy and germination. The free radical theory of aging, well documented for animals, indicated that RNS participate in the regulation of the life span. Some data point to RNS contribution in preservation of seed vigor and/or regulation of seed longevity. Seed aging is a problem for biologists and agriculture, which could be solved by application of RNS, as a factor that may potentially expand seed vitality resulting in increased germination rate. The review is focused on RNS, particularly nitric oxide contribution to regulation of seed aging.
Collapse
|
163
|
Fan J, Lou Y, Shi H, Chen L, Cao L. Transcriptomic Analysis of Dark-Induced Senescence in Bermudagrass ( Cynodon dactylon). PLANTS 2019; 8:plants8120614. [PMID: 31861053 PMCID: PMC6963411 DOI: 10.3390/plants8120614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 11/16/2022]
Abstract
Leaf senescence induced by prolonged light deficiency is inevitable whenever turfgrass is cultivated in forests, and this negatively influences the survival and aesthetic quality of the turfgrass. However, the mechanism underlying dark-induced senescence in turfgrass remained obscure. In this study, RNA sequencing was performed to analyze how genes were regulated in response to dark-induced leaf senescence in bermudagrass. A total of 159,207 unigenes were obtained with a mean length of 948 bp. The differential expression analysis showed that a total of 59,062 genes, including 52,382 up-regulated genes and 6680 down-regulated genes were found to be differentially expressed between control leaves and senescent leaves induced by darkness. Subsequent bioinformatics analysis showed that these differentially expressed genes (DEGs) were mainly related to plant hormone (ethylene, abscisic acid, jasmonic acid, auxin, cytokinin, gibberellin, and brassinosteroid) signal transduction, N-glycan biosynthesis, and protein processing in the endoplasmic reticulum. In addition, transcription factors, such as WRKY, NAC, HSF, and bHLH families were also responsive to dark-induced leaf senescence in bermudagrass. Finally, qRT-PCR analysis of six randomly selected DEGs validated the accuracy of sequencing results. Taken together, our results provide basic information of how genes respond to darkness, and contribute to the understanding of comprehensive mechanisms of dark-induced leaf senescence in turfgrass.
Collapse
Affiliation(s)
- Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yanhong Lou
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai’an 271018, China
| | - Haiyan Shi
- College of Horticulture, Agricultural University of Hebei, Baoding 071001, China
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- Correspondence: (L.C.); (L.W.C.)
| | - Liwen Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- Correspondence: (L.C.); (L.W.C.)
| |
Collapse
|
164
|
Nagarajan VK, Kukulich PM, von Hagel B, Green PJ. RNA degradomes reveal substrates and importance for dark and nitrogen stress responses of Arabidopsis XRN4. Nucleic Acids Res 2019; 47:9216-9230. [PMID: 31428786 PMCID: PMC6755094 DOI: 10.1093/nar/gkz712] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
XRN4, the plant cytoplasmic homolog of yeast and metazoan XRN1, catalyzes exoribonucleolytic degradation of uncapped mRNAs from the 5' end. Most studies of cytoplasmic XRN substrates have focused on polyadenylated transcripts, although many substrates are likely first deadenylated. Here, we report the global investigation of XRN4 substrates in both polyadenylated and nonpolyadenylated RNA to better understand the impact of the enzyme in Arabidopsis. RNA degradome analysis demonstrated that xrn4 mutants overaccumulate many more decapped deadenylated intermediates than those that are polyadenylated. Among these XRN4 substrates that have 5' ends precisely at cap sites, those associated with photosynthesis, nitrogen responses and auxin responses were enriched. Moreover, xrn4 was found to be defective in the dark stress response and lateral root growth during N resupply, demonstrating that XRN4 is required during both processes. XRN4 also contributes to nonsense-mediated decay (NMD) and xrn4 accumulates 3' fragments of select NMD targets, despite the lack of the metazoan endoribonuclease SMG6 in plants. Beyond demonstrating that XRN4 is a major player in multiple decay pathways, this study identified intriguing molecular impacts of the enzyme, including those that led to new insights about mRNA decay and discovery of functional contributions at the whole-plant level.
Collapse
Affiliation(s)
- Vinay K Nagarajan
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Patrick M Kukulich
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Bryan von Hagel
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Pamela J Green
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
165
|
Zhang S, Zhao Q, Zeng D, Xu J, Zhou H, Wang F, Ma N, Li Y. RhMYB108, an R2R3-MYB transcription factor, is involved in ethylene- and JA-induced petal senescence in rose plants. HORTICULTURE RESEARCH 2019; 6:131. [PMID: 31814984 PMCID: PMC6885062 DOI: 10.1038/s41438-019-0221-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/18/2019] [Accepted: 11/03/2019] [Indexed: 05/27/2023]
Abstract
Rose (Rosa hybrida) plants are major ornamental species worldwide, and their commercial value greatly depends on their open flowers, as both the quality of fully open petals and long vase life are important. Petal senescence can be started and accelerated by various hormone signals, and ethylene is considered an accelerator of petal senescence in rose. To date, however, the underlying mechanism of signaling crosstalk between ethylene and other hormones such as JA in petal senescence remains largely unknown. Here, we isolated RhMYB108, an R2R3-MYB transcription factor, which is highly expressed in senescing petals as well as in petals treated with exogenous ethylene and JA. Applications of exogenous ethylene and JA markedly accelerated petal senescence, while the process was delayed in response to applications of 1-MCP, an ethylene action inhibitor. In addition, silencing of RhMYB108 alter the expression of SAGs such as RhNAC029, RhNAC053, RhNAC092, RhSAG12, and RhSAG113, and finally block ethylene- and JA-induced petal senescence. Furthermore, RhMYB108 was identified to target the promoters of RhNAC053, RhNAC092, and RhSAG113. Our results reveal a model in which RhMYB108 functions as a receptor of ethylene and JA signals to modulate the onset of petal senescence by targeting and enhancing senescence-associated gene expression.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong 518055 China
- Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055 Guangdong China
| | - Qingcui Zhao
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong 518055 China
- Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055 Guangdong China
| | - Daxing Zeng
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong 518055 China
- Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055 Guangdong China
| | - Jiehua Xu
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong 518055 China
- Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055 Guangdong China
| | - Hougao Zhou
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510642 China
| | - Fenglan Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510642 China
| | - Nan Ma
- China Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yonghong Li
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong 518055 China
- Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055 Guangdong China
| |
Collapse
|
166
|
Piao W, Sakuraba Y, Paek NC. Transgenic expression of rice MYB102 (OsMYB102) delays leaf senescence and decreases abiotic stress tolerance in Arabidopsis thaliana. BMB Rep 2019. [PMID: 31072449 PMCID: PMC6889895 DOI: 10.5483/bmbrep.2019.52.11.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MYB-type transcription factors (TFs) play important roles in plant growth and development, and in the rapid responses to unfavorable environmental conditions. We recently reported the isolation and characterization of a rice (Oryza sativa) MYB TF, OsMYB102, which is involved in the regulation of leaf senescence by downregulating abscisic acid (ABA) biosynthesis and the downstream signaling response. Based on the similarities of their sequences and expression patterns, OsMYB102 appears to be a homolog of the Arabidopsis thaliana AtMYB44 TF. Since AtMYB44 is a key regulator of leaf senescence and abiotic stress responses, it is important to examine whether AtMYB44 homologs in other plants also act similarly. Here, we generated transgenic Arabidopsis plants expressing OsMYB102 (OsMYB102-OX). The OsMYB102-OX plants showed a delayed senescence phenotype during dark incubation and were more susceptible to salt and drought stresses, considerably similar to Arabidopsis plants overexpressing AtMYB44. Real-time quantitative PCR (RT-qPCR) revealed that, in addition to known senescence-associated genes, genes encoding the ABA catabolic enzymes AtCYP707A3 and AtCYP707A4 were also significantly upregulated in OsMYB102-OX, leading to a significant decrease in ABA accumulation. Furthermore, protoplast transient expression and chromatin immunoprecipitation assays revealed that OsMYB102 directly activated AtCYP707A3 expression. Based on our findings, it is probable that the regulatory functions of AtMYB44 homologs in plants are highly conserved and they have vital roles in leaf senescence and the abiotic stress responses.
Collapse
Affiliation(s)
- Weilan Piao
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Yasuhito Sakuraba
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Graduate School of Agricultural and Life Sciences, Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
167
|
Bengoa Luoni S, Astigueta FH, Nicosia S, Moschen S, Fernandez P, Heinz R. Transcription Factors Associated with Leaf Senescence in Crops. PLANTS (BASEL, SWITZERLAND) 2019; 8:E411. [PMID: 31614987 PMCID: PMC6843677 DOI: 10.3390/plants8100411] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022]
Abstract
Leaf senescence is a complex mechanism controlled by multiple genetic and environmental variables. Different crops present a delay in leaf senescence with an important impact on grain yield trough the maintenance of the photosynthetic leaf area during the reproductive stage. Additionally, because of the temporal gap between the onset and phenotypic detection of the senescence process, candidate genes are key tools to enable the early detection of this process. In this sense and given the importance of some transcription factors as hub genes in senescence pathways, we present a comprehensive review on senescence-associated transcription factors, in model plant species and in agronomic relevant crops. This review will contribute to the knowledge of leaf senescence process in crops, thus providing a valuable tool to assist molecular crop breeding.
Collapse
Affiliation(s)
- Sofia Bengoa Luoni
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires 1425, Argentina.
| | - Francisco H Astigueta
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires 1425, Argentina.
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires 1650, Argentina.
| | - Salvador Nicosia
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires 1425, Argentina.
- Universidad Nacional de Lujan, Cruce Rutas Nac. 5 y 7, Lujan, Buenos Aires 6700, Argentina.
| | - Sebastian Moschen
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires 1425, Argentina.
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Famaillá, Tucumán 4142, Argentina.
| | - Paula Fernandez
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires 1425, Argentina.
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires 1650, Argentina.
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Instituto de Biotecnología, Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires 1686, Argentina.
| | - Ruth Heinz
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires 1425, Argentina.
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Instituto de Biotecnología, Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires 1686, Argentina.
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1428, Argentina.
| |
Collapse
|
168
|
Crane RA, Cardénas Valdez M, Castaneda N, Jackson CL, Riley CJ, Mostafa I, Kong W, Chhajed S, Chen S, Brusslan JA. Negative Regulation of Age-Related Developmental Leaf Senescence by the IAOx Pathway, PEN1, and PEN3. FRONTIERS IN PLANT SCIENCE 2019; 10:1202. [PMID: 31649689 PMCID: PMC6792297 DOI: 10.3389/fpls.2019.01202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/02/2019] [Indexed: 05/20/2023]
Abstract
Early age-related developmental senescence was observed in Arabidopsis cyp79B2/cyp79B3 double mutants that cannot produce indole-3-acetaldoxime (IAOx), the precursor to indole glucosinolates (IGs), camalexin and auxin. The early senescence phenotype was not observed when senescence was induced by darkness. The cyp79B2/cyp79B3 mutants had lower auxin levels, but did not display auxin-deficient phenotypes. Camalexin biosynthesis mutants senesced normally; however, IG transport and exosome-related pen1/pen3 double mutants displayed early senescence. The early senescence in pen1/pen3 mutants depended on salicylic acid and was not observed in pen1 or pen3 single mutants. Quantitation of IGs showed reduced levels in cyp79B2/cyp79B3 mutants, but unchanged levels in pen1/pen3, even though both of these double mutants display early senescence. We discuss how these genetic data provide evidence that IAOx metabolites are playing a protective role in leaf senescence that is dependent on proper trafficking by PEN1 and PEN3, perhaps via the formation of exosomes.
Collapse
Affiliation(s)
| | - Marielle Cardénas Valdez
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA, United States
| | - Nelly Castaneda
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA, United States
| | - Charidan L. Jackson
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA, United States
| | - Ciairra J. Riley
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA, United States
| | - Islam Mostafa
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, United States
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Wenwen Kong
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Shweta Chhajed
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, United States
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Judy A. Brusslan
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA, United States
| |
Collapse
|
169
|
Liu F, Xu Y, Chang K, Li S, Liu Z, Qi S, Jia J, Zhang M, Crawford NM, Wang Y. The long noncoding RNA T5120 regulates nitrate response and assimilation in Arabidopsis. THE NEW PHYTOLOGIST 2019; 224:117-131. [PMID: 31264223 DOI: 10.1111/nph.16038] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/20/2019] [Indexed: 05/19/2023]
Abstract
Long noncoding RNAs (lncRNAs) are crucial regulators in many plant biological processes. However, it remains unknown whether lncRNAs can respond to nitrate or function in nitrate regulation. We detected 695 lncRNAs, 480 known and 215 novel, in Arabidopsis seedling roots; six showed altered expression in response to nitrate treatment, among which T5120 showed the highest induction. Overexpression of T5120 in Arabidopsis promoted the response to nitrate, enhanced nitrate assimilation and improved biomass and root development. Biochemical and molecular analyses revealed that NLP7, a master nitrate regulatory transcription factor, directly bound to the nitrate-responsive cis-element (NRE)-like motif of the T5120 promoter and activated T5120 transcription. In addition, T5120 partially restored the nitrate signalling and assimilation phenotypes of nlp7 mutant, suggesting that T5120 is involved in NLP7-mediated nitrate regulation. Interestingly, the expression of T5120 was regulated by the nitrate sensor NRT1.1. Therefore, T5120 is modulated by NLP7 and NRT1.1 to regulate nitrate signalling. Our work reveals a new regulatory mechanism in which lncRNA T5120 functions in nitrate regulation, providing new insights into the nitrate signalling network. Importantly, lncRNA T5120 can promote nitrate assimilation and plant growth to improve nitrogen use efficiency.
Collapse
Affiliation(s)
- Fei Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yiran Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Kexin Chang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Shuna Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Zhiguang Liu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Shengdong Qi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jingbo Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Min Zhang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Nigel M Crawford
- Section of Cell and Developmental Biology, Division of Biological Science, University of California at San Diego, La Jolla, CA, 92093-0116, USA
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| |
Collapse
|
170
|
Papazian S, Girdwood T, Wessels BA, Poelman EH, Dicke M, Moritz T, Albrectsen BR. Leaf metabolic signatures induced by real and simulated herbivory in black mustard (Brassica nigra). Metabolomics 2019; 15:130. [PMID: 31563978 PMCID: PMC6765471 DOI: 10.1007/s11306-019-1592-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The oxylipin methyl jasmonate (MeJA) is a plant hormone active in response signalling and defence against herbivores. Although MeJA is applied experimentally to mimic herbivory and induce plant defences, its downstream effects on the plant metabolome are largely uncharacterized, especially in the context of primary growth and tissue-specificity of the response. OBJECTIVES We investigated the effects of MeJA-simulated and real caterpillar herbivory on the foliar metabolome of the wild plant Brassica nigra and monitored the herbivore-induced responses in relation to leaf ontogeny. METHODS As single or multiple herbivory treatments, MeJA- and mock-sprayed plants were consecutively exposed to caterpillars or left untreated. Gas chromatography (GC) and liquid chromatography (LC) time-of-flight mass-spectrometry (TOF-MS) were combined to analyse foliar compounds, including central primary and specialized defensive plant metabolites. RESULTS Plant responses were stronger in young leaves, which simultaneously induced higher chlorophyll levels. Both MeJA and caterpillar herbivory induced similar, but not identical, accumulation of tricarboxylic acids (TCAs), glucosinolates (GSLs) and phenylpropanoids (PPs), but only caterpillar feeding led to depletion of amino acids. MeJA followed by caterpillars caused higher induction of defence compounds, including a three-fold increase in the major defence compound allyl-GSL (sinigrin). When feeding on MeJA-treated plants, caterpillars gained less weight indicative of the reduced host-plant quality and enhanced resistance. CONCLUSIONS The metabolomics approach showed that plant responses induced by herbivory extend beyond the regulation of defence metabolism and are tightly modulated throughout leaf development. This leads to a new understanding of the plant metabolic potential that can be exploited for future plant protection strategies.
Collapse
Affiliation(s)
- Stefano Papazian
- 0000 0001 1034 3451grid.12650.30Department of Plant Physiology, Umeå University (Umeå Plant Science Centre), 90187 Umeå, Sweden
| | - Tristan Girdwood
- 0000 0001 1034 3451grid.12650.30Department of Plant Physiology, Umeå University (Umeå Plant Science Centre), 90187 Umeå, Sweden
| | - Bernard A. Wessels
- 0000 0001 1034 3451grid.12650.30Department of Plant Physiology, Umeå University (Umeå Plant Science Centre), 90187 Umeå, Sweden
| | - Erik H. Poelman
- 0000 0001 0791 5666grid.4818.5Laboratory of Entomology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Marcel Dicke
- 0000 0001 0791 5666grid.4818.5Laboratory of Entomology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Thomas Moritz
- 0000 0000 8578 2742grid.6341.0Department of Forest Genetic and Plant Physiology, Swedish University of Agricultural Sciences (Umeå Plant Science Centre), 90187 Umeå, Sweden
| | - Benedicte R. Albrectsen
- 0000 0001 1034 3451grid.12650.30Department of Plant Physiology, Umeå University (Umeå Plant Science Centre), 90187 Umeå, Sweden
| |
Collapse
|
171
|
Jiao Z, Li J, Ni Y, Jiang Y, Sun Y, An J, Li H, Zhang J, Hu X, Li Q, Niu J. Enhanced Senescence Process is the Major Factor Stopping Spike Differentiation of Wheat Mutant ptsd1. Int J Mol Sci 2019; 20:ijms20184642. [PMID: 31546802 PMCID: PMC6770497 DOI: 10.3390/ijms20184642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/16/2023] Open
Abstract
Complete differentiation of the spikes guarantees the final wheat (Triticum aestivum L.) grain yield. A unique wheat mutant that prematurely terminated spike differentiation (ptsd1) was obtained from cultivar Guomai 301 treated with ethyl methane sulfonate (EMS). The molecular mechanism study on ptsd1 showed that the senescence-associated genes (SAGs) were highly expressed, and spike differentiation related homeotic genes were depressed. Cytokinin signal transduction was weakened and ethylene signal transduction was enhanced. The enhanced expression of Ca2+ signal transduction related genes and the accumulation of reactive oxygen species (ROS) caused the upper spikelet cell death. Many genes in the WRKY, NAC and ethylene response factor (ERF) transcription factor (TF) families were highly expressed. Senescence related metabolisms, including macromolecule degradation, nutrient recycling, as well as anthocyanin and lignin biosynthesis, were activated. A conserved tae-miR164 and a novel-miR49 and their target genes were extensively involved in the senescence related biological processes in ptsd1. Overall, the abnormal phytohormone homeostasis, enhanced Ca2+ signaling and activated senescence related metabolisms led to the spikelet primordia absent their typical meristem characteristics, and ultimately resulted in the phenotype of ptsd1.
Collapse
Affiliation(s)
- Zhixin Jiao
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Junchang Li
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Yongjing Ni
- Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu 476000, Henan, China.
| | - Yumei Jiang
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Yulong Sun
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Junhang An
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Huijuan Li
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Jing Zhang
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Xin Hu
- Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu 476000, Henan, China.
| | - Qiaoyun Li
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Jishan Niu
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| |
Collapse
|
172
|
Timmermann T, Poupin MJ, Vega A, Urrutia C, Ruz GA, González B. Gene networks underlying the early regulation of Paraburkholderia phytofirmans PsJN induced systemic resistance in Arabidopsis. PLoS One 2019; 14:e0221358. [PMID: 31437216 PMCID: PMC6705864 DOI: 10.1371/journal.pone.0221358] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/05/2019] [Indexed: 01/07/2023] Open
Abstract
Plant defense responses to biotic stresses are complex biological processes, all governed by sophisticated molecular regulations. Induced systemic resistance (ISR) is one of these defense mechanisms where beneficial bacteria or fungi prime plants to resist pathogens or pest attacks. In ISR, the defense arsenal in plants remains dormant and it is only triggered by an infection, allowing a better allocation of plant resources. Our group recently described that the well-known beneficial bacterium Paraburkholderia phytofirmans PsJN is able to induce Arabidopsis thaliana resistance to Pseudomonas syringae pv. tomato (Pst) DC3000 through ISR, and that ethylene, jasmonate and salicylic acid are involved in this protection. Nevertheless, the molecular networks governing this beneficial interaction remain unknown. To tackle this issue, we analyzed the temporal changes in the transcriptome of PsJN-inoculated plants before and after being infected with Pst DC3000. These data were used to perform a gene network analysis to identify highly connected transcription factors. Before the pathogen challenge, the strain PsJN regulated 405 genes (corresponding to 1.8% of the analyzed genome). PsJN-inoculated plants presented a faster and stronger transcriptional response at 1-hour post infection (hpi) compared with the non-inoculated plants, which presented the highest transcriptional changes at 24 hpi. A principal component analysis showed that PsJN-induced plant responses to the pathogen could be differentiated from those induced by the pathogen itself. Forty-eight transcription factors were regulated by PsJN at 1 hpi, and a system biology analysis revealed a network with four clusters. Within these clusters LHY, WRKY28, MYB31 and RRTF1 are highly connected transcription factors, which could act as hub regulators in this interaction. Concordantly with our previous results, these clusters are related to jasmonate, ethylene, salicylic, acid and ROS pathways. These results indicate that a rapid and specific response of PsJN-inoculated plants to the virulent DC3000 strain could be the pivotal element in the protection mechanism.
Collapse
Affiliation(s)
- Tania Timmermann
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - María Josefina Poupin
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Andrea Vega
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristóbal Urrutia
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Gonzalo A. Ruz
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Bernardo González
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
- * E-mail:
| |
Collapse
|
173
|
He Y, Zhang M, Zhou W, Ai L, You J, Liu H, You J, Wang H, Wassie M, Wang M, Li H. Transcriptome analysis reveals novel insights into the continuous cropping induced response in Codonopsis tangshen, a medicinal herb. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:279-290. [PMID: 31202192 DOI: 10.1016/j.plaphy.2019.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/15/2019] [Accepted: 06/02/2019] [Indexed: 05/05/2023]
Abstract
Codonopsis tangshen Oliv. (C. tangshen Oliv.), a famous medicinal herb in China, is seriously affected by continuous cropping (C-cro). The physiological and biochemical results indicated that C-cro significantly affected the malonaldehyde (MDA) and chlorophyll content, as well as activities of catalase (CAT) and superoxide dismutase (SOD) when compared with the non-continuous cropping (NC-cro) group. Transcriptome profiling found 762 differentially expressed genes, including 430 up-regulated and 332 down-regulated genes by C-cro. In addition, pathway enrichment analysis revealed that genes related to 'Tyrosine degradation I', 'Glycogen synthesis' and 'Phenylalanine and tyrosine catabolism' were up-regulated, and genes associated with 'Signal transduction', 'Immune system', etc. were down-regulated by C-cro. The expression of target genes was further validated by Q-PCR. In this study, we demonstrated the effects of C-cro on C. tangshen at the transcriptome level, and found possible C-cro responsive candidate genes. These findings could be further beneficial for improving the continuous cropping tolerance.
Collapse
Affiliation(s)
- Yinsheng He
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan City, Hubei, 430070, PR China; Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Sciences, Enshi City, Hubei, 445000, PR China
| | - Meide Zhang
- Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Sciences, Enshi City, Hubei, 445000, PR China
| | - Wuxian Zhou
- Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Sciences, Enshi City, Hubei, 445000, PR China
| | - Lunqiang Ai
- Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Sciences, Enshi City, Hubei, 445000, PR China
| | - Jinwen You
- Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Sciences, Enshi City, Hubei, 445000, PR China
| | - Haihua Liu
- Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Sciences, Enshi City, Hubei, 445000, PR China
| | - Jingmao You
- Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Sciences, Enshi City, Hubei, 445000, PR China
| | - Hua Wang
- Institute of Chinese Herbal Medicine, Hubei Academy of Agricultural Sciences, Enshi City, Hubei, 445000, PR China
| | - Misganaw Wassie
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan City, Hubei, 430074, PR China
| | - Mo Wang
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan City, Hubei, 430070, PR China.
| | - Huiying Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan City, Hubei, 430074, PR China.
| |
Collapse
|
174
|
Shi H, Zhang Y, Chen L. Expression and Regulation of PpEIN3b during Fruit Ripening and Senescence via Integrating SA, Glucose, and ACC Signaling in Pear ( Pyrus pyrifolia Nakai. Whangkeumbae). Genes (Basel) 2019; 10:genes10060476. [PMID: 31234462 PMCID: PMC6627606 DOI: 10.3390/genes10060476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/06/2019] [Accepted: 06/19/2019] [Indexed: 11/16/2022] Open
Abstract
The economic value of fruit is reduced by having a short shelf life. Whangkeumbae is a type of sand pear (Pyrus pyrifolia) considered a climacteric fruit. The pear is famous for its smooth surface and good flavor. However, its shelf life is very short because of senescence and disease after harvest and a burst of ethylene (ET) production prompting the onset of fruit ripening. In plants, ETHYLENE INSENSITIVE3 (EIN3) and EIN3like (EIL), located in the nucleus, are important components of the ET signaling pathway and act as transcription factors. EIN3s and EILs belong to a small family involved in regulating the expression of ethylene response factor gene (ERF), whose encoding protein is the final component in the ET signaling pathway. The mutation of these components will cause defects in the ethylene pathway. In this study, one gene encoding an EIN3 was cloned and identified from Whangkeumbae and designated PpEIN3b. The deduced PpEIN3b contained a conserved EIN3 domain, a bipartite nuclear localization signal profile (NLS_BP), and an N-6 adenine-specific DNA methylase signature (N6_MTASE). PpEIN3b belongs to the EIN3 super-family by phylogenetic analysis. Quantitative RT-PCR (qRT-PCR) analysis revealed that PpEIN3b was preferentially expressed in fruit. Additionally, its expression was developmentally regulated during fruit ripening and senescence. Furthermore, PpEIN3b transcripts were obviously repressed by salicylic acid (SA) and glucose treatment in pear fruit and in diseased fruit, while it was significantly induced by 1-aminocyclopropane-1-carboxylic acid (ACC) treatment. Taken together, our results reveal the expression and regulation profiles of PpEIN3b and suggest that PpEIN3b might integrate SA, glucose, and ACC signaling to regulate fruit ripening and senescence in pear, which would provide a candidate gene for this regulation to obtain fruit with a long shelf life and improved economic value.
Collapse
Affiliation(s)
- Haiyan Shi
- Pear Engineering and Technology Research Center of Hebei, College of Horticulture, Agricultural University of Hebei, Baoding 071001, China, .
| | - Yuxing Zhang
- Pear Engineering and Technology Research Center of Hebei, College of Horticulture, Agricultural University of Hebei, Baoding 071001, China, .
| | - Liang Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
175
|
Gao Z, Li J, Luo M, Li H, Chen Q, Wang L, Song S, Zhao L, Xu W, Zhang C, Wang S, Ma C. Characterization and Cloning of Grape Circular RNAs Identified the Cold Resistance-Related Vv-circATS1. PLANT PHYSIOLOGY 2019; 180:966-985. [PMID: 30962290 PMCID: PMC6548266 DOI: 10.1104/pp.18.01331] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/24/2019] [Indexed: 05/19/2023]
Abstract
Circular RNAs (circRNAs) are widely distributed and play essential roles in a series of developmental processes, although none have been identified or characterized in grapevines (Vitis vinifera). In this study, we characterized the function of grape circRNA and uncovered thousands of putative back-splicing sites by global transcriptome analysis. Our results indicated that several reported circRNA prediction algorithms should be used simultaneously to obtain comprehensive and reliable circRNA predictions in plants. Furthermore, the length of introns flanking grape circRNAs was closely related to exon circularization. Although the longer introns flanking grape circRNAs appeared to circularize more efficiently, a 20- to 50-nt region seemed large enough to drive grape circRNA biogenesis. In addition, the endogenous introns flanking circularized exon(s) in conjunction with reverse complementary sequences could support the accurate and efficient circularization of various exons in grape, which constitutes a new tool for exploring the functional consequences caused by circRNA expression. Finally, we identified 475 differentially expressed circRNAs in grape leaves under cold stress. Overexpression of Vv-circATS1, a circRNA derived from glycerol-3-P acyltransferase, improved cold tolerance in Arabidopsis (Arabidopsis thaliana), while the linear RNA derived from the same sequence cannot. These results indicate the functional difference between circRNA and linear RNA, and provide new insight into plant abiotic stress resistance.
Collapse
Affiliation(s)
- Zhen Gao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jing Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Meng Luo
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hui Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Qiuju Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Shiren Song
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Liping Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wenping Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Institute of Agro-food Science and Technology/Key Laboratory of Agro-products Processing Technology of Shandong, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
176
|
Jakubowicz M, Nowak W, Gałgański Ł, Babula-Skowrońska D. Expression profiling of CTR1-like and EIN2-like genes in buds and leaves of Populus tremula, and in vitro study of the interaction between their polypeptides. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:660-671. [PMID: 31048123 DOI: 10.1016/j.plaphy.2019.04.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
In Arabidopsis, the serine/threonine protein kinase Constitutive Triple Response 1 (CTR1) and Ethylene Insensitive 2 polypeptide (EIN2) functions are key negative and positive components, respectively, in the ethylene signalling route. Here, we report on an in silico study of members of the CTR1-like and EIN2-like polypeptide families from poplars. The expression of CTR1-like and EIN2-like genes such as Ptre-CTR1, Ptre-CTR3 and Ptre-EIN2a was studied in Populus tremula buds and leaves in response to dehydration, various light conditions and under senescence. In buds under dehydration, the maximal fold-change of the Ptre-CTR1, Ptre-CTR3 and Ptre-EIN2a expression level recorded almost identical values. This suggests that maintenance of a constant ratio between the transcript levels of genes encoding positive and negative ethylene signalling components is required under stress. The expression of the studied genes was 1.4-to 3-fold higher in response to darkness, but 4.5- to 51.2-fold and 21.6- to 51.2-fold higher under the early and moderate leaf senescence, respectively. It is worth noting that the senescence-related Ptre-EIN2a and Ptre-CTR3a expression profiles were very similar. Using in vitro assays, we demonstrated the ability of the catalytic domain of Ptre-CTR1 to phosphorylate the Ptre-EIN2a-like polypeptide, which is similar to that in Arabidopsis. The target substrate, the Ptre-CEND2a polypeptide (C-terminal part of Ptre-EIN2a), was only phosphorylated by the protein kinase Ptre-CTR1 and not by Ptre-CTR3. Moreover, the addition of Ptre-CTR3 polypeptides (-CTR3a or -CTR3b forms) to the reaction mixture had an inhibitory effect on Ptre-CTR1 auto- and trans-phosphorylation. In contrast to Ptre-CTR1, Ptre-CTR3 may act as a positive regulator in ethylene signalling in poplar; however, this hypothesis requires in vivo confirmation. Thus, the ethylene signalling route in poplar seems to be under the control of certain additional mechanisms which have not been reported in Arabidopsis.
Collapse
Affiliation(s)
- Małgorzata Jakubowicz
- Department of Genome Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland.
| | - Witold Nowak
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland
| | - Łukasz Gałgański
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland
| | - Danuta Babula-Skowrońska
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| |
Collapse
|
177
|
Zhu Z, Li G, Yan C, Liu L, Zhang Q, Han Z, Li B. DRL1, Encoding A NAC Transcription Factor, Is Involved in Leaf Senescence in Grapevine. Int J Mol Sci 2019; 20:ijms20112678. [PMID: 31151316 PMCID: PMC6600502 DOI: 10.3390/ijms20112678] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 01/01/2023] Open
Abstract
The NAC (for NAM, ATAF1,2, and CUC2) proteins family are plant-specific transcription factors, which play important roles in leaf development and response to environmental stresses. In this study, an NAC gene, DRL1, isolated from grapevine Vitis vinifera L. "Yatomi Rose", was shown to be involved in leaf senescence. The quantity of DRL1 transcripts decreased with advancing leaf senescence in grapevine. Overexpressing the DRL1 gene in tobacco plants significantly delayed leaf senescence with respect to chlorophyll concentration, potential quantum efficiency of photosystem II (Fv/Fm), and ion leakage. Moreover, exogenous abscisic acid (ABA) markedly reduced the expression of DRL1, and the ABA and salicylic acid (SA) concentration was lower in the DRL1-overexpressing transgenic plants than in the wild-type plants. The DRL1 transgenic plants exhibited reduced sensitivity to ABA-induced senescence but no significant change in the sensitivity to jasmonic acid-, SA- or ethylene-induced senescence. Transcriptomic analysis and RNA expression studies also indicated that the transcript abundance of genes associated with ABA biosynthesis and regulation, including 9-cis-epoxycarotenoid dioxygenase (NCED1), NCED5, zeaxanthin epoxidase1 (ZEP1), ABA DEFICIENT2 (ABA2), ABA4, and ABA INSENSITIVE 2 (ABI2), was markedly reduced in the DRL1-overexpressing plants. These results suggested that DRL1 plays a role as a negative regulator of leaf senescence by regulating ABA synthesis.
Collapse
Affiliation(s)
- Ziguo Zhu
- Shandong Institute of Pomology, Shandong Academy of Agricultural Science, No 66 Longtan Road, Taian 271000, China.
| | - Guirong Li
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Chaohui Yan
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Li Liu
- Shandong Institute of Pomology, Shandong Academy of Agricultural Science, No 66 Longtan Road, Taian 271000, China.
| | - Qingtian Zhang
- Shandong Institute of Pomology, Shandong Academy of Agricultural Science, No 66 Longtan Road, Taian 271000, China.
| | - Zhen Han
- Shandong Institute of Pomology, Shandong Academy of Agricultural Science, No 66 Longtan Road, Taian 271000, China.
| | - Bo Li
- Shandong Institute of Pomology, Shandong Academy of Agricultural Science, No 66 Longtan Road, Taian 271000, China.
| |
Collapse
|
178
|
Piao W, Kim SH, Lee BD, An G, Sakuraba Y, Paek NC. Rice transcription factor OsMYB102 delays leaf senescence by down-regulating abscisic acid accumulation and signaling. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2699-2715. [PMID: 30825376 PMCID: PMC6506775 DOI: 10.1093/jxb/erz095] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 02/18/2019] [Indexed: 05/21/2023]
Abstract
MYB-type transcription factors (TFs) play important roles in plant growth and development, and in the responses to several abiotic stresses. In rice (Oryza sativa), the roles of MYB-related TFs in leaf senescence are not well documented. Here, we examined rice MYB TF gene OsMYB102 and found that an OsMYB102 T-DNA activation-tagged line (termed osmyb102-D), which constitutively expresses OsMYB102 under the control of four tandem repeats of the 35S promoter, and OsMYB102-overexpressing transgenic lines (35S:OsMYB102 and 35S:GFP-OsMYB102) maintain green leaves much longer than the wild-type under natural, dark-induced, and abscisic acid (ABA)-induced senescence conditions. Moreover, an osmyb102 knockout mutant showed an accelerated senescence phenotype under dark-induced and ABA-induced leaf senescence conditions. Microarray analysis showed that a variety of senescence-associated genes (SAGs) were down-regulated in the osmyb102-D line. Further studies demonstrated that overexpression of OsMYB102 controls the expression of SAGs, including genes associated with ABA degradation and ABA signaling (OsABF4, OsNAP, and OsCYP707A6), under dark-induced senescence conditions. OsMYB102 inhibits ABA accumulation by directly activating the transcription of OsCYP707A6, which encodes the ABA catabolic enzyme ABSCISIC ACID 8'-HYDROXYLASE. OsMYB102 also indirectly represses ABA-responsive genes, such as OsABF4 and OsNAP. Collectively, these results demonstrate that OsMYB102 plays a critical role in leaf senescence by down-regulating ABA accumulation and ABA signaling responses.
Collapse
Affiliation(s)
- Weilan Piao
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Suk-Hwan Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Byoung-Doo Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Gynheung An
- Department of Plant Molecular Systems Biotechnology, Crop Biotech Institute, Kyung Hee University, Yongin, Republic of Korea
| | - Yasuhito Sakuraba
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Present address: Graduate School of Agricultural and Life Sciences, Biotechnology Research Center, The University of Tokyo, Tokyo 113–8657, Japan
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Correspondence: or
| |
Collapse
|
179
|
Abstract
Leaf senescence is an important developmental process involving orderly disassembly of macromolecules for relocating nutrients from leaves to other organs and is critical for plants' fitness. Leaf senescence is the response of an intricate integration of various environmental signals and leaf age information and involves a complex and highly regulated process with the coordinated actions of multiple pathways. Impressive progress has been made in understanding how senescence signals are perceived and processed, how the orderly degeneration process is regulated, how the senescence program interacts with environmental signals, and how senescence regulatory genes contribute to plant productivity and fitness. Employment of systems approaches using omics-based technologies and characterization of key regulators have been fruitful in providing newly emerging regulatory mechanisms. This review mainly discusses recent advances in systems understanding of leaf senescence from a molecular network dynamics perspective. Genetic strategies for improving the productivity and quality of crops are also described.
Collapse
Affiliation(s)
- Hye Ryun Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; ,
| | - Hyo Jung Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu 42988, Republic of Korea
| | - Pyung Ok Lim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; ,
| | - Hong Gil Nam
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; ,
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu 42988, Republic of Korea
| |
Collapse
|
180
|
The H3K27me3 demethylase REF6 promotes leaf senescence through directly activating major senescence regulatory and functional genes in Arabidopsis. PLoS Genet 2019; 15:e1008068. [PMID: 30969965 PMCID: PMC6457497 DOI: 10.1371/journal.pgen.1008068] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 03/06/2019] [Indexed: 11/19/2022] Open
Abstract
The roles of histone demethylation in the regulation of plant flowering, disease resistance, rhythmical response, and seed germination have been elucidated recently; however, how histone demethylation affects leaf senescence remains largely unclear. In this study, we exploited yeast one-hybrid (Y1H) to screen for the upstream regulators of NONYELLOWING1 (NYE1), and identified RELATIVE OF EARLY FLOWERING6 (REF6), a histone H3 lysine 27 tri-methylation (H3K27me3) demethylase, as a putative binding protein of NYE1 promoter. By in vivo and in vitro analyses, we demonstrated that REF6 directly binds to the motif CTCGYTY in NYE1/2 promoters through its zinc finger domain and positively regulates their expression. Loss-of-function of REF6 delayed chlorophyll (Chl) degradation, whereas overexpression of REF6 accelerated Chl degradation. Subsequently, we revealed that REF6 positively regulates the general senescence process by directly up-regulating ETHYLENE INSENSITIVE 2 (EIN2), ORESARA1 (ORE1), NAC-LIKE, ACTIVATED BY AP3/PI (NAP), PYRUVATE ORTHOPHOSPHATE DIKINASE (PPDK), PHYTOALEXIN DEFICIENT 4 (PAD4), LIPOXYGENASE 1 (LOX1), NAC DOMAIN CONTAINING PROTEIN 3 (AtNAC3), and NAC TRANSCRIPTION FACTOR-LIKE 9 (NTL9), the key regulatory and functional genes predominantly involved in the regulation of developmental leaf senescence. Importantly, loss-of-function of REF6 increased H3K27me3 levels at all the target Senescence associated genes (SAGs). We therefore conclusively demonstrate that H3K27me3 methylation represents an epigenetic mechanism prohibiting the premature transcriptional activation of key developmentally up-regulated senescence regulatory as well as functional genes in Arabidopsis. Leaves of higher plants start yellowing and subsequently die (senescence) at particular developmental stages as a result of both internal and external regulations. Leaf senescence is evolved to facilitate nutrient remobilization to young/important organs to meet their rapid development, and a large number of genes (Senescence associated genes, SAGs) are activated to regulate/facilitate the process. It has been intriguing how these genes are kept transcriptionally inactive to ensure an effective photosynthesis before the initiation of leaf senescence. Here, we reveal an epigenetic mechanism responsible for the prohibition of their premature transcription. We found that an H3K27me3 demethylase, RELATIVE OF EARLY FLOWERING 6 (REF6), directly promotes the expression of its ten target senescence regulatory and functional genes (EIN2, ORE1, NAP, AtNAC3, NTL9, NYE1/2, LOX1, PAD4, and PPDK), which are involved in major phytohormones’ signaling, biosynthesis, and chlorophyll degradation. Crucially, REF6 is substantially involved in promoting the H3K27me3 demethylation of both their promoter and/or coding regions during the aging process of leaves. We therefore provide conclusive evidence that H3K27me3 methylation is an epigenetic mechanism hindering the premature transcriptional activation of key SAGs, which helps to explain the “aging effect” of senescence initiation.
Collapse
|
181
|
Wang H, Schippers JHM. The Role and Regulation of Autophagy and the Proteasome During Aging and Senescence in Plants. Genes (Basel) 2019; 10:genes10040267. [PMID: 30987024 PMCID: PMC6523301 DOI: 10.3390/genes10040267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/06/2019] [Accepted: 03/27/2019] [Indexed: 12/18/2022] Open
Abstract
Aging and senescence in plants has a major impact on agriculture, such as in crop yield, the value of ornamental crops, and the shelf life of vegetables and fruits. Senescence represents the final developmental phase of the leaf and inevitably results in the death of the organ. Still, the process is completely under the control of the plant. Plants use their protein degradation systems to maintain proteostasis and transport or salvage nutrients from senescing organs to develop reproductive parts. Herein, we present an overview of current knowledge about the main protein degradation pathways in plants during senescence: The proteasome and autophagy. Although both pathways degrade proteins, autophagy appears to prevent aging, while the proteasome functions as a positive regulator of senescence.
Collapse
Affiliation(s)
- Haojie Wang
- Institute of Biology I, RWTH Aachen University, 52074 Aachen, Germany.
| | - Jos H M Schippers
- Institute of Biology I, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
182
|
Micromanagement of Developmental and Stress-Induced Senescence: The Emerging Role of MicroRNAs. Genes (Basel) 2019; 10:genes10030210. [PMID: 30871088 PMCID: PMC6470504 DOI: 10.3390/genes10030210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 01/13/2023] Open
Abstract
MicroRNAs are short (19⁻24-nucleotide-long), non-coding RNA molecules. They downregulate gene expression by triggering the cleavage or translational inhibition of complementary mRNAs. Senescence is a stage of development following growth completion and is dependent on the expression of specific genes. MicroRNAs control the gene expression responsible for plant competence to answer senescence signals. Therefore, they coordinate the juvenile-to-adult phase transition of the whole plant, the growth and senescence phase of each leaf, age-related cellular structure changes during vessel formation, and remobilization of resources occurring during senescence. MicroRNAs are also engaged in the ripening and postharvest senescence of agronomically important fruits. Moreover, the hormonal regulation of senescence requires microRNA contribution. Environmental cues, such as darkness or drought, induce senescence-like processes in which microRNAs also play regulatory roles. In this review, we discuss recent findings concerning the role of microRNAs in the senescence of various plant species.
Collapse
|
183
|
Lyu JI, Kim JH, Chu H, Taylor MA, Jung S, Baek SH, Woo HR, Lim PO, Kim J. Natural allelic variation of GVS1 confers diversity in the regulation of leaf senescence in Arabidopsis. THE NEW PHYTOLOGIST 2019; 221:2320-2334. [PMID: 30266040 DOI: 10.1111/nph.15501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
Leaf senescence affects plant fitness. Plants that evolve in different environments are expected to acquire distinct regulations of leaf senescence. However, the adaptive and evolutionary roles of leaf senescence are largely unknown. We investigated leaf senescence in 259 natural accessions of Arabidopsis by quantitatively assaying dark-induced senescence responses using a high-throughput chlorophyll fluorescence imaging system. A meta-analysis of our data with phenotypic and climatic information demonstrated biological and environmental links with leaf senescence. We further performed genome-wide association mapping to identify the genetic loci underlying the diversity of leaf senescence responses. We uncovered a new locus, Genetic Variants in leaf Senescence (GVS1), with high similarity to reductase, where a single nonsynonymous nucleotide substitution at GVS1 mediates the diversity of the senescence trait. Loss-of-function mutations of GVS1 in Columbia-0 delayed leaf senescence and increased sensitivity to oxidative stress, suggesting that this GVS1 variant promotes optimal responses to developmental and environmental signals. Intriguingly, gvs1 loss-of-function mutants display allele- and accession-dependent phenotypes, revealing the functional diversity of GVS1 alleles not only in leaf senescence, but also oxidative stress. Our discovery of GVS1 as the genetic basis of natural variation in senescence programs reinforces its adaptive potential in modulating life histories across diverse environments.
Collapse
Affiliation(s)
- Jae Il Lyu
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea
| | - Jin Hee Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea
| | - Hyosub Chu
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea
| | - Mark A Taylor
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
| | - Sukjoon Jung
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Seung Hee Baek
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Hye Ryun Woo
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Pyung Ok Lim
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Jeongsik Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Republic of Korea
| |
Collapse
|
184
|
Jan S, Abbas N, Ashraf M, Ahmad P. Roles of potential plant hormones and transcription factors in controlling leaf senescence and drought tolerance. PROTOPLASMA 2019; 256:313-329. [PMID: 30311054 DOI: 10.1007/s00709-018-1310-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Plant leaves offer an exclusive windowpane to uncover the changes in organs, tissues, and cells as they advance towards the process of senescence and death. Drought-induced leaf senescence is an intricate process with remarkably coordinated phases of onset, progression, and completion implicated in an extensive reprogramming of gene expression. Advancing leaf senescence remobilizes nutrients to younger leaves thereby contributing to plant fitness. However, numerous mysteries remain unraveled concerning leaf senescence. We are not still able to correlate leaf senescence and drought stress to endogenous and exogenous environments. Furthermore, we need to decipher how molecular mechanisms of the leaf senescence and levels of drought tolerance are advanced and how is the involvement of SAGs in drought tolerance and plant fitness. This review provides the perspicacity indispensable for facilitating our coordinated point of view pertaining to leaf senescence together with inferences on progression of whole plant aging. The main segments discussed in the review include coordination between hormonal signaling, leaf senescence, drought tolerance, and crosstalk between hormones in leaf senescence regulation.
Collapse
Affiliation(s)
- Sumira Jan
- ICAR- Central Institute of Temperate Horticulture, Rangreth, Air Field, Srinagar, Jammu and Kashmir, India
| | - Nazia Abbas
- Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, Jammu and Kashmir, India
| | | | - Parvaiz Ahmad
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
- Department of Botany, S.P. College, Srinagar, Jammu and Kashmir, 190001, India.
| |
Collapse
|
185
|
Li D, Wu D, Li S, Guo N, Gao J, Sun X, Cai Y. Transcriptomic profiling identifies differentially expressed genes associated with programmed cell death of nucellar cells in Ginkgo biloba L. BMC PLANT BIOLOGY 2019; 19:91. [PMID: 30819114 PMCID: PMC6396491 DOI: 10.1186/s12870-019-1671-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/01/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND Previously, we demonstrated that pollen chamber formation (PCF) in G. biloba ovules was a process of programmed cell death (PCD) within the nucellar cells at the micropylar end. However, the signal triggering the cascades of the programmed events in these nucellar cells remains unexplored. RESULTS A transcriptomic strategy was employed to unravel the mechanism underlying the nucellar PCD via the comparative profiles of RNA-seq between pre-PCF and post-PCF ovules. A total of 5599 differentially expressed genes (DEGs) with significance was identified from G. biloba ovules and classified into three main categories of GO annotation, including 17 biological processes, 15 cellular components and 17 molecular functions. KEGG analysis showed that 72 DEGs were enriched in "Plant hormone signal transduction". Furthermore, 99 DEGs were found to be associated with the PCD process, including the genes involved in ethylene signaling pathway, PCD initiation, and PCD execution. Moreover, calcium-cytochemical localization indicated that calcium could play a role in regulating PCD events within the nucellar cells during pollen chamber formation in G. biloba ovules. CONCLUSIONS A putative working model, consisting of three overlapping processes, is proposed for the nucellar PCD: at the stage of PCD preparation, ethylene signaling pathway is activated for transcriptional regulation of the downstream targets; subsequently, at the stage of PCD initiation, the upregulated expression of several transcription factors, i.e., NAC, bHLH, MADS-box, and MYB, further promotes the corresponding transcript levels of CYTOCHROME C and CALMODULINs, thereby, leads to the PCD initiation via the calcium-dependent signaling cascade; finally, at the stage of PCD execution, some proteases like metacaspases and vacuolar processing enzyme for hydrolysis, together with the process of autophagy, play roles in the clearance of cellular components. Afterwards, a pollen chamber is generated from the removal of specific nucellar cells in the developing ovule.
Collapse
Affiliation(s)
- Dahui Li
- College of Life Science, Anhui Agricultural University, Hefei, 230036 China
| | - Di Wu
- College of Life Science, Anhui Agricultural University, Hefei, 230036 China
| | - Shizhou Li
- College of Life Science, Anhui Agricultural University, Hefei, 230036 China
| | - Ning Guo
- College of Life Science, Anhui Agricultural University, Hefei, 230036 China
| | - Junshan Gao
- College of Life Science, Anhui Agricultural University, Hefei, 230036 China
| | - Xu Sun
- College of Life Science, Anhui Agricultural University, Hefei, 230036 China
| | - Yongping Cai
- College of Life Science, Anhui Agricultural University, Hefei, 230036 China
| |
Collapse
|
186
|
Li G, Zhang L, Wang M, Di D, Kronzucker HJ, Shi W. The Arabidopsis AMOT1/EIN3 gene plays an important role in the amelioration of ammonium toxicity. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1375-1388. [PMID: 30689938 PMCID: PMC6382331 DOI: 10.1093/jxb/ery457] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/19/2018] [Indexed: 05/13/2023]
Abstract
Ammonium (NH4+) toxicity inhibits shoot growth in Arabidopsis, but the underlying mechanisms remain poorly characterized. Here, we show that a novel Arabidopsis mutant, ammonium tolerance 1 (amot1), exhibits enhanced shoot growth tolerance to NH4+. Molecular cloning revealed that amot1 is a new allele of EIN3, a key regulator of ethylene responses. The amot1 mutant and the allelic ein3-1 mutants show greater NH4+ tolerance than the wild type. Moreover, transgenic plants overexpressing EIN3 (EIN3ox) are more sensitive to NH4+ toxicity The ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) increases shoot sensitivity to NH4+, whereas the ethylene perception inhibitor Ag+ decreases sensitivity. NH4+ induces ACC and ethylene accumulation. Furthermore, ethylene-insensitive mutants such as etr1-3 and ein3eil1 display enhanced NH4+ tolerance. In contrast, the ethylene overproduction mutant eto1-1 exhibits decreased ammonium tolerance. AMOT1/EIN3 positively regulates shoot ROS accumulation, leading to oxidative stress under NH4+ stress, a trait that may be related to increased expression of peroxidase-encoding genes. These findings demonstrate the role of AMOT1/EIN3 in NH4+ tolerance and confirm the strong link between NH4+ toxicity symptoms and the accumulation of hydrogen peroxide.
Collapse
Affiliation(s)
- Guangjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- Correspondence: or
| | - Lin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Dongwei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Herbert J Kronzucker
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- Correspondence: or
| |
Collapse
|
187
|
Wang B, Zhang Y, Bi Z, Liu Q, Xu T, Yu N, Cao Y, Zhu A, Wu W, Zhan X, Anis GB, Yu P, Chen D, Cheng S, Cao L. Impaired Function of the Calcium-Dependent Protein Kinase, OsCPK12, Leads to Early Senescence in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2019; 10:52. [PMID: 30778363 PMCID: PMC6369234 DOI: 10.3389/fpls.2019.00052] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/16/2019] [Indexed: 05/21/2023]
Abstract
Premature leaf senescence affects plant yield and quality, and numerous researches about it have been conducted until now. In this study, we identified an early senescent mutant es4 in rice (Oryza sativa L.); early senescence appeared approximately at 60 dps and became increasingly senescent with the growth of es4 mutant. We detected that content of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as activity of superoxide dismutase (SOD) were elevated, while chlorophyll content, soluble protein content, activity of catalase (CAT), activity of peroxidase (POD) and photosynthetic rate were reduced in the es4 mutant leaves. We mapped es4 in a 33.5 Kb physical distance on chromosome 4 by map-based cloning. Sequencing analysis in target interval indicated there was an eight bases deletion mutation in OsCPK12 which encoded a calcium-dependent protein kinase. Functional complementation of OsCPK12 in es4 completely restored the normal phenotype. We used CRISPR/Cas9 for targeted disruption of OsCPK12 in ZH8015 and all the mutants exhibited the premature senescence. All the results indicated that the phenotype of es4 was caused by the mutation of OsCPK12. Overexpression of OsCPK12 in ZH8015 enhanced the net photosynthetic rate (P n) and chlorophyll content. OsCPK12 was mainly expressed in green organs. The results of qRT-PCR analysis showed that the expression levels of some key genes involved in senescence, chlorophyll biosynthesis, and photosynthesis were significantly altered in the es4 mutant. Our results demonstrate that the mutant of OsCPK12 triggers the premature leaf senescence; however, the overexpression of OsCPK12 may delay its growth period and provide the potentially positive effect on productivity in rice.
Collapse
Affiliation(s)
- Beifang Wang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yingxin Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhenzhen Bi
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Qunen Liu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Tingting Xu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ning Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yongrun Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Aike Zhu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Nanchong Academy of Agricultural Sciences, Nanchong, China
| | - Weixun Wu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Xiaodeng Zhan
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Galal Bakr Anis
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Rice Research and Training Center, Field Crops Research Institute, Agriculture Research Center, Kafr El Sheikh, Egypt
| | - Ping Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Daibo Chen
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
188
|
Abstract
Plant leaf senescence is the final process of leaf development that involves the mobilization of nutrients from old leaves to newly growing tissues. Leaf senescence involves a coordinated action at the cellular and organism levels under the control of a highly regulated genetic program. However, leaf senescence is also influenced by multiple internal and environmental signals that are integrated into the age information. Among these internal factors, the simple gaseous phytohormone ethylene is well-known to be an important endogenous modulator of plant leaf senescence and fruit ripening. Ethylene and its biosynthetic precursor ACC (1-aminocyclopropane-l-carboxylic acid) as well as inhibitors of ethylene biosynthesis aminoethoxyvinylglycine (AVG) and action (AgNO3) or the inhibitor of ethylene perception 1-MCP (1-methylcyclopropene) have been widely used by the research community of plant leaf senescence. However, until now, no systemically experimental method about the usage of ethylene in studying the molecular mechanisms of leaf senescence in Arabidopsis is available. Here, we provide detailed methods for exogenous application of ethylene and its inhibitors in studying Arabidopsis leaf senescence, which has been successfully used in our laboratory.
Collapse
Affiliation(s)
- Zhonghai Li
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking-Tsinghua Center of Life Sciences, Peking University, Beijing, China
| | - Hongwei Guo
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking-Tsinghua Center of Life Sciences, Peking University, Beijing, China. .,Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, China.
| |
Collapse
|
189
|
Kim H, Hong S. Role of the circadian clock in fine-tuning the process of leaf senescence in plants. TRANSLATIONAL MEDICINE OF AGING 2019. [DOI: 10.1016/j.tma.2018.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
190
|
Koyama T. A hidden link between leaf development and senescence. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:105-110. [PMID: 30348308 DOI: 10.1016/j.plantsci.2018.08.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/04/2018] [Accepted: 08/13/2018] [Indexed: 05/21/2023]
Abstract
Leaf senescence is the final step of leaf development and is usually accompanied by visible color changes from green to yellow or brown. Unlike the senescence of the whole body of animals and unicellular organisms, which is often associated with death, leaf senescence in plants requires highly integrative processes towards cell death with nutrient recycling and storage. Since leaf senescence plays pivotal roles in the production of plant biomass and grain yield, the mechanisms of degradation and relocation of macromolecules as well as the regulation of signaling and biosynthetic pathways have received much attention. The importance of the plant hormone ethylene in the onset of leaf senescence has been clearly documented. However, research has increasingly demonstrated that the function of ethylene in the regulation of leaf senescence is dependent on leaf development. This review raises the issue of how ethylene requires developmental regulators and focuses on the developmental aspect of leaf senescence. It also emphasizes the remarkable impact that developmental regulators have on regulating the onset of leaf senescence.
Collapse
Affiliation(s)
- Tomotsugu Koyama
- Bioorganic Research Institute Suntory Foundation for Life Sciences, Japan.
| |
Collapse
|
191
|
Miao ZQ, Zhao PX, Mao JL, Yu LH, Yuan Y, Tang H, Liu ZB, Xiang CB. HOMEOBOX PROTEIN52 Mediates the Crosstalk between Ethylene and Auxin Signaling during Primary Root Elongation by Modulating Auxin Transport-Related Gene Expression. THE PLANT CELL 2018; 30:2761-2778. [PMID: 30333147 PMCID: PMC6305987 DOI: 10.1105/tpc.18.00584] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/26/2018] [Accepted: 10/14/2018] [Indexed: 05/06/2023]
Abstract
The gaseous hormone ethylene participates in many physiological processes in plants. Ethylene-inhibited root elongation involves PIN-FORMED2 (PIN2)-mediated basipetal auxin transport, but the molecular mechanisms underlying the regulation of PIN2 function by ethylene (and therefore auxin distribution) are poorly understood. Here, we report that the plant-specific and ethylene-responsive HD-Zip gene HB52 is involved in ethylene-mediated inhibition of primary root elongation in Arabidopsis thaliana Biochemical and genetic analyses demonstrated that HB52 is ethylene responsive and acts downstream of ETHYLENE-INSENSITIVE3 (EIN3). HB52 knockdown mutants displayed an ethylene-insensitive phenotype during primary root elongation, while its overexpression resulted in short roots, as observed in ethylene-treated plants. In addition, root auxin distribution and gravitropism were impaired in HB52 knockdown and overexpression lines. Consistent with these findings, in vitro and in vivo binding experiments showed that HB52 regulates the expression of auxin transport-related genes, including PIN2, WAVY ROOT GROWTH1 (WAG1), and WAG2 by physically binding to their promoter regions. These findings suggest that HB52 functions in the ethylene-mediated inhibition of root elongation by modulating the expression of auxin transport components downstream of EIN3, revealing a mechanism in which HB52 acts as an important node in the crosstalk between ethylene and auxin signaling during plant growth and development.
Collapse
Affiliation(s)
- Zi-Qing Miao
- School of Life Sciences and Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Ping-Xia Zhao
- School of Life Sciences and Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Jie-Li Mao
- School of Life Sciences and Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Lin-Hui Yu
- School of Life Sciences and Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Yang Yuan
- School of Life Sciences and Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Hui Tang
- School of Life Sciences and Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Zhen-Bang Liu
- School of Life Sciences and Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Cheng-Bin Xiang
- School of Life Sciences and Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| |
Collapse
|
192
|
Park CH, Roh J, Youn JH, Son SH, Park JH, Kim SY, Kim TW, Kim SK. Arabidopsis ACC Oxidase 1 Coordinated by Multiple Signals Mediates Ethylene Biosynthesis and Is Involved in Root Development. Mol Cells 2018; 41:923-932. [PMID: 30352493 PMCID: PMC6199567 DOI: 10.14348/molcells.2018.0092] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/14/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022] Open
Abstract
Ethylene regulates numerous aspects of plant growth and development. Multiple external and internal factors coordinate ethylene production in plant tissues. Transcriptional and post-translational regulations of ACC synthases (ACSs), which are key enzymes mediating a rate-limiting step in ethylene biosynthesis have been well characterized. However, the regulation and physiological roles of ACC oxidases (ACOs) that catalyze the final step of ethylene biosynthesis are largely unknown in Arabidopsis. Here, we show that Arabidopsis ACO1 exhibits a tissue-specific expression pattern that is regulated by multiple signals, and plays roles in the lateral root development in Arabidopsis. Histochemical analysis of the ACO1 promoter indicated that ACO1 expression was largely modulated by light and plant hormones in a tissue-specific manner. We demonstrated that point mutations in two E-box motifs on the ACO1 promoter reduce the light-regulated expression patterns of ACO1. The aco1-1 mutant showed reduced ethylene production in root tips compared to wild-type. In addition, aco1-1 displayed altered lateral root formation. Our results suggest that Arabidopsis ACO1 integrates various signals into the ethylene biosynthesis that is required for ACO1's intrinsic roles in root physiology.
Collapse
Affiliation(s)
- Chan Ho Park
- Department of Life Science, Chung-Ang University, Seoul 06974,
Korea
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305-4150,
USA
| | - Jeehee Roh
- Department of Life Science, Chung-Ang University, Seoul 06974,
Korea
| | - Ji-Hyun Youn
- Department of Life Science, Chung-Ang University, Seoul 06974,
Korea
| | - Seung-Hyun Son
- Department of Life Science, Chung-Ang University, Seoul 06974,
Korea
| | - Ji Hye Park
- Department of Biological Science, Andong National University, Andong 36729,
Korea
| | - Soon Young Kim
- Department of Biological Science, Andong National University, Andong 36729,
Korea
| | - Tae-Wuk Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763,
Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763,
Korea
| | - Seong-Ki Kim
- Department of Life Science, Chung-Ang University, Seoul 06974,
Korea
| |
Collapse
|
193
|
Zhang C, Teng XD, Zheng QQ, Zhao YY, Lu JY, Wang Y, Guo H, Yang ZN. Ethylene signaling is critical for synergid cell functional specification and pollen tube attraction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:176-187. [PMID: 30003612 DOI: 10.1111/tpj.14027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/03/2018] [Indexed: 05/23/2023]
Abstract
ETHYLENE INSENSITIVE 3 (EIN3) is a key regulator of ethylene signaling, and EIN3-BINDING F-BOX1 (EBF1) and EBF2 are responsible for EIN3 degradation. Previous reports have shown that the ebf1 ebf2 double homozygous mutant cannot be identified. In this study, the genetic analysis revealed that the ebf1 ebf2 female gametophyte is defective. The pollination experiment showed that ebf1 ebf2 ovules failed to attract pollen tubes. In female gametophyte/ovule, the synergid cell is responsible for pollen tube attraction. Observation of the pEIN3::EIN3-GFP transgenic lines showed that EIN3 signal was over-accumulated at the micropylar end of ebf1 ebf2 female gametophyte. The overexpression of stabilized EIN3 in synergid cell led to the defect of pollen tube guidance. These results suggested that the over-accumulated EIN3 in ebf1 ebf2 synergid cell blocks its pollen tube attraction which leads to the failure of ebf1 ebf2 homozygous plant. We identified that EIN3 directly activated the expression of a sugar transporter, SENESCENCE-ASSOCIATED GENE29 (SAG29/SWEET15). Overexpression of SAG29 in synergid cells blocked pollen tube attraction, suggesting that SAG29 might play a role in ethylene signaling to repel pollen tube entry. Taken together, our study reveals that strict control of ethylene signaling is critical for the synergid cell function during plant reproduction.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Xiao-Dong Teng
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Quan-Quan Zheng
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Yan-Yun Zhao
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Jie-Yang Lu
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Yichuan Wang
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 508055, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 508055, China
| | - Zhong-Nan Yang
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| |
Collapse
|
194
|
Sucrose Signaling Regulates Anthocyanin Biosynthesis Through a MAPK Cascade in Arabidopsis thaliana. Genetics 2018; 210:607-619. [PMID: 30143593 DOI: 10.1534/genetics.118.301470] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/06/2018] [Indexed: 01/01/2023] Open
Abstract
Anthocyanin accumulation specifically depends on sucrose (Suc) signaling. However, the molecular basis of this process remains unknown. In this study, in vitro pull-down assays identified ETHYLENE-INSENSITIVE3 (EIN3), a component of both sugar signaling or/and metabolism. This protein interacted with YDA, and the physiological relevance of this interaction was confirmed by in planta co-immunoprecipitation, yeast two-hybrid (Y2H) assay, and bimolecular fluorescence complementation. Ethylene insensitive3-like 1 (eil1) ein3 double-mutant seedlings, but not ein3-1 seedlings, showed anthocyanin accumulation. Furthermore, ein3-1 suppressed anthocyanin accumulation in yda-1 plants. Thus, EMB71/YDA-EIN3-EIL1 may form a sugar-mediated gene cascade integral to the regulation of anthocyanin accumulation. Moreover, the EMB71/YDA-EIN3-EIL1 gene cascade module directly targeted the promoter of Transparent Testa 8 (TT8) by direct EIN3 binding. Collectively, our data inferred a molecular model where the signaling cascade of the YDA-EIN3-TT8 appeared to target TT8 via EIN3, thereby modulating Suc signaling-mediated anthocyanin accumulation.
Collapse
|
195
|
Zhang Y, Liu Z, Wang X, Wang J, Fan K, Li Z, Lin W. DELLA proteins negatively regulate dark-induced senescence and chlorophyll degradation in Arabidopsis through interaction with the transcription factor WRKY6. PLANT CELL REPORTS 2018; 37:981-992. [PMID: 29574486 DOI: 10.1007/s00299-018-2282-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/21/2018] [Indexed: 05/23/2023]
Abstract
DELLA proteins' negative regulation of dark-induced senescence and chlorophyll degradation in Arabidopsis is through interaction with WRKY6 and thus repression of its transcriptional activities on senescence-related genes. Senescence is an intricate and highly orchestrated process regulated by numerous endogenous and environmental signals. Gibberellins (GAs) and their signaling components DELLA proteins have been known to participate in the regulation of senescence. However, the mechanism of the GA-DELLA system involved in the senescence process remains largely unclear. Darkness is a known environmental factor that induces plant senescence. In this study, exogenous GA3 (an active form of GA) accelerated but paclobutrazol (a specific GA biosynthesis inhibitor) retarded dark-induced leaf yellowing in Arabidopsis. Moreover, the dark-triggered decrease in chlorophyll content, increase in cell membrane leakage, and upregulation of senescence-associated genes were notably impaired in both endogenous GA-decreased mutants ga3ox1/ga3ox2 and ga20ox1/ga20ox2 compared with those in wild-type Col-0. These effects of darkness were enhanced in the quintuple mutant of DELLA genes gai-t6/rga-t2/rgl1-1/rgl2-1/rgl3-1 and conversely attenuated in the gain-of-function mutant gai and transgenic plant 35S::TAP-RGAd17 compared with wild-type Ler. Subsequently, RGA interacted with the transcription factor WRKY6 in a yeast two-hybrid assay, as confirmed by bimolecular fluorescence complementation and pull-down analyses. In addition, mutation and overexpression of WRKY6 retarded and accelerated dark-induced senescence, respectively. Furthermore, transient expression assays in Arabidopsis protoplasts indicated that RGA and GAI weakened the transcriptional activities of WRKY6 on its downstream senescence-related genes, including SAG13 and SGR. Taken together, these results suggest that GAs positively and DELLAs negatively regulate dark-induced senescence and chlorophyll degradation in Arabidopsis. DELLAs function in this process, at least in part, by interacting with WRKY6.
Collapse
Affiliation(s)
- Yongqiang Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province Universities, Fuzhou, 350002, People's Republic of China.
| | - Zhongjuan Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province Universities, Fuzhou, 350002, People's Republic of China
| | - Xiaoyun Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Jianfeng Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Kai Fan
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province Universities, Fuzhou, 350002, People's Republic of China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Zhaowei Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province Universities, Fuzhou, 350002, People's Republic of China.
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
196
|
Ma F, Wang L, Wang Y. Ectopic expression of VpSTS29, a stilbene synthase gene from Vitis pseudoreticulata, indicates STS presence in cytosolic oil bodies. PLANTA 2018; 248:89-103. [PMID: 29589146 DOI: 10.1007/s00425-018-2883-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/17/2018] [Indexed: 05/03/2023]
Abstract
Stilbene synthase (STS) and its metabolic products are accumulated in senescing grapevine leaves. Ectopic expression of VpSTS29 in Arabidopsis shows the presence of VpSTS29 in oil bodies and increases trans-piceid in developing leaves. Stilbenes are the natural antimicrobial phytoalexins that are synthesised via the phenylpropanoid pathway. STS is the key enzyme catalysing the production of stilbenes. We have previously reported that the VpSTS29 gene plays an important role in powdery mildew resistance in Vitis pseudoreticulata. However, the synthesis and accumulation of these stilbene products in plant cells remain unclear. Here, we demonstrate that VpSTS29 is present in cytosolic oil bodies and can be transported into the vacuole at particular plant-developmental stages. Western blot and high-performance liquid chromatography showed that STS and trans-piceid accumulated in senescent grape leaves and in pVpSTS29::VpSTS29-expressing Arabidopsis during age-dependent leaf senescence. Subcellular localisation analyses indicated VpSTS29-GFP was present in the cytoplasm and in STS-containing bodies in Arabidopsis. Nile red staining, co-localisation and immunohistochemistry analyses of leaves confirmed that the STS-containing bodies were oil bodies and that these moved randomly in the cytoplasm and vacuole. Detection of protein profiles revealed that no free GFP was detected in the pVpSTS29::VpSTS29-GFP-expressing protoplasts or in Arabidopsis during the dark-light cycle, demonstrating that GFP fluorescence distributed in the STS-containing bodies and vacuole was the VpSTS29-GFP fusion protein. Intriguingly, in comparison to the controls, over-expression of VpSTS29 in Arabidopsis resulted in relatively high levels of trans-piceid, chlorophyll content and of photochemical efficiency accompanied by delayed leaf senescence. These results provide exciting new insights into the subcellular localisation of STS in plant cells and information about stilbene synthesis and storage.
Collapse
Affiliation(s)
- Fuli Ma
- College of Horticulture, Northwest A & F University, No. 3 Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Lei Wang
- College of Horticulture, Northwest A & F University, No. 3 Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yuejin Wang
- College of Horticulture, Northwest A & F University, No. 3 Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
197
|
Li M, Li B, Guo G, Chen Y, Xie J, Lu P, Wu Q, Zhang D, Zhang H, Yang J, Zhang P, Zhang Y, Liu Z. Mapping a leaf senescence gene els1 by BSR-Seq in common wheat. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2018.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
198
|
Kim J, Park SJ, Lee IH, Chu H, Penfold CA, Kim JH, Buchanan-Wollaston V, Nam HG, Woo HR, Lim PO. Comparative transcriptome analysis in Arabidopsis ein2/ore3 and ahk3/ore12 mutants during dark-induced leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3023-3036. [PMID: 29648620 PMCID: PMC5972659 DOI: 10.1093/jxb/ery137] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/29/2018] [Indexed: 05/24/2023]
Abstract
Leaf senescence involves degenerative but active biological processes that require balanced regulation of pro- and anti-senescing activities. Ethylene and cytokinin are major antagonistic regulatory hormones that control the timing and progression rate of leaf senescence. To identify the roles of these hormones in the regulation of leaf senescence in Arabidopsis, global gene expression profiles in detached leaves of the wild type, an ethylene-insensitive mutant (ein2/ore3), and a constitutive cytokinin response mutant (ahk3/ore12) were investigated during dark-induced leaf senescence. Comparative transcriptome analyses revealed that genes involved in oxidative or salt stress response were preferentially altered in the ein2/ore3 mutant, whereas genes involved in ribosome biogenesis were affected in the ahk3/ore12 mutant during dark-induced leaf senescence. Similar results were also obtained for developmental senescence. Through extensive molecular and physiological analyses in ein2/ore3 and ahk3/ore12 during dark-induced leaf senescence, together with responses when treated with cytokinin and ethylene inhibitor, we conclude that ethylene acts as a senescence-promoting factor via the transcriptional regulation of stress-related responses, whereas cytokinin acts as an anti-senescing agent by maintaining cellular activities and preserving the translational machinery. These findings provide new insights into how plants utilize two antagonistic hormones, ethylene and cytokinin, to regulate the molecular programming of leaf senescence.
Collapse
Affiliation(s)
- Jeongsik Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Su Jin Park
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Gyeongbuk, Republic of Korea
| | - Il Hwan Lee
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Hyosub Chu
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Christopher A Penfold
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Jin Hee Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | | | - Hong Gil Nam
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Hye Ryun Woo
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Pyung Ok Lim
- Department of New Biology, DGIST, Daegu, Republic of Korea
| |
Collapse
|
199
|
Wang Y, Zhang Y, Wang L. Cross Regulatory Network Between Circadian Clock and Leaf Senescence Is Emerging in Higher Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:700. [PMID: 29930562 PMCID: PMC6001512 DOI: 10.3389/fpls.2018.00700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/07/2018] [Indexed: 05/27/2023]
Abstract
Circadian clock and senescence have been shown to tightly intertwined with each other in numerous eukaryotes, but the regulation of circadian oscillator on triggering leaf senescence, and vice versa, remains largely unknown in higher plants. Very recently, circadian system and leaf senescence were found to be highly interconnected in higher plants. Circadian clock was shown to regulate leaf senescence through a few cross signaling pathways including age-dependent, plant hormone mediated, and dark induced manners to trigger the onset of leaf senescence. By contrast, circadian clock itself also can be affected by the leaves senescing process. The eventually delineating cross networks between circadian clock and leaf senescence will lay the foundation for understanding the fitness of developmental dynamics of plants with aging.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
200
|
Ceusters J, Van de Poel B. Ethylene Exerts Species-Specific and Age-Dependent Control of Photosynthesis. PLANT PHYSIOLOGY 2018; 176:2601-2612. [PMID: 29438047 PMCID: PMC5884594 DOI: 10.1104/pp.17.01706] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/25/2018] [Indexed: 05/18/2023]
Abstract
Ethylene regulates many different aspects of photosynthesis in an age-dependent and species-specific manner.
Collapse
Affiliation(s)
- Johan Ceusters
- KU Leuven, Department of Microbial and Molecular Systems, Bioengineering Technology TC, Campus Geel, 2440 Geel, Belgium
- UHasselt, Centre for Environmental Sciences, Environmental Biology, Campus Diepenbeek, 3590 Diepenbeek, Belgium
| | | |
Collapse
|