151
|
Li H, Li A, Shen W, Ye N, Wang G, Zhang J. Global Survey of Alternative Splicing in Rice by Direct RNA Sequencing During Reproductive Development: Landscape and Genetic Regulation. RICE (NEW YORK, N.Y.) 2021; 14:75. [PMID: 34383135 PMCID: PMC8360254 DOI: 10.1186/s12284-021-00516-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 08/03/2021] [Indexed: 05/14/2023]
Abstract
Alternative splicing is a widespread phenomenon, which generates multiple isoforms of the gene product. Reproductive development is the key process for crop production. Although numerous forms of alternative splicing have been identified in model plants, large-scale study of alternative splicing dynamics during reproductive development in rice has not been conducted. Here, we investigated alternative splicing of reproductive development of young panicles (YP), unfertilized florets (UF) and fertilized florets (F) in rice using direct RNA sequencing, small RNA sequencing, and degradome sequencing. We identified a total of 35,317 alternative splicing (AS) events, among which 67.2% splicing events were identified as novel alternative splicing events. Intron retention (IR) was the most abundant alternative splicing subtype. Splicing factors that differentially expressed and alternatively spliced could result in global alternative splicing. Global analysis of miRNAs-targets prediction revealed that alternative spliced transcripts affected miRNAs' targets during development. Degradome sequencing detected only 6.8% of the differentially alternative splicing transcripts, suggesting a productive transcripts generation during development. In addition, alternative splicing isoforms of Co-like, a transcription factor, interacted with Casein kinase 1-like protein HD1 (CKI) examined in luciferase assay, which could modulate normal male-floral organs development and flowering time. These results reveal that alternative splicing is intensely associated with developmental stages, and a high complexity of gene regulation.
Collapse
Affiliation(s)
- Haoxuan Li
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Aixuan Li
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Shen
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Nenghui Ye
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Guanqun Wang
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong.
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong.
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
152
|
Vitoriano CB, Calixto CPG. Reading between the Lines: RNA-seq Data Mining Reveals the Alternative Message of the Rice Leaf Transcriptome in Response to Heat Stress. PLANTS 2021; 10:plants10081647. [PMID: 34451692 PMCID: PMC8400768 DOI: 10.3390/plants10081647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 11/21/2022]
Abstract
Rice (Oryza sativa L.) is a major food crop but heat stress affects its yield and grain quality. To identify mechanistic solutions to improve rice yield under rising temperatures, molecular responses of thermotolerance must be understood. Transcriptional and post-transcriptional controls are involved in a wide range of plant environmental responses. Alternative splicing (AS), in particular, is a widespread mechanism impacting the stress defence in plants but it has been completely overlooked in rice genome-wide heat stress studies. In this context, we carried out a robust data mining of publicly available RNA-seq datasets to investigate the extension of heat-induced AS in rice leaves. For this, datasets of interest were subjected to filtering and quality control, followed by accurate transcript-specific quantifications. Powerful differential gene expression (DE) and differential AS (DAS) identified 17,143 and 2162 heat response genes, respectively, many of which are novel. Detailed analysis of DAS genes coding for key regulators of gene expression suggests that AS helps shape transcriptome and proteome diversity in response to heat. The knowledge resulting from this study confirmed a widespread transcriptional and post-transcriptional response to heat stress in plants, and it provided novel candidates for rapidly advancing rice breeding in response to climate change.
Collapse
|
153
|
Alternative splicing in plant abiotic stress responses. Biochem Soc Trans 2021; 48:2117-2126. [PMID: 32869832 DOI: 10.1042/bst20200281] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
Modifications of the cellular proteome pool upon stress allow plants to tolerate environmental changes. Alternative splicing is the most significant mechanism responsible for the production of multiple protein isoforms from a single gene. The spliceosome, a large ribonucleoprotein complex, together with several associated proteins, controls this pre-mRNA processing, adding an additional level of regulation to gene expression. Deep sequencing of transcriptomes revealed that this co- or post-transcriptional mechanism is highly induced by abiotic stress, and concerns vast numbers of stress-related genes. Confirming the importance of splicing in plant stress adaptation, key players of stress signaling have been shown to encode alternative transcripts, whereas mutants lacking splicing factors or associated components show a modified sensitivity and defective responses to abiotic stress. Here, we examine recent literature on alternative splicing and splicing alterations in response to environmental stresses, focusing on its role in stress adaptation and analyzing the future perspectives and directions for research.
Collapse
|
154
|
Zhang C, Ren H, Yao X, Wang K, Chang J. Full-length transcriptome analysis of pecan ( Carya illinoinensis) kernels. G3 GENES|GENOMES|GENETICS 2021; 11:6288450. [PMID: 34849807 PMCID: PMC8496322 DOI: 10.1093/g3journal/jkab182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/18/2021] [Indexed: 11/12/2022]
Abstract
Abstract
Pecan is rich in bioactive components such as fatty acids (FAs) and flavonoids and is an important nut type worldwide. Therefore, the molecular mechanisms of phytochemical biosynthesis in pecan are a focus of research. Recently, a draft genome and several transcriptomes have been published. However, the full-length mRNA transcripts remain unclear, and the regulatory mechanisms behind the quality components biosynthesis and accumulation have not been fully investigated. In this study, single-molecule long-read sequencing technology was used to obtain full-length transcripts of pecan kernels. In total, 37,504 isoforms of 16,702 genes were mapped to the reference genome. The numbers of known isoforms, new isoforms, and novel isoforms were 9013 (24.03%), 26,080 (69.54%), and 2411 (6.51%), respectively. Over 80% of the transcripts (30,751, 81.99%) had functional annotations. A total of 15,465 alternative splicing (AS) events and 65,761 alternative polyadenylation events were detected; wherein, the retained intron was the predominant type (5652, 36.55%) of AS. Furthermore, 1894 long noncoding RNAs and 1643 transcription factors were predicted using bioinformatics methods. Finally, the structural genes associated with FA and flavonoid biosynthesis were characterized. A high frequency of AS accuracy (70.31%) was observed in FA synthesis-associated genes. This study provides a full-length transcriptome data set of pecan kernels, which will significantly enhance the understanding of the regulatory basis of phytochemical biosynthesis during pecan kernel maturation.
Collapse
Affiliation(s)
- Chengcai Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Huadong Ren
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xiaohua Yao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Kailiang Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Jun Chang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| |
Collapse
|
155
|
Gao P, Quilichini TD, Zhai C, Qin L, Nilsen KT, Li Q, Sharpe AG, Kochian LV, Zou J, Reddy AS, Wei Y, Pozniak C, Patterson N, Gillmor CS, Datla R, Xiang D. Alternative splicing dynamics and evolutionary divergence during embryogenesis in wheat species. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1624-1643. [PMID: 33706417 PMCID: PMC8384600 DOI: 10.1111/pbi.13579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 05/07/2023]
Abstract
Among polyploid species with complex genomic architecture, variations in the regulation of alternative splicing (AS) provide opportunities for transcriptional and proteomic plasticity and the potential for generating trait diversities. However, the evolution of AS and its influence on grain development in diploid grass and valuable polyploid wheat crops are poorly understood. To address this knowledge gap, we developed a pipeline for the analysis of alternatively spliced transcript isoforms, which takes the high sequence similarity among polyploid wheat subgenomes into account. Through analysis of synteny and detection of collinearity of homoeologous subgenomes, conserved and specific AS events across five wheat and grass species were identified. A global analysis of the regulation of AS in diploid grass and polyploid wheat grains revealed diversity in AS events not only between the endosperm, pericarp and embryo overdevelopment, but also between subgenomes. Analysis of AS in homoeologous triads of polyploid wheats revealed evolutionary divergence between gene-level and transcript-level regulation of embryogenesis. Evolutionary age analysis indicated that the generation of novel transcript isoforms has occurred in young genes at a more rapid rate than in ancient genes. These findings, together with the development of comprehensive AS resources for wheat and grass species, advance understanding of the evolution of regulatory features of AS during embryogenesis and grain development in wheat.
Collapse
Affiliation(s)
- Peng Gao
- Global Institute for Food SecurityUniversity of SaskatchewanSaskatoonSKCanada
| | - Teagen D. Quilichini
- Aquatic and Crop Resource DevelopmentNational Research Council CanadaSaskatoonSKCanada
| | - Chun Zhai
- Agriculture and Agri‐Food CanadaSaskatoon Research and Development CentreSaskatoonSKCanada
| | - Li Qin
- College of Art & ScienceUniversity of SaskatchewanSaskatoonSKCanada
| | - Kirby T. Nilsen
- Agriculture and Agri‐Food CanadaBrandon Research and Development CentreBrandonMBCanada
| | - Qiang Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Andrew G. Sharpe
- Global Institute for Food SecurityUniversity of SaskatchewanSaskatoonSKCanada
| | - Leon V. Kochian
- Global Institute for Food SecurityUniversity of SaskatchewanSaskatoonSKCanada
| | - Jitao Zou
- Aquatic and Crop Resource DevelopmentNational Research Council CanadaSaskatoonSKCanada
| | - Anireddy S.N. Reddy
- Department of Biology and Program in Cell and Molecular BiologyColorado State UniversityFort CollinsCOUSA
| | - Yangdou Wei
- College of Art & ScienceUniversity of SaskatchewanSaskatoonSKCanada
| | - Curtis Pozniak
- Crop Development CentreUniversity of SaskatchewanSaskatoonSKCanada
| | - Nii Patterson
- Aquatic and Crop Resource DevelopmentNational Research Council CanadaSaskatoonSKCanada
| | - C. Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)Unidad de Genómica AvanzadaCentro de Investigación y Estudios Avanzados del IPN (CINVESTAV‐IPN)IrapuatoGuanajuatoMexico
| | - Raju Datla
- Global Institute for Food SecurityUniversity of SaskatchewanSaskatoonSKCanada
| | - Daoquan Xiang
- Aquatic and Crop Resource DevelopmentNational Research Council CanadaSaskatoonSKCanada
| |
Collapse
|
156
|
Guo B, Dai Y, Chen L, Pan Z, Song L. Genome-wide analysis of the soybean root transcriptome reveals the impact of nitrate on alternative splicing. G3 (BETHESDA, MD.) 2021; 11:jkab162. [PMID: 33972998 PMCID: PMC8495941 DOI: 10.1093/g3journal/jkab162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/02/2021] [Indexed: 11/24/2022]
Abstract
In plants, nitrate acts not only as a signaling molecule that affects plant development but also as a nutrient. The development of plant roots, which directly absorb nutrients, is greatly affected by nitrate supply. Alternative gene splicing plays a crucial role in the plant stress response by increasing transcriptome diversity. The effects of nitrate supply on alternative splicing (AS), however, have not been investigated in soybean roots. We used high-quality high-throughput RNA-sequencing data to investigate genome-wide AS events in soybean roots in response to various levels of nitrate supply. In total, we identified 355 nitrate-responsive AS events between optimal and high nitrate levels (NH), 335 nitrate-responsive AS events between optimal and low nitrate levels (NL), and 588 nitrate-responsive AS events between low and high nitrate levels (NLH). RI and A3SS were the most common AS types; in particular, they accounted for 67% of all AS events under all conditions. This increased complex and diversity of AS events regulation might be associated with the soybean response to nitrate. Functional ontology enrichment analysis suggested that the differentially splicing genes were associated with several pathways, including spliceosome, base excision repair, mRNA surveillance pathway and so on. Finally, we validated several AS events using reverse transcription-polymerase chain reaction to confirm our RNA-seq results. In summary, we characterized the features and patterns of genome-wide AS in the soybean root exposed to different nitrate levels, and our results revealed that AS is an important mechanism of nitrate-response regulation in the soybean root.
Collapse
Affiliation(s)
- Binhui Guo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Basic Experimental Teaching Center of Life Science, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yi Dai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Lin Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhenzhi Pan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Li Song
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
157
|
HopA1 Effector from Pseudomonas syringae pv syringae Strain 61 Affects NMD Processes and Elicits Effector-Triggered Immunity. Int J Mol Sci 2021; 22:ijms22147440. [PMID: 34299060 PMCID: PMC8306789 DOI: 10.3390/ijms22147440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 01/25/2023] Open
Abstract
Pseudomonas syringae-secreted HopA1 effectors are important determinants in host range expansion and increased pathogenicity. Their recent acquisitions via horizontal gene transfer in several non-pathogenic Pseudomonas strains worldwide have caused alarming increase in their virulence capabilities. In Arabidopsis thaliana, RESISTANCE TO PSEUDOMONAS SYRINGAE 6 (RPS6) gene confers effector-triggered immunity (ETI) against HopA1pss derived from P. syringae pv. syringae strain 61. Surprisingly, a closely related HopA1pst from the tomato pathovar evades immune detection. These responsive differences in planta between the two HopA1s represents a unique system to study pathogen adaptation skills and host-jumps. However, molecular understanding of HopA1′s contribution to overall virulence remain undeciphered. Here, we show that immune-suppressive functions of HopA1pst are more potent than HopA1pss. In the resistance-compromised ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) null-mutant, transcriptomic changes associated with HopA1pss-elicited ETI are still induced and carry resemblance to PAMP-triggered immunity (PTI) signatures. Enrichment of HopA1pss interactome identifies proteins with regulatory roles in post-transcriptional and translational processes. With our demonstration here that both HopA1 suppress reporter-gene translations in vitro imply that the above effector-associations with plant target carry inhibitory consequences. Overall, with our results here we unravel possible virulence role(s) of HopA1 in suppressing PTI and provide newer insights into its detection in resistant plants.
Collapse
|
158
|
Jiang G, Zhang D, Li Z, Liang H, Deng R, Su X, Jiang Y, Duan X. Alternative splicing of MaMYB16L regulates starch degradation in banana fruit during ripening. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1341-1352. [PMID: 33656245 DOI: 10.1111/jipb.13088] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
The alternative splicing of select genes is an important mechanism to regulate responses to endogenous and environmental signals in plants. However, the role of alternative splicing in regulating fruit ripening remains unclear. Here, we discovered that MaMYB16L, an R1-type MYB transcription factor, undergoes alternative splicing and generates two transcripts, the full-length isoform MaMYB16L and a truncated form MaMYB16S, in banana fruit. During banana fruit ripening, the alternative splicing process intensifies with downregulated MaMYB16L and upregulated MaMYB16S. Moreover, MaMYB16L is a transcriptional repressor that directly binds with the promoters of many genes associated with starch degradation and MaDREB2, a positive ripening regulator, and represses their expression. In contrast, MaMBY16S lacks a DNA-binding domain but competitively combines and forms non-functional heterodimers with functional MaMYB16L. MaMYB16L-MaMYB16S heterodimers decrease the binding capacity and transrepression activity of MaMYB16L. The downregulation of MaMYB16L and the upregulation of MaMYB16S, that is, a decreased ratio of active to non-active isoforms, facilitates the activation of ripening-related genes and thereby promotes fruit ripening. Furthermore, the transient overexpression of MaMYB16S promotes banana fruit ripening, whereas the overexpression of MaMYB16L delays this process. Therefore, the alternative splicing of MaMYB16L might generate a self-controlled regulatory loop to regulate banana fruit ripening.
Collapse
Affiliation(s)
- Guoxiang Jiang
- South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Dandan Zhang
- South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zhiwei Li
- South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanzhi Liang
- South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rufang Deng
- South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xinguo Su
- Guangdong AIB Polytechnic, Guangzhou, 510507, China
| | - Yueming Jiang
- South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Economic Botany, Core Botanical Gardens, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xuewu Duan
- South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Economic Botany, Core Botanical Gardens, the Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
159
|
Huang B, Huang Z, Ma R, Ramakrishnan M, Chen J, Zhang Z, Yrjälä K. Genome-wide identification and expression analysis of LBD transcription factor genes in Moso bamboo (Phyllostachys edulis). BMC PLANT BIOLOGY 2021; 21:296. [PMID: 34182934 PMCID: PMC8240294 DOI: 10.1186/s12870-021-03078-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/26/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Moso bamboo, the fastest growing plant on earth, is an important source for income in large areas of Asia, mainly cultivated in China. Lateral organ boundaries domain (LBD) proteins, a family of transcription factors unique to plants, are involved in multiple transcriptional regulatory pathways and play important roles in lateral organ development, pathogen response, secondary growth, and hormone response. The LBD gene family has not previously been characterized in moso bamboo (Phyllostachys edulis). RESULTS In this study, we identified 55 members of the LBD gene family from moso bamboo and found that they were distributed non-uniformly across its 18 chromosomes. Phylogenetic analysis showed that the moso bamboo LBD genes could be divided into two classes. LBDs from the same class share relatively conserved gene structures and sequences encoding similar amino acids. A large number of hormone response-associated cis-regulatory elements were identified in the LBD upstream promoter sequences. Synteny analysis indicated that LBDs in the moso bamboo genome showed greater collinearity with those of O. sativa (rice) and Zea mays (maize) than with those of Arabidopsis and Capsicum annuum (pepper). Numerous segmental duplicates were found in the moso bamboo LBD gene family. Gene expression profiles in four tissues showed that the LBD genes had different spatial expression patterns. qRT-PCR assays with the Short Time-series Expression Miner (STEM) temporal expression analysis demonstrated that six genes (PeLBD20, PeLBD29, PeLBD46, PeLBD10, PeLBD38, and PeLBD06) were consistently up-regulated during the rapid growth and development of bamboo shoots. In addition, 248 candidate target genes that function in a variety of pathways were identified based on consensus LBD binding motifs. CONCLUSIONS In the current study, we identified 55 members of the moso bamboo transcription factor LBD and characterized for the first time. Based on the short-time sequence expression software and RNA-seq data, the PeLBD gene expression was analyzed. We also investigated the functional annotation of all PeLBDs, including PPI network, GO, and KEGG enrichment based on String database. These results provide a theoretical basis and candidate genes for studying the molecular breeding mechanism of rapid growth of moso bamboo.
Collapse
Affiliation(s)
- Bin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang Province, People's Republic of China
- Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High efficiency Utilization, Zhejiang A&F University, Zhejiang, China
| | - Zhinuo Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang Province, People's Republic of China
- Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High efficiency Utilization, Zhejiang A&F University, Zhejiang, China
| | - Ruifang Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang Province, People's Republic of China
- Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High efficiency Utilization, Zhejiang A&F University, Zhejiang, China
| | - Muthusamy Ramakrishnan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jialu Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang Province, People's Republic of China
- Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High efficiency Utilization, Zhejiang A&F University, Zhejiang, China
| | - Zhijun Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang Province, People's Republic of China.
- Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High efficiency Utilization, Zhejiang A&F University, Zhejiang, China.
| | - Kim Yrjälä
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang Province, People's Republic of China.
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
160
|
Zeng H, Wu H, Yan F, Yi K, Zhu Y. Molecular regulation of zinc deficiency responses in plants. JOURNAL OF PLANT PHYSIOLOGY 2021; 261:153419. [PMID: 33915366 DOI: 10.1016/j.jplph.2021.153419] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 05/27/2023]
Abstract
Zinc (Zn) is an essential micronutrient for plants and animals. Because of its low availability in arable soils worldwide, Zn deficiency is becoming a serious agricultural problem resulting in decreases of crop yield and nutritional quality. Plants have evolved multiple responses to adapt to low levels of soil Zn supply, involving biochemical and physiological changes to improve Zn acquisition and utilization, and defend against Zn deficiency stress. In this review, we summarize the physiological and biochemical adaptations of plants to Zn deficiency, the roles of transporters and metal-binding compounds in Zn homeostasis regulation, and the recent progresses in understanding the sophisticated regulatory mechanisms of Zn deficiency responses that have been made by molecular and genetic analyses, as well as diverse 'omics' studies. Zn deficiency responses are tightly controlled by multiple layers of regulation, such as transcriptional regulation that is mediated by transcription factors like F-group bZIP proteins, epigenetic regulation at the level of chromatin, and post-transcriptional regulation mediated by small RNAs and alternative splicing. The insights into the regulatory network underlying Zn deficiency responses and the perspective for further understandings of molecular regulation of Zn deficiency responses have been discussed. The understandings of the regulatory mechanisms will be important for improving Zn deficiency tolerance, Zn use efficiency, and Zn biofortification in plants.
Collapse
Affiliation(s)
- Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Haicheng Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Feng Yan
- Institute of Agronomy and Plant Breeding, Justus Liebig University of Giessen, Giessen, 35392, Germany
| | - Keke Yi
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yiyong Zhu
- Agricultural Resource and Environment Experiment Teaching Center, College of Resource and Environment Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
161
|
Wang Y, Hu Z, Ye N, Yin H. IsoSplitter: identification and characterization of alternative splicing sites without a reference genome. RNA (NEW YORK, N.Y.) 2021; 27:rna.077834.120. [PMID: 34021065 PMCID: PMC8284324 DOI: 10.1261/rna.077834.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Long-read transcriptome sequencing is designed to sequence full-length RNA molecules and advantageous for identifying alternative splice isoforms; however, in the absence of a reference genome, it is difficult to accurately locate splice sites, because of the diversity of patterns of alternative splicing (AS). Based on long-read transcriptome data we developed a versatile tool, IsoSplitter, to reverse-trace and validate AS gene "split-sites" with the following features: (1) IsoSplitter initially invokes a modified SIM4 program to find transcript split-sites; (2) each split-site is then quantified, to reveal transcript diversity, and putative isoforms are grouped into gene clusters; (3) an optional step for aligning short-reads is provided, to validate split-sites by identifying unique junction reads, and revealing and quantifying tissue-specific alternative splice isoforms. We tested IsoSplitter AS prediction using datasets from multiple model and non-model plant species, and showed that IsoSplitter pipeline is efficient to handle different transcriptomes with high accuracy. Furthermore, we evaluated the IsoSplitter pipeline compared with that of the splice junction identification tools, Program to Assemble Spliced Alignments (PASA-software needs a reference genome for AS identification) and AStrap, using data from the model plant Arabidopsis thaliana. We found that, IsoSplitter determined more than twice as many AS events than AStrap analysis; and 94.13% of the IsoSplitter predicted AS events were also identified by the PASA analysis. Starting from a simple sequence file, IsoSplitter is an assembly-free tool for identification and characterization of AS. IsoSplitter is developed and implemented in Python 3.5 using the Linux platform and is freely available at https://github.com/Hengfu-Yin/IsoSplitter.
Collapse
Affiliation(s)
- Yupeng Wang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, China
| | - Zhikang Hu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Ning Ye
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, China
| | - Hengfu Yin
- Research Institute of Subtropical Forestry, Chinese academy of forestry
| |
Collapse
|
162
|
Butt H, Bazin J, Alshareef S, Eid A, Benhamed M, Reddy ASN, Crespi M, Mahfouz MM. Overlapping roles of spliceosomal components SF3B1 and PHF5A in rice splicing regulation. Commun Biol 2021; 4:529. [PMID: 33953336 PMCID: PMC8100303 DOI: 10.1038/s42003-021-02051-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/26/2021] [Indexed: 01/02/2023] Open
Abstract
The SF3B complex, a multiprotein component of the U2 snRNP of the spliceosome, plays a crucial role in recognizing branch point sequence and facilitates spliceosome assembly and activation. Several chemicals that bind SF3B1 and PHF5A subunits of the SF3B complex inhibit splicing. We recently generated a splicing inhibitor-resistant SF3B1 mutant named SF3B1GEX1ARESISTANT 4 (SGR4) using CRISPR-mediated directed evolution, whereas splicing inhibitor-resistant mutant of PHF5A (Overexpression-PHF5A GEX1A Resistance, OGR) was generated by expressing an engineered version PHF5A-Y36C. Global analysis of splicing in wild type and these two mutants revealed the role of SF3B1 and PHF5A in splicing regulation. This analysis uncovered a set of genes whose intron retention is regulated by both proteins. Further analysis of these retained introns revealed that they are shorter, have a higher GC content, and contain shorter and weaker polypyrimidine tracts. Furthermore, splicing inhibition increased seedlings sensitivity to salt stress, consistent with emerging roles of splicing regulation in stress responses. In summary, we uncovered the functions of two members of the plant branch point recognition complex. The novel strategies described here should be broadly applicable in elucidating functions of splicing regulators, especially in studying the functions of redundant paralogs in plants. Butt et al. used CRISPR-mediated directed evolution to generate rice mutants for the spliceosome components SF3B1 and PHF5A. They demonstrate that these mutants have different levels of sensitivity to salt treatments and suggest that the strategies they employed can be used in the future to study functions of redundant paralogs in plants.
Collapse
Affiliation(s)
- Haroon Butt
- Laboratory for Genome Engineering and Synthetic Biology, King Abdullah, University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jeremie Bazin
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France
| | - Sahar Alshareef
- Laboratory for Genome Engineering and Synthetic Biology, King Abdullah, University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ayman Eid
- Laboratory for Genome Engineering and Synthetic Biology, King Abdullah, University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Moussa Benhamed
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Martin Crespi
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, King Abdullah, University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
163
|
Wang C, Wang T, Yin M, Eller F, Liu L, Brix H, Guo W. Transcriptome Analysis of Tetraploid and Octoploid Common Reed ( Phragmites australis). FRONTIERS IN PLANT SCIENCE 2021; 12:653183. [PMID: 34025698 PMCID: PMC8132968 DOI: 10.3389/fpls.2021.653183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Polyploidization in plants is thought to have occurred as coping mechanism with environmental stresses. Polyploidization-driven adaptation is often achieved through interplay of gene networks involved in differentially expressed genes, which triggers the plant to evolve special phenotypic traits for survival. Phragmites australis is a cosmopolitan species with highly variable phenotypic traits and high adaptation capacity to various habitats. The species' ploidy level varies from 3x to 12x, thus it is an ideal organism to investigate the molecular evolution of polyploidy and gene regulation mediated by different numbers of chromosome copies. In this study, we used high-throughput RNAseq data as a tool, to analyze the gene expression profiles in tetraploid and octoploid P. australis. The estimated divergence time between tetraploid and octoploid P. australis was dated to the border between Pliocene and Pleistocene. This study identified 439 up- and 956 down-regulated transcripts in tetraploids compared to octoploids. Gene ontology and pathway analysis revealed that tetraploids tended to express genes responsible for reproduction and seed germination to complete the reproduction cycle early, and expressed genes related to defense against UV-B light and fungi, whereas octoploids expressed mainly genes related to thermotolerance. Most differentially expressed genes were enriched in chaperones, folding catalysts and protein processing in endoplasmic reticulum pathways. Multiple biased isoform usage of the same gene was detected in differentially expressed genes, and the ones upregulated in octoploids were related to reduced DNA methylation. Our study provides new insights into the role of polyploidization on environmental responses and potential stress tolerance in grass species.
Collapse
Affiliation(s)
- Cui Wang
- Institute of Ecology and Biodiversity, Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, School of Life Sciences, Shandong University, Qingdao, China
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Tong Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Meiqi Yin
- Institute of Ecology and Biodiversity, Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, School of Life Sciences, Shandong University, Qingdao, China
| | | | - Lele Liu
- Institute of Ecology and Biodiversity, Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, School of Life Sciences, Shandong University, Qingdao, China
| | - Hans Brix
- Department of Biology, Aarhus University, Aarhus, Denmark
| | - Weihua Guo
- Institute of Ecology and Biodiversity, Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
164
|
Awasthi JP, Kusunoki K, Saha B, Kobayashi Y, Koyama H, Panda SK. Comparative RNA-Seq analysis of the root revealed transcriptional regulation system for aluminum tolerance in contrasting indica rice of North East India. PROTOPLASMA 2021; 258:517-528. [PMID: 33184696 DOI: 10.1007/s00709-020-01581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Expression pattern of aluminum (Al) tolerance genes is one of the major determinants of Al avoidance/tolerance within plant cultivars. We have performed transcriptome analysis of two contrasting (Al-tolerant, Disang; Al-sensitive, Joymati) cultivars of India's North Eastern region, an indica rice diversity hotspot, on exposure to excess Al3+ treatment in acidic condition. Co-expression analysis and SNPs enrichment analysis proposed the role of both trans-acting and cis-acting polymorphisms in Al signaling in the Al-tolerant cultivar. We proposed ten major genes, including arginine decarboxylase, phytase, and beta-glucosidase aggregating factor as candidates responsible for Al tolerance based on transcriptome analysis. Al3+ stress led to changes in the alternative splicing profile of the Al-tolerant cultivar. These studies demonstrated the transcriptional variations affiliated to Al avoidance/tolerance in contrasting indica rice of North East India and provided us with several candidate genes responsible for Al tolerance.
Collapse
Affiliation(s)
- Jay Prakash Awasthi
- Plant Molecular Biotechnology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | - Kazutaka Kusunoki
- Plant Cell Technology Laboratory, Faculty of Applied Biological Sciences, Gifu University, Gifu, 5011193, Japan
| | - Bedabrata Saha
- Plant Molecular Biotechnology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India
- School of Biological Sciences, National Institute of Science Education and Research, Jatni, Odisha, 752050, India
| | - Yuriko Kobayashi
- Plant Cell Technology Laboratory, Faculty of Applied Biological Sciences, Gifu University, Gifu, 5011193, Japan
| | - Hiroyuki Koyama
- Plant Cell Technology Laboratory, Faculty of Applied Biological Sciences, Gifu University, Gifu, 5011193, Japan
| | - Sanjib Kumar Panda
- Plant Molecular Biotechnology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India.
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India.
| |
Collapse
|
165
|
Ganie SA, Reddy ASN. Stress-Induced Changes in Alternative Splicing Landscape in Rice: Functional Significance of Splice Isoforms in Stress Tolerance. BIOLOGY 2021; 10:309. [PMID: 33917813 PMCID: PMC8068108 DOI: 10.3390/biology10040309] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022]
Abstract
Improvements in yield and quality of rice are crucial for global food security. However, global rice production is substantially hindered by various biotic and abiotic stresses. Making further improvements in rice yield is a major challenge to the rice research community, which can be accomplished through developing abiotic stress-resilient rice varieties and engineering durable agrochemical-independent pathogen resistance in high-yielding elite rice varieties. This, in turn, needs increased understanding of the mechanisms by which stresses affect rice growth and development. Alternative splicing (AS), a post-transcriptional gene regulatory mechanism, allows rapid changes in the transcriptome and can generate novel regulatory mechanisms to confer plasticity to plant growth and development. Mounting evidence indicates that AS has a prominent role in regulating rice growth and development under stress conditions. Several regulatory and structural genes and splicing factors of rice undergo different types of stress-induced AS events, and the functional significance of some of them in stress tolerance has been defined. Both rice and its pathogens use this complex regulatory mechanism to devise strategies against each other. This review covers the current understanding and evidence for the involvement of AS in biotic and abiotic stress-responsive genes, and its relevance to rice growth and development. Furthermore, we discuss implications of AS for the virulence of different rice pathogens and highlight the areas of further research and potential future avenues to develop climate-smart and disease-resistant rice varieties.
Collapse
Affiliation(s)
| | - Anireddy S. N. Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
166
|
Wang CC, Hsieh HY, Hsieh HL, Tu SL. The Physcomitrella patens chromatin adaptor PpMRG1 interacts with H3K36me3 and regulates light-responsive alternative splicing. PLANT PHYSIOLOGY 2021; 185:1229-1241. [PMID: 33793927 PMCID: PMC8133547 DOI: 10.1093/plphys/kiaa103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Plants perceive dynamic light conditions and optimize their growth and development accordingly by regulating gene expression at multiple levels. Alternative splicing (AS), a widespread mechanism in eukaryotes that post-transcriptionally generates two or more messenger RNAs (mRNAs) from the same pre-mRNA, is rapidly controlled by light. However, a detailed mechanism of light-regulated AS is still not clear. In this study, we demonstrate that histone 3 lysine 36 trimethylation (H3K36me3) rapidly and differentially responds to light at specific gene loci with light-regulated intron retention (IR) of their transcripts in the moss Physcomitrella patens. However, the level of H3K36me3 following exposure to light is inversely related to that of IR events. Physcomitrella patens MORF-related gene 1 (PpMRG1), a chromatin adaptor, bound with higher affinity to H3K36me3 in light conditions than in darkness and was differentially targeted to gene loci showing light-responsive IR. Transcriptome analysis indicated that PpMRG1 functions in the regulation of light-mediated AS. Furthermore, PpMRG1 was also involved in red light-mediated phototropic responses. Our results suggest that light regulates histone methylation, which leads to alterations of AS patterns. The chromatin adaptor PpMRG1 potentially participates in light-mediated AS, revealing that chromatin-coupled regulation of pre-mRNA splicing is an important aspect of the plant's response to environmental changes.
Collapse
Affiliation(s)
- Chien-Chang Wang
- Institute of Plant and Microbial biology, Academia Sinica, Taipei, Taiwan
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yu Hsieh
- Institute of Plant and Microbial biology, Academia Sinica, Taipei, Taiwan
| | - Hsu-Liang Hsieh
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shih-Long Tu
- Institute of Plant and Microbial biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
167
|
Carqueijeiro I, Koudounas K, Dugé de Bernonville T, Sepúlveda LJ, Mosquera A, Bomzan DP, Oudin A, Lanoue A, Besseau S, Lemos Cruz P, Kulagina N, Stander EA, Eymieux S, Burlaud-Gaillard J, Blanchard E, Clastre M, Atehortùa L, St-Pierre B, Giglioli-Guivarc’h N, Papon N, Nagegowda DA, O’Connor SE, Courdavault V. Alternative splicing creates a pseudo-strictosidine β-d-glucosidase modulating alkaloid synthesis in Catharanthus roseus. PLANT PHYSIOLOGY 2021; 185:836-856. [PMID: 33793899 PMCID: PMC8133614 DOI: 10.1093/plphys/kiaa075] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/24/2020] [Indexed: 05/08/2023]
Abstract
Deglycosylation is a key step in the activation of specialized metabolites involved in plant defense mechanisms. This reaction is notably catalyzed by β-glucosidases of the glycosyl hydrolase 1 (GH1) family such as strictosidine β-d-glucosidase (SGD) from Catharanthus roseus. SGD catalyzes the deglycosylation of strictosidine, forming a highly reactive aglycone involved in the synthesis of cytotoxic monoterpene indole alkaloids (MIAs) and in the crosslinking of aggressor proteins. By exploring C. roseus transcriptomic resources, we identified an alternative splicing event of the SGD gene leading to the formation of a shorter isoform of this enzyme (shSGD) that lacks the last 71-residues and whose transcript ratio with SGD ranges from 1.7% up to 42.8%, depending on organs and conditions. Whereas it completely lacks β-glucosidase activity, shSGD interacts with SGD and causes the disruption of SGD multimers. Such disorganization drastically inhibits SGD activity and impacts downstream MIA synthesis. In addition, shSGD disrupts the metabolic channeling of downstream biosynthetic steps by hampering the recruitment of tetrahydroalstonine synthase in cell nuclei. shSGD thus corresponds to a pseudo-enzyme acting as a regulator of MIA biosynthesis. These data shed light on a peculiar control mechanism of β-glucosidase multimerization, an organization common to many defensive GH1 members.
Collapse
Affiliation(s)
- Inês Carqueijeiro
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Konstantinos Koudounas
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | | | - Liuda Johana Sepúlveda
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
- Laboratorio de Biotecnología, Universidad de Antioquia, Sede de Investigación Universitaria, 50010 Medellin, Colombia
| | - Angela Mosquera
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
- Laboratorio de Biotecnología, Universidad de Antioquia, Sede de Investigación Universitaria, 50010 Medellin, Colombia
| | - Dikki Pedenla Bomzan
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru 560065, India
| | - Audrey Oudin
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Arnaud Lanoue
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Sébastien Besseau
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Pamela Lemos Cruz
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Natalja Kulagina
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Emily A Stander
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Sébastien Eymieux
- INSERM U1259, Plateforme IBiSA de Microscopie Electronique, Université de Tours, 37200 Tours, France
| | - Julien Burlaud-Gaillard
- INSERM U1259, Plateforme IBiSA de Microscopie Electronique, Université de Tours, 37200 Tours, France
| | - Emmanuelle Blanchard
- INSERM U1259, Plateforme IBiSA de Microscopie Electronique, Université de Tours, 37200 Tours, France
- Centre Hospitalier Régional de Tours, 37170 Tours, France
| | - Marc Clastre
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Lucia Atehortùa
- Laboratorio de Biotecnología, Universidad de Antioquia, Sede de Investigación Universitaria, 50010 Medellin, Colombia
| | - Benoit St-Pierre
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | | | - Nicolas Papon
- EA3142 “Groupe d'Etude des Interactions Hôte-Pathogène,” Université d’Angers, 49035 Angers, France
| | - Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru 560065, India
| | - Sarah E O’Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Vincent Courdavault
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
- Author for communication:
| |
Collapse
|
168
|
Lv B, Hu K, Tian T, Wei K, Zhang F, Jia Y, Tian H, Ding Z. The pre-mRNA splicing factor RDM16 regulates root stem cell maintenance in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:662-678. [PMID: 32790237 DOI: 10.1111/jipb.13006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Pre-mRNA (messenger RNA) splicing participates in the regulation of numerous biological processes in plants. For example, alternative splicing shapes transcriptomic responses to abiotic and biotic stress, and controls developmental programs. However, no study has revealed a role for splicing in maintaining the root stem cell niche. Here, a screen for defects in root growth in Arabidopsis thaliana identified an ethyl methane sulfonate mutant defective in pre-mRNA splicing (rdm16-4). The rdm16-4 mutant displays a short-root phenotype resulting from fewer cells in the root apical meristem. The PLETHORA1 (PLT1) and PLT2 transcription factor genes are important for root development and were alternatively spliced in rdm16-4 mutants, resulting in a disordered root stem cell niche and retarded root growth. The root cap of rdm16-4 contained reduced levels of cytokinins, which promote differentiation in the developing root. This reduction was associated with the alternative splicing of genes encoding cytokinin signaling factors, such as ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN5 and ARABIDOPSIS RESPONSE REGULATORS (ARR1, ARR2, and ARR11). Furthermore, expression of the full-length coding sequence of ARR1 or exogenous cytokinin application partially rescued the short-root phenotype of rdm16-4. This reveals that the RDM16-mediated alternative splicing of cytokinin signaling components contributes to root growth.
Collapse
Affiliation(s)
- Bingsheng Lv
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Kongqin Hu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Te Tian
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Kaijing Wei
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Feng Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yuebin Jia
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Huiyu Tian
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
169
|
Van de Peer Y, Ashman TL, Soltis PS, Soltis DE. Polyploidy: an evolutionary and ecological force in stressful times. THE PLANT CELL 2021; 33:11-26. [PMID: 33751096 PMCID: PMC8136868 DOI: 10.1093/plcell/koaa015] [Citation(s) in RCA: 319] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/07/2020] [Indexed: 05/10/2023]
Abstract
Polyploidy has been hypothesized to be both an evolutionary dead-end and a source for evolutionary innovation and species diversification. Although polyploid organisms, especially plants, abound, the apparent nonrandom long-term establishment of genome duplications suggests a link with environmental conditions. Whole-genome duplications seem to correlate with periods of extinction or global change, while polyploids often thrive in harsh or disturbed environments. Evidence is also accumulating that biotic interactions, for instance, with pathogens or mutualists, affect polyploids differently than nonpolyploids. Here, we review recent findings and insights on the effect of both abiotic and biotic stress on polyploids versus nonpolyploids and propose that stress response in general is an important and even determining factor in the establishment and success of polyploidy.
Collapse
Affiliation(s)
- Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB - UGent Center for Plant Systems Biology, B-9052 Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611
- Department of Biology, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
170
|
Combined Transcriptome Analysis Reveals the Ovule Abortion Regulatory Mechanisms in the Female Sterile Line of Pinus tabuliformis Carr. Int J Mol Sci 2021; 22:ijms22063138. [PMID: 33808669 PMCID: PMC8003466 DOI: 10.3390/ijms22063138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 11/17/2022] Open
Abstract
Ovule abortion is a common phenomenon in plants that has an impact on seed production. Previous studies of ovule and female gametophyte (FG) development have mainly focused on angiosperms, especially in Arabidopsis thaliana. However, because it is difficult to acquire information about ovule development in gymnosperms, this remains unclear. Here, we investigated the transcriptomic data of natural ovule abortion mutants (female sterile line, STE) and the wild type (female fertile line, FER) of Pinus tabuliformis Carr. to evaluate the mechanism of ovule abortion during the process of free nuclear mitosis (FNM). Using single-molecule real-time (SMRT) sequencing and next-generation sequencing (NGS), 18 cDNA libraries via Illumina and two normalized libraries via PacBio, with a total of almost 400,000 reads, were obtained. Our analysis showed that the numbers of isoforms and alternative splicing (AS) patterns were significantly variable between FER and STE. The functional annotation results demonstrate that genes involved in the auxin response, energy metabolism, signal transduction, cell division, and stress response were differentially expressed in different lines. In particular, AUX/IAA, ARF2, SUS, and CYCB had significantly lower expression in STE, showing that auxin might be insufficient in STE, thus hindering nuclear division and influencing metabolism. Apoptosis in STE might also have affected the expression levels of these genes. To confirm the transcriptomic analysis results, nine pairs were confirmed by quantitative real-time PCR. Taken together, these results provide new insights into ovule abortion in gymnosperms and further reveal the regulatory mechanisms of ovule development.
Collapse
|
171
|
Mejias J, Bazin J, Truong NM, Chen Y, Marteu N, Bouteiller N, Sawa S, Crespi MD, Vaucheret H, Abad P, Favery B, Quentin M. The root-knot nematode effector MiEFF18 interacts with the plant core spliceosomal protein SmD1 required for giant cell formation. THE NEW PHYTOLOGIST 2021; 229:3408-3423. [PMID: 33206370 DOI: 10.1111/nph.17089] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/12/2020] [Indexed: 05/11/2023]
Abstract
The root-knot nematode Meloidogyne incognita secretes specific effectors (MiEFF) and induces the redifferentiation of plant root cells into enlarged multinucleate feeding 'giant cells' essential for nematode development. Immunolocalizations revealed the presence of the MiEFF18 protein in the salivary glands of M. incognita juveniles. In planta, MiEFF18 localizes to the nuclei of giant cells demonstrating its secretion during plant-nematode interactions. A yeast two-hybrid approach identified the nuclear ribonucleoprotein SmD1 as a MiEFF18 partner in tomato and Arabidopsis. SmD1 is an essential component of the spliceosome, a complex involved in pre-mRNA splicing and alternative splicing. RNA-seq analyses of Arabidopsis roots ectopically expressing MiEFF18 or partially impaired in SmD1 function (smd1b mutant) revealed the contribution of the effector and its target to alternative splicing and proteome diversity. The comparison with Arabidopsis galls data showed that MiEFF18 modifies the expression of genes important for giant cell ontogenesis, indicating that MiEFF18 modulates SmD1 functions to facilitate giant cell formation. Finally, Arabidopsis smd1b mutants exhibited less susceptibility to M. incognita infection, and the giant cells formed on these mutants displayed developmental defects, suggesting that SmD1 plays an important role in the formation of giant cells and is required for successful nematode infection.
Collapse
Affiliation(s)
- Joffrey Mejias
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
| | - Jérémie Bazin
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Universités Paris Saclay - Evry, Université de Paris, Gif sur Yvette, 91192, France
| | - Nhat-My Truong
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-11 8555, Japan
| | - Yongpan Chen
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| | - Nathalie Marteu
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
| | - Nathalie Bouteiller
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-11 8555, Japan
| | - Martin D Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Universités Paris Saclay - Evry, Université de Paris, Gif sur Yvette, 91192, France
| | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Pierre Abad
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
| | - Bruno Favery
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
| | - Michaël Quentin
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, F-06903, France
| |
Collapse
|
172
|
Cabrera-Quio LE, Schleiffer A, Mechtler K, Pauli A. Zebrafish Ski7 tunes RNA levels during the oocyte-to-embryo transition. PLoS Genet 2021; 17:e1009390. [PMID: 33600438 PMCID: PMC7924785 DOI: 10.1371/journal.pgen.1009390] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/02/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Post-transcriptional regulation of gene expression is crucial during the oocyte-to-embryo transition, a highly dynamic process characterized by the absence of nuclear transcription. Thus, changes to the RNA content are solely dependent on RNA degradation. Although several mechanisms that promote RNA decay during embryogenesis have been identified, it remains unclear which machineries contribute to remodeling the maternal transcriptome. Here, we focused on the degradation factor Ski7 in zebrafish. Homozygous ski7 mutant fish had higher proportions of both poor quality eggs and eggs that were unable to develop beyond the one-cell stage. Consistent with the idea that Ski7 participates in remodeling the maternal RNA content, transcriptome profiling identified hundreds of misregulated mRNAs in the absence of Ski7. Furthermore, upregulated genes were generally lowly expressed in wild type, suggesting that Ski7 maintains low transcript levels for this subset of genes. Finally, GO enrichment and proteomic analyses of misregulated factors implicated Ski7 in the regulation of redox processes. This was confirmed experimentally by an increased resistance of ski7 mutant embryos to reductive stress. Our results provide first insights into the physiological role of vertebrate Ski7 as a post-transcriptional regulator during the oocyte-to-embryo transition.
Collapse
Affiliation(s)
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Karl Mechtler
- Institute of Molecular Biotechnology, IMBA, Campus Vienna-Biocenter (VBC), Vienna, Austria
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
173
|
Neeraja CN, Barbadikar KM, Krishnakanth T, Bej S, Rao IS, Srikanth B, Rao DS, Subrahmanyam D, Rao PR, Voleti SR. Down regulation of transcripts involved in selective metabolic pathways as an acclimation strategy in nitrogen use efficient genotypes of rice under low nitrogen. 3 Biotech 2021; 11:80. [PMID: 33505835 DOI: 10.1007/s13205-020-02631-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/28/2020] [Indexed: 11/26/2022] Open
Abstract
To understand the molecular mechanism of nitrogen use efficiency (NUE) in rice, two nitrogen (N) use efficient genotypes and two non-efficient genotypes were characterized using transcriptome analyses. The four genotypes were evaluated for 3 years under low and recommended N field conditions for 12 traits/parameters of yield, straw, nitrogen content along with NUE indices and 2 promising donors for rice NUE were identified. Using the transcriptome data generated from GS FLX 454 Roche and Illumina HiSeq 2000 of two efficient and two non-efficient genotypes grown under field conditions of low N and recommended N and their de novo assembly, differentially expressed transcripts and pathways during the panicle development were identified. Down regulation was observed in 30% of metabolic pathways in efficient genotypes and is being proposed as an acclimation strategy to low N. Ten sub metabolic pathways significantly enriched with additional transcripts either in the direction of the common expression or contra-regulated to the common expression were found to be critical for NUE in rice. Among the up-regulated transcripts in efficient genotypes, a hypothetical protein OsI_17904 with 2 alternative forms suggested the role of alternative splicing in NUE of rice and a potassium channel SKOR transcript (LOC_Os06g14030) has shown a positive correlation (0.62) with single plant yield under low N in a set of 16 rice genotypes. From the present study, we propose that the efficient genotypes appear to down regulate several not so critical metabolic pathways and divert the thus conserved energy to produce seed/yield under long-term N starvation. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02631-5.
Collapse
Affiliation(s)
- C N Neeraja
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - Kalyani M Barbadikar
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - T Krishnakanth
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - Sonali Bej
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - I Subhakara Rao
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - B Srikanth
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - D Sanjeeva Rao
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - D Subrahmanyam
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - P Raghuveer Rao
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - S R Voleti
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| |
Collapse
|
174
|
Martín G, Márquez Y, Mantica F, Duque P, Irimia M. Alternative splicing landscapes in Arabidopsis thaliana across tissues and stress conditions highlight major functional differences with animals. Genome Biol 2021; 22:35. [PMID: 33446251 PMCID: PMC7807721 DOI: 10.1186/s13059-020-02258-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Alternative splicing (AS) is a widespread regulatory mechanism in multicellular organisms. Numerous transcriptomic and single-gene studies in plants have investigated AS in response to specific conditions, especially environmental stress, unveiling substantial amounts of intron retention that modulate gene expression. However, a comprehensive study contrasting stress-response and tissue-specific AS patterns and directly comparing them with those of animal models is still missing. RESULTS We generate a massive resource for Arabidopsis thaliana, PastDB, comprising AS and gene expression quantifications across tissues, development and environmental conditions, including abiotic and biotic stresses. Harmonized analysis of these datasets reveals that A. thaliana shows high levels of AS, similar to fruitflies, and that, compared to animals, disproportionately uses AS for stress responses. We identify core sets of genes regulated specifically by either AS or transcription upon stresses or among tissues, a regulatory specialization that is tightly mirrored by the genomic features of these genes. Unexpectedly, non-intron retention events, including exon skipping, are overrepresented across regulated AS sets in A. thaliana, being also largely involved in modulating gene expression through NMD and uORF inclusion. CONCLUSIONS Non-intron retention events have likely been functionally underrated in plants. AS constitutes a distinct regulatory layer controlling gene expression upon internal and external stimuli whose target genes and master regulators are hardwired at the genomic level to specifically undergo post-transcriptional regulation. Given the higher relevance of AS in the response to different stresses when compared to animals, this molecular hardwiring is likely required for a proper environmental response in A. thaliana.
Collapse
Affiliation(s)
- Guiomar Martín
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal.
| | - Yamile Márquez
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, Barcelona, 08003, Spain
| | - Federica Mantica
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, Barcelona, 08003, Spain
| | - Paula Duque
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, Barcelona, 08003, Spain. .,Universitat Pompeu Fabra, Dr. Aiguader, 88, Barcelona, 08003, Spain. .,ICREA, Passeig de Lluís Companys, 23, 08010, Barcelona, Spain.
| |
Collapse
|
175
|
Wang H, Liu S, Dai X, Yang Y, Luo Y, Gao Y, Liu X, Wei W, Wang H, Xu X, Reddy ASN, Jaiswal P, Li W, Liu B, Gu L. PSDX: A Comprehensive Multi-Omics Association Database of Populus trichocarpa With a Focus on the Secondary Growth in Response to Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:655565. [PMID: 34122478 PMCID: PMC8195342 DOI: 10.3389/fpls.2021.655565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/26/2021] [Indexed: 05/16/2023]
Abstract
Populus trichocarpa (P. trichocarpa) is a model tree for the investigation of wood formation. In recent years, researchers have generated a large number of high-throughput sequencing data in P. trichocarpa. However, no comprehensive database that provides multi-omics associations for the investigation of secondary growth in response to diverse stresses has been reported. Therefore, we developed a public repository that presents comprehensive measurements of gene expression and post-transcriptional regulation by integrating 144 RNA-Seq, 33 ChIP-seq, and six single-molecule real-time (SMRT) isoform sequencing (Iso-seq) libraries prepared from tissues subjected to different stresses. All the samples from different studies were analyzed to obtain gene expression, co-expression network, and differentially expressed genes (DEG) using unified parameters, which allowed comparison of results from different studies and treatments. In addition to gene expression, we also identified and deposited pre-processed data about alternative splicing (AS), alternative polyadenylation (APA) and alternative transcription initiation (ATI). The post-transcriptional regulation, differential expression, and co-expression network datasets were integrated into a new P. trichocarpa Stem Differentiating Xylem (PSDX) database (http://forestry.fafu.edu.cn/db/SDX), which further highlights gene families of RNA-binding proteins and stress-related genes. The PSDX also provides tools for data query, visualization, a genome browser, and the BLAST option for sequence-based query. Much of the data is also available for bulk download. The availability of PSDX contributes to the research related to the secondary growth in response to stresses in P. trichocarpa, which will provide new insights that can be useful for the improvement of stress tolerance in woody plants.
Collapse
Affiliation(s)
- Huiyuan Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sheng Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiufang Dai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yongkang Yang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yunjun Luo
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yubang Gao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuqing Liu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wentao Wei
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huihui Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xi Xu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Anireddy S. N. Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Bo Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Bo Liu,
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Lianfeng Gu,
| |
Collapse
|
176
|
Rosenkranz RRE, Bachiri S, Vraggalas S, Keller M, Simm S, Schleiff E, Fragkostefanakis S. Identification and Regulation of Tomato Serine/Arginine-Rich Proteins Under High Temperatures. FRONTIERS IN PLANT SCIENCE 2021; 12:645689. [PMID: 33854522 PMCID: PMC8039515 DOI: 10.3389/fpls.2021.645689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/03/2021] [Indexed: 05/15/2023]
Abstract
Alternative splicing is an important mechanism for the regulation of gene expression in eukaryotes during development, cell differentiation or stress response. Alterations in the splicing profiles of genes under high temperatures that cause heat stress (HS) can impact the maintenance of cellular homeostasis and thermotolerance. Consequently, information on factors involved in HS-sensitive alternative splicing is required to formulate the principles of HS response. Serine/arginine-rich (SR) proteins have a central role in alternative splicing. We aimed for the identification and characterization of SR-coding genes in tomato (Solanum lycopersicum), a plant extensively used in HS studies. We identified 17 canonical SR and two SR-like genes. Several SR-coding genes show differential expression and altered splicing profiles in different organs as well as in response to HS. The transcriptional induction of five SR and one SR-like genes is partially dependent on the master regulator of HS response, HS transcription factor HsfA1a. Cis-elements in the promoters of these SR genes were predicted, which can be putatively recognized by HS-induced transcription factors. Further, transiently expressed SRs show reduced or steady-state protein levels in response to HS. Thus, the levels of SRs under HS are regulated by changes in transcription, alternative splicing and protein stability. We propose that the accumulation or reduction of SRs under HS can impact temperature-sensitive alternative splicing.
Collapse
Affiliation(s)
- Remus R. E. Rosenkranz
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | - Samia Bachiri
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | - Stavros Vraggalas
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | - Mario Keller
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany
- Frankfurt Institute of Advanced Studies, Frankfurt am Main, Germany
- *Correspondence: Enrico Schleiff
| | - Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
- Sotirios Fragkostefanakis
| |
Collapse
|
177
|
Yu K, Feng M, Yang G, Sun L, Qin Z, Cao J, Wen J, Li H, Zhou Y, Chen X, Peng H, Yao Y, Hu Z, Guo W, Sun Q, Ni Z, Adams K, Xin M. Changes in Alternative Splicing in Response to Domestication and Polyploidization in Wheat. PLANT PHYSIOLOGY 2020; 184:1955-1968. [PMID: 33051269 PMCID: PMC7723095 DOI: 10.1104/pp.20.00773] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/04/2020] [Indexed: 05/23/2023]
Abstract
Alternative splicing (AS) occurs extensively in eukaryotes as an important mechanism for regulating transcriptome complexity and proteome diversity, but variation in the AS landscape in response to domestication and polyploidization in crops is unclear. Hexaploid wheat (AABBDD, Triticum aestivum) has undergone two separate allopolyploidization events, providing an ideal model for studying AS changes during domestication and polyploidization events. In this study, we performed high-throughput transcriptome sequencing of roots and leaves from wheat species with varied ploidies, including wild diploids (AbAb, Triticum boeoticum) and tetraploids (AABB, Triticum dicoccoides), domesticated diploids (AmAm, Triticum monococcum) and tetraploids (AABB, Triticum dicoccum), hexaploid wheat (AABBDD, T aestivum), as well as newly synthesized hexaploids together with their parents. Approximately 22.1% of genes exhibited AS, with the major AS type being intron retention. The number of AS events decreased after domestication in both diploids and tetraploids. Moreover, the frequency of AS occurrence tended to decrease after polyploidization, consistent with the functional sharing model that proposes AS and duplicated genes are complementary in regulating transcriptome plasticity in polyploid crops. In addition, the subgenomes exhibited biased AS responses to polyploidization, and ∼87.1% of homeologs showed AS partitioning in hexaploid wheat. Interestingly, substitution of the D-subgenome modified 42.8% of AS patterns of the A- and B-subgenomes, indicating subgenome interplay reprograms AS profiles at a genome-wide level, although the causal-consequence relationship requires further study. Conclusively, our study shows that AS variation occurs extensively after polyploidization and domestication in wheat species.
Collapse
Affiliation(s)
- Kuohai Yu
- Key Laboratory of Crop Heterosis Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Man Feng
- Key Laboratory of Crop Heterosis Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Guanghui Yang
- Key Laboratory of Crop Heterosis Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Lv Sun
- Key Laboratory of Crop Heterosis Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhen Qin
- Key Laboratory of Crop Heterosis Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jie Cao
- Key Laboratory of Crop Heterosis Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jingjing Wen
- Key Laboratory of Crop Heterosis Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Haoran Li
- Key Laboratory of Crop Heterosis Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yan Zhou
- Key Laboratory of Crop Heterosis Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xiangping Chen
- Key Laboratory of Crop Heterosis Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- Key Laboratory of Crop Heterosis Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- Key Laboratory of Crop Heterosis Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- Key Laboratory of Crop Heterosis Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weilong Guo
- Key Laboratory of Crop Heterosis Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- Key Laboratory of Crop Heterosis Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- Key Laboratory of Crop Heterosis Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Keith Adams
- Botany Department, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Mingming Xin
- Key Laboratory of Crop Heterosis Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
178
|
Feng W, Zhao P, Zheng X, Hu Z, Liu J. Profiling Novel Alternative Splicing within Multiple Tissues Provides Useful Insights into Porcine Genome Annotation. Genes (Basel) 2020; 11:genes11121405. [PMID: 33255998 PMCID: PMC7760890 DOI: 10.3390/genes11121405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022] Open
Abstract
Alternative splicing (AS) is a process during gene expression that results in a single gene coding for different protein variants. AS contributes to transcriptome and proteome diversity. In order to characterize AS in pigs, genome-wide transcripts and AS events were detected using RNA sequencing of 34 different tissues in Duroc pigs. In total, 138,403 AS events and 29,270 expressed genes were identified. An alternative donor site was the most common AS form and accounted for 44% of the total AS events. The percentage of the other three AS forms (exon skipping, alternative acceptor site, and intron retention) was approximately 19%. The results showed that the most common AS events involving alternative donor sites could produce different transcripts or proteins that affect the biological processes. The expression of genes with tissue-specific AS events showed that gene functions were consistent with tissue functions. AS increased proteome diversity and resulted in novel proteins that gained or lost important functional domains. In summary, these findings extend porcine genome annotation and highlight roles that AS could play in determining tissue identity.
Collapse
|
179
|
CircPlant: An Integrated Tool for circRNA Detection and Functional Prediction in Plants. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:352-358. [PMID: 33157302 PMCID: PMC7801249 DOI: 10.1016/j.gpb.2020.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 01/26/2019] [Accepted: 02/15/2019] [Indexed: 12/22/2022]
Abstract
The recent discovery of circular RNAs (circRNAs) and characterization of their functional roles have opened a new avenue for understanding the biology of genomes. circRNAs have been implicated to play important roles in a variety of biological processes, but their precise functions remain largely elusive. Currently, a few approaches are available for novel circRNA prediction, but almost all these methods are intended for animal genomes. Considering that the major differences between the organization of plant and mammal genomes cannot be neglected, a plant-specific method is needed to enhance the validity of plant circRNA identification. In this study, we present CircPlant, an integrated tool for the exploration of plant circRNAs, potentially acting as competing endogenous RNAs (ceRNAs), and their potential functions. With the incorporation of several unique plant-specific criteria, CircPlant can accurately detect plant circRNAs from high-throughput RNA-seq data. Based on comparison tests on simulated and real RNA-seq datasets from Arabidopsis thaliana and Oryza sativa, we show that CircPlant outperforms all evaluated competing tools in both accuracy and efficiency. CircPlant is freely available at http://bis.zju.edu.cn/circplant.
Collapse
|
180
|
Neumann A, Meinke S, Goldammer G, Strauch M, Schubert D, Timmermann B, Heyd F, Preußner M. Alternative splicing coupled mRNA decay shapes the temperature-dependent transcriptome. EMBO Rep 2020; 21:e51369. [PMID: 33140569 PMCID: PMC7726792 DOI: 10.15252/embr.202051369] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 11/09/2022] Open
Abstract
Mammalian body temperature oscillates with the time of the day and is altered in diverse pathological conditions. We recently identified a body temperature‐sensitive thermometer‐like kinase, which alters SR protein phosphorylation and thereby globally controls alternative splicing (AS). AS can generate unproductive variants which are recognized and degraded by diverse mRNA decay pathways—including nonsense‐mediated decay (NMD). Here we show extensive coupling of body temperature‐controlled AS to mRNA decay, leading to global control of temperature‐dependent gene expression (GE). Temperature‐controlled, decay‐inducing splicing events are evolutionarily conserved and pervasively found within RNA‐binding proteins, including most SR proteins. AS‐coupled poison exon inclusion is essential for rhythmic GE of SR proteins and has a global role in establishing temperature‐dependent rhythmic GE profiles, both in mammals under circadian body temperature cycles and in plants in response to ambient temperature changes. Together, these data identify body temperature‐driven AS‐coupled mRNA decay as an evolutionary ancient, core clock‐independent mechanism to generate rhythmic GE.
Collapse
Affiliation(s)
- Alexander Neumann
- Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Freie Universität Berlin, Berlin, Germany.,Omiqa Bioinformatics, Berlin, Germany
| | - Stefan Meinke
- Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Gesine Goldammer
- Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Miriam Strauch
- Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Daniel Schubert
- Epigenetics of Plants, Freie Universität Berlin, Berlin, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Florian Heyd
- Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Marco Preußner
- Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
181
|
Yang Y, Feng D. Genome-wide identification of the aspartic protease gene family and their response under powdery mildew stress in wheat. Mol Biol Rep 2020; 47:8949-8961. [PMID: 33136247 DOI: 10.1007/s11033-020-05948-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/23/2020] [Indexed: 11/30/2022]
Abstract
Aspartic proteases (APs) are one of the four main protease super families. In plants, they are involved in many biological processes, such as biotic and abiotic stress resistance, protein processing and degradation, senescence, and programmed cell death. By performing a database (TGACv1) search and domain prediction, we identified 263 wheat AP (TaAP) proteins and observed 38 TaAP genes exhibiting alternative splicing. Moreover, by constructing a phylogenetic tree, we found that the TaAP proteins can be divided into three families and have a certain close evolutionary relationship to Arabidopsis thaliana and rice AP proteins. Transcriptome analysis showed that 29 genes in the TaAP family were up-regulated after being induced by powdery mildew. The expression of TaAP224 showed the most significant difference in transcriptome and qRT-PCR analyses. Subsequently, the promoters of these 29 genes were analysed, and we found that they contained multiple disease resistance and hormone elements, such as WRKY71OS, a common disease resistance element that is also involved in the GA signalling pathway and inhibits starch hydrolysis. The comprehensive annotation and expression profiling performed in this study increased our understanding of the TaAP family genes in wheat growth and development, and the results can be used as a basis for further study of candidate TaAP genes involved in powdery mildew resistance mechanisms.
Collapse
Affiliation(s)
- Yanlin Yang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Deshun Feng
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
182
|
Zhao X, Li C, Zhang H, Yan C, Sun Q, Wang J, Yuan C, Shan S. Alternative splicing profiling provides insights into the molecular mechanisms of peanut peg development. BMC PLANT BIOLOGY 2020; 20:488. [PMID: 33096983 PMCID: PMC7585205 DOI: 10.1186/s12870-020-02702-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/14/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND The cultivated peanut (Arachis hypogaea) is one of the most important oilseed crops worldwide, and the generation of pegs and formation of subterranean pods are essential processes in peanut reproductive development. However, little information has been reported about alternative splicing (AS) in peanut peg formation and development. RESULTS Herein, we presented a comprehensive full-length (FL) transcriptome profiling of AS isoforms during peanut peg and early pod development. We identified 1448, 1102, 832, and 902 specific spliced transcripts in aerial pegs, subterranean pegs, subterranean unswollen pegs, and early swelling pods, respectively. A total of 184 spliced transcripts related to gravity stimulation, light and mechanical response, hormone mediated signaling pathways, and calcium-dependent proteins were identified as possibly involved in peanut peg development. For aerial pegs, spliced transcripts we got were mainly involved in gravity stimulation and cell wall morphogenetic processes. The genes undergoing AS in subterranean peg were possibly involved in gravity stimulation, cell wall morphogenetic processes, and abiotic response. For subterranean unswollen pegs, spliced transcripts were predominantly related to the embryo development and root formation. The genes undergoing splice in early swelling pods were mainly related to ovule development, root hair cells enlargement, root apex division, and seed germination. CONCLUSION This study provides evidence that multiple genes are related to gravity stimulation, light and mechanical response, hormone mediated signaling pathways, and calcium-dependent proteins undergoing AS express development-specific spliced isoforms or exhibit an obvious isoform switch during the peanut peg development. AS isoforms in subterranean pegs and pods provides valuable sources to further understand post-transcriptional regulatory mechanisms of AS in the generation of pegs and formation of subterranean pods.
Collapse
Affiliation(s)
- Xiaobo Zhao
- Shandong Peanut Research Institute, Qingdao, China
| | - Chunjuan Li
- Shandong Peanut Research Institute, Qingdao, China
| | - Hao Zhang
- Shandong Peanut Research Institute, Qingdao, China
| | - Caixia Yan
- Shandong Peanut Research Institute, Qingdao, China
| | - Quanxi Sun
- Shandong Peanut Research Institute, Qingdao, China
| | - Juan Wang
- Shandong Peanut Research Institute, Qingdao, China
| | - Cuiling Yuan
- Shandong Peanut Research Institute, Qingdao, China
| | - Shihua Shan
- Shandong Peanut Research Institute, Qingdao, China
| |
Collapse
|
183
|
Temperature-Dependent Alternative Splicing of Precursor mRNAs and Its Biological Significance: A Review Focused on Post-Transcriptional Regulation of a Cold Shock Protein Gene in Hibernating Mammals. Int J Mol Sci 2020; 21:ijms21207599. [PMID: 33066638 PMCID: PMC7590145 DOI: 10.3390/ijms21207599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 01/18/2023] Open
Abstract
Multiple mRNA isoforms are often generated during processing such as alternative splicing of precursor mRNAs (pre-mRNA), resulting in a diversity of generated proteins. Alternative splicing is an essential mechanism for the functional complexity of eukaryotes. Temperature, which is involved in all life activities at various levels, is one of regulatory factors for controlling patterns of alternative splicing. Temperature-dependent alternative splicing is associated with various phenotypes such as flowering and circadian clock in plants and sex determination in poikilothermic animals. In some specific situations, temperature-dependent alternative splicing can be evoked even in homothermal animals. For example, the splicing pattern of mRNA for a cold shock protein, cold-inducible RNA-binding protein (CIRP or CIRBP), is changed in response to a marked drop in body temperature during hibernation of hamsters. In this review, we describe the current knowledge about mechanisms and functions of temperature-dependent alternative splicing in plants and animals. Then we discuss the physiological significance of hypothermia-induced alternative splicing of a cold shock protein gene in hibernating and non-hibernating animals.
Collapse
|
184
|
Beedessee G, Kubota T, Arimoto A, Nishitsuji K, Waller RF, Hisata K, Yamasaki S, Satoh N, Kobayashi J, Shoguchi E. Integrated omics unveil the secondary metabolic landscape of a basal dinoflagellate. BMC Biol 2020; 18:139. [PMID: 33050904 PMCID: PMC7557087 DOI: 10.1186/s12915-020-00873-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/18/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Some dinoflagellates cause harmful algal blooms, releasing toxic secondary metabolites, to the detriment of marine ecosystems and human health. Our understanding of dinoflagellate toxin biosynthesis has been hampered by their unusually large genomes. To overcome this challenge, for the first time, we sequenced the genome, microRNAs, and mRNA isoforms of a basal dinoflagellate, Amphidinium gibbosum, and employed an integrated omics approach to understand its secondary metabolite biosynthesis. RESULTS We assembled the ~ 6.4-Gb A. gibbosum genome, and by probing decoded dinoflagellate genomes and transcriptomes, we identified the non-ribosomal peptide synthetase adenylation domain as essential for generation of specialized metabolites. Upon starving the cells of phosphate and nitrogen, we observed pronounced shifts in metabolite biosynthesis, suggestive of post-transcriptional regulation by microRNAs. Using Iso-Seq and RNA-seq data, we found that alternative splicing and polycistronic expression generate different transcripts for secondary metabolism. CONCLUSIONS Our genomic findings suggest intricate integration of various metabolic enzymes that function iteratively to synthesize metabolites, providing mechanistic insights into how dinoflagellates synthesize secondary metabolites, depending upon nutrient availability. This study provides insights into toxin production associated with dinoflagellate blooms. The genome of this basal dinoflagellate provides important clues about dinoflagellate evolution and overcomes the large genome size, which has been a challenge previously.
Collapse
Affiliation(s)
- Girish Beedessee
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.
- Present address: Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
| | - Takaaki Kubota
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Asuka Arimoto
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
- Marine Biological Laboratory, Graduate School of Integrated Sciences for Life, Hiroshima University, Onomichi, Hiroshima, 722-0073, Japan
| | - Koki Nishitsuji
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Shinichi Yamasaki
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Jun'ichi Kobayashi
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| |
Collapse
|
185
|
Huang J, Lu X, Wu H, Xie Y, Peng Q, Gu L, Wu J, Wang Y, Reddy ASN, Dong S. Phytophthora Effectors Modulate Genome-wide Alternative Splicing of Host mRNAs to Reprogram Plant Immunity. MOLECULAR PLANT 2020; 13:1470-1484. [PMID: 32693165 DOI: 10.1016/j.molp.2020.07.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/30/2020] [Accepted: 07/15/2020] [Indexed: 05/20/2023]
Abstract
Alternative splicing (AS) of pre-mRNAs increases transcriptome and proteome diversity, regulates gene expression through multiple mechanisms, and plays important roles in plant development and stress responses. However, the prevalence of genome-wide plant AS changes during infection and the mechanisms by which pathogens modulate AS remain poorly understood. Here, we examined the global AS changes in tomato leaves infected with Phytophthora infestans, the infamous Irish famine pathogen. We show that more than 2000 genes exhibiting significant changes in AS are not differentially expressed, indicating that AS is a distinct layer of transcriptome reprogramming during plant-pathogen interactions. Furthermore, our results show that P. infestans subverts host immunity by repressing the AS of positive regulators of plant immunity and promoting the AS of susceptibility factors. To study the underlying mechanism, we established a luminescence-based AS reporter system in Nicotiana benthamiana to screen pathogen effectors modulating plant AS. We identified nine splicing regulatory effectors (SREs) from 87 P. infestans effectors. Further studies revealed that SRE3 physically binds U1-70K to manipulate the plant AS machinery and subsequently modulates AS-mediated plant immunity. Our study not only unveils genome-wide plant AS reprogramming during infection but also establishes a novel AS screening tool to identify SREs from a wide range of plant pathogens, providing opportunities to understand the splicing regulatory mechanisms through which pathogens subvert plant immunity.
Collapse
Affiliation(s)
- Jie Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Xinyu Lu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongwei Wu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuchen Xie
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Peng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Juyou Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Anireddy S N Reddy
- Colorado State University, Program in Cell and Molecular Biology, Fort Collins, CO 80523, USA
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
186
|
Li Z, Wang X, Cao X, Chen B, Ma C, Lv J, Sun Z, Qiao K, Zhu L, Zhang C, Fan S, Ma Q. GhTULP34, a member of tubby-like proteins, interacts with GhSKP1A to negatively regulate plant osmotic stress. Genomics 2020; 113:462-474. [PMID: 33022357 DOI: 10.1016/j.ygeno.2020.09.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/25/2020] [Accepted: 09/09/2020] [Indexed: 11/17/2022]
Abstract
Tubby-like protein genes (TULPs), present in the form of large multigene families, play important roles in environmental stress. However, little is known regarding the TULP family genes in cotton. In this study, we systematically identified and analyzed the membership, characterization, and evolutionary relationship of TULPs in four species of cotton. Transcriptome analysis indicated that GhTULPs participate in environmental stress and cotton tissue development. At the same time, we also predicted and analyzed the potential molecular regulatory mechanisms and functions of TULPs. GhTULP34, as a candidate gene, significantly reduced the germination rate of transgenic Arabidopsis plants under salt stress, and inhibited root development and stomatal closure under mannitol stress. The yeast two-hybrid and luciferase (LUC) systems showed that GhTULP34 can interact with GhSKP1A, a subunit of the SCF-type (Skp1-Cullin-1-F-box) complex. This study will provide a basis and reference for future research on their roles in stress tolerance.
Collapse
Affiliation(s)
- Zhanshuai Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430000, China
| | - Xiaoyan Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Xiaocong Cao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000, China
| | - Baizhi Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000, China
| | - Changkai Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000, China
| | - Jiaoyan Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000, China
| | - Zhimao Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000, China
| | - Kaikai Qiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430000, China
| | - Chaojun Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430000, China.
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000, China.
| |
Collapse
|
187
|
Yan Z, Shen Z, Li Z, Chao Q, Kong L, Gao ZF, Li QW, Zheng HY, Zhao CF, Lu CM, Wang YW, Wang BC. Genome-wide transcriptome and proteome profiles indicate an active role of alternative splicing during de-etiolation of maize seedlings. PLANTA 2020; 252:60. [PMID: 32964359 DOI: 10.1007/s00425-020-03464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
AS events affect genes encoding protein domain composition and make the single gene produce more proteins with a certain number of genes to satisfy the establishment of photosynthesis during de-etiolation. The drastic switch from skotomorphogenic to photomorphogenic development is an excellent system to elucidate rapid developmental responses to environmental stimuli in plants. To decipher the effects of different light wavelengths on de-etiolation, we illuminated etiolated maize seedlings with blue, red, blue-red mixed and white light, respectively. We found that blue light alone has the strongest effect on photomorphogenesis and that this effect can be attributed to the higher number and expression levels of photosynthesis and chlorosynthesis proteins. Deep sequencing-based transcriptome analysis revealed gene expression changes under different light treatments and a genome-wide alteration in alternative splicing (AS) profiles. We discovered 41,188 novel transcript isoforms for annotated genes, which increases the percentage of multi-exon genes with AS to 63% in maize. We provide peptide support for all defined types of AS, especially retained introns. Further in silico prediction revealed that 58.2% of retained introns have changes in domains compared with their most similar annotated protein isoform. This suggests that AS acts as a protein function switch allowing rapid light response through the addition or removal of functional domains. The richness of novel transcripts and protein isoforms also demonstrates the potential and importance of integrating proteomics into genome annotation in maize.
Collapse
Affiliation(s)
- Zhen Yan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhuo Shen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Zhe Li
- Precision Scientific (Beijing) Co., Ltd., Beijing, 100085, China
| | - Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100039, China
| | - Lei Kong
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhi-Fang Gao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Qing-Wei Li
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hai-Yan Zheng
- Center for Advanced Biotechnology and Medicine, Biological Mass Spectrometry Facility, Rutgers University, Piscataway, NJ, 08855, USA
| | - Cai-Feng Zhao
- Center for Advanced Biotechnology and Medicine, Biological Mass Spectrometry Facility, Rutgers University, Piscataway, NJ, 08855, USA
| | - Cong-Ming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Ying-Wei Wang
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
188
|
Qin N, Zhang R, Zhang M, Niu Y, Fu S, Wang Y, Wang D, Chen Y, Zhao C, Chen Q, Lu H. Global Profiling of Dynamic Alternative Splicing Modulation in Arabidopsis Root upon Ralstonia solanacearum Infection. Genes (Basel) 2020; 11:genes11091078. [PMID: 32942673 PMCID: PMC7563316 DOI: 10.3390/genes11091078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 01/27/2023] Open
Abstract
Alternative splicing (AS) is an important mechanism by which eukaryotes regulate transcription and protein diversity. The dynamic changes in AS that occur on a genome-wide scale during interactions between plant roots and pathogens remain unknown. Here, we used the interaction between Arabidopsis and Ralstonia solanacearum as a model to explore the AS changes that take place during the response of roots to infection by means of high-throughput RNA-sequencing. We showed that dynamic changes in AS occur much earlier than changes at the level of transcription during R.solanacearum infection. Comparing genes that are regulated at the transcriptional and AS levels indicated that there are few common genes between differentially spliced genes (DSGs) and differentially expressed genes (DEGs). The functional gene ontology (GO) analysis identified that the enriched GO terms for the DSGs were different from those of the DEGs. The DSGs were over-represented in GO terms associated with post-transcriptional and translational regulations, suggesting that AS may act on RNA stability and during post-translation, thus affecting the output of plant defense molecules. Meanwhile, changes in DSGs were infection stage-specific. Furthermore, the nucleotide binding domain and leucine-rich repeat proteins and receptor-like kinases, key regulators in plant immunity, were shown to undergo dynamic changes in AS in response to R. solanacearum. Taken together, AS, along with transcription, modulates plant root defense to R. solanacearum through transcriptome reprogramming.
Collapse
Affiliation(s)
- Ning Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (N.Q.); (R.Z.); (M.Z.); (Y.N.); (S.F.); (Y.W.); (D.W.); (Y.C.); (C.Z.)
| | - Ruize Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (N.Q.); (R.Z.); (M.Z.); (Y.N.); (S.F.); (Y.W.); (D.W.); (Y.C.); (C.Z.)
| | - Mancang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (N.Q.); (R.Z.); (M.Z.); (Y.N.); (S.F.); (Y.W.); (D.W.); (Y.C.); (C.Z.)
| | - Yang Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (N.Q.); (R.Z.); (M.Z.); (Y.N.); (S.F.); (Y.W.); (D.W.); (Y.C.); (C.Z.)
| | - Shouyang Fu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (N.Q.); (R.Z.); (M.Z.); (Y.N.); (S.F.); (Y.W.); (D.W.); (Y.C.); (C.Z.)
| | - Yisa Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (N.Q.); (R.Z.); (M.Z.); (Y.N.); (S.F.); (Y.W.); (D.W.); (Y.C.); (C.Z.)
| | - Dongdong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (N.Q.); (R.Z.); (M.Z.); (Y.N.); (S.F.); (Y.W.); (D.W.); (Y.C.); (C.Z.)
| | - Yue Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (N.Q.); (R.Z.); (M.Z.); (Y.N.); (S.F.); (Y.W.); (D.W.); (Y.C.); (C.Z.)
| | - Cuizhu Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (N.Q.); (R.Z.); (M.Z.); (Y.N.); (S.F.); (Y.W.); (D.W.); (Y.C.); (C.Z.)
| | - Qin Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Correspondence: (Q.C.); (H.L.); Tel.: +86-18829010553 (H.L.)
| | - Haibin Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (N.Q.); (R.Z.); (M.Z.); (Y.N.); (S.F.); (Y.W.); (D.W.); (Y.C.); (C.Z.)
- Correspondence: (Q.C.); (H.L.); Tel.: +86-18829010553 (H.L.)
| |
Collapse
|
189
|
Chen DY, Chen QY, Wang DD, Mu YP, Wang MY, Huang JR, Mao YB. Differential Transcription and Alternative Splicing in Cotton Underly Specialized Defense Responses Against Pests. FRONTIERS IN PLANT SCIENCE 2020; 11:573131. [PMID: 33072149 PMCID: PMC7533563 DOI: 10.3389/fpls.2020.573131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
The green mirid bug (Apolygus lucorum) and the cotton bollworm (Helicoverpa armigera) are both preferred to live on cotton but cause different symptoms, suggesting specialized responses of cotton to the two insects. In this study, we investigated differential molecular mechanisms underlying cotton plant defenses against A. lucorum and H. armigera via transcriptomic analyses. At the transcription level, jasmonate (JA) signaling was dominated in defense against H. armigera whereas salicylic acid (SA) signaling was more significant in defense against A. lucorum. A set of pathogenesis-related (PR) genes and protease inhibitor genes were differentially induced by the two insects. Insect infestations also had an impact on alternative splicing (AS), which was altered more significantly by the H. armigera than A. lucorum. Interestingly, most differential AS (DAS) genes had no obvious change at the transcription level. GO analysis revealed that biological process termed "RNA splicing" and "cellular response to abiotic stimulus" were enriched only in DAS genes from the H. armigera infested samples. Furthermore, insect infestations induced the retained intron of GhJAZs transcripts, which produced a truncated protein lacking the intact Jas motif. Taken together, our data demonstrate that the specialized cotton response to different insects is regulated by gene transcription and AS as well.
Collapse
Affiliation(s)
- Dian-Yang Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Qiu-Yi Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| | - Dan-Dan Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yu-Pei Mu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| | - Mu-Yang Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| | - Ji-Rong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Ying-Bo Mao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
190
|
Zhang H, Jing W, Zheng J, Jin Y, Wu D, Cao C, Dong Y, Shi X, Zhang W. The ATP-binding cassette transporter OsPDR1 regulates plant growth and pathogen resistance by affecting jasmonates biosynthesis in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110582. [PMID: 32771142 DOI: 10.1016/j.plantsci.2020.110582] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Jasmonates (JAs) are important regulators of plant growth, development, and defense. ATP-binding cassette (ABC) transporters participate in disease resistance by transporting JAs or antimicrobial secondary metabolites in dicotyledons. Here, we functionally characterized a JAs-inducible rice gene (OsPDR1) that encodes a member of the pleiotropic drug resistance (PDR) subfamily of ABC transporters. By affecting JAs biosynthesis, overexpression of OsPDR1 resulted in constitutive activation of defense-related genes and enhanced resistance to bacterial blight, whereas its mutation decreased pathogen resistance. In addition, overexpression and mutation of OsPDR1 resulted in decreased and increased plant growth at seedling stage, respectively, but eventually led to decreased grain yield. OsPDR1 encodes three splice isoforms, of which OsPDR1.2 and OsPDR1.3 contain a conserved glutamate residue in the "ENI-motif" of the first nucleotide-binding domain, while OsPDR1.1 does not. The three OsPDR1 transcripts are developmentally controlled and differentially regulated by JAs and pathogen infection. The OsPDR1.2- and OsPDR1.3-overexpressing plants exhibited higher JAs content and stronger growth inhibition and disease resistance than OsPDR1.1-overexpressing plants. These results indicated that alternative splicing affects the function of OsPDR1 gene in regulation of growth, development and disease resistance.
Collapse
Affiliation(s)
- Hongsheng Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen Jing
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Junming Zheng
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingying Jin
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan Wu
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengjuan Cao
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanmin Dong
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xingyu Shi
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenhua Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
191
|
Chen X, Huang S, Jiang M, Chen Y, XuHan X, Zhang Z, Lin Y, Lai Z. Genome-wide identification and expression analysis of the SR gene family in longan (Dimocarpus longan Lour.). PLoS One 2020; 15:e0238032. [PMID: 32841304 PMCID: PMC7447046 DOI: 10.1371/journal.pone.0238032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/07/2020] [Indexed: 12/05/2022] Open
Abstract
Longan (Dimocarpus longan Lour.) is an important commercial fruit tree in southern China. The embryogenesis of longan affects the quality and yield of fruit. A large number of alternative splicing events occurs during somatic embryogenesis (SE), which is regulated by serine/arginine-rich (SR) proteins. However, the functions of SR proteins in longan are poorly understood. In this study, 21 Dlo-SR gene family members belonging to six subfamilies were identified, among which Dlo-RSZ20a, Dlo-SR30, Dlo-SR17, Dlo-SR53 and Dlo-SR32 were localized in the nucleus, Dlo-RSZ20b, Dlo-RSZ20c, Dlo-RSZ20d, Dlo-SC18, Dlo-RS2Z29, Dlo-SCL41, and Dlo-SR33 were localized in chloroplasts, and Dlo-RS43, Dlo-SC33, Dlo-SC37, Dlo-RS2Z33, Dlo-RS2Z16, Dlo-RS2Z24, Dlo-SCL43, Dlo-SR112, and Dlo-SR59 were localized in the nucleus and chloroplasts. The Dlo-SR genes exhibited differential expression patterns in different tissues of longan. The transcript levels of Dlo-RSZ20a, Dlo-SC18, Dlo-RS2Z29, DLo-SR59, Dlo-SR53, and Dlo-SR17 were low in all analyzed tissues, whereas Dlo-RS43, Dlo-RS2Z16, Dlo-RS2Z24, and Dlo-SR30 were highly expressed in all tissues. To clarify their function during SE, the transcript levels of Dlo-SR genes were analyzed at different four stages of SE, comprising non-embryonic callus (NEC), friable-embryogenic callus (EC), incomplete compact pro-embryogenic culture (ICpEC) and globular embryo (GE). Interestingly, the transcript levels of Dlo-RS2Z29 and Dlo-SR112 were increased in embryogenic cells compared with the NEC stage, whereas transcript levels of Dlo-RSZ20a, Dlo-RS43, Dlo-SC37, and Dlo-RS2Z16 were especially increased at the GE stage compared with the other stages. Alternative splicing events of Dlo-SR mRNA precursors (pre-mRNAs) was detected during SE, with totals of 41, 29, 35, and 44 events detected during NEC, EC, ICpEC, and GE respectively. Protein–protein interaction analysis showed that SR proteins were capable of interaction with each other. The results indicate that the alternative splicing of Dlo-SR pre-mRNAs occurs during SE and that Dlo-SR proteins may interact to regulate embryogenesis of longan.
Collapse
Affiliation(s)
- Xiaodong Chen
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuqi Huang
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengqi Jiang
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yukun Chen
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xu XuHan
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute de la Recherche Interdisciplinaire de Toulouse, Toulouse, France
| | - Zihao Zhang
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuling Lin
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail: (YL); (ZL)
| | - Zhongxiong Lai
- Institute of horticultural biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail: (YL); (ZL)
| |
Collapse
|
192
|
Alternative splicing of DSP1 enhances snRNA accumulation by promoting transcription termination and recycle of the processing complex. Proc Natl Acad Sci U S A 2020; 117:20325-20333. [PMID: 32747542 DOI: 10.1073/pnas.2002115117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Small nuclear RNAs (snRNAs) are the basal components of the spliceosome and play crucial roles in splicing. Their biogenesis is spatiotemporally regulated. However, related mechanisms are still poorly understood. Defective in snRNA processing (DSP1) is an essential component of the DSP1 complex that catalyzes plant snRNA 3'-end maturation by cotranscriptional endonucleolytic cleavage of the primary snRNA transcripts (presnRNAs). Here, we show that DSP1 is subjected to alternative splicing in pollens and embryos, resulting in two splicing variants, DSP1α and DSP1β. Unlike DSP1α, DSP1β is not required for presnRNA 3'-end cleavage. Rather, it competes with DSP1α for the interaction with CPSF73-I, the catalytic subunit of the DSP1 complex, which promotes efficient release of CPSF73-I and the DNA-dependent RNA polymerease II (Pol II) from the 3' end of snRNA loci thereby facilitates snRNA transcription termination, resulting in increased snRNA levels in pollens. Taken together, this study uncovers a mechanism that spatially regulates snRNA accumulation.
Collapse
|
193
|
Evolution and Expression of the Membrane Attack Complex and Perforin Gene Family in the Poaceae. Int J Mol Sci 2020; 21:ijms21165736. [PMID: 32785137 PMCID: PMC7460961 DOI: 10.3390/ijms21165736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 01/02/2023] Open
Abstract
Membrane Attack Complex and Perforin (MACPF) proteins play crucial roles in plant development and plant responses to environmental stresses. To date, only four MACPF genes have been identified in Arabidopsis thaliana, and the functions of the MACPF gene family members in other plants, especially in important crop plants, such as the Poaceae family, remain largely unknown. In this study, we identified and analyzed 42 MACPF genes from six completely sequenced and well annotated species representing the major Poaceae clades. A phylogenetic analysis of MACPF genes resolved four groups, characterized by shared motif organizations and gene structures within each group. MACPF genes were unevenly distributed along the Poaceae chromosomes. Moreover, segmental duplications and dispersed duplication events may have played significant roles during MACPF gene family expansion and functional diversification in the Poaceae. In addition, phylogenomic synteny analysis revealed a high degree of conservation among the Poaceae MACPF genes. In particular, Group I, II, and III MACPF genes were exposed to strong purifying selection with different evolutionary rates. Temporal and spatial expression analyses suggested that Group III MACPF genes were highly expressed relative to the other groups. In addition, most MACPF genes were highly expressed in vegetative tissues and up-regulated by several biotic and abiotic stresses. Taken together, these findings provide valuable information for further functional characterization and phenotypic validation of the Poaceae MACPF gene family.
Collapse
|
194
|
Qian Y, Cao L, Zhang Q, Amee M, Chen K, Chen L. SMRT and Illumina RNA sequencing reveal novel insights into the heat stress response and crosstalk with leaf senescence in tall fescue. BMC PLANT BIOLOGY 2020; 20:366. [PMID: 32746857 PMCID: PMC7397585 DOI: 10.1186/s12870-020-02572-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 07/23/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND As a cool-season grass species, tall fescue (Festuca arundinacea) is challenged by increasing temperatures. Heat acclimation or activation of leaf senescence, are two main strategies when tall fescue is exposed to heat stress (HS). However, lacking a genome sequence, the complexity of hexaploidy nature, and the short read of second-generation sequencing hinder a comprehensive understanding of the mechanism. This study aims to characterize the molecular mechanism of heat adaptation and heat-induced senescence at transcriptional and post-transcriptional levels. RESULTS Transcriptome of heat-treated (1 h and 72 h) and senescent leaves of tall fescue were generated by combining single-molecular real-time and Illumina sequencing. In total, 4076; 6917, and 11,918 differentially expressed genes (DEGs) were induced by short- and long-term heat stress (HS), and senescence, respectively. Venn and bioinformatics analyses of DEGs showed that short-term HS strongly activated heat shock proteins (Hsps) and heat shock factors (Hsfs), as well as specifically activated FK506-binding proteins (FKBPs), calcium signaling genes, glutathione S-transferase genes, photosynthesis-related genes, and phytohormone signaling genes. By contrast, long-term HS shared most of DEGs with senescence, including the up-regulated chlorophyll catabolic genes, phytohormone synthesis/degradation genes, stress-related genes, and NACs, and the down-regulated photosynthesis-related genes, FKBPs, and catalases. Subsequently, transient overexpression in tobacco showed that FaHsfA2a (up-regulated specifically by short-term HS) reduced cell membrane damages caused by HS, but FaNAC029 and FaNAM-B1 (up-regulated by long-term HS and senescence) increased the damages. Besides, alternative splicing was widely observed in HS and senescence responsive genes, including Hsps, Hsfs, and phytohormone signaling/synthesis genes. CONCLUSIONS The short-term HS can stimulate gene responses and improve thermotolerance, but long-term HS is a damage and may accelerate leaf senescence. These results contribute to our understanding of the molecular mechanism underlying heat adaptation and heat-induced senescence.
Collapse
Affiliation(s)
- Yiguang Qian
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, People’s Republic of China
| | - Liwen Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Qiang Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Maurice Amee
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Ke Chen
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, People’s Republic of China
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| |
Collapse
|
195
|
Feng G, Yoo M, Davenport R, Boatwright JL, Koh J, Chen S, Barbazuk WB. Jasmonate induced alternative splicing responses in Arabidopsis. PLANT DIRECT 2020; 4:e00245. [PMID: 32875268 PMCID: PMC7450174 DOI: 10.1002/pld3.245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 06/04/2020] [Accepted: 06/24/2020] [Indexed: 05/14/2023]
Abstract
Jasmonate is an essential phytohormone regulating plant growth, development, and defense. Alternative splicing (AS) in jasmonate ZIM-domain (JAZ) repressors is well-characterized and plays an important role in jasmonate signaling regulation. However, it is unknown whether other genes in the jasmonate signaling pathway are regulated by AS. We explore the potential for AS regulation in three Arabidopsis genotypes (WT, jaz2, jaz7) in response to methyl jasmonate (MeJA) treatment with respect to: (a) differential AS, (b) differential miRNA targeted AS, and (c) AS isoforms with novel functions. AS events identified from transcriptomic data were validated with proteomic data. Protein interaction networks identified two genes, SKIP and ALY4 whose products have both DNA- and RNA-binding affinities, as potential key regulators mediating jasmonate signaling and AS regulation. We observed cases where AS alone, or AS and transcriptional regulation together, can influence gene expression in response to MeJA. Twenty-one genes contain predicted miRNA target sites subjected to AS, which implies that AS is coupled to miRNA regulation. We identified 30 cases where alternatively spliced isoforms may have novel functions. For example, AS of bHLH160 generates an isoform without a basic domain, which may convert it from an activator to a repressor. Our study identified potential key regulators in AS regulation of jasmonate signaling pathway. These findings highlight the importance of AS regulation in the jasmonate signaling pathway, both alone and in collaboration with other regulators. SIGNIFICANCE STATEMENT By exploring alternative splicing, we demonstrate its regulation in the jasmonate signaling pathway alone or in collaboration with other posttranscriptional regulations such as nonsense and microRNA-mediated decay. A signal transduction network model for alternative splicing in jasmonate signaling pathway was generated, contributing to our understanding for this important, prevalent, but relatively unexplored regulatory mechanism in plants.
Collapse
Affiliation(s)
- Guanqiao Feng
- Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleFLUSA
| | - Mi‐Jeong Yoo
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
| | - Ruth Davenport
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
| | | | - Jin Koh
- The Interdisciplinary Center for Biotechnology Research (ICBR)University of FloridaGainesvilleFLUSA
| | - Sixue Chen
- Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleFLUSA
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
- The Interdisciplinary Center for Biotechnology Research (ICBR)University of FloridaGainesvilleFLUSA
- The Genetics InstituteUniversity of FloridaGainesvilleFLUSA
| | - W. Brad Barbazuk
- Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleFLUSA
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
- The Interdisciplinary Center for Biotechnology Research (ICBR)University of FloridaGainesvilleFLUSA
- The Genetics InstituteUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
196
|
Rajamäki ML, Sikorskaite-Gudziuniene S, Sarmah N, Varjosalo M, Valkonen JPT. Nuclear proteome of virus-infected and healthy potato leaves. BMC PLANT BIOLOGY 2020; 20:355. [PMID: 32727361 PMCID: PMC7392702 DOI: 10.1186/s12870-020-02561-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/20/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND Infection of plants by viruses interferes with expression and subcellular localization of plant proteins. Potyviruses comprise the largest and most economically damaging group of plant-infecting RNA viruses. In virus-infected cells, at least two potyviral proteins localize to nucleus but reasons remain partly unknown. RESULTS In this study, we examined changes in the nuclear proteome of leaf cells from a diploid potato line (Solanum tuberosum L.) after infection with potato virus A (PVA; genus Potyvirus; Potyviridae) and compared the data with that acquired for healthy leaves. Gel-free liquid chromatography-coupled to tandem mass spectrometry was used to identify 807 nuclear proteins in the potato line v2-108; of these proteins, 370 were detected in at least two samples of healthy leaves. A total of 313 proteins were common in at least two samples of healthy and PVA-infected leaves; of these proteins, 8 showed differential accumulation. Sixteen proteins were detected exclusively in the samples from PVA-infected leaves, whereas other 16 proteins were unique to healthy leaves. The protein Dnajc14 was only detected in healthy leaves, whereas different ribosomal proteins, ribosome-biogenesis proteins, and RNA splicing-related proteins were over-represented in the nuclei of PVA-infected leaves. Two virus-encoded proteins were identified in the samples of PVA-infected leaves. CONCLUSIONS Our results show that PVA infection alters especially ribosomes and splicing-related proteins in the nucleus of potato leaves. The data increase our understanding of potyvirus infection and the role of nucleus in infection. To our knowledge, this is the first study of the nuclear proteome of potato leaves and one of the few studies of changes occurring in nuclear proteomes in response to plant virus infection.
Collapse
Affiliation(s)
- Minna-Liisa Rajamäki
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland.
| | - Sidona Sikorskaite-Gudziuniene
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Street 30, Babtai, LT-54333, Kaunas District, Lithuania
| | - Nandita Sarmah
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, PO Box 56, FI-00014, Helsinki, Finland
| | - Jari P T Valkonen
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland
| |
Collapse
|
197
|
Qiu Z, Chen S, Qi Y, Liu C, Zhai J, Xie S, Ma C. Exploring transcriptional switches from pairwise, temporal and population RNA-Seq data using deepTS. Brief Bioinform 2020; 22:5877690. [PMID: 32728687 DOI: 10.1093/bib/bbaa137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/25/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022] Open
Abstract
Transcriptional switch (TS) is a widely observed phenomenon caused by changes in the relative expression of transcripts from the same gene, in spatial, temporal or other dimensions. TS has been associated with human diseases, plant development and stress responses. Its investigation is often hampered by a lack of suitable tools allowing comprehensive and flexible TS analysis for high-throughput RNA sequencing (RNA-Seq) data. Here, we present deepTS, a user-friendly web-based implementation that enables a fully interactive, multifunctional identification, visualization and analysis of TS events for large-scale RNA-Seq datasets from pairwise, temporal and population experiments. deepTS offers rich functionality to streamline RNA-Seq-based TS analysis for both model and non-model organisms and for those with or without reference transcriptome. The presented case studies highlight the capabilities of deepTS and demonstrate its potential for the transcriptome-wide TS analysis of pairwise, temporal and population RNA-Seq data. We believe deepTS will help research groups, regardless of their informatics expertise, perform accessible, reproducible and collaborative TS analyses of large-scale RNA-Seq data.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chuang Ma
- Bioinformatics Laboratory at Northwest A&F University
| |
Collapse
|
198
|
Wang Z, Ma W, Zhu T, Lu N, Ouyang F, Wang N, Yang G, Kong L, Qu G, Zhang S, Wang J. Multi-omics sequencing provides insight into floral transition in Catalpa bungei. C.A. Mey. BMC Genomics 2020; 21:508. [PMID: 32698759 PMCID: PMC7376858 DOI: 10.1186/s12864-020-06918-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 07/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Floral transition plays an important role in development, and proper time is necessary to improve the value of valuable ornamental trees. The molecular mechanisms of floral transition remain unknown in perennial woody plants. "Bairihua" is a type of C. bungei that can undergo floral transition in the first planting year. RESULTS Here, we combined short-read next-generation sequencing (NGS) and single-molecule real-time (SMRT) sequencing to provide a more complete view of transcriptome regulation during floral transition in C. bungei. The circadian rhythm-plant pathway may be the critical pathway during floral transition in early flowering (EF) C. bungei, according to horizontal and vertical analysis in EF and normal flowering (NF) C. bungei. SBP and MIKC-MADS-box were seemingly involved in EF during floral transition. A total of 61 hub genes were associated with floral transition in the MEturquoise model with Weighted Gene Co-expression Network Analysis (WGCNA). The results reveal that ten hub genes had a close connection with the GASA homologue gene (Cbu.gene.18280), and the ten co-expressed genes belong to five flowering-related pathways. Furthermore, our study provides new insights into the complexity and regulation of alternative splicing (AS). The ratio or number of isoforms of some floral transition-related genes is different in different periods or in different sub-genomes. CONCLUSIONS Our results will be a useful reference for the study of floral transition in other perennial woody plants. Further molecular investigations are needed to verify our sequencing data.
Collapse
Affiliation(s)
- Zhi Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| | - Tianqing Zhu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| | - Nan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| | - Fangqun Ouyang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| | - Nan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| | - Guijuan Yang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| | - Lisheng Kong
- Department of Biology Centre for Forest Biology, University of Victoria, Victoria, BC 11 Canada
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040 PR China
| | - Shougong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| |
Collapse
|
199
|
Differential Alternative Splicing Genes and Isoform Regulation Networks of Rapeseed ( Brassica napus L.) Infected with Sclerotinia sclerotiorum. Genes (Basel) 2020; 11:genes11070784. [PMID: 32668742 PMCID: PMC7397149 DOI: 10.3390/genes11070784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 11/17/2022] Open
Abstract
Alternative splicing (AS) is a post-transcriptional level of gene expression regulation that increases transcriptome and proteome diversity. How the AS landscape of rapeseed (Brassica napus L.) changes in response to the fungal pathogen Sclerotinia sclerotiorum is unknown. Here, we analyzed 18 RNA-seq libraries of mock-inoculated and S. sclerotiorum-inoculated susceptible and tolerant B. napus plants. We found that infection increased AS, with intron retention being the main AS event. To determine the key genes functioning in the AS response, we performed a differential AS (DAS) analysis. We identified 79 DAS genes, including those encoding splicing factors, defense response proteins, crucial transcription factors and enzymes. We generated coexpression networks based on the splicing isoforms, rather than the genes, to explore the genes’ diverse functions. Using this weighted gene coexpression network analysis alongside a gene ontology enrichment analysis, we identified 11 modules putatively involved in the pathogen defense response. Within these regulatory modules, six DAS genes (ascorbate peroxidase 1, ser/arg-rich protein 34a, unknown function 1138, nitrilase 2, v-atpase f, and amino acid transporter 1) were considered to encode key isoforms involved in the defense response. This study provides insight into the post-transcriptional response of B. napus to S. sclerotiorum infection.
Collapse
|
200
|
Cheng Q, Xiao H, Xiong Q. Conserved exitrons of FLAGELLIN-SENSING 2 (FLS2) across dicot plants and their functions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110507. [PMID: 32540022 DOI: 10.1016/j.plantsci.2020.110507] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/20/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
The alternative splicing of pattern recognition receptor genes regulates immune signalling in mammals, but in plants its role is still unknown. Here, we detected alternatively spliced introns (exitrons) in the first annotated exons of FLAGELLIN-SENSING 2 (FLS2) genes in all the examined dicot plants across nine families. The 5' splice site (SS) regions were conserved and with rare synonymous substitutions. Point mutations and gene swaps indicated that the position and efficiency of exitron splicing primarily depended on the nucleotide sequences of FLS2 genes. Single-nucleotide mutations in the invariable codon carrying 5' SS dramatically altered the accumulation of poplar and tomato FLS2 transcripts, indicating the 5'-proximal exitrons of FLS2 function as stimulatory introns on gene expression. The 3' SSs of exitrons are diverse and can be changed by 1-2 nucleotide mutations in Salicaceae FLS2. The alternative transcripts (ATs) of poplar and tobacco FLS2, which encode small secreted proteins, were specifically induced by flg22, and one such AT from tobacco FLS2 suppressed flg22-induced response. Our results indicated that the exitrons of FLS2 genes regulate the accumulation of transcripts by an intron mediated enhancement (IME) mechanism and some ATs have the potential to encode suppressors for FLS2 pathway.
Collapse
Affiliation(s)
- Qiang Cheng
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Hongju Xiao
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Qin Xiong
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|