151
|
Wild R, Gerasimaite R, Jung JY, Truffault V, Pavlovic I, Schmidt A, Saiardi A, Jessen HJ, Poirier Y, Hothorn M, Mayer A. Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science 2016; 352:986-90. [DOI: 10.1126/science.aad9858] [Citation(s) in RCA: 313] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/31/2016] [Indexed: 12/23/2022]
|
152
|
Gu M, Chen A, Sun S, Xu G. Complex Regulation of Plant Phosphate Transporters and the Gap between Molecular Mechanisms and Practical Application: What Is Missing? MOLECULAR PLANT 2016; 9:396-416. [PMID: 26714050 DOI: 10.1016/j.molp.2015.12.012] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/18/2015] [Accepted: 12/11/2015] [Indexed: 05/18/2023]
Abstract
It has been almost 25 years since the first report of the gene encoding a high-affinity phosphate transporter (PT), PHO84, in yeast. Since then, an increasing number of yeast PHO84 homologs as well as other genes encoding proteins with phosphate (Pi) transport activities have been identified and functionally characterized in diverse plant species. Great progress has been made also in deciphering the molecular mechanism underlying the regulation of the abundance and/or activity of these genes and their products. The regulatory genes affect plant Pi homeostasis commonly through direct or indirect regulation of the abundance of PTs at different levels. However, little has been achieved in the use of PTs for developing genetically modified crops with high phosphorus use efficiency (PUE). This might be a consequence of overemphasizing Pi uptake from the rhizosphere and lack of knowledge about the roles of PTs in Pi transport and recycling within the plant that are required to optimize PUE. Here, we mainly focused on the genes encoding proteins with Pi transport activities and the emerging understanding of their regulation at the transcriptional, post-transcriptional, translational, and post-translational levels. In addition, we propose potential strategies for effective use of PTs in improving plant growth and development.
Collapse
Affiliation(s)
- Mian Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
| | - Aiqun Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
| | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China.
| |
Collapse
|
153
|
Pacak A, Barciszewska-Pacak M, Swida-Barteczka A, Kruszka K, Sega P, Milanowska K, Jakobsen I, Jarmolowski A, Szweykowska-Kulinska Z. Heat Stress Affects Pi-related Genes Expression and Inorganic Phosphate Deposition/Accumulation in Barley. FRONTIERS IN PLANT SCIENCE 2016; 7:926. [PMID: 27446155 PMCID: PMC4919326 DOI: 10.3389/fpls.2016.00926] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/10/2016] [Indexed: 05/07/2023]
Abstract
Phosphorus (P) in plants is taken from soil as an inorganic phosphate (Pi) and is one of the most important macroelements in growth and development. Plants actively react to Pi starvation by the induced expression of Pi transporters, MIR399, MIR827, and miR399 molecular sponge - IPS1 genes and by the decreased expression of the ubiquitin-conjugating enzyme E2 (PHOSPHATE2 - PHO2) and Pi sensing and transport SPX-MFS genes. The PHO2 protein is involved in the degradation of Pi transporters PHT1;1 (from soil to roots) and PHO1 (from roots to shoots). The decreased expression of PHO2 leads to Pi accumulation in shoots. In contrast, the pho1 mutant shows a decreased level of Pi concentration in shoots. Finally, Pi starvation leads to decreased Pi concentration in all plant tissues. Little is known about plant Pi homeostasis in other abiotic stress conditions. We found that, during the first hour of heat stress, Pi accumulated in barley shoots but not in the roots, and transcriptomic data analysis as well as RT-qPCR led us to propose an explanation for this phenomenon. Pi transport inhibition from soil to roots is balanced by lower Pi efflux from roots to shoots directed by the PHO1 transporter. In shoots, the PHO2 mRNA level is decreased, leading to an increased Pi level. We concluded that Pi homeostasis in barley during heat stress is maintained by dynamic changes in Pi-related genes expression.
Collapse
Affiliation(s)
- Andrzej Pacak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in PoznanPoznan, Poland
- *Correspondence: Andrzej Pacak,
| | - Maria Barciszewska-Pacak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in PoznanPoznan, Poland
| | - Aleksandra Swida-Barteczka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in PoznanPoznan, Poland
| | - Katarzyna Kruszka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in PoznanPoznan, Poland
| | - Pawel Sega
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in PoznanPoznan, Poland
| | - Kaja Milanowska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in PoznanPoznan, Poland
| | - Iver Jakobsen
- Department of Plant and Environmental Sciences, Faculty of Science, University of CopenhagenCopenhagen, Denmark
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in PoznanPoznan, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in PoznanPoznan, Poland
| |
Collapse
|
154
|
DiTusa SF, Fontenot EB, Wallace RW, Silvers MA, Steele TN, Elnagar AH, Dearman KM, Smith AP. A member of the Phosphate transporter 1 (Pht1) family from the arsenic-hyperaccumulating fern Pteris vittata is a high-affinity arsenate transporter. THE NEW PHYTOLOGIST 2016; 209:762-72. [PMID: 26010225 DOI: 10.1111/nph.13472] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/21/2015] [Indexed: 05/18/2023]
Abstract
Pteris vittata exhibits enhanced arsenic uptake, but the corresponding mechanisms are not well known. The prevalent form of arsenic in most soils is arsenate, which is a phosphate analog and a substrate for Phosphate transporter 1 (Pht1) transporters. Herein we identify and characterize three P. vittata Pht1 transporters. Pteris vittata Pht1 cDNAs were isolated and characterized via heterologous expression in Saccharomyces cerevisiae (yeast) and Nicotiana benthamiana leaves. Expression of the PvPht1 loci in P. vittata gametophytes was also examined in response to phosphate deficiency and arsenate exposure. Expression of each of the PvPht1 cDNAs complemented the phosphate uptake defect of a yeast mutant. Compared with yeast cells expressing Arabidopsis thaliana Pht1;5, cells expressing PvPht1;3 were more sensitive to arsenate, and accumulated more arsenic. Uptake assays with yeast cells and radiolabeled (32)P revealed that PvPht1;3 and AtPht1;5 have similar affinities for phosphate, but the affinity of PvPht1;3 for arsenate is much greater. In P. vittata gametophytes, PvPht1;3 transcript levels increased in response to phosphate (Pi) deficiency and arsenate exposure. PvPht1;3 is induced by Pi deficiency and arsenate, and encodes a phosphate transporter that has a high affinity for arsenate. PvPht1;3 probably contributes to the enhanced arsenate uptake capacity and affinity exhibited by P. vittata.
Collapse
Affiliation(s)
- Sandra Feuer DiTusa
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Elena B Fontenot
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Robert W Wallace
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Molly A Silvers
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Thomas N Steele
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Alia H Elnagar
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Kelsey M Dearman
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Aaron P Smith
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
155
|
Bonnot C, Pinson B, Clément M, Bernillon S, Chiarenza S, Kanno S, Kobayashi N, Delannoy E, Nakanishi TM, Nussaume L, Desnos T. A chemical genetic strategy identify the PHOSTIN, a synthetic molecule that triggers phosphate starvation responses in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2016; 209:161-76. [PMID: 26243630 PMCID: PMC4737292 DOI: 10.1111/nph.13591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 07/01/2015] [Indexed: 05/18/2023]
Abstract
Plants display numerous strategies to cope with phosphate (Pi)-deficiency. Despite multiple genetic studies, the molecular mechanisms of low-Pi-signalling remain unknown. To validate the interest of chemical genetics to investigate this pathway we discovered and analysed the effects of PHOSTIN (PSN), a drug mimicking Pi-starvation in Arabidopsis. We assessed the effects of PSN and structural analogues on the induction of Pi-deficiency responses in mutants and wild-type and followed their accumulation in plants organs by high pressure liquid chromotography (HPLC) or mass-spectrophotometry. We show that PSN is cleaved in the growth medium, releasing its active motif (PSN11), which accumulates in plants roots. Despite the overaccumulation of Pi in the roots of treated plants, PSN11 elicits both local and systemic Pi-starvation effects. Nevertheless, albeit that the transcriptional activation of low-Pi genes by PSN11 is lost in the phr1;phl1 double mutant, neither PHO1 nor PHO2 are required for PSN11 effects. The range of local and systemic responses to Pi-starvation elicited, and their dependence on the PHR1/PHL1 function suggests that PSN11 affects an important and early step of Pi-starvation signalling. Its independence from PHO1 and PHO2 suggest the existence of unknown pathway(s), showing the usefulness of PSN and chemical genetics to bring new elements to this field.
Collapse
Affiliation(s)
- Clémence Bonnot
- CEAInstitut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des PlantesSaint‐Paul‐lez‐DuranceF‐13108France
- CNRSUnité Mixte de Recherche 7265 Biologie Végétale & Microbiologie EnvironnementaleSaint‐Paul‐lez‐DuranceF‐13108France
- Aix‐Marseille UniversitéSaint‐Paul‐lez‐DuranceF‐13108France
| | - Benoît Pinson
- CNRSUnité Mixte de Recherche 5095 Institut de Biochimie et Génétique CellulairesBordeauxF‐33077 CedexFrance
- Université Bordeaux 2 Victor SegalenBordeauxF‐33000France
| | - Mathilde Clément
- CEAInstitut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des PlantesSaint‐Paul‐lez‐DuranceF‐13108France
- CNRSUnité Mixte de Recherche 7265 Biologie Végétale & Microbiologie EnvironnementaleSaint‐Paul‐lez‐DuranceF‐13108France
- Aix‐Marseille UniversitéSaint‐Paul‐lez‐DuranceF‐13108France
| | - Stéphane Bernillon
- INRAUnité Mixte de Recherche 1332 Biologie du Fruit et PathologieCentre INRA de BordeauxVillenave d'OrnonF‐33140France
- Metabolome Facility of Bordeaux Functional Genomics CentreIBVMCentre INRA de BordeauxVillenave d'OrnonF‐33140France
| | - Serge Chiarenza
- CEAInstitut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des PlantesSaint‐Paul‐lez‐DuranceF‐13108France
- CNRSUnité Mixte de Recherche 7265 Biologie Végétale & Microbiologie EnvironnementaleSaint‐Paul‐lez‐DuranceF‐13108France
- Aix‐Marseille UniversitéSaint‐Paul‐lez‐DuranceF‐13108France
| | - Satomi Kanno
- Graduate School of Agricultural and Life Sciencesthe University of Tokyo1‐1‐1, YayoiBunkyo‐kuTokyo113‐8657Japan
| | - Natsuko Kobayashi
- Graduate School of Agricultural and Life Sciencesthe University of Tokyo1‐1‐1, YayoiBunkyo‐kuTokyo113‐8657Japan
| | - Etienne Delannoy
- CEAInstitut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des PlantesSaint‐Paul‐lez‐DuranceF‐13108France
- CNRSUnité Mixte de Recherche 7265 Biologie Végétale & Microbiologie EnvironnementaleSaint‐Paul‐lez‐DuranceF‐13108France
- Aix‐Marseille UniversitéSaint‐Paul‐lez‐DuranceF‐13108France
| | - Tomoko M. Nakanishi
- Graduate School of Agricultural and Life Sciencesthe University of Tokyo1‐1‐1, YayoiBunkyo‐kuTokyo113‐8657Japan
| | - Laurent Nussaume
- CEAInstitut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des PlantesSaint‐Paul‐lez‐DuranceF‐13108France
- CNRSUnité Mixte de Recherche 7265 Biologie Végétale & Microbiologie EnvironnementaleSaint‐Paul‐lez‐DuranceF‐13108France
- Aix‐Marseille UniversitéSaint‐Paul‐lez‐DuranceF‐13108France
| | - Thierry Desnos
- CEAInstitut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des PlantesSaint‐Paul‐lez‐DuranceF‐13108France
- CNRSUnité Mixte de Recherche 7265 Biologie Végétale & Microbiologie EnvironnementaleSaint‐Paul‐lez‐DuranceF‐13108France
- Aix‐Marseille UniversitéSaint‐Paul‐lez‐DuranceF‐13108France
| |
Collapse
|
156
|
Wang C, Yue W, Ying Y, Wang S, Secco D, Liu Y, Whelan J, Tyerman SD, Shou H. Rice SPX-Major Facility Superfamily3, a Vacuolar Phosphate Efflux Transporter, Is Involved in Maintaining Phosphate Homeostasis in Rice. PLANT PHYSIOLOGY 2015; 169:2822-31. [PMID: 26424157 PMCID: PMC4677894 DOI: 10.1104/pp.15.01005] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/30/2015] [Indexed: 05/05/2023]
Abstract
To maintain a stable cytosol phosphate (Pi) concentration, plant cells store Pi in their vacuoles. When the Pi concentration in the cytosol decreases, Pi is exported from the vacuole into the cytosol. This export is mediated by Pi transporters on the tonoplast. In this study, we demonstrate that SYG1, PHO81, and XPR1 (SPX)-Major Facility Superfamily (MFS) proteins have a similar structure with yeast (Saccharomyces cerevisiae) low-affinity Pi transporters Phosphatase87 (PHO87), PHO90, and PHO91. OsSPX-MFS1, OsSPX-MFS2, and OsSPX-MFS3 all localized on the tonoplast of rice (Oryza sativa) protoplasts, even in the absence of the SPX domain. At high external Pi concentration, OsSPX-MFS3 could partially complement the yeast mutant strain EY917 under pH 5.5, which lacks all five Pi transporters present in yeast. In oocytes, OsSPX-MFS3 was shown to facilitate Pi influx or efflux depending on the external pH and Pi concentrations. In contrast to tonoplast localization in plants cells, OsSPX-MFS3 was localized to the plasma membrane when expressed in both yeast and oocytes. Overexpression of OsSPX-MFS3 results in decreased Pi concentration in the vacuole of rice tissues. We conclude that OsSPX-MFS3 is a low-affinity Pi transporter that mediates Pi efflux from the vacuole into cytosol and is coupled to proton movement.
Collapse
Affiliation(s)
- Chuang Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (C.W., W.Y., Y.Y., S.W., Y.L., H.S.);Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Plant Science, School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia (C.W., S.D.T.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Western Australia 6009, Australia (D.S.); andDepartment of Animal, Plant, and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Melbourne, Victoria 3086, Australia (J.W.)
| | - Wenhao Yue
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (C.W., W.Y., Y.Y., S.W., Y.L., H.S.);Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Plant Science, School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia (C.W., S.D.T.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Western Australia 6009, Australia (D.S.); andDepartment of Animal, Plant, and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Melbourne, Victoria 3086, Australia (J.W.)
| | - Yinghui Ying
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (C.W., W.Y., Y.Y., S.W., Y.L., H.S.);Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Plant Science, School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia (C.W., S.D.T.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Western Australia 6009, Australia (D.S.); andDepartment of Animal, Plant, and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Melbourne, Victoria 3086, Australia (J.W.)
| | - Shoudong Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (C.W., W.Y., Y.Y., S.W., Y.L., H.S.);Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Plant Science, School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia (C.W., S.D.T.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Western Australia 6009, Australia (D.S.); andDepartment of Animal, Plant, and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Melbourne, Victoria 3086, Australia (J.W.)
| | - David Secco
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (C.W., W.Y., Y.Y., S.W., Y.L., H.S.);Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Plant Science, School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia (C.W., S.D.T.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Western Australia 6009, Australia (D.S.); andDepartment of Animal, Plant, and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Melbourne, Victoria 3086, Australia (J.W.)
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (C.W., W.Y., Y.Y., S.W., Y.L., H.S.);Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Plant Science, School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia (C.W., S.D.T.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Western Australia 6009, Australia (D.S.); andDepartment of Animal, Plant, and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Melbourne, Victoria 3086, Australia (J.W.)
| | - James Whelan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (C.W., W.Y., Y.Y., S.W., Y.L., H.S.);Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Plant Science, School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia (C.W., S.D.T.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Western Australia 6009, Australia (D.S.); andDepartment of Animal, Plant, and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Melbourne, Victoria 3086, Australia (J.W.)
| | - Stephen D Tyerman
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (C.W., W.Y., Y.Y., S.W., Y.L., H.S.);Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Plant Science, School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia (C.W., S.D.T.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Western Australia 6009, Australia (D.S.); andDepartment of Animal, Plant, and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Melbourne, Victoria 3086, Australia (J.W.)
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (C.W., W.Y., Y.Y., S.W., Y.L., H.S.);Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Plant Science, School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia (C.W., S.D.T.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Western Australia 6009, Australia (D.S.); andDepartment of Animal, Plant, and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Melbourne, Victoria 3086, Australia (J.W.)
| |
Collapse
|
157
|
Jue D, Sang X, Lu S, Dong C, Zhao Q, Chen H, Jia L. Genome-Wide Identification, Phylogenetic and Expression Analyses of the Ubiquitin-Conjugating Enzyme Gene Family in Maize. PLoS One 2015; 10:e0143488. [PMID: 26606743 PMCID: PMC4659669 DOI: 10.1371/journal.pone.0143488] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/05/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Ubiquitination is a post-translation modification where ubiquitin is attached to a substrate. Ubiquitin-conjugating enzymes (E2s) play a major role in the ubiquitin transfer pathway, as well as a variety of functions in plant biological processes. To date, no genome-wide characterization of this gene family has been conducted in maize (Zea mays). METHODOLOGY/PRINCIPAL FINDINGS In the present study, a total of 75 putative ZmUBC genes have been identified and located in the maize genome. Phylogenetic analysis revealed that ZmUBC proteins could be divided into 15 subfamilies, which include 13 ubiquitin-conjugating enzymes (ZmE2s) and two independent ubiquitin-conjugating enzyme variant (UEV) groups. The predicted ZmUBC genes were distributed across 10 chromosomes at different densities. In addition, analysis of exon-intron junctions and sequence motifs in each candidate gene has revealed high levels of conservation within and between phylogenetic groups. Tissue expression analysis indicated that most ZmUBC genes were expressed in at least one of the tissues, indicating that these are involved in various physiological and developmental processes in maize. Moreover, expression profile analyses of ZmUBC genes under different stress treatments (4°C, 20% PEG6000, and 200 mM NaCl) and various expression patterns indicated that these may play crucial roles in the response of plants to stress. CONCLUSIONS Genome-wide identification, chromosome organization, gene structure, evolutionary and expression analyses of ZmUBC genes have facilitated in the characterization of this gene family, as well as determined its potential involvement in growth, development, and stress responses. This study provides valuable information for better understanding the classification and putative functions of the UBC-encoding genes of maize.
Collapse
Affiliation(s)
- Dengwei Jue
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Xuelian Sang
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Shengqiao Lu
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530227, China
| | - Chen Dong
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Qiufang Zhao
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Hongliang Chen
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Liqiang Jia
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| |
Collapse
|
158
|
Liu J, Yang L, Luan M, Wang Y, Zhang C, Zhang B, Shi J, Zhao FG, Lan W, Luan S. A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis. Proc Natl Acad Sci U S A 2015; 112:E6571-8. [PMID: 26554016 PMCID: PMC4664319 DOI: 10.1073/pnas.1514598112] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inorganic phosphate (Pi) is stored in the vacuole, allowing plants to adapt to variable Pi availability in the soil. The transporters that mediate Pi sequestration into vacuole remain unknown, however. Here we report the functional characterization of Vacuolar Phosphate Transporter 1 (VPT1), an SPX domain protein that transports Pi into the vacuole in Arabidopsis. The vpt1 mutant plants were stunted and consistently retained less Pi than wild type plants, especially when grown in medium containing high levels of Pi. In seedlings, VPT1 was expressed primarily in younger tissues under normal conditions, but was strongly induced by high-Pi conditions in older tissues, suggesting that VPT1 functions in Pi storage in young tissues and in detoxification of high Pi in older tissues. As a result, disruption of VPT1 rendered plants hypersensitive to both low-Pi and high-Pi conditions, reducing the adaptability of plants to changing Pi availability. Patch-clamp analysis of isolated vacuoles showed that the Pi influx current was severely reduced in vpt1 compared with wild type plants. When ectopically expressed in Nicotiana benthamiana mesophyll cells, VPT1 mediates vacuolar influx of anions, including Pi, SO4(2-), NO3(-), Cl(-), and malate with Pi as that preferred anion. The VPT1-mediated Pi current amplitude was dependent on cytosolic phosphate concentration. Single-channel analysis showed that the open probability of VPT1 was increased with the increase in transtonoplast potential. We conclude that VPT1 is a transporter responsible for vacuolar Pi storage and is essential for Pi adaptation in Arabidopsis.
Collapse
Affiliation(s)
- Jinlong Liu
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Lei Yang
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Mingda Luan
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yuan Wang
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Chi Zhang
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Bin Zhang
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Jisen Shi
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing 210037, China
| | - Fu-Geng Zhao
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China;
| | - Wenzhi Lan
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China;
| | - Sheng Luan
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China; Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
159
|
Fontenot EB, Ditusa SF, Kato N, Olivier DM, Dale R, Lin WY, Chiou TJ, Macnaughtan MA, Smith AP. Increased phosphate transport of Arabidopsis thaliana Pht1;1 by site-directed mutagenesis of tyrosine 312 may be attributed to the disruption of homomeric interactions. PLANT, CELL & ENVIRONMENT 2015; 38:2012-22. [PMID: 25754174 DOI: 10.1111/pce.12522] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/06/2015] [Accepted: 02/14/2015] [Indexed: 05/20/2023]
Abstract
Members of the Pht1 family of plant phosphate (Pi) transporters play vital roles in Pi acquisition from soil and in planta Pi translocation to maintain optimal growth and development. The study of the specificities and biochemical properties of Pht1 transporters will contribute to improving the current understanding of plant phosphorus homeostasis and use-efficiency. In this study, we show through split in vivo interaction methods and in vitro analysis of microsomal root tissues that Arabidopsis thaliana Pht1;1 and Pht1;4 form homomeric and heteromeric complexes. Transient and heterologous expression of the Pht1;1 variants, Pht1;1(Y312D), Pht1;1(Y312A) and Pht1;1(Y312F), was used to analyse the role of a putative Pi binding residue (Tyr 312) in Pht1;1 transporter oligomerization and function. The homomeric interaction among Pht1;1 proteins was disrupted by mutation of Tyr 312 to Asp, but not to Ala or Phe. In addition, the Pht1;1(Y312D) variant conferred enhanced Pi transport when expressed in yeast cells. In contrast, mutation of Tyr 312 to Ala or Phe did not affect Pht1;1 transport kinetics. Our study demonstrates that modifications to the Pht1;1 higher-order structure affects Pi transport, suggesting that oligomerization may serve as a regulatory mechanism for modulating Pi uptake.
Collapse
Affiliation(s)
- Elena B Fontenot
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Sandra Feuer Ditusa
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Naohiro Kato
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Danielle M Olivier
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Renee Dale
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Wei-Yi Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan, China
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan, China
| | - Megan A Macnaughtan
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Aaron P Smith
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
160
|
Wang L, ZengJ HQ, Song J, Feng SJ, Yang ZM. miRNA778 and SUVH6 are involved in phosphate homeostasis in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:273-85. [PMID: 26259194 DOI: 10.1016/j.plantsci.2015.06.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/21/2015] [Accepted: 06/22/2015] [Indexed: 05/04/2023]
Abstract
microRNAs (miRNAs) play an important role in plant adaptation to phosphate (Pi) starvation. Histone methylation can remodel chromatin structure and mediate gene expression. This study identified Arabidopsis miR778, a Pi-responsive miRNA, and its target gene Su(var) 3-9 homologs 6 (SUVH6) encoding a histone H3 lysine 9 (H3K9) methyltransferase. Overexpression of miR778 moderately enhanced primary and lateral root growth, free phosphate accumulation in shoots, and accumulation of anthocyanin under Pi deficient conditions. miR778 overexpression relieved the arrest of columella cell development under Pi starvation. Conversely, transgenic plants overexpressing a miR778-target mimic (35S::MIM778), that act as a sponge and sequesters miR778, showed opposite phenotypes of 35S::miR778 plants under Pi deficiency. Expression of several Pi deficiency-responsive genes such as miR399, Phosphate Transporter (PHT1;4), Low Phosphate-Resistant1 (LPR1) and Production of Anthocyanin Pigment 1 (PAP1) were elevated in the miR778 overexpressing plants, suggesting that both miR778 and SUVH6 are involved in phosphate homeostasis in plants. This study has provided a basis for further investigation on how SUVH6 regulates its downstream genes through chromatin remodeling and DNA methylation in plants stressed by Pi deficiency.
Collapse
Affiliation(s)
- Lei Wang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Hou Qing ZengJ
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Jun Song
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Sheng Jun Feng
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
161
|
Gago-Zachert S. Viroids, infectious long non-coding RNAs with autonomous replication. Virus Res 2015; 212:12-24. [PMID: 26319312 DOI: 10.1016/j.virusres.2015.08.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/20/2015] [Accepted: 08/22/2015] [Indexed: 10/23/2022]
Abstract
Transcriptome deep-sequencing studies performed during the last years confirmed that the vast majority of the RNAs transcribed in higher organisms correspond to several types of non-coding RNAs including long non-coding RNAs (lncRNAs). The study of lncRNAs and the identification of their functions, is still an emerging field in plants but the characterization of some of them indicate that they play an important role in crucial regulatory processes like flowering regulation, and responses to abiotic stress and plant hormones. A second group of lncRNAs present in plants is formed by viroids, exogenous infectious subviral plant pathogens well known since many years. Viroids are composed of circular RNA genomes without protein-coding capacity and subvert enzymatic activities of their hosts to complete its own biological cycle. Different aspects of viroid biology and viroid-host interactions have been elucidated in the last years and some of them are the main topic of this review together with the analysis of the state-of-the-art about the growing field of endogenous lncRNAs in plants.
Collapse
Affiliation(s)
- Selma Gago-Zachert
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
| |
Collapse
|
162
|
Nguyen GN, Rothstein SJ, Spangenberg G, Kant S. Role of microRNAs involved in plant response to nitrogen and phosphorous limiting conditions. FRONTIERS IN PLANT SCIENCE 2015; 6:629. [PMID: 26322069 PMCID: PMC4534779 DOI: 10.3389/fpls.2015.00629] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/30/2015] [Indexed: 05/22/2023]
Abstract
Plant microRNAs (miRNAs) are a class of small non-coding RNAs which target and regulate the expression of genes involved in several growth, development, and metabolism processes. Recent researches have shown involvement of miRNAs in the regulation of uptake and utilization of nitrogen (N) and phosphorus (P) and more importantly for plant adaptation to N and P limitation conditions by modifications in plant growth, phenology, and architecture and production of secondary metabolites. Developing strategies that allow for the higher efficiency of using both N and P fertilizers in crop production is important for economic and environmental benefits. Improved crop varieties with better adaptation to N and P limiting conditions could be a key approach to achieve this effectively. Furthermore, understanding on the interactions between N and P uptake and use and their regulation is important for the maintenance of nutrient homeostasis in plants. This review describes the possible functions of different miRNAs and their cross-talk relevant to the plant adaptive responses to N and P limiting conditions. In addition, a comprehensive understanding of these processes at molecular level and importance of biological adaptation for improved N and P use efficiency is discussed.
Collapse
Affiliation(s)
- Giao N. Nguyen
- Biosciences Research, Department of Economic DevelopmentHorsham, VIC, Australia
| | - Steven J. Rothstein
- Department of Molecular and Cellular Biology, College of Biological Science, University of GuelphGuelph, ON, Canada
| | - German Spangenberg
- Biosciences Research, Department of Economic Development, AgriBio, Centre for AgriBioscienceBundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe UniversityBundoora, VIC, Australia
| | - Surya Kant
- Biosciences Research, Department of Economic DevelopmentHorsham, VIC, Australia
| |
Collapse
|
163
|
Guo M, Ruan W, Li C, Huang F, Zeng M, Liu Y, Yu Y, Ding X, Wu Y, Wu Z, Mao C, Yi K, Wu P, Mo X. Integrative Comparison of the Role of the PHOSPHATE RESPONSE1 Subfamily in Phosphate Signaling and Homeostasis in Rice. PLANT PHYSIOLOGY 2015; 168:1762-76. [PMID: 26082401 PMCID: PMC4528768 DOI: 10.1104/pp.15.00736] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 06/13/2015] [Indexed: 05/18/2023]
Abstract
Phosphorus (P), an essential macronutrient for all living cells, is indispensable for agricultural production. Although Arabidopsis (Arabidopsis thaliana) PHOSPHATE RESPONSE1 (PHR1) and its orthologs in other species have been shown to function in transcriptional regulation of phosphate (Pi) signaling and Pi homeostasis, an integrative comparison of PHR1-related proteins in rice (Oryza sativa) has not previously been reported. Here, we identified functional redundancy among three PHR1 orthologs in rice (OsPHR1, OsPHR2, and OsPHR3) using phylogenetic and mutation analysis. OsPHR3 in conjunction with OsPHR1 and OsPHR2 function in transcriptional activation of most Pi starvation-induced genes. Loss-of-function mutations in any one of these transcription factors (TFs) impaired root hair growth (primarily root hair elongation). However, these three TFs showed differences in DNA binding affinities and messenger RNA expression patterns in different tissues and growth stages, and transcriptomic analysis revealed differential effects on Pi starvation-induced gene expression of single mutants of the three TFs, indicating some degree of functional diversification. Overexpression of genes encoding any of these TFs resulted in partial constitutive activation of Pi starvation response and led to Pi accumulation in the shoot. Furthermore, unlike OsPHR2-overexpressing lines, which exhibited growth retardation under normal or Pi-deficient conditions, OsPHR3-overexpressing plants exhibited significant tolerance to low-Pi stress but normal growth rates under normal Pi conditions, suggesting that OsPHR3 would be useful for molecular breeding to improve Pi uptake/use efficiency under Pi-deficient conditions. We propose that OsPHR1, OsPHR2, and OsPHR3 form a network and play diverse roles in regulating Pi signaling and homeostasis in rice.
Collapse
Affiliation(s)
- Meina Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (M.G., W.R., C.L., F.H., M.Z., Y.L., Y.Y., X.D., Y.W., Z.W., C.M., K.Y., P.W., X.M.); andInstitute of Agricultural Resources and Regional Planning, China Academy of Agricultural Sciences, Beijing 100081, China (W.R., K.Y.)
| | - Wenyuan Ruan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (M.G., W.R., C.L., F.H., M.Z., Y.L., Y.Y., X.D., Y.W., Z.W., C.M., K.Y., P.W., X.M.); andInstitute of Agricultural Resources and Regional Planning, China Academy of Agricultural Sciences, Beijing 100081, China (W.R., K.Y.)
| | - Changying Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (M.G., W.R., C.L., F.H., M.Z., Y.L., Y.Y., X.D., Y.W., Z.W., C.M., K.Y., P.W., X.M.); andInstitute of Agricultural Resources and Regional Planning, China Academy of Agricultural Sciences, Beijing 100081, China (W.R., K.Y.)
| | - Fangliang Huang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (M.G., W.R., C.L., F.H., M.Z., Y.L., Y.Y., X.D., Y.W., Z.W., C.M., K.Y., P.W., X.M.); andInstitute of Agricultural Resources and Regional Planning, China Academy of Agricultural Sciences, Beijing 100081, China (W.R., K.Y.)
| | - Ming Zeng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (M.G., W.R., C.L., F.H., M.Z., Y.L., Y.Y., X.D., Y.W., Z.W., C.M., K.Y., P.W., X.M.); andInstitute of Agricultural Resources and Regional Planning, China Academy of Agricultural Sciences, Beijing 100081, China (W.R., K.Y.)
| | - Yingyao Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (M.G., W.R., C.L., F.H., M.Z., Y.L., Y.Y., X.D., Y.W., Z.W., C.M., K.Y., P.W., X.M.); andInstitute of Agricultural Resources and Regional Planning, China Academy of Agricultural Sciences, Beijing 100081, China (W.R., K.Y.)
| | - Yanan Yu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (M.G., W.R., C.L., F.H., M.Z., Y.L., Y.Y., X.D., Y.W., Z.W., C.M., K.Y., P.W., X.M.); andInstitute of Agricultural Resources and Regional Planning, China Academy of Agricultural Sciences, Beijing 100081, China (W.R., K.Y.)
| | - Xiaomeng Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (M.G., W.R., C.L., F.H., M.Z., Y.L., Y.Y., X.D., Y.W., Z.W., C.M., K.Y., P.W., X.M.); andInstitute of Agricultural Resources and Regional Planning, China Academy of Agricultural Sciences, Beijing 100081, China (W.R., K.Y.)
| | - Yunrong Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (M.G., W.R., C.L., F.H., M.Z., Y.L., Y.Y., X.D., Y.W., Z.W., C.M., K.Y., P.W., X.M.); andInstitute of Agricultural Resources and Regional Planning, China Academy of Agricultural Sciences, Beijing 100081, China (W.R., K.Y.)
| | - Zhongchang Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (M.G., W.R., C.L., F.H., M.Z., Y.L., Y.Y., X.D., Y.W., Z.W., C.M., K.Y., P.W., X.M.); andInstitute of Agricultural Resources and Regional Planning, China Academy of Agricultural Sciences, Beijing 100081, China (W.R., K.Y.)
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (M.G., W.R., C.L., F.H., M.Z., Y.L., Y.Y., X.D., Y.W., Z.W., C.M., K.Y., P.W., X.M.); andInstitute of Agricultural Resources and Regional Planning, China Academy of Agricultural Sciences, Beijing 100081, China (W.R., K.Y.)
| | - Keke Yi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (M.G., W.R., C.L., F.H., M.Z., Y.L., Y.Y., X.D., Y.W., Z.W., C.M., K.Y., P.W., X.M.); andInstitute of Agricultural Resources and Regional Planning, China Academy of Agricultural Sciences, Beijing 100081, China (W.R., K.Y.)
| | - Ping Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (M.G., W.R., C.L., F.H., M.Z., Y.L., Y.Y., X.D., Y.W., Z.W., C.M., K.Y., P.W., X.M.); andInstitute of Agricultural Resources and Regional Planning, China Academy of Agricultural Sciences, Beijing 100081, China (W.R., K.Y.)
| | - Xiaorong Mo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China (M.G., W.R., C.L., F.H., M.Z., Y.L., Y.Y., X.D., Y.W., Z.W., C.M., K.Y., P.W., X.M.); andInstitute of Agricultural Resources and Regional Planning, China Academy of Agricultural Sciences, Beijing 100081, China (W.R., K.Y.)
| |
Collapse
|
164
|
Secco D, Wang C, Shou H, Schultz MD, Chiarenza S, Nussaume L, Ecker JR, Whelan J, Lister R. Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements. eLife 2015; 4. [PMID: 26196146 DOI: 10.7554/elife.09343.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/20/2015] [Indexed: 05/20/2023] Open
Abstract
Cytosine DNA methylation (mC) is a genome modification that can regulate the expression of coding and non-coding genetic elements. However, little is known about the involvement of mC in response to environmental cues. Using whole genome bisulfite sequencing to assess the spatio-temporal dynamics of mC in rice grown under phosphate starvation and recovery conditions, we identified widespread phosphate starvation-induced changes in mC, preferentially localized in transposable elements (TEs) close to highly induced genes. These changes in mC occurred after changes in nearby gene transcription, were mostly DCL3a-independent, and could partially be propagated through mitosis, however no evidence of meiotic transmission was observed. Similar analyses performed in Arabidopsis revealed a very limited effect of phosphate starvation on mC, suggesting a species-specific mechanism. Overall, this suggests that TEs in proximity to environmentally induced genes are silenced via hypermethylation, and establishes the temporal hierarchy of transcriptional and epigenomic changes in response to stress.
Collapse
Affiliation(s)
- David Secco
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
| | - Chuang Wang
- State Key laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, China
| | - Huixia Shou
- State Key laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, China
| | - Matthew D Schultz
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - Serge Chiarenza
- UMR 6191 CEA, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Laurent Nussaume
- UMR 6191 CEA, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Joseph R Ecker
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - James Whelan
- Joint Research Laboratory in Genomics and Nutriomics, Zhejiang University, Hangzhou, China
| | - Ryan Lister
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
| |
Collapse
|
165
|
Secco D, Wang C, Shou H, Schultz MD, Chiarenza S, Nussaume L, Ecker JR, Whelan J, Lister R. Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements. eLife 2015; 4:e09343. [PMID: 26196146 PMCID: PMC4534844 DOI: 10.7554/elife.09343] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/20/2015] [Indexed: 01/19/2023] Open
Abstract
Cytosine DNA methylation (mC) is a genome modification that can regulate the expression of coding and non-coding genetic elements. However, little is known about the involvement of mC in response to environmental cues. Using whole genome bisulfite sequencing to assess the spatio-temporal dynamics of mC in rice grown under phosphate starvation and recovery conditions, we identified widespread phosphate starvation-induced changes in mC, preferentially localized in transposable elements (TEs) close to highly induced genes. These changes in mC occurred after changes in nearby gene transcription, were mostly DCL3a-independent, and could partially be propagated through mitosis, however no evidence of meiotic transmission was observed. Similar analyses performed in Arabidopsis revealed a very limited effect of phosphate starvation on mC, suggesting a species-specific mechanism. Overall, this suggests that TEs in proximity to environmentally induced genes are silenced via hypermethylation, and establishes the temporal hierarchy of transcriptional and epigenomic changes in response to stress.
Collapse
Affiliation(s)
- David Secco
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
| | - Chuang Wang
- State Key laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, China
- Joint Research Laboratory in Genomics and Nutriomics, Zhejiang University, Hangzhou, China
| | - Huixia Shou
- State Key laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, China
- Joint Research Laboratory in Genomics and Nutriomics, Zhejiang University, Hangzhou, China
| | - Matthew D Schultz
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Serge Chiarenza
- UMR 6191 CEA, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Laurent Nussaume
- UMR 6191 CEA, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - James Whelan
- Joint Research Laboratory in Genomics and Nutriomics, Zhejiang University, Hangzhou, China
- Department of Animal, Plant and Soil Science, School of Life Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Australia
| | - Ryan Lister
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
| |
Collapse
|
166
|
Jost R, Pharmawati M, Lapis-Gaza HR, Rossig C, Berkowitz O, Lambers H, Finnegan PM. Differentiating phosphate-dependent and phosphate-independent systemic phosphate-starvation response networks in Arabidopsis thaliana through the application of phosphite. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2501-14. [PMID: 25697796 PMCID: PMC4986860 DOI: 10.1093/jxb/erv025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phosphite is a less oxidized form of phosphorus than phosphate. Phosphite is considered to be taken up by the plant through phosphate transporters. It can mimic phosphate to some extent, but it is not metabolized into organophosphates. Phosphite could therefore interfere with phosphorus signalling networks. Typical physiological and transcriptional responses to low phosphate availability were investigated and the short-term kinetics of their reversion by phosphite, compared with phosphate, were determined in both roots and shoots of Arabidopsis thaliana. Phosphite treatment resulted in a strong growth arrest. It mimicked phosphate in causing a reduction in leaf anthocyanins and in the expression of a subset of the phosphate-starvation-responsive genes. However, the kinetics of the response were slower than for phosphate, which may be due to discrimination against phosphite by phosphate transporters PHT1;8 and PHT1;9 causing delayed shoot accumulation of phosphite. Transcripts encoding PHT1;7, lipid-remodelling enzymes such as SQD2, and phosphocholine-producing NMT3 were highly responsive to phosphite, suggesting their regulation by a direct phosphate-sensing network. Genes encoding components associated with the 'PHO regulon' in plants, such as At4, IPS1, and PHO1;H1, generally responded more slowly to phosphite than to phosphate, except for SPX1 in roots and MIR399d in shoots. Two uncharacterized phosphate-responsive E3 ligase genes, PUB35 and C3HC4, were also highly phosphite responsive. These results show that phosphite is a valuable tool to identify network components directly responsive to phosphate.
Collapse
Affiliation(s)
- Ricarda Jost
- School of Plant Biology, The University of Western Australia, Crawley (Perth), Western Australia, Australia
| | - Made Pharmawati
- School of Plant Biology, The University of Western Australia, Crawley (Perth), Western Australia, Australia Biology Department, Faculty of Mathematics and Natural Sciences, Bukit Jimbaran Campus, Udayana University, Bali, Indonesia
| | - Hazel R Lapis-Gaza
- School of Plant Biology, The University of Western Australia, Crawley (Perth), Western Australia, Australia
| | - Claudia Rossig
- School of Plant Biology, The University of Western Australia, Crawley (Perth), Western Australia, Australia
| | - Oliver Berkowitz
- School of Plant Biology, The University of Western Australia, Crawley (Perth), Western Australia, Australia School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Hans Lambers
- School of Plant Biology, The University of Western Australia, Crawley (Perth), Western Australia, Australia Institute of Agriculture, The University of Western Australia, Crawley (Perth), Western Australia, Australia
| | - Patrick M Finnegan
- School of Plant Biology, The University of Western Australia, Crawley (Perth), Western Australia, Australia Institute of Agriculture, The University of Western Australia, Crawley (Perth), Western Australia, Australia
| |
Collapse
|
167
|
Su T, Xu Q, Zhang FC, Chen Y, Li LQ, Wu WH, Chen YF. WRKY42 modulates phosphate homeostasis through regulating phosphate translocation and acquisition in Arabidopsis. PLANT PHYSIOLOGY 2015; 167:1579-91. [PMID: 25733771 PMCID: PMC4378159 DOI: 10.1104/pp.114.253799] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 02/27/2015] [Indexed: 05/17/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) WRKY transcription factor family has more than 70 members, and some of them have been reported to play important roles in plant response to biotic and abiotic stresses. This study shows that WRKY42 regulated phosphate homeostasis in Arabidopsis. The WRKY42-overexpressing lines, similar to the phosphate1 (pho1) mutant, were more sensitive to low-inorganic phosphate (Pi) stress and had lower shoot Pi content compared with wild-type plants. The PHO1 expression was repressed in WRKY42-overexpressing lines and enhanced in the wrky42 wrky6 double mutant. The WRKY42 protein bound to the PHO1 promoter under Pi-sufficient condition, and this binding was abrogated during Pi starvation. These data indicate that WRKY42 modulated Pi translocation by regulating PHO1 expression. Furthermore, overexpression of WRKY42 increased root Pi content and Pi uptake, whereas the wrky42 mutant had lower root Pi content and Pi uptake rate compared with wild-type plants. Under Pi-sufficient condition, WRKY42 positively regulated PHOSPHATE TRANSPORTER1;1 (PHT1;1) expression by binding to the PHT1;1 promoter, and this binding was abolished by low-Pi stress. During Pi starvation, the WRKY42 protein was degraded through the 26S proteasome pathway. Our results showed that AtWRKY42 modulated Pi homeostasis by regulating the expression of PHO1 and PHT1;1 to adapt to environmental changes in Pi availability.
Collapse
Affiliation(s)
- Tong Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, National Plant Gene Research Centre (Beijing), Beijing 100193, China
| | - Qian Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, National Plant Gene Research Centre (Beijing), Beijing 100193, China
| | - Fei-Cui Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, National Plant Gene Research Centre (Beijing), Beijing 100193, China
| | - Yun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, National Plant Gene Research Centre (Beijing), Beijing 100193, China
| | - Li-Qin Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, National Plant Gene Research Centre (Beijing), Beijing 100193, China
| | - Wei-Hua Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, National Plant Gene Research Centre (Beijing), Beijing 100193, China
| | - Yi-Fang Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, National Plant Gene Research Centre (Beijing), Beijing 100193, China
| |
Collapse
|
168
|
Ayadi A, David P, Arrighi JF, Chiarenza S, Thibaud MC, Nussaume L, Marin E. Reducing the genetic redundancy of Arabidopsis PHOSPHATE TRANSPORTER1 transporters to study phosphate uptake and signaling. PLANT PHYSIOLOGY 2015; 167:1511-26. [PMID: 25670816 PMCID: PMC4378149 DOI: 10.1104/pp.114.252338] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/09/2015] [Indexed: 05/18/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) absorbs inorganic phosphate (Pi) from the soil through an active transport process mediated by the nine members of the PHOSPHATE TRANSPORTER1 (PHT1) family. These proteins share a high level of similarity (greater than 61%), with overlapping expression patterns. The resulting genetic and functional redundancy prevents the analysis of their specific roles. To overcome this difficulty, our approach combined several mutations with gene silencing to inactivate multiple members of the PHT1 family, including a cluster of genes localized on chromosome 5 (PHT1;1, PHT1;2, and PHT1;3). Physiological analyses of these lines established that these three genes, along with PHT1;4, are the main contributors to Pi uptake. Furthermore, PHT1;1 plays an important role in translocation from roots to leaves in high phosphate conditions. These genetic tools also revealed that some PHT1 transporters likely exhibit a dual affinity for phosphate, suggesting that their activity is posttranslationally controlled. These lines display significant phosphate deficiency-related phenotypes (e.g. biomass and yield) due to a massive (80%-96%) reduction in phosphate uptake activities. These defects limited the amount of internal Pi pool, inducing compensatory mechanisms triggered by the systemic Pi starvation response. Such reactions have been uncoupled from PHT1 activity, suggesting that systemic Pi sensing is most probably acting downstream of PHT1.
Collapse
Affiliation(s)
- Amal Ayadi
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); andLaboratoire des Symbioses Tropicales et Méditerranéennes, TA A-82/J Campus International de Baillarguet, 34398 Montpellier cedex 5, France (J.-F.A.)
| | - Pascale David
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); andLaboratoire des Symbioses Tropicales et Méditerranéennes, TA A-82/J Campus International de Baillarguet, 34398 Montpellier cedex 5, France (J.-F.A.)
| | - Jean-François Arrighi
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); andLaboratoire des Symbioses Tropicales et Méditerranéennes, TA A-82/J Campus International de Baillarguet, 34398 Montpellier cedex 5, France (J.-F.A.)
| | - Serge Chiarenza
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); andLaboratoire des Symbioses Tropicales et Méditerranéennes, TA A-82/J Campus International de Baillarguet, 34398 Montpellier cedex 5, France (J.-F.A.)
| | - Marie-Christine Thibaud
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); andLaboratoire des Symbioses Tropicales et Méditerranéennes, TA A-82/J Campus International de Baillarguet, 34398 Montpellier cedex 5, France (J.-F.A.)
| | - Laurent Nussaume
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); andLaboratoire des Symbioses Tropicales et Méditerranéennes, TA A-82/J Campus International de Baillarguet, 34398 Montpellier cedex 5, France (J.-F.A.)
| | - Elena Marin
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.); andLaboratoire des Symbioses Tropicales et Méditerranéennes, TA A-82/J Campus International de Baillarguet, 34398 Montpellier cedex 5, France (J.-F.A.)
| |
Collapse
|
169
|
Kudoyarova GR, Dodd IC, Veselov DS, Rothwell SA, Veselov SY. Common and specific responses to availability of mineral nutrients and water. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2133-44. [PMID: 25697793 PMCID: PMC4986719 DOI: 10.1093/jxb/erv017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/04/2015] [Accepted: 01/08/2015] [Indexed: 05/08/2023]
Abstract
Changes in resource (mineral nutrients and water) availability, due to their heterogeneous distribution in space and time, affect plant development. Plants need to sense these changes to optimize growth and biomass allocation by integrating root and shoot growth. Since a limited supply of water or nutrients can elicit similar physiological responses (the relative activation of root growth at the expense of shoot growth), similar underlying mechanisms may affect perception and acquisition of either nutrients or water. This review compares root and shoot responses to availability of different macronutrients and water. Attention is given to the roles of root-to-shoot signalling and shoot-to-root signalling, with regard to coordinating changes in root and shoot growth and development. Involvement of plant hormones in regulating physiological responses such as stomatal and hydraulic conductance is revealed by measuring the effects of resource availability on phytohormone concentrations in roots and shoots, and their flow between roots and shoots in xylem and phloem saps. More specific evidence can be obtained by measuring the physiological responses of genotypes with altered hormone responses or concentrations. We discuss the similarity and diversity of changes in shoot growth, allocation to root growth, and root architecture under changes in water, nitrate, and phosphorus availability, and the possible involvement of abscisic acid, indole-acetic acid, and cytokinin in their regulation. A better understanding of these mechanisms may contribute to better crop management for efficient use of these resources and to selecting crops for improved performance under suboptimal soil conditions.
Collapse
Affiliation(s)
- Guzel R Kudoyarova
- Institute of Biology, Ufa Science Centre, Russian Academy of Sciences, pr. Oktyabrya 69, 450054 Ufa, Russia
| | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, LA1 4YQ Lancaster, UK
| | - Dmitry S Veselov
- Institute of Biology, Ufa Science Centre, Russian Academy of Sciences, pr. Oktyabrya 69, 450054 Ufa, Russia
| | - Shane A Rothwell
- The Lancaster Environment Centre, Lancaster University, LA1 4YQ Lancaster, UK
| | | |
Collapse
|
170
|
Ruiz Herrera LF, Shane MW, López-Bucio J. Nutritional regulation of root development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:431-43. [PMID: 25760021 DOI: 10.1002/wdev.183] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/24/2014] [Accepted: 02/01/2015] [Indexed: 12/23/2022]
Abstract
Mineral nutrients such as nitrogen (N), phosphorus (P), and iron (Fe) are essential for plant growth, development, and reproduction. Adequate provision of nutrients via the root system impacts greatly on shoot biomass and plant productivity and is therefore of crucial importance for agriculture. Nutrients are taken up at the root surface in ionic form, which is mediated by specific transport proteins. Noteworthy, root tips are able to sense the local and internal concentrations of nutrients to adjust growth and developmental processes, and ultimately, to increase or decrease the exploratory capacity of the root system. Recently, important progress has been achieved in identifying the mechanisms of nutrient sensing in wild- and cultivated species, including Arabidopsis, bean, maize, rice, lupin as well as in members of the Proteaceae and Cyperaceae families, which develop highly sophisticated root clusters as adaptations to survive in soils with very low fertility. Major findings include identification of transporter proteins and transcription factors regulating nutrient sensing, miRNAs as mobile signals and peptides as repressors of lateral root development under heterogeneous nutrient supply. Understanding the roles played by N, P, and Fe in gene expression and biochemical characterization of proteins involved in root developmental responses to homogeneous or heterogeneous N and P sources has gained additional interest due to its potential for improving fertilizer acquisition efficiency in crops.
Collapse
Affiliation(s)
- León Francisco Ruiz Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio A-1', Ciudad Universitaria Morelia, Michoacán, México
| | - Michael W Shane
- School of Plant Biology, Faculty of Science, University of Western Australia, Crawley, Australia
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio A-1', Ciudad Universitaria Morelia, Michoacán, México
| |
Collapse
|
171
|
Ruan W, Guo M, Cai L, Hu H, Li C, Liu Y, Wu Z, Mao C, Yi K, Wu P, Mo X. Genetic manipulation of a high-affinity PHR1 target cis-element to improve phosphorous uptake in Oryza sativa L. PLANT MOLECULAR BIOLOGY 2015; 87:429-40. [PMID: 25657119 DOI: 10.1007/s11103-015-0289-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 01/23/2015] [Indexed: 05/08/2023]
Abstract
Phosphorus (P) is an essential macronutrient for crop development and production. Phosphate starvation response 1 (PHR1) acts as the central regulator for Pi-signaling and Pi-homeostasis in plants by binding to the cis-element PHR1 binding sequence (P1BS; GNATATNC). However, how phosphate starvation-induced gene expression is regulated remains obscure. In this work, we investigated the DNA binding affinity of the PHR1 ortholog OsPHR2 to its downstream target genes in Oryza sativa (rice). We confirmed that a combination of P1BS and P1BS-like motifs are essential for stable binding by OsPHR2. Furthermore, we report that variations in P1BS motif bases affected the binding affinity of OsPHR2 and that the highest affinity motif was GaATATtC (designated the A-T-type P1BS). We also found that a combination of two A-T-type P1BS elements in tandem, namely HA-P1BS, was very efficient for binding of OsPHR2. Using the cis-regulator HA-P1BS, we modified the promoters of Transporter Traffic Facilitator 1 (PHF1), a key factor controlling endoplasmic reticulum-exit of phosphate transporters to the plasma membrane, for efficient uptake of phosphorous in an energetically neutral way. Transgenic plants with the modified promoters showed significantly enhanced tolerance to low phosphate stress in both solution and soil conditions, which provides a new strategy for crop improvement to enhance tolerance of nutrient deficiency.
Collapse
Affiliation(s)
- Wenyuan Ruan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Chen J, Wang Y, Wang F, Yang J, Gao M, Li C, Liu Y, Liu Y, Yamaji N, Ma JF, Paz-Ares J, Nussaume L, Zhang S, Yi K, Wu Z, Wu P. The rice CK2 kinase regulates trafficking of phosphate transporters in response to phosphate levels. THE PLANT CELL 2015; 27:711-23. [PMID: 25724641 PMCID: PMC4558666 DOI: 10.1105/tpc.114.135335] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/07/2015] [Indexed: 05/03/2023]
Abstract
Phosphate transporters (PTs) mediate phosphorus uptake and are regulated at the transcriptional and posttranslational levels. In one key mechanism of posttranslational regulation, phosphorylation of PTs affects their trafficking from the endoplasmic reticulum (ER) to the plasma membrane. However, the kinase(s) mediating PT phosphorylation and the mechanism leading to ER retention of phosphorylated PTs remain unclear. In this study, we identified a rice (Oryza sativa) kinase subunit, CK2β3, which interacts with PT2 and PT8 in a yeast two-hybrid screen. Also, the CK2α3/β3 holoenzyme phosphorylates PT8 under phosphate-sufficient conditions. This phosphorylation inhibited the interaction of PT8 with PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1, a key cofactor regulating the exit of PTs from the ER to the plasma membrane. Additionally, phosphorus starvation promoted CK2β3 degradation, relieving the negative regulation of PT phosphorus-insufficient conditions. In accordance, transgenic expression of a nonphosphorylatable version of OsPT8 resulted in elevated levels of that protein at the plasma membrane and enhanced phosphorus accumulation and plant growth under various phosphorus regimes. Taken together, these results indicate that CK2α3/β3 negatively regulates PTs and phosphorus status regulates CK2α3/β3.
Collapse
Affiliation(s)
- Jieyu Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yifeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingxing Gao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Changying Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingyao Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Javier Paz-Ares
- Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Laurent Nussaume
- Unité Mixte de Recherche 7265 Commissariat à l'Energie Atomique/CNRS/University of Aix-Marseille, Institute for Biotechnology and Environmental Biology/SBVME/Laboratory of Plant Development Biology, Commissariat à l'Energie Atomique, Cadarache, St. Paul lez Durance F-13108, France
| | - Shuqun Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Keke Yi
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhongchang Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ping Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
173
|
Qu B, He X, Wang J, Zhao Y, Teng W, Shao A, Zhao X, Ma W, Wang J, Li B, Li Z, Tong Y. A wheat CCAAT box-binding transcription factor increases the grain yield of wheat with less fertilizer input. PLANT PHYSIOLOGY 2015; 167:411-23. [PMID: 25489021 PMCID: PMC4326744 DOI: 10.1104/pp.114.246959] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 12/04/2014] [Indexed: 05/18/2023]
Abstract
Increasing fertilizer consumption has led to low fertilizer use efficiency and environmental problems. Identifying nutrient-efficient genes will facilitate the breeding of crops with improved fertilizer use efficiency. This research performed a genome-wide sequence analysis of the A (NFYA), B (NFYB), and C (NFYC) subunits of Nuclear Factor Y (NF-Y) in wheat (Triticum aestivum) and further investigated their responses to nitrogen and phosphorus availability in wheat seedlings. Sequence mining together with gene cloning identified 18 NFYAs, 34 NFYBs, and 28 NFYCs. The expression of most NFYAs positively responded to low nitrogen and phosphorus availability. In contrast, microRNA169 negatively responded to low nitrogen and phosphorus availability and degraded NFYAs. Overexpressing TaNFYA-B1, a low-nitrogen- and low-phosphorus-inducible NFYA transcript factor on chromosome 6B, significantly increased both nitrogen and phosphorus uptake and grain yield under differing nitrogen and phosphorus supply levels in a field experiment. The increased nitrogen and phosphorus uptake may have resulted from the fact that that overexpressing TaNFYA-B1 stimulated root development and up-regulated the expression of both nitrate and phosphate transporters in roots. Our results suggest that TaNFYA-B1 plays essential roles in root development and in nitrogen and phosphorus usage in wheat. Furthermore, our results provide new knowledge and valuable gene resources that should be useful in efforts to breed crops targeting high yield with less fertilizer input.
Collapse
Affiliation(s)
- Baoyuan Qu
- State Key Laboratory for Plant Cell and Chromosome Engineering (B.Q., X.H., Y.Z., W.T., A.S., X.Z., W.M., Ju.W., B.L., Z.L., Y.T.) and National Center for Plant Gene Research (Ji.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xue He
- State Key Laboratory for Plant Cell and Chromosome Engineering (B.Q., X.H., Y.Z., W.T., A.S., X.Z., W.M., Ju.W., B.L., Z.L., Y.T.) and National Center for Plant Gene Research (Ji.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Wang
- State Key Laboratory for Plant Cell and Chromosome Engineering (B.Q., X.H., Y.Z., W.T., A.S., X.Z., W.M., Ju.W., B.L., Z.L., Y.T.) and National Center for Plant Gene Research (Ji.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanyan Zhao
- State Key Laboratory for Plant Cell and Chromosome Engineering (B.Q., X.H., Y.Z., W.T., A.S., X.Z., W.M., Ju.W., B.L., Z.L., Y.T.) and National Center for Plant Gene Research (Ji.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wan Teng
- State Key Laboratory for Plant Cell and Chromosome Engineering (B.Q., X.H., Y.Z., W.T., A.S., X.Z., W.M., Ju.W., B.L., Z.L., Y.T.) and National Center for Plant Gene Research (Ji.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - An Shao
- State Key Laboratory for Plant Cell and Chromosome Engineering (B.Q., X.H., Y.Z., W.T., A.S., X.Z., W.M., Ju.W., B.L., Z.L., Y.T.) and National Center for Plant Gene Research (Ji.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xueqiang Zhao
- State Key Laboratory for Plant Cell and Chromosome Engineering (B.Q., X.H., Y.Z., W.T., A.S., X.Z., W.M., Ju.W., B.L., Z.L., Y.T.) and National Center for Plant Gene Research (Ji.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenying Ma
- State Key Laboratory for Plant Cell and Chromosome Engineering (B.Q., X.H., Y.Z., W.T., A.S., X.Z., W.M., Ju.W., B.L., Z.L., Y.T.) and National Center for Plant Gene Research (Ji.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Junyi Wang
- State Key Laboratory for Plant Cell and Chromosome Engineering (B.Q., X.H., Y.Z., W.T., A.S., X.Z., W.M., Ju.W., B.L., Z.L., Y.T.) and National Center for Plant Gene Research (Ji.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Li
- State Key Laboratory for Plant Cell and Chromosome Engineering (B.Q., X.H., Y.Z., W.T., A.S., X.Z., W.M., Ju.W., B.L., Z.L., Y.T.) and National Center for Plant Gene Research (Ji.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhensheng Li
- State Key Laboratory for Plant Cell and Chromosome Engineering (B.Q., X.H., Y.Z., W.T., A.S., X.Z., W.M., Ju.W., B.L., Z.L., Y.T.) and National Center for Plant Gene Research (Ji.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiping Tong
- State Key Laboratory for Plant Cell and Chromosome Engineering (B.Q., X.H., Y.Z., W.T., A.S., X.Z., W.M., Ju.W., B.L., Z.L., Y.T.) and National Center for Plant Gene Research (Ji.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
174
|
Kulcheski FR, Côrrea R, Gomes IA, de Lima JC, Margis R. NPK macronutrients and microRNA homeostasis. FRONTIERS IN PLANT SCIENCE 2015; 6:451. [PMID: 26136763 PMCID: PMC4468412 DOI: 10.3389/fpls.2015.00451] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/02/2015] [Indexed: 05/02/2023]
Abstract
Macronutrients are essential elements for plant growth and development. In natural, non-cultivated systems, the availability of macronutrients is not a limiting factor of growth, due to fast recycling mechanisms. However, their availability might be an issue in modern agricultural practices, since soil has been frequently over exploited. From a crop management perspective, the nitrogen (N), phosphorus (P), and potassium (K) are three important limiting factors and therefore frequently added as fertilizers. NPK are among the nutrients that have been reported to alter post-embryonic root developmental processes and consequently, impairs crop yield. To cope with nutrients scarcity, plants have evolved several mechanisms involved in metabolic, physiological, and developmental adaptations. In this scenario, microRNAs (miRNAs) have emerged as additional key regulators of nutrients uptake and assimilation. Some studies have demonstrated the intrinsic relation between miRNAs and their targets, and how they can modulate plants to deal with the NPK availability. In this review, we focus on miRNAs and their regulation of targets involved in NPK metabolism. In general, NPK starvation is related with miRNAs that are involved in root-architectural changes and uptake activity modulation. We further show that several miRNAs were discovered to be involved in plant-microbe symbiosis during N and P uptake, and in this way we present a global view of some studies that were conducted in the last years. The integration of current knowledge about miRNA-NPK signaling may help future studies to focus in good candidates genes for the development of important tools for plant nutritional breeding.
Collapse
Affiliation(s)
- Franceli R. Kulcheski
- Departamento de Biofísica, Laboratório de Genomas e Populações de Plantas, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto AlegreBrazil
| | - Régis Côrrea
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de JaneiroBrazil
| | - Igor A. Gomes
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de JaneiroBrazil
| | - Júlio C. de Lima
- Laboratório de Genética Molecular, Instituto de Ciências Biológicas, Universidade de Passo Fundo, Passo FundoBrazil
| | - Rogerio Margis
- Departamento de Biofísica, Laboratório de Genomas e Populações de Plantas, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto AlegreBrazil
- *Correspondence: Rogerio Margis, Departamento de Biofísica, Laboratório de Genomas e Populações de Plantas, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, Setor IV, Prédio 43431, Sala 213, Porto Alegre, RS, CEP, Brazil
| |
Collapse
|
175
|
Hu B, Wang W, Deng K, Li H, Zhang Z, Zhang L, Chu C. MicroRNA399 is involved in multiple nutrient starvation responses in rice. FRONTIERS IN PLANT SCIENCE 2015; 6:188. [PMID: 25852730 PMCID: PMC4371656 DOI: 10.3389/fpls.2015.00188] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/08/2015] [Indexed: 05/20/2023]
Abstract
The increasing evidences have revealed that microRNAs (miRNAs) play significant role in nutrient stress response. Previously, miR399 was documented to be induced by phosphorus (P) starvation and involved in regulating P starvation responses. To further investigate the function of miR399 in rice (Oryza sativa L.), we performed GeneChip analysis with OsmiR399 over-expressing plants. Interestingly, our results showed that, besides P starvation responsive genes, the expression of a number of genes involved in iron (Fe), potassium (K), sodium (Na), and calcium (Ca) absorption was dramatically up-regulated in OsmiR399 over-expressing plants. Consistently, the concentrations of Fe, K, Na, and Ca were also increased in OsmiR399 over-expressing plants. The expression of OsmiR399 was also up-regulated by these nutrient starvations, respectively. Moreover, the loss-of-function of LTN1, the down-stream target of OsmiR399, also resulted in the increase of multiple metal elements and the up-regulation of the absorption related genes. These results indicated that OsmiR399 participates in the regulation of multiple nutrient starvation responses, which also gives new view on understanding the interaction among different nutrients mediated by miR399.
Collapse
Affiliation(s)
- Bin Hu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Wei Wang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Kun Deng
- School of Agriculture, Henan University of Science and TechnologyLuoyang, China
| | - Hua Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Zhihua Zhang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Lianhe Zhang
- School of Agriculture, Henan University of Science and TechnologyLuoyang, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- *Correspondence: Chengcai Chu, State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beichen West Road No.1, Beijing 100101, China
| |
Collapse
|
176
|
Aibara I, Miwa K. Strategies for Optimization of Mineral Nutrient Transport in Plants: Multilevel Regulation of Nutrient-Dependent Dynamics of Root Architecture and Transporter Activity. ACTA ACUST UNITED AC 2014; 55:2027-36. [DOI: 10.1093/pcp/pcu156] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
177
|
Arnaud C, Clément M, Thibaud MC, Javot H, Chiarenza S, Delannoy E, Revol J, Soreau P, Balzergue S, Block MA, Maréchal E, Desnos T, Nussaume L. Identification of phosphatin, a drug alleviating phosphate starvation responses in Arabidopsis. PLANT PHYSIOLOGY 2014; 166:1479-91. [PMID: 25209983 PMCID: PMC4226385 DOI: 10.1104/pp.114.248112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Inorganic phosphate (Pi) is present in most soils at suboptimal concentrations, strongly limiting plant development. Plants have the ability to sense and adapt to the surrounding ionic environment, and several genes involved in the response to Pi starvation have been identified. However, a global understanding of the regulatory mechanisms involved in this process is still elusive. Here, we have initiated a chemical genetics approach and isolated compounds that inhibit the response to Pi starvation in Arabidopsis (Arabidopsis thaliana). Molecules were screened for their ability to inhibit the expression of a Pi starvation marker gene (the high-affinity Pi transporter PHT1;4). A drug family named Phosphatin (PTN; Pi starvation inhibitor), whose members act as partial suppressors of Pi starvation responses, was thus identified. PTN addition also reduced various traits of Pi starvation, such as phospholipid/glycolipid conversion, and the accumulation of starch and anthocyanins. A transcriptomic assay revealed a broad impact of PTN on the expression of many genes regulated by low Pi availability. Despite the reduced amount of Pi transporters and resulting reduced Pi uptake capacity, no reduction of Pi content was observed. In addition, PTN improved plant growth; this reveals that the developmental restrictions induced by Pi starvation are not a consequence of metabolic limitation but a result of genetic regulation. This highlights the existence of signal transduction pathway(s) that limit plant development under the Pi starvation condition.
Collapse
Affiliation(s)
- Carole Arnaud
- Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., T.D., L.N.);Unité Mixte de Recherche Institut National de Recherche Agronomique 1165 Centre National de la Recherche Scientifique 8114, Recherche en Génomique Végétale, Université Evry Val d'Essonne, 91057 Evry cedex, France (E.D., S.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Groupe de Recherche Appliquée à la Phytotechnologie, F-13108 Saint-Paul-lez-Durance, France (P.S.); andUnité Mixte de Recherche 5168 Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche Agronomique, Grenoble Université, Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble, France (M.A.B., E.M.)
| | - Mathilde Clément
- Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., T.D., L.N.);Unité Mixte de Recherche Institut National de Recherche Agronomique 1165 Centre National de la Recherche Scientifique 8114, Recherche en Génomique Végétale, Université Evry Val d'Essonne, 91057 Evry cedex, France (E.D., S.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Groupe de Recherche Appliquée à la Phytotechnologie, F-13108 Saint-Paul-lez-Durance, France (P.S.); andUnité Mixte de Recherche 5168 Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche Agronomique, Grenoble Université, Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble, France (M.A.B., E.M.)
| | - Marie-Christine Thibaud
- Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., T.D., L.N.);Unité Mixte de Recherche Institut National de Recherche Agronomique 1165 Centre National de la Recherche Scientifique 8114, Recherche en Génomique Végétale, Université Evry Val d'Essonne, 91057 Evry cedex, France (E.D., S.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Groupe de Recherche Appliquée à la Phytotechnologie, F-13108 Saint-Paul-lez-Durance, France (P.S.); andUnité Mixte de Recherche 5168 Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche Agronomique, Grenoble Université, Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble, France (M.A.B., E.M.)
| | - Hélène Javot
- Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., T.D., L.N.);Unité Mixte de Recherche Institut National de Recherche Agronomique 1165 Centre National de la Recherche Scientifique 8114, Recherche en Génomique Végétale, Université Evry Val d'Essonne, 91057 Evry cedex, France (E.D., S.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Groupe de Recherche Appliquée à la Phytotechnologie, F-13108 Saint-Paul-lez-Durance, France (P.S.); andUnité Mixte de Recherche 5168 Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche Agronomique, Grenoble Université, Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble, France (M.A.B., E.M.)
| | - Serge Chiarenza
- Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., T.D., L.N.);Unité Mixte de Recherche Institut National de Recherche Agronomique 1165 Centre National de la Recherche Scientifique 8114, Recherche en Génomique Végétale, Université Evry Val d'Essonne, 91057 Evry cedex, France (E.D., S.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Groupe de Recherche Appliquée à la Phytotechnologie, F-13108 Saint-Paul-lez-Durance, France (P.S.); andUnité Mixte de Recherche 5168 Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche Agronomique, Grenoble Université, Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble, France (M.A.B., E.M.)
| | - Etienne Delannoy
- Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., T.D., L.N.);Unité Mixte de Recherche Institut National de Recherche Agronomique 1165 Centre National de la Recherche Scientifique 8114, Recherche en Génomique Végétale, Université Evry Val d'Essonne, 91057 Evry cedex, France (E.D., S.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Groupe de Recherche Appliquée à la Phytotechnologie, F-13108 Saint-Paul-lez-Durance, France (P.S.); andUnité Mixte de Recherche 5168 Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche Agronomique, Grenoble Université, Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble, France (M.A.B., E.M.)
| | - Julia Revol
- Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., T.D., L.N.);Unité Mixte de Recherche Institut National de Recherche Agronomique 1165 Centre National de la Recherche Scientifique 8114, Recherche en Génomique Végétale, Université Evry Val d'Essonne, 91057 Evry cedex, France (E.D., S.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Groupe de Recherche Appliquée à la Phytotechnologie, F-13108 Saint-Paul-lez-Durance, France (P.S.); andUnité Mixte de Recherche 5168 Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche Agronomique, Grenoble Université, Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble, France (M.A.B., E.M.)
| | - Paul Soreau
- Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., T.D., L.N.);Unité Mixte de Recherche Institut National de Recherche Agronomique 1165 Centre National de la Recherche Scientifique 8114, Recherche en Génomique Végétale, Université Evry Val d'Essonne, 91057 Evry cedex, France (E.D., S.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Groupe de Recherche Appliquée à la Phytotechnologie, F-13108 Saint-Paul-lez-Durance, France (P.S.); andUnité Mixte de Recherche 5168 Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche Agronomique, Grenoble Université, Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble, France (M.A.B., E.M.)
| | - Sandrine Balzergue
- Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., T.D., L.N.);Unité Mixte de Recherche Institut National de Recherche Agronomique 1165 Centre National de la Recherche Scientifique 8114, Recherche en Génomique Végétale, Université Evry Val d'Essonne, 91057 Evry cedex, France (E.D., S.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Groupe de Recherche Appliquée à la Phytotechnologie, F-13108 Saint-Paul-lez-Durance, France (P.S.); andUnité Mixte de Recherche 5168 Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche Agronomique, Grenoble Université, Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble, France (M.A.B., E.M.)
| | - Maryse A Block
- Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., T.D., L.N.);Unité Mixte de Recherche Institut National de Recherche Agronomique 1165 Centre National de la Recherche Scientifique 8114, Recherche en Génomique Végétale, Université Evry Val d'Essonne, 91057 Evry cedex, France (E.D., S.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Groupe de Recherche Appliquée à la Phytotechnologie, F-13108 Saint-Paul-lez-Durance, France (P.S.); andUnité Mixte de Recherche 5168 Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche Agronomique, Grenoble Université, Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble, France (M.A.B., E.M.)
| | - Eric Maréchal
- Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., T.D., L.N.);Unité Mixte de Recherche Institut National de Recherche Agronomique 1165 Centre National de la Recherche Scientifique 8114, Recherche en Génomique Végétale, Université Evry Val d'Essonne, 91057 Evry cedex, France (E.D., S.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Groupe de Recherche Appliquée à la Phytotechnologie, F-13108 Saint-Paul-lez-Durance, France (P.S.); andUnité Mixte de Recherche 5168 Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche Agronomique, Grenoble Université, Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble, France (M.A.B., E.M.)
| | - Thierry Desnos
- Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., T.D., L.N.);Unité Mixte de Recherche Institut National de Recherche Agronomique 1165 Centre National de la Recherche Scientifique 8114, Recherche en Génomique Végétale, Université Evry Val d'Essonne, 91057 Evry cedex, France (E.D., S.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Groupe de Recherche Appliquée à la Phytotechnologie, F-13108 Saint-Paul-lez-Durance, France (P.S.); andUnité Mixte de Recherche 5168 Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche Agronomique, Grenoble Université, Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble, France (M.A.B., E.M.)
| | - Laurent Nussaume
- Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., T.D., L.N.);Unité Mixte de Recherche Institut National de Recherche Agronomique 1165 Centre National de la Recherche Scientifique 8114, Recherche en Génomique Végétale, Université Evry Val d'Essonne, 91057 Evry cedex, France (E.D., S.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Groupe de Recherche Appliquée à la Phytotechnologie, F-13108 Saint-Paul-lez-Durance, France (P.S.); andUnité Mixte de Recherche 5168 Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche Agronomique, Grenoble Université, Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble, France (M.A.B., E.M.)
| |
Collapse
|
178
|
Kuo HF, Chang TY, Chiang SF, Wang WD, Charng YY, Chiou TJ. Arabidopsis inositol pentakisphosphate 2-kinase, AtIPK1, is required for growth and modulates phosphate homeostasis at the transcriptional level. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:503-15. [PMID: 25155524 DOI: 10.1111/tpj.12650] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 05/07/2023]
Abstract
Inositol hexakisphosphate (IP6 ) provides a phosphorous reservoir in plant seeds; in addition, along with its biosynthesis intermediates and derivatives, IP6 also plays important roles in diverse developmental and physiological processes. Disruption of the Arabidopsis inositol pentakisphosphate 2-kinase coding gene AtIPK1 was previously shown to reduce IP6 content in vegetative tissues and affect phosphate (Pi) sensing. Here we show that AtIPK1 is required for sustaining plant growth, as null mutants are non-viable. An incomplete loss-of-function mutant, atipk1-1, exhibited disturbed Pi homeostasis and overaccumulated Pi as a consequence of increased Pi uptake activity and root-to-shoot Pi translocation. The atipk1-1 mutants also showed a Pi deficiency-like root system architecture with reduced primary root and enhanced lateral root growth. Transcriptome analysis indicated that a subset of Pi starvation-responsive genes was transcriptionally perturbed in the atipk1-1 mutants and the expression of multiple genes involved in Pi uptake, allocation, and remobilization was increased. Genetic and transcriptional analyses suggest that disturbance of Pi homeostasis caused by atipk1 mutation involved components in addition to PHR1(-like) transcription factors. Notably, the transcriptional increase of a number of Pi starvation-responsive genes in the atipk1-1 mutants is correlated with the reduction of histone variant H2A.Z occupation in chromatin. The myo-inositol-1-phosphate synthase mutants, atmips1 and atmips2 with comparable reduction in vegetative IP6 to that in the atipk1-1 mutants did not overaccumulate Pi, suggesting that Pi homeostasis modulated by AtIPK1 is not solely attributable to IP6 level. This study reveals that AtIPK1 has important roles in growth and Pi homeostasis.
Collapse
Affiliation(s)
- Hui-Fen Kuo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | | | | | | | | | | |
Collapse
|
179
|
Puga MI, Mateos I, Charukesi R, Wang Z, Franco-Zorrilla JM, de Lorenzo L, Irigoyen ML, Masiero S, Bustos R, Rodríguez J, Leyva A, Rubio V, Sommer H, Paz-Ares J. SPX1 is a phosphate-dependent inhibitor of Phosphate Starvation Response 1 in Arabidopsis. Proc Natl Acad Sci U S A 2014; 111:14947-52. [PMID: 25271326 PMCID: PMC4205628 DOI: 10.1073/pnas.1404654111] [Citation(s) in RCA: 326] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To cope with growth in low-phosphate (Pi) soils, plants have evolved adaptive responses that involve both developmental and metabolic changes. Phosphate Starvation Response 1 (PHR1) and related transcription factors play a central role in the control of Pi starvation responses (PSRs). How Pi levels control PHR1 activity, and thus PSRs, remains to be elucidated. Here, we identify a direct Pi-dependent inhibitor of PHR1 in Arabidopsis, SPX1, a nuclear protein that shares the SPX domain with yeast Pi sensors and with several Pi starvation signaling proteins from plants. Double mutation of SPX1 and of a related gene, SPX2, resulted in molecular and physiological changes indicative of increased PHR1 activity in plants grown in Pi-sufficient conditions or after Pi refeeding of Pi-starved plants but had only a limited effect on PHR1 activity in Pi-starved plants. These data indicate that SPX1 and SPX2 have a cellular Pi-dependent inhibitory effect on PHR1. Coimmunoprecipitation assays showed that the SPX1/PHR1 interaction in planta is highly Pi-dependent. DNA-binding and pull-down assays with bacterially expressed, affinity-purified tagged SPX1 and ΔPHR1 proteins showed that SPX1 is a competitive inhibitor of PHR1 binding to its recognition sequence, and that its efficiency is highly dependent on the presence of Pi or phosphite, a nonmetabolizable Pi analog that can repress PSRs. The relative strength of the SPX1/PHR1 interaction is thus directly influenced by Pi, providing a link between Pi perception and signaling.
Collapse
Affiliation(s)
| | | | | | - Zhiye Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; and
| | - José M Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, 28049 Madrid, Spain
| | | | | | - Simona Masiero
- Department of Plant Molecular Genetics, Max-Planck-Institut für Züchtungsforschung, 50829 Cologne, Germany
| | | | | | | | | | - Hans Sommer
- Department of Plant Molecular Genetics, Max-Planck-Institut für Züchtungsforschung, 50829 Cologne, Germany
| | | |
Collapse
|
180
|
Liu TY, Lin WY, Huang TK, Chiou TJ. MicroRNA-mediated surveillance of phosphate transporters on the move. TRENDS IN PLANT SCIENCE 2014; 19:647-55. [PMID: 25001521 DOI: 10.1016/j.tplants.2014.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/29/2014] [Accepted: 06/06/2014] [Indexed: 05/06/2023]
Abstract
Phosphate (Pi), which is indispensable for the structural and metabolic needs of plants, is acquired and translocated by Pi transporters. Deciphering the regulatory network of Pi signaling and homeostasis that involves the control of Pi transporters trafficking to, and their activity at, the plasma membrane provides insight into how plants adapt to environmental changes in Pi availability. Here, we review recent studies that revealed the involvement of microRNA399-PHOSPHATE 2 (PHO2) and microR827-NITROGEN LIMITATION ADAPTATION (NLA) modules in mediating the ubiquitination and degradation of PHOSPHATE TRANSPORTER 1 (PHT1) and/or PHOSPHATE 1 (PHO1). These discoveries show that miRNAs are an effective way for plants to monitor the turnover of Pi transporters in the membrane system by modulating the functioning of the membrane-associated ubiquitin machinery.
Collapse
Affiliation(s)
- Tzu-Yin Liu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Wei-Yi Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Teng-Kuei Huang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
181
|
Abstract
Nutrient and water uptake from the soil is essential for plant growth and development. In the root, absorption and radial transport of nutrients and water toward the vascular tissues is achieved by a battery of specialized transporters and channels. Modulating the amount and the localization of these membrane transport proteins appears as a way to drive their activity and is essential to maintain nutrient homeostasis in plants. This control first involves the delivery of newly synthesized proteins to the plasma membrane by establishing check points along the secretory pathway, especially during the export from the endoplasmic reticulum. Plasma membrane-localized transport proteins are internalized through endocytosis followed by recycling to the cell surface or targeting to the vacuole for degradation, hence constituting another layer of control. These intricate mechanisms are often regulated by nutrient availability, stresses, and endogenous cues, allowing plants to rapidly adjust to their environment and adapt their development.
Collapse
Affiliation(s)
- Enric Zelazny
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Saclay Plant Sciences, 91190 Gif-sur-Yvette, France
| | - Grégory Vert
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Saclay Plant Sciences, 91190 Gif-sur-Yvette, France
| |
Collapse
|
182
|
Liang C, Wang J, Zhao J, Tian J, Liao H. Control of phosphate homeostasis through gene regulation in crops. CURRENT OPINION IN PLANT BIOLOGY 2014; 21:59-66. [PMID: 25036899 DOI: 10.1016/j.pbi.2014.06.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/23/2014] [Accepted: 06/23/2014] [Indexed: 05/23/2023]
Abstract
Phosphorus (P) is an essential yet frequently deficient element in plants. Maintenance of phosphate (Pi) homeostasis is crucial for crop production. In comparison with the model plant Arabidopsis, crops face wider ranges and larger fluctuations in P supply from the soil environment, and thus develop more complicated strategies to improve Pi acquisition and utilization efficiency. Undergirding these strategies, there are numerous genes involved in alternative metabolism pathways that are regulated by complex Pi signaling networks. In this review, we intend to summarize the recent advances in crops on control of Pi homeostasis through gene regulation from Pi acquisition and mobilization within plants, as well as activation of rhizosphere P and P uptake through symbiotic associations.
Collapse
Affiliation(s)
- Cuiyue Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, PR China
| | - Jinxiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, PR China
| | - Jing Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, PR China
| | - Jiang Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, PR China
| | - Hong Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
183
|
Carbonnel S, Gutjahr C. Control of arbuscular mycorrhiza development by nutrient signals. FRONTIERS IN PLANT SCIENCE 2014; 5:462. [PMID: 25309561 PMCID: PMC4160938 DOI: 10.3389/fpls.2014.00462] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/26/2014] [Indexed: 05/08/2023]
Affiliation(s)
| | - Caroline Gutjahr
- Faculty of Biology, Genetics, University of Munich (LMU)Martinsried, Germany
| |
Collapse
|
184
|
Aoyama S, Lu Y, Yamaguchi J, Sato T. Regulation of senescence under elevated atmospheric CO₂ via ubiquitin modification. PLANT SIGNALING & BEHAVIOR 2014; 9:e28839. [PMID: 24739470 PMCID: PMC4091564 DOI: 10.4161/psb.28839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 04/09/2014] [Indexed: 05/26/2023]
Abstract
Elevated atmospheric CO₂ concentration is a serious global environmental problem. Elevated CO₂ affects plant growth by changing primary metabolism, closely related to carbon (C) and nitrogen (N) availability. Under sufficient N conditions, plant growth is dramatically promoted by elevated CO₂. When N availability is limited, however, elevated CO₂ disrupts the balance between cellular C and N (C/N). Disruption of the C/N balance is regarded as an important factor in plant growth defects. Here we highlight the regulation of senescence in higher plants by atmospheric CO₂ and N, and the physiological function of C/N-related ubiquitin ligase ATL31 under condition of elevated CO₂. We also provide an overview of the ubiquitin ligases and related enzymes involved in regulating senescence in plants.
Collapse
|