151
|
Nardou R, Yamamoto S, Bhar A, Burnashev N, Ben-Ari Y, Khalilov I. Phenobarbital but Not Diazepam Reduces AMPA/kainate Receptor Mediated Currents and Exerts Opposite Actions on Initial Seizures in the Neonatal Rat Hippocampus. Front Cell Neurosci 2011; 5:16. [PMID: 21847371 PMCID: PMC3148783 DOI: 10.3389/fncel.2011.00016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/19/2011] [Indexed: 12/18/2022] Open
Abstract
Diazepam (DZP) and phenobarbital (PB) are extensively used as first and second line drugs to treat acute seizures in neonates and their actions are thought to be mediated by increasing the actions of GABAergic signals. Yet, their efficacy is variable with occasional failure or even aggravation of recurrent seizures questioning whether other mechanisms are not involved in their actions. We have now compared the effects of DZP and PB on ictal-like events (ILEs) in an in vitro model of mirror focus (MF). Using the three-compartment chamber with the two immature hippocampi and their commissural fibers placed in three different compartments, kainate was applied to one hippocampus and PB or DZP to the contralateral one, either after one ILE, or after many recurrent ILEs that produce an epileptogenic MF. We report that in contrast to PB, DZP aggravated propagating ILEs from the start, and did not prevent the formation of MF. PB reduced and DZP increased the network driven giant depolarizing potentials suggesting that PB may exert additional actions that are not mediated by GABA signaling. In keeping with this, PB but not DZP reduced field potentials recorded in the presence of GABA and NMDA receptor antagonists. These effects are mediated by a direct action on AMPA/kainate receptors since PB: (i) reduced AMPA/kainate receptor mediated currents induced by focal applications of glutamate; (ii) reduced the amplitude and the frequency of AMPA but not NMDA receptor mediated miniature excitatory postsynaptic currents (EPSCs); (iii) augmented the number of AMPA receptor mediated EPSCs failures evoked by minimal stimulation. These effects persisted in MF. Therefore, PB exerts its anticonvulsive actions partly by reducing AMPA/kainate receptors mediated EPSCs in addition to the pro-GABA effects. We suggest that PB may have advantage over DZP in the treatment of initial neonatal seizures since the additional reduction of glutamate receptors mediated signals may reduce the severity of neonatal seizures.
Collapse
Affiliation(s)
- Romain Nardou
- INSERM U-901Marseille, France
- UMR S901 Aix-Marseille 2, Université de la MéditerranéeMarseille, France
- Institute for International MedicineMarseille, France
| | - Sumii Yamamoto
- INSERM U-901Marseille, France
- UMR S901 Aix-Marseille 2, Université de la MéditerranéeMarseille, France
- Institute for International MedicineMarseille, France
| | - Asma Bhar
- INSERM U-901Marseille, France
- UMR S901 Aix-Marseille 2, Université de la MéditerranéeMarseille, France
- Institute for International MedicineMarseille, France
| | - Nail Burnashev
- INSERM U-901Marseille, France
- UMR S901 Aix-Marseille 2, Université de la MéditerranéeMarseille, France
- Institute for International MedicineMarseille, France
| | - Yehezkel Ben-Ari
- INSERM U-901Marseille, France
- UMR S901 Aix-Marseille 2, Université de la MéditerranéeMarseille, France
- Institute for International MedicineMarseille, France
| | - Ilgam Khalilov
- INSERM U-901Marseille, France
- UMR S901 Aix-Marseille 2, Université de la MéditerranéeMarseille, France
- Institute for International MedicineMarseille, France
| |
Collapse
|
152
|
A comparison between detectors of high frequency oscillations. Clin Neurophysiol 2011; 123:106-16. [PMID: 21763191 DOI: 10.1016/j.clinph.2011.06.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 04/06/2011] [Accepted: 06/11/2011] [Indexed: 11/21/2022]
Abstract
OBJECTIVE High frequency oscillations (HFOs) are a biomarker of epileptogenicity. Visual marking of HFOs is highly time-consuming and inevitably subjective, making automatic detection necessary. We compare four existing detectors on the same dataset. METHODS HFOs and baselines were identified by experienced reviewers in intracerebral EEGs from 20 patients. A new feature of our detector to deal with channels where baseline cannot be found is presented. The original and an optimal configuration are implemented. Receiver operator curves, false discovery rate, and channel ranking are used to evaluate performance. RESULTS All detectors improve performance with the optimal configuration. Our detector had higher sensitivity, lower false positives than the others, and similar false detections. The main difference in performance was in very active channels. CONCLUSIONS Each detector was developed for different recordings and with different aims. Our detector performed better in this dataset, but was developed on data similar to the test data. Moreover, optimizing on a particular data type improves performance in any detector. SIGNIFICANCE Automatic HFO detection is crucial to propel their clinical use as biomarkers of epileptogenic tissue. Comparing detectors on a single dataset is important to analyze their performance and to emphasize the issues involved in validation.
Collapse
|
153
|
D'Ambrosio R, Miller JW. What is an epileptic seizure? Unifying definitions in clinical practice and animal research to develop novel treatments. Epilepsy Curr 2011; 10:61-6. [PMID: 20502593 DOI: 10.1111/j.1535-7511.2010.01358.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
154
|
Andrade-Valenca LP, Dubeau F, Mari F, Zelmann R, Gotman J. Interictal scalp fast oscillations as a marker of the seizure onset zone. Neurology 2011; 77:524-31. [PMID: 21753167 DOI: 10.1212/wnl.0b013e318228bee2] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE This study aims to identify if oscillations at frequencies higher than the traditional EEG can be recorded on the scalp EEG of patients with focal epilepsy and to analyze the association of these oscillations with interictal discharges and the seizure onset zone (SOZ). METHODS The scalp EEG of 15 patients with focal epilepsy was studied. We analyzed the rates of gamma (40-80 Hz) and ripple (>80 Hz) oscillations, their co-occurrence with spikes, the number of channels with fast oscillations inside and outside the SOZ, and the specificity, sensitivity, and accuracy of gamma, ripples, and spikes to determine the SOZ. RESULTS Gamma and ripples frequently co-occurred with spikes (77.5% and 63% of cases). For all events, the proportion of channels with events was consistently higher inside than outside the SOZ: spikes (100% vs 70%), gamma (82% vs 33%), and ripples (48% vs 11%); p < 0.0001. The mean rates (events/min) were higher inside than outside the SOZ: spikes (2.64 ± 1.70 vs 0.69 ± 0.26, p = 0.02), gamma (0.77 ± 0.71 vs 0.20 ± 0.25, p = 0.02), and ripples (0.08 ± 0.12 vs 0.04 ± 0.09, p = 0.04). The sensitivity to identify the SOZ was spikes 100%, gamma 82%, and ripples 48%; the specificity was spikes 30%, gamma 68%, and ripples 89%; and the accuracy was spikes 43%, gamma 70%, and ripples 81%. CONCLUSION The rates and the proportion of channels with gamma and ripple fast oscillations are higher inside the SOZ, indicating that they can be used as interictal scalp EEG markers for the SOZ. These fast oscillations are less sensitive but much more specific and accurate than spikes to delineate the SOZ.
Collapse
Affiliation(s)
- L P Andrade-Valenca
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| | | | | | | | | |
Collapse
|
155
|
Winden KD, Karsten SL, Bragin A, Kudo LC, Gehman L, Ruidera J, Geschwind DH, Engel J. A systems level, functional genomics analysis of chronic epilepsy. PLoS One 2011; 6:e20763. [PMID: 21695113 PMCID: PMC3114768 DOI: 10.1371/journal.pone.0020763] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/09/2011] [Indexed: 12/28/2022] Open
Abstract
Neither the molecular basis of the pathologic tendency of neuronal circuits to generate spontaneous seizures (epileptogenicity) nor anti-epileptogenic mechanisms that maintain a seizure-free state are well understood. Here, we performed transcriptomic analysis in the intrahippocampal kainate model of temporal lobe epilepsy in rats using both Agilent and Codelink microarray platforms to characterize the epileptic processes. The experimental design allowed subtraction of the confounding effects of the lesion, identification of expression changes associated with epileptogenicity, and genes upregulated by seizures with potential homeostatic anti-epileptogenic effects. Using differential expression analysis, we identified several hundred expression changes in chronic epilepsy, including candidate genes associated with epileptogenicity such as Bdnf and Kcnj13. To analyze these data from a systems perspective, we applied weighted gene co-expression network analysis (WGCNA) to identify groups of co-expressed genes (modules) and their central (hub) genes. One such module contained genes upregulated in the epileptogenic region, including multiple epileptogenicity candidate genes, and was found to be involved the protection of glial cells against oxidative stress, implicating glial oxidative stress in epileptogenicity. Another distinct module corresponded to the effects of chronic seizures and represented changes in neuronal synaptic vesicle trafficking. We found that the network structure and connectivity of one hub gene, Sv2a, showed significant changes between normal and epileptogenic tissue, becoming more highly connected in epileptic brain. Since Sv2a is a target of the antiepileptic levetiracetam, this module may be important in controlling seizure activity. Bioinformatic analysis of this module also revealed a potential mechanism for the observed transcriptional changes via generation of longer alternatively polyadenlyated transcripts through the upregulation of the RNA binding protein HuD. In summary, combining conventional statistical methods and network analysis allowed us to interpret the differentially regulated genes from a systems perspective, yielding new insight into several biological pathways underlying homeostatic anti-epileptogenic effects and epileptogenicity.
Collapse
Affiliation(s)
- Kellen D. Winden
- Interdepartmental Program for Neuroscience, University of California Los Angeles, Los Angeles, California, United States of America
- Program in Neurogenetics, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Neurology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Stanislav L. Karsten
- Department of Neurology, University of California Los Angeles, Los Angeles, California, United States of America
- Division of Neuroscience Research, Department of Neurology, Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Anatol Bragin
- Department of Neurology, University of California Los Angeles, Los Angeles, California, United States of America
- The Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Lili C. Kudo
- Department of Neurology, University of California Los Angeles, Los Angeles, California, United States of America
- NeuroIndx Inc., Signal Hill, California, United States of America
| | - Lauren Gehman
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Josephine Ruidera
- Department of Neurology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Daniel H. Geschwind
- Interdepartmental Program for Neuroscience, University of California Los Angeles, Los Angeles, California, United States of America
- Program in Neurogenetics, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Neurology, University of California Los Angeles, Los Angeles, California, United States of America
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (DHG); (JE)
| | - Jerome Engel
- Department of Neurology, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Neurobiology, University of California Los Angeles, Los Angeles, California, United States of America
- The Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (DHG); (JE)
| |
Collapse
|
156
|
Lévesque M, Bortel A, Gotman J, Avoli M. High-frequency (80-500 Hz) oscillations and epileptogenesis in temporal lobe epilepsy. Neurobiol Dis 2011; 42:231-41. [PMID: 21238589 PMCID: PMC4873283 DOI: 10.1016/j.nbd.2011.01.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/17/2010] [Accepted: 01/02/2011] [Indexed: 11/25/2022] Open
Abstract
High-frequency oscillations (HFOs), termed ripples (80-200 Hz) and fast ripples (250-600 Hz), are recorded in the EEG of epileptic patients and in animal epilepsy models; HFOs are thought to reflect pathological activity and seizure onset zones. Here, we analyzed the temporal and spatial evolution of interictal spikes with and without HFOs in the rat pilocarpine model of temporal lobe epilepsy. Depth electrode recordings from dentate gyrus (DG), CA3 region, subiculum and entorhinal cortex (EC), were obtained from rats between the 4th and 15th day after a status epilepticus (SE) induced by i.p. injection of pilocarpine. The first seizure occurred 6.1 ± 2.5 days after SE (n = 7 rats). Five of 7 animals exhibited interictal spikes that co-occurred with fast ripples accounting for 4.9 ± 4.6% of all analyzed interictal spikes (n = 12,886) while all rats showed interictal spikes co-occurring with ripples, accounting for 14.3 ± 3.4% of all events. Increased rates of interictal spikes without HFOs in the EC predicted upcoming seizures on the following day, while rates of interictal spikes with fast ripples in CA3 reflected periods of high seizure occurrence. Finally, interictal spikes co-occurring with ripples did not show any specific relation to seizure occurrence. Our findings identify different temporal and spatial developmental patterns for the rates of interictal spikes with or without HFOs in relation with seizure occurrence. These distinct categories of interictal spikes point at dynamic processes that should bring neuronal networks close to seizure generation.
Collapse
Affiliation(s)
- Maxime Lévesque
- Montreal Neurological Institute and Department of Neurology & Neurosurgery, McGill University, 3801 University Street, Montreal, Qc, Canada H3A 2B4
| | - Aleksandra Bortel
- Montreal Neurological Institute and Department of Neurology & Neurosurgery, McGill University, 3801 University Street, Montreal, Qc, Canada H3A 2B4
| | - Jean Gotman
- Montreal Neurological Institute and Department of Neurology & Neurosurgery, McGill University, 3801 University Street, Montreal, Qc, Canada H3A 2B4
| | - Massimo Avoli
- Montreal Neurological Institute and Department of Neurology & Neurosurgery, McGill University, 3801 University Street, Montreal, Qc, Canada H3A 2B4
- Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Viale del Castro Laurenziano 9, 00185 Roma, Italy
| |
Collapse
|
157
|
Etholm L, Lindén H, Eken T, Heggelund P. Electroencephalographic characterization of seizure activity in the synapsin I/II double knockout mouse. Brain Res 2011; 1383:270-88. [DOI: 10.1016/j.brainres.2011.01.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/20/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
158
|
Nardou R, Yamamoto S, Chazal G, Bhar A, Ferrand N, Dulac O, Ben-Ari Y, Khalilov I. Neuronal chloride accumulation and excitatory GABA underlie aggravation of neonatal epileptiform activities by phenobarbital. Brain 2011; 134:987-1002. [PMID: 21436113 DOI: 10.1093/brain/awr041] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Phenobarbital produces its anti-epileptic actions by increasing the inhibitory drive of γ-aminobutyric acid. However, following recurrent seizures, γ-aminobutyric acid excites neurons because of a persistent increase of chloride raising the important issue of whether phenobarbital could aggravate persistent seizures. Here we compared the actions of phenobarbital on initial and established ictal-like events in an in vitro model of mirror focus. Using the in vitro three-compartment chamber preparation with the two hippocampi and their commissural fibres placed in three different chambers, kainate was applied to one hippocampus and phenobarbital contralaterally, either after one ictal-like event or after many recurrent ictal-like events that produce an epileptogenic mirror focus. Field, perforated patch and single-channel recordings were used to determine the effects of γ-aminobutyric acid and their modulation by phenobarbital, and alterations of the chloride cotransporters were investigated using sodium-potassium-chloride cotransporter 1 and potassium chloride cotransporter 2 antagonists, potassium chloride cotransporter 2 immunocytochemistry and sodium-potassium-chloride cotransporter 1 knockouts. Phenobarbital reduced initial ictal-like events and prevented the formation of a mirror focus when applied from the start. In contrast, phenobarbital aggravated epileptiform activities when applied after many ictal-like events by enhancing the excitatory actions of γ-aminobutyric acid due to increased chloride. The accumulation of chloride and the excitatory actions of γ-aminobutyric acid in mirror foci neurons are mediated by the sodium-potassium-chloride cotransporter 1 chloride importer and by downregulation and internalization of the chloride-exporter potassium-chloride cotransporter 2. Finally, concomitant applications of the sodium-potassium-chloride cotransporter 1 antagonist bumetanide and phenobarbital decreased excitatory actions of γ-aminobutyric acid and prevented its paradoxical actions on mirror focus. Therefore, the history of seizures prior to phenobarbital applications determines its effects and rapid treatment of severe potentially epileptogenic-neonatal seizures is recommended to prevent secondary epileptogenesis associated with potassium chloride cotransporter 2 downregulation and acquisition of the excitatory γ-aminobutyric acid phenotype.
Collapse
|
159
|
Kanamori K, Ross BD. Chronic electrographic seizure reduces glutamine and elevates glutamate in the extracellular fluid of rat brain. Brain Res 2010; 1371:180-91. [PMID: 21111723 DOI: 10.1016/j.brainres.2010.11.064] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/16/2010] [Accepted: 11/18/2010] [Indexed: 11/29/2022]
Abstract
Effects of spontaneous seizures on extracellular glutamate and glutamine were studied in the kainate-induced rat model of epilepsy in the chronic phase. Extracellular fluid from the CA1-CA3 regions of the hippocampus was collected with a 2-mm microdialysis probe every 2 min for 5h. EEG seizures with no or mild behavioral components caused 2- to 6-fold elevation of extracellular glutamate. Concomitantly, extracellular glutamine decreased at t=5h to 48% of the initial value (n=6). The changes in extracellular glutamate and glutamine correlated with the frequency and magnitude of seizure activity. In contrast, no change in either metabolite was observed in kainate-injected rats that did not undergo seizure during microdialysis (n=6). In hippocampal tissue (9.4 ± 1.1mg) that contained the region sampled by microdialysis and the site of kainate injection, intracellular glutamine concentration was significantly reduced in the seizure group, compared to that in no-seizure group. The observed elevation of extracellular glutamate strongly suggests that neurotransmitter glutamate was released at a rate faster than the rate of its uptake into glia, possibly due to down-regulation of the transporter. This reduces the availability of substrate glutamate for glutamine synthesis, as corroborated by the observed reduction of intracellular glutamine. This is likely to reduce the rate of glutamine efflux from glia and result in the observed decrease of extracellular glutamine. There remains an intriguing possibility that seizure-induced decrease of extracellular glutamine also reflects its increased uptake into neurons to replenish neurotransmitter glutamate during enhanced epileptiform activity.
Collapse
Affiliation(s)
- Keiko Kanamori
- Huntington Medical Research Institutes, 660 S. Fair Oaks Ave., Pasadena, CA 91105, USA.
| | | |
Collapse
|
160
|
Nariai H, Nagasawa T, Juhász C, Sood S, Chugani HT, Asano E. Statistical mapping of ictal high-frequency oscillations in epileptic spasms. Epilepsia 2010; 52:63-74. [PMID: 21087245 DOI: 10.1111/j.1528-1167.2010.02786.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE We assessed 636 epileptic spasms seen in 11 children (median 44 spasms per child) and determined the spatial and temporal characteristics of ictal high-frequency oscillations (HFOs) in relation to the onset of spasms. METHODS Electrocorticography (ECoG) signals were sampled from 104-148 cortical sites per child, and the dynamic changes of ictal HFOs were animated on each individual's three-dimensional (3D) magnetic resonance (MR) image surface. KEY FINDINGS Visual assessment of ictal ECoG recordings revealed that each spasm event was characterized by augmentation of HFOs. Time-frequency analysis demonstrated that ictal augmentation of HFOs at 80-200 Hz was most prominent and generally preceded those at 210-300 Hz and at 70 Hz and slower. Recruitment of HFOs in the rolandic cortex preceded the clinical onset objectively visualized as electromyographic deflection. The presence or absence of ictal motor symptoms was related more to the amplitude of HFOs in the Rolandic cortex than in the seizure-onset zone. In a substantial proportion of epileptic spasms, seizure termination began at the seizure-onset zone and propagated to the surrounding areas; we referred to this observation as the "ictal doughnut phenomenon." Univariate analysis suggested that complete resection of the sites showing the earliest augmentation of ictal HFOs was associated with a good surgical outcome. SIGNIFICANCE Recruitment of HFOs at 80-200 Hz in the rolandic area may play a role in determining seizure semiology in epileptic spasms. Our study using macroelectrodes demonstrated that ictal HFOs at 80-200 Hz preceded those at 210-300 Hz.
Collapse
Affiliation(s)
- Hiroki Nariai
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, Michigan, USA
| | | | | | | | | | | |
Collapse
|
161
|
|
162
|
Liu X, Wen F, Yang J, Chen L, Wei YQ. A review of current applications of mass spectrometry for neuroproteomics in epilepsy. MASS SPECTROMETRY REVIEWS 2010; 29:197-246. [PMID: 19598206 DOI: 10.1002/mas.20243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The brain is unquestionably the most fascinating organ, and the hippocampus is crucial in memory storage and retrieval and plays an important role in stress response. In temporal lobe epilepsy (TLE), the seizure origin typically involves the hippocampal formation. Despite tremendous progress, current knowledge falls short of being able to explain its function. An emerging approach toward an improved understanding of the complex molecular mechanisms that underlie functions of the brain and hippocampus is neuroproteomics. Mass spectrometry has been widely used to analyze biological samples, and has evolved into an indispensable tool for proteomics research. In this review, we present a general overview of the application of mass spectrometry in proteomics, summarize neuroproteomics and systems biology-based discovery of protein biomarkers for epilepsy, discuss the methodology needed to explore the epileptic hippocampus proteome, and also focus on applications of ingenuity pathway analysis (IPA) in disease research. This neuroproteomics survey presents a framework for large-scale protein research in epilepsy that can be applied for immediate epileptic biomarker discovery and the far-reaching systems biology understanding of the protein regulatory networks. Ultimately, knowledge attained through neuroproteomics could lead to clinical diagnostics and therapeutics to lessen the burden of epilepsy on society.
Collapse
Affiliation(s)
- Xinyu Liu
- National Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | | | | | | | | |
Collapse
|
163
|
High-frequency network activity, global increase in neuronal activity, and synchrony expansion precede epileptic seizures in vitro. J Neurosci 2010; 30:5690-701. [PMID: 20410121 DOI: 10.1523/jneurosci.0535-10.2010] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
How seizures start is a major question in epilepsy research. Preictal EEG changes occur in both human patients and animal models, but their underlying mechanisms and relationship with seizure initiation remain unknown. Here we demonstrate the existence, in the hippocampal CA1 region, of a preictal state characterized by the progressive and global increase in neuronal activity associated with a widespread buildup of low-amplitude high-frequency activity (HFA) (>100 Hz) and reduction in system complexity. HFA is generated by the firing of neurons, mainly pyramidal cells, at much lower frequencies. Individual cycles of HFA are generated by the near-synchronous (within approximately 5 ms) firing of small numbers of pyramidal cells. The presence of HFA in the low-calcium model implicates nonsynaptic synchronization; the presence of very similar HFA in the high-potassium model shows that it does not depend on an absence of synaptic transmission. Immediately before seizure onset, CA1 is in a state of high sensitivity in which weak depolarizing or synchronizing perturbations can trigger seizures. Transition to seizure is characterized by a rapid expansion and fusion of the neuronal populations responsible for HFA, associated with a progressive slowing of HFA, leading to a single, massive, hypersynchronous cluster generating the high-amplitude low-frequency activity of the seizure.
Collapse
|
164
|
Jiruska P, Finnerty GT, Powell AD, Lofti N, Cmejla R, Jefferys JGR. Epileptic high-frequency network activity in a model of non-lesional temporal lobe epilepsy. ACTA ACUST UNITED AC 2010; 133:1380-90. [PMID: 20400525 PMCID: PMC2859153 DOI: 10.1093/brain/awq070] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
High-frequency cortical activity, particularly in the 250–600 Hz (fast ripple) band, has been implicated in playing a crucial role in epileptogenesis and seizure generation. Fast ripples are highly specific for the seizure initiation zone. However, evidence for the association of fast ripples with epileptic foci depends on animal models and human cases with substantial lesions in the form of hippocampal sclerosis, which suggests that neuronal loss may be required for fast ripples. In the present work, we tested whether cell loss is a necessary prerequisite for the generation of fast ripples, using a non-lesional model of temporal lobe epilepsy that lacks hippocampal sclerosis. The model is induced by unilateral intrahippocampal injection of tetanus toxin. Recordings from the hippocampi of freely-moving epileptic rats revealed high-frequency activity (>100 Hz), including fast ripples. High-frequency activity was present both during interictal discharges and seizure onset. Interictal fast ripples proved a significantly more reliable marker of the primary epileptogenic zone than the presence of either interictal discharges or ripples (100–250 Hz). These results suggest that fast ripple activity should be considered for its potential value in the pre-surgical workup of non-lesional temporal lobe epilepsy.
Collapse
Affiliation(s)
- Premysl Jiruska
- Neuronal Networks Group, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | | | | | |
Collapse
|
165
|
Abstract
PURPOSE OF REVIEW It has been 10 years since pathological high-frequency oscillations (pHFOs) were described in the brain of epileptic animals and patients. This review summarizes progress in research on mechanisms of their generation and potential clinical applications over that period. RECENT FINDINGS Initially, pHFOs were recorded with microelectrodes in the hippocampus of rodents and patients with mesial temporal lobe epilepsy (MTLE), but recently pHFOs have also been recorded with clinical depth and grid electrodes in multiple brain areas including the hippocampus and neocortex of patients with different types of epilepsy. One hypothesis is that pHFOs reflect fields of hypersynchronized action potentials (bursts of population spikes) within small discrete neuronal clusters responsible for seizure generation. Studies suggest that pHFOs can be used as a reliable biomarker for epileptogenesis, epileptogenicity, and the delineation of the epileptogenic region. SUMMARY Recording of pHFOs with clinical electrodes provides a means for further investigation of their functional role in the epileptic brain and as a potential biomarker of epileptogenesis and epileptogenicity and for presurgical mapping.
Collapse
Affiliation(s)
- Anatol Bragin
- Department of Neurology, David Geffen School of Medicine at UCLA,, Los Angeles, California, USA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jerome Engel
- Department of Neurology, David Geffen School of Medicine at UCLA,, Los Angeles, California, USA
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Richard J. Staba
- Department of Neurology, David Geffen School of Medicine at UCLA,, Los Angeles, California, USA
| |
Collapse
|
166
|
Jiruska P, Powell AD, Chang WC, Jefferys JG. Electrographic high-frequency activity and epilepsy. Epilepsy Res 2010; 89:60-5. [DOI: 10.1016/j.eplepsyres.2009.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 10/30/2009] [Accepted: 11/15/2009] [Indexed: 10/20/2022]
|
167
|
Selective vulnerability of hippocampal cornu ammonis 1 pyramidal cells to excitotoxic insult is associated with the expression of polyamine-sensitive N-methyl-D-asparate-type glutamate receptors. Neuroscience 2010; 165:525-34. [PMID: 19837138 DOI: 10.1016/j.neuroscience.2009.10.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Revised: 10/08/2009] [Accepted: 10/09/2009] [Indexed: 12/30/2022]
Abstract
Excess glutamate release and stimulation of post-synaptic glutamatergic receptors have been implicated in the pathophysiology of many neurological diseases. The hippocampus, and the pyramidal cell layer of the cornu ammonus 1 (CA1) region in particular, has been noted for its selective sensitivity to excitotoxic insults. The current studies examined the role of N-methyl-D-aspartate (NMDA) receptor subunit composition and sensitivity to stimulatory effects of the polyamine spermidine, an allosteric modulator of NMDA NR2 subunit activity, in hippocampal CA1 region sensitivity to excitotoxic insult. Organotypic hippocampal slice cultures of 8 day-old neonatal rat were obtained and maintained in vitro for 5 days. At this time, immunohistochemical analysis of mature neuron density (NeuN); microtubule associated protein-2(a,b) density (MAP-2); and NMDA receptor NR1 and NR2B subunit density in the primary cell layers of the dentate gyrus (DG), CA3, and CA1 regions, was conducted. Further, autoradiographic analysis of NMDA receptor distribution and density (i.e. [(125)I]MK-801 binding) and spermidine (100 microM)-potentiated [(125)I]MK-801 binding in the primary cell layers of these regions was examined. A final series of studies examined effects of prolonged exposure to NMDA (0.1-10 microM) on neurodegeneration in the primary cell layers of the DG, CA3, and CA1 regions, in the absence and presence of spermidine (100 microM) or ifenprodil (100 microM), an allosteric inhibitor of NR2B polypeptide subunit activity. The pyramidal cell layer of the CA1 region demonstrated significantly greater density of mature neurons, MAP-2, NR1 and NR2B subunits, and [(125)I]MK-801 binding than the CA3 region or DG. Twenty-four hour NMDA (10 microM) exposure produced marked neurodegeneration (approximately 350% of control cultures) in the CA1 pyramidal cell region that was significantly reduced by co-exposure to ifenprodil or DL-2-Amino-5-phosphonopentanoic acid (APV). The addition of spermidine significantly potentiated [(125)I]MK-801 binding and neurodegeneration induced by exposure to a non-toxic concentration of NMDA, exclusively in the CA1 region. This neurodegeneration was markedly reduced with co-exposure to ifenprodil. These data suggest that selective sensitivity of the CA1 region to excitotoxic stimuli may be attributable to the density of mature neurons expressing polyamine-sensitive NR2B polypeptide subunits.
Collapse
|
168
|
Septo-hippocampal networks in chronic epilepsy. Exp Neurol 2009; 222:86-92. [PMID: 20026111 DOI: 10.1016/j.expneurol.2009.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 11/21/2009] [Accepted: 12/11/2009] [Indexed: 11/24/2022]
Abstract
The medial septum inhibits the appearance of interictal spikes and seizures through theta rhythm generation. We have determined that medial septal neurons increase their firing rates during chronic epilepsy and that the GABAergic neurons from both medial and lateral septal regions are highly and selectively vulnerable to the epilepsy process. Since the lateral septal region receives a strong projection from the hippocampus and its neurons are vulnerable to epilepsy, their functional properties are probably altered by this disorder. Using the pilocarpine model of temporal lobe epilepsy we examined the pilocarpine-induced functional alterations of lateral septal neurons and provided additional observations on the pilocarpine-induced functional alterations of medial septal neurons. Simultaneous extracellular recordings of septal neurons and hippocampal field potentials were obtained from chronic epileptic rats under urethane anesthesia. Our results show that: (1) the firing rates of lateral septal neurons were chronically decreased by epilepsy, (2) a subset of lateral septal neurons increased their firing rates before and during hippocampal interictal spikes, (3) the discharges of those lateral septal neurons were well correlated to the hippocampal interictal spikes, (4) in contrast, the discharges of medial septal neurons were not correlated with the hippocampal interictal spikes. We conclude that epilepsy creates dysfunctional and uncoupled septo-hippocampal networks. The elucidation of the roles of altered septo-hippocampal neuronal populations and networks during temporal lobe epilepsy will help design new and effective interventions dedicated to reduce or suppress epileptic activity.
Collapse
|
169
|
Ogren JA, Wilson CL, Bragin A, Lin JJ, Salamon N, Dutton RA, Luders E, Fields TA, Fried I, Toga AW, Thompson PM, Engel J, Staba RJ. Three-dimensional surface maps link local atrophy and fast ripples in human epileptic hippocampus. Ann Neurol 2009; 66:783-91. [PMID: 20035513 PMCID: PMC3299311 DOI: 10.1002/ana.21703] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVES There is compelling evidence that pathological high-frequency oscillations (HFOs), called fast ripples (FR, 150-500Hz), reflect abnormal synchronous neuronal discharges in areas responsible for seizure genesis in patients with mesial temporal lobe epilepsy (MTLE). It is hypothesized that morphological changes associated with hippocampal atrophy (HA) contribute to the generation of FR, yet there is limited evidence that hippocampal FR-generating sites correspond with local areas of atrophy. METHODS Interictal HFOs were recorded from hippocampal microelectrodes in 10 patients with MTLE. Rates of FR and ripple discharge from each microelectrode were evaluated in relation to local measures of HA obtained using 3-dimensional magnetic resonance imaging (MRI) hippocampal modeling. RESULTS Rates of FR discharge were 3 times higher in areas of significant local HA compared with rates in nonatrophic areas. Furthermore, FR occurrence correlated directly with the severity of damage in these local atrophic regions. In contrast, we found no difference in rates of ripple discharge between local atrophic and nonatrophic areas. INTERPRETATION The proximity between local HA and microelectrode-recorded FR suggests that morphological changes such as neuron loss and synaptic reorganization may contribute to the generation of FR. Pathological HFOs, such as FR, may provide a reliable surrogate marker of abnormal neuronal excitability in hippocampal areas responsible for the generation of spontaneous seizures in patients with MTLE. Based on these data, it is possible that MRI-based measures of local HA could identify FR-generating regions, and thus provide a noninvasive means to localize epileptogenic regions in hippocampus.
Collapse
Affiliation(s)
- Jennifer A. Ogren
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Charles L. Wilson
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Anatol Bragin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jack J. Lin
- Department of Neurology, UCI School of Medicine, Irvine, CA
| | - Noriko Salamon
- Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Rebecca A. Dutton
- Laboratory of Neuro Imaging (LONI), David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Eileen Luders
- Laboratory of Neuro Imaging (LONI), David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Tony A. Fields
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Itzhak Fried
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Arthur W. Toga
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Laboratory of Neuro Imaging (LONI), David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Paul M. Thompson
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Laboratory of Neuro Imaging (LONI), David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jerome Engel
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Richard J. Staba
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
170
|
Bénar CG, Chauvière L, Bartolomei F, Wendling F. Pitfalls of high-pass filtering for detecting epileptic oscillations: a technical note on "false" ripples. Clin Neurophysiol 2009; 121:301-10. [PMID: 19955019 DOI: 10.1016/j.clinph.2009.10.019] [Citation(s) in RCA: 231] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 10/27/2009] [Accepted: 10/31/2009] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To analyze interictal High frequency oscillations (HFOs) as observed in the medial temporal lobe of epileptic patients and animals (ripples, 80-200Hz and fast ripples, 250-600Hz). To show that the identification of interictal HFOs raises some methodological issues, as the filtering of sharp transients (e.g., epileptic spikes or artefacts) or signals with harmonics can result in "false" ripples. To illustrate and quantify the occurrence of false ripples on filtered EEG traces. METHODS We have performed high-pass filtering on both simulated and real data. We have also used two alternate methods: time-frequency analysis and matching pursuit. RESULTS Two types of events were shown to produce oscillations after filtering that could be confounded with actual oscillatory activity: sharp transients and harmonics of non-sinusoidal signals. CONCLUSIONS High-pass filtering of EEG traces for detection of oscillatory activity should be performed with great care. Filtered traces should be compared to original traces for verification of presence of transients. Additional techniques such as time-frequency transforms or sparse decompositions are highly beneficial. SIGNIFICANCE Our study draws the attention on an issue of great importance in the marking of HFOs on EEG traces. We illustrate complementary methods that can help both researchers and clinicians.
Collapse
Affiliation(s)
- C G Bénar
- INSERM, U751, Laboratoire de Neurophysiologie et Neuropsychologie, Marseille, France.
| | | | | | | |
Collapse
|
171
|
Jinde S, Belforte JE, Yamamoto J, Wilson MA, Tonegawa S, Nakazawa K. Lack of kainic acid-induced gamma oscillations predicts subsequent CA1 excitotoxic cell death. Eur J Neurosci 2009; 30:1036-55. [PMID: 19735292 PMCID: PMC2761958 DOI: 10.1111/j.1460-9568.2009.06896.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Gamma oscillations are a prominent feature of hippocampal network activity, but their functional role remains debated, ranging from mere epiphenomena to being crucial for information processing. Similarly, persistent gamma oscillations sometimes appear prior to epileptic discharges in patients with mesial temporal sclerosis. However, the significance of this activity in hippocampal excitotoxicity is unclear. We assessed the relationship between kainic acid (KA)-induced gamma oscillations and excitotoxicity in genetically engineered mice in which N-methyl-D-aspartic acid receptor deletion was confined to CA3 pyramidal cells. Mutants showed reduced CA3 pyramidal cell firing and augmented sharp wave-ripple activity, resulting in higher susceptibility to KA-induced seizures, and leading to strikingly selective neurodegeneration in the CA1 subfield. Interestingly, the increase in KA-induced gamma-aminobutyric acid (GABA) levels, and the persistent 30-50-Hz gamma oscillations, both of which were observed in control mice prior to the first seizure discharge, were abolished in the mutants. Consequently, on subsequent days, mutants manifested prolonged epileptiform activity and massive neurodegeneration of CA1 cells, including local GABAergic neurons. Remarkably, pretreatment with the potassium channel blocker alpha-dendrotoxin increased GABA levels, restored gamma oscillations, and prevented CA1 degeneration in the mutants. These results demonstrate that the emergence of low-frequency gamma oscillations predicts increased resistance to KA-induced excitotoxicity, raising the possibility that gamma oscillations may have potential prognostic value in the treatment of epilepsy.
Collapse
Affiliation(s)
- Seiichiro Jinde
- Unit on Genetics of Cognition and Behavior, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Maryland 20892
| | - Juan E. Belforte
- Unit on Genetics of Cognition and Behavior, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Maryland 20892
| | - Jun Yamamoto
- The Picower Institute for Learning and Memory, RIKEN-MIT Center for Neural Circuit Genetics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Matthew A. Wilson
- The Picower Institute for Learning and Memory, RIKEN-MIT Center for Neural Circuit Genetics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Susumu Tonegawa
- The Picower Institute for Learning and Memory, RIKEN-MIT Center for Neural Circuit Genetics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Howard Hughes Medical Institute
| | - Kazu Nakazawa
- Unit on Genetics of Cognition and Behavior, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Maryland 20892
| |
Collapse
|
172
|
Beenhakker MP, Huguenard JR. Neurons that fire together also conspire together: is normal sleep circuitry hijacked to generate epilepsy? Neuron 2009; 62:612-32. [PMID: 19524522 PMCID: PMC2748990 DOI: 10.1016/j.neuron.2009.05.015] [Citation(s) in RCA: 278] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/15/2009] [Accepted: 05/18/2009] [Indexed: 02/02/2023]
Abstract
Brain circuits oscillate during sleep. The same circuits appear to generate pathological oscillations. In this review, we discuss recent advances in our understanding of how epilepsy co-opts normal, sleep-related circuits to generate seizures.
Collapse
Affiliation(s)
- Mark P Beenhakker
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
173
|
Ogren JA, Bragin A, Wilson CL, Hoftman GD, Lin JJ, Dutton RA, Fields TA, Toga AW, Thompson PM, Engel J, Staba RJ. Three-dimensional hippocampal atrophy maps distinguish two common temporal lobe seizure-onset patterns. Epilepsia 2009; 50:1361-70. [PMID: 19054395 PMCID: PMC2773143 DOI: 10.1111/j.1528-1167.2008.01881.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Current evidence suggests that the mechanisms underlying depth electrode-recorded seizures beginning with hypersynchronous (HYP) onset patterns are functionally distinct from those giving rise to low-voltage fast (LVF) onset seizures. However, both groups have been associated with hippocampal atrophy (HA), indicating a need to clarify the anatomic correlates of each ictal onset type. We used three-dimensional (3D) hippocampal mapping to quantify HA and determine whether each onset group exhibited a unique distribution of atrophy consistent with the functional differences that distinguish the two onset morphologies. METHODS Sixteen nonconsecutive patients with medically refractory epilepsy were assigned to HYP or LVF groups according to ictal onset patterns recorded with intracranial depth electrodes. Using preimplant magnetic resonance imaging (MRI), levels of volumetrically defined HA were determined by comparison with matched controls, and the distribution of local atrophy was mapped onto 3D hippocampal surface models. RESULTS HYP and LVF groups exhibited significant and equivalent levels of HA ipsilateral to seizure onset. Patients with LVF onset seizures also showed significant contralateral volume reductions. On ipsilateral contour maps HYP patients exhibited an atrophy pattern consistent with classical hippocampal sclerosis (HS), whereas LVF atrophy was distributed more laterally and diffusely. Contralateral LVF maps also showed regions of subicular atrophy. DISCUSSION The HS-like distribution of atrophy and the restriction of HA to the ipsilateral hippocampus in HYP patients are consistent with focal hippocampal onsets, and suggest a mechanism utilizing intrahippocampal circuitry. In contrast, the bilateral distribution of nonspecific atrophy in the LVF group may reflect mechanisms involving both hippocampal and extrahippocampal networks.
Collapse
Affiliation(s)
- Jennifer A. Ogren
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
| | - Anatol Bragin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
| | - Charles L. Wilson
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
| | - Gil D. Hoftman
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
| | - Jack J. Lin
- Department of Neurology, UCI School of Medicine, Irvine, California, U.S.A
| | - Rebecca A. Dutton
- Laboratory of Neuro Imaging (LONI), David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
| | - Tony A. Fields
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
| | - Arthur W. Toga
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
- Laboratory of Neuro Imaging (LONI), David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
| | - Paul M. Thompson
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
- Laboratory of Neuro Imaging (LONI), David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
| | - Jerome Engel
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
| | - Richard J. Staba
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A
| |
Collapse
|
174
|
Raedt R, Van Dycke A, Van Melkebeke D, De Smedt T, Claeys P, Wyckhuys T, Vonck K, Wadman W, Boon P. Seizures in the intrahippocampal kainic acid epilepsy model: characterization using long-term video-EEG monitoring in the rat. Acta Neurol Scand 2009; 119:293-303. [PMID: 19388152 DOI: 10.1111/j.1600-0404.2008.01108.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Intrahippocampal injection of kainic acid (KA) in rats evokes a status epilepticus (SE) and leads to spontaneous seizures. However to date, precise electroencephalographic (EEG) and clinical characterization of spontaneous seizures in this epilepsy model using long-term video-EEG monitoring has not been performed. MATERIALS AND METHODS Rats were implanted with bipolar hippocampal depth electrodes and a cannula for the injection of KA (0.4 lg /0.2 ll) in the right hippocampus. Video-EEG monitoring was used to determine habitual parameters of spontaneous seizures such as seizure frequency, severity, progression and day-night rhythms. RESULTS Spontaneous seizures were detected in all rats with 13 out of 15 animals displaying seizures during the first eight weeks after SE. A considerable fraction (35%) of the spontaneous seizures did not generalize secondarily. Seizure frequency was quite variable and the majority of the KA treated animals had less than one seizure per day. A circadian rhythm was observed in all rats that showed sufficient seizures per day. CONCLUSIONS This study shows that the characteristics of spontaneous seizures in the intrahippocampal KA model display many similarities to other SE models and human temporal lobe epilepsy.
Collapse
Affiliation(s)
- R Raedt
- Laboratory for Clinical and Experimental Neurophysiology, Department of Neurology, University Hospital Ghent, De Pintelaan 185, Ghent, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Mitsuya K, Nitta N, Suzuki F. Persistent zinc depletion in the mossy fiber terminals in the intrahippocampal kainate mouse model of mesial temporal lobe epilepsy. Epilepsia 2009; 50:1979-90. [PMID: 19389150 DOI: 10.1111/j.1528-1167.2009.02055.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Zinc is released in synaptic vesicles with glutamate, and modulates glutamatergic neurotransmission. In brain, the highest amount of zinc, detected by Timm staining, is in the mossy fiber (MF) system in the hippocampus. In the intrahippocampal kainate (KA) mouse model of mesial temporal lobe epilepsy, which is elicited by intrahippocampal KA, prominent MF sprouting develops rapidly within 2 weeks post-KA. However, the intensity of Timm staining is reduced gradually thereafter. The present study is designed to determine the mechanisms underlying this reduction of Timm staining. METHODS The changes in Timm staining, and VGluT1, Synapsin-1, and zinc transporter 3 (ZnT3) immunoreactivity (IR) were examined from 4-56 days post-KA. An analysis of glutamate release in the KA-injected hippocampus was conducted by microdialysis before and during the continuous injection of midazolam (MDZ). RESULTS At 56 days post-KA, Timm staining disappeared completely, whereas VGluT-1-, Synapsin-1-, and ZnT3-IR were increased in the sprouted MF boutons. However, when the seizures were suppressed by a continuous perfusion of MDZ, the glutamate release in the hippocampus decreased and Timm staining was recovered. DISCUSSION This study showed that the reduction of Timm staining is the result of decreased zinc content but not the loss of MF itself. The reduction is the result of the enhanced release of zinc relative to storage, and it should facilitate the glutamate excitation that might be related to the epileptogenesis and rapid advancement of the morphologic changes in this model.
Collapse
Affiliation(s)
- Koichi Mitsuya
- Division of Neurosurgery, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka, Japan
| | | | | |
Collapse
|
176
|
Bragin A, Azizyan A, Almajano J, Engel J. The cause of the imbalance in the neuronal network leading to seizure activity can be predicted by the electrographic pattern of the seizure onset. J Neurosci 2009; 29:3660-71. [PMID: 19295168 PMCID: PMC2688438 DOI: 10.1523/jneurosci.5309-08.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 02/10/2009] [Accepted: 02/15/2009] [Indexed: 11/21/2022] Open
Abstract
This study investigates the temporal dynamics of ictal electrical activity induced by injection of the GABA(A) receptor antagonist bicuculline, and the glutamate agonist kainic acid, into the CA3 area of hippocampus. Experiments were conducted in freely moving adult Wistar rats implanted with microelectrodes in multiple brain areas. Wide-band electrical activity (0.1-3000 Hz) was recorded, and the latency of seizure onset as well as the pattern of electrical activity were investigated for each drug. The latencies between injection and the occurrence of first epileptiform events were 3.93 +/- 2.76 (+/-STD) min for bicuculline and 6.37 +/- 7.66 min for kainic acid, suggesting the existence of powerful seizure-suppressive mechanisms in the brain. Bicuculline evoked high-amplitude rhythmic epileptiform events at the site of injection which resembled interictal EEG spikes and rapidly propagated to adjacent and remote brain areas. Kainic acid evoked a completely different pattern with a gradual increase in the amplitude of 30-80 Hz activity. Whereas there was strong temporal correlation between EEG events at the site of bicuculline injection and discharges in distant areas, much less correlation was seen with kainic acid injection. Both patterns were followed by generalized ictal EEG discharges and behavioral seizures. Our results illustrate that the same area of the brain can trigger seizures with different electrographic patterns. The knowledge of the network mechanisms underlying these two distinct electrographic patterns might be helpful in designing differential strategies for preventing seizure occurrence.
Collapse
Affiliation(s)
- Anatol Bragin
- Departments of Neurology and
- The Brain Research Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California 90095
| | | | | | - Jerome Engel
- Departments of Neurology and
- Neurobiology, and
- The Brain Research Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
177
|
King-Stephens D. Epilepsy. Neuromodulation 2009. [DOI: 10.1016/b978-0-12-374248-3.00050-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
178
|
Abstract
High-frequency oscillations (HFOs) in the 80-200 Hz range can be recorded from normal hippocampus and parahippocampal structures of humans and animals. They are believed to reflect inhibitory field potentials, which facilitate information transfer by synchronizing neuronal activity over long distances. HFOs in the range of 250-600 Hz (fast ripples, FRs) are pathologic and are readily recorded from hippocampus and parahippocampal structures of patients with mesial temporal lobe epilepsy, as well as rodent models of this disorder. These oscillations, and similar HFOs recorded from neocortex of patients, appear to identify brain tissue capable of spontaneous ictogenesis and are believed to reflect the neuronal substrates of epileptogenesis and epileptogenicity. The distinction between normal and pathologic HFOs (pHFOs), however, cannot be made on the basis of frequency alone, as oscillations in the FR frequency range can be recorded from some areas of normal neocortex, whereas oscillations in the ripple frequency range are present in epileptic dentate gyrus where normal ripples never occur and, therefore, appear to be pathologic. The suggestion that FRs may be harmonics of normal ripples is unlikely, because of their spatially distinct generators, and evidence that FRs reflect synchronized firing of abnormally bursting neurons rather than inhibitory field potentials. These synchronous population spikes, however, can fire at ripple frequencies, and their harmonics appear to give rise to FRs. Investigations into the fundamental neuronal processes responsible for pHFOs could provide insights into basic mechanisms of epilepsy. The potential for pHFOs to act as biomarkers for epileptogenesis and epileptogenicity is also discussed.
Collapse
Affiliation(s)
- Jerome Engel
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1769, USA.
| | | | | | | |
Collapse
|
179
|
Wu JY, Koh S, Sankar R, Mathern GW. Paroxysmal fast activity: an interictal scalp EEG marker of epileptogenesis in children. Epilepsy Res 2008; 82:99-106. [PMID: 18804956 DOI: 10.1016/j.eplepsyres.2008.07.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 07/07/2008] [Accepted: 07/13/2008] [Indexed: 11/29/2022]
Abstract
PURPOSE High-frequency oscillations (>100Hz) have been proposed as localized markers of epileptic networks, but require intracranial electroencephalographic (EEG) recordings. This study explored if beta- and gamma-frequency paroxysmal fast activity (PFA), recorded interictally during non-REM sleep, could be used as a scalp EEG marker of epileptogenesis in children. METHODS The presence and scalp location of PFA was visually identified in 681 patients with overnight video-EEG (age 0-18 years), and compared with ictal onset sites. The clinical features of patients with PFA were compared with patients without PFA along with evidence of PFA evolution in 35 patients who had multiple video-EEG records. RESULTS PFA was present in 16% of all patients and in 28% of those with seizures. PFA was more frequently observed in EEGs from patients 3 years of age or younger (>40%), and children with infantile spasms (85%). When present, PFA predicted if the patient had epilepsy with 97% accuracy, and was not found in individuals with non-epileptic events. PFA localized with EEG-ictal onset sites with 91% sensitivity and 82% accuracy. Ictal scalp EEG events began with beta- and gamma-frequencies in 80% of patients with PFA, and they had increased seizure frequencies compared with non-PFA cases. In patients with multiple video-EEG studies, PFA showed progression over increased numbers of electrodes in 74%, improvement in 15%, and remained unchanged in 12% and correlated with seizure evolution. PFA was not associated with other seizure types, anatomic location, type of antiepileptic drug, etiology, or histopathology. CONCLUSIONS While relatively infrequent, interictal PFA was specific in identifying younger children with epilepsy, co-localized with the ictal onset sites on scalp video-EEG, and progressed and correlated with seizure severity. We propose that PFA is a scalp EEG marker of epileptic networks with the advantage of being recorded non-invasively during interictal non-REM sleep.
Collapse
Affiliation(s)
- Joyce Y Wu
- Division of Pediatric Neurology, Mattel Children's Hospital at UCLA, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, United States.
| | | | | | | |
Collapse
|
180
|
Englot DJ, Mishra AM, Mansuripur PK, Herman P, Hyder F, Blumenfeld H. Remote effects of focal hippocampal seizures on the rat neocortex. J Neurosci 2008; 28:9066-81. [PMID: 18768701 PMCID: PMC2590649 DOI: 10.1523/jneurosci.2014-08.2008] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 07/01/2008] [Accepted: 07/31/2008] [Indexed: 11/21/2022] Open
Abstract
Seizures have both local and remote effects on nervous system function. Whereas propagated seizures are known to disrupt cerebral activity, little work has been done on remote network effects of seizures that do not propagate. Human focal temporal lobe seizures demonstrate remote changes including slow waves on electroencephalography (EEG) and decreased cerebral blood flow (CBF) in the neocortex. Ictal neocortical slow waves have been interpreted as seizure propagation; however, we hypothesize that they reflect a depressed cortical state resembling sleep or coma. To investigate this hypothesis, we performed multimodal studies of partial and secondarily generalized limbic seizures in rats. Video/EEG monitoring of spontaneous seizures revealed slow waves in the frontal cortex during behaviorally mild partial seizures, contrasted with fast polyspike activity during convulsive generalized seizures. Seizures induced by hippocampal stimulation produced a similar pattern, and were used to perform functional magnetic resonance imaging weighted for blood oxygenation and blood volume, demonstrating increased signals in hippocampus, thalamus and septum, but decreases in orbitofrontal, cingulate, and retrosplenial cortex during partial seizures, and increases in all of these regions during propagated seizures. Combining these results with neuronal recordings and CBF measurements, we related neocortical slow waves to reduced neuronal activity and cerebral metabolism during partial seizures, but found increased neuronal activity and metabolism during propagated seizures. These findings suggest that ictal neocortical slow waves represent an altered cortical state of depressed function, not propagated seizure activity. This remote effect of partial seizures may cause impaired cerebral functions, including loss of consciousness.
Collapse
Affiliation(s)
| | | | | | - Peter Herman
- Diagnostic Radiology
- Program for Quantitative Neuroscience with Magnetic Resonance (QNMR), and
- Magnetic Resonance Research Center (MRRC), Yale University School of Medicine, New Haven, Connecticut 06520
| | - Fahmeed Hyder
- Diagnostic Radiology
- Biomedical Engineering
- Program for Quantitative Neuroscience with Magnetic Resonance (QNMR), and
- Magnetic Resonance Research Center (MRRC), Yale University School of Medicine, New Haven, Connecticut 06520
| | - Hal Blumenfeld
- Departments of Neurology
- Neurobiology, and
- Neurosurgery
- Program for Quantitative Neuroscience with Magnetic Resonance (QNMR), and
| |
Collapse
|
181
|
Le Duigou C, Bouilleret V, Miles R. Epileptiform activities in slices of hippocampus from mice after intra-hippocampal injection of kainic acid. J Physiol 2008; 586:4891-904. [PMID: 18755752 DOI: 10.1113/jphysiol.2008.156281] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Intra-hippocampal kainate injection induces the emergence of recurrent seizures after a delay of 3-4 weeks. We examined the cellular and synaptic basis of this activity in vitro using extracellular and intracellular records from longitudinal hippocampal slices. These slices permitted recordings from the dentate gyrus, the CA3 and CA1 regions and the subiculum of both the injected and the contralateral non-injected hippocampus. A sclerotic zone was evident in dorsal regions of slices from the injected hippocampus, while ventral regions and tissue from the contralateral hippocampus were not sclerotic. Interictal field potentials of duration 50-200 ms were generated spontaneously in both ipsilateral and contralateral hippocampal slices, but not in the sclerotic region, at 3-12 months after injection. They were initiated in the CA1 and CA3 regions and the subiculum. They were blocked by antagonists at glutamatergic receptors and were transformed into prolonged epileptiform events by GABAergic receptor antagonists. The membrane potential and the reversal potential of GABAergic synaptic events were more depolarized in CA1 pyramidal cells from kainate-treated animals than in control animals. Ictal-like events of duration 8-80 s were induced by tetanic stimulation (50 Hz, 0.2-1 s) preferentially in dorsal contralateral and ventral ipsilateral slices. Similar events were initiated by focal application of a combination of high K(+) and GABA. These data show that both interictal and ictal-like activities can be induced in slices of both ipsilateral and contralateral hippocampus from kainate-treated animals and suggest that changes in cellular excitability and inhibitory synaptic signalling may contribute to their generation.
Collapse
Affiliation(s)
- Caroline Le Duigou
- INSERM U739, CHU Pitié-Salpêtrière, 105 boulevard de l'Hôpital, 75013 Paris, France
| | | | | |
Collapse
|
182
|
Khosravani H, Mehrotra N, Rigby M, Hader WJ, Pinnegar CR, Pillay N, Wiebe S, Federico P. Spatial localization and time-dependant changes of electrographic high frequency oscillations in human temporal lobe epilepsy. Epilepsia 2008; 50:605-16. [PMID: 18717704 DOI: 10.1111/j.1528-1167.2008.01761.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE High frequency oscillations (HFOs) >200 Hz are believed to be associated with epileptic processes. The spatial distribution of HFOs and their evolution over time leading up to seizure onset is unknown. Also, recording HFOs through conventional intracranial electrodes is not well established. We therefore wished to determine whether HFOs could be recorded using commercially available depth macroelectrodes. We also examined the spatial distribution and temporal progression of HFOs during the transition to seizure activity. METHODS Intracranial electroencephalography (EEG) recordings of 19 seizures were obtained from seven patients with temporal lobe epilepsy using commercial depth or subdural electrodes. EEG recordings were analyzed for frequency content in five spectral bands spanning DC-500 Hz. We examined the spatial distribution of the different spectral bands 5 s before and 5 s after seizure onset. Temporal changes in the spectral bands were studied in the 30-s period leading up to seizure onset. RESULTS Three main observations were made. First, HFOs (100-500 Hz) can be recorded using commercial depth and subdural grid electrodes. Second, HFOs, but not <100 Hz oscillations, were localized to channels of ictal onset (100-200, 400-500 Hz, p < 0.05; 300-400 Hz, p < 0.001). Third, temporal analysis showed increased HFO power for approximately 8 s prior to electrographic onset (p < 0.05). CONCLUSIONS These results suggest that HFOs can be recorded by depth macroelectrodes. Also, HFOs are localized to the region of primary ictal onset and can exhibit increased power during the transition to seizure. Thus, HFOs likely represent important precursors to seizure initiation.
Collapse
Affiliation(s)
- Houman Khosravani
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Overexpression of N-WASP in the brain of human epilepsy. Brain Res 2008; 1233:168-75. [PMID: 18708039 DOI: 10.1016/j.brainres.2008.07.101] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Revised: 07/25/2008] [Accepted: 07/26/2008] [Indexed: 11/20/2022]
Abstract
Neuronal circuit remodeling is the most critical pathological characteristic closely associated with the initiation and maintenance of epilepsy; however, the exact mechanisms of neuronal remodeling need further elucidation. Neuronal Wiskott-Aldrich syndrome protein (N-WASP) is a key regulator of the actin cytoskeleton that causes actin polymerization and thus neurite extension. Our previous research demonstrated that the upstream regulator of N-WASP, cell division cycle 42 GTP-binding protein (Cdc42), is significantly upregulated in the brains of patients with intractable epilepsy (IE). In addition, cDNA microarray analysis has shown that gene expression of N-WASP is notably enhanced in the epileptic brain, suggesting a possible role for N-WASP in epileptogenesis. Here, we investigated the expression of N-WASP and its downstream effector, actin-related protein 2/3 (Arp2/3), at the protein level in the temporal lobe of IE patient brains to explore its possible role in the genesis of IE. Forty surgical samples from brains of patients with IE and 20 control brain tissues were obtained for this study. The expression of N-WASP in the anterior temporal neocortex was detected using immunohistochemistry, immunofluorescence and western blotting; Arp2/3 expression was detected by western blotting. Compared with controls, N-WASP expression in brains of IE patients was significantly higher; similarly, Arp2/3 level was markedly increased in the IE patient group. These results suggest that increased expression of N-WASP in the human brain may be associated with human IE.
Collapse
|
184
|
Akhtari M, Bragin A, Cohen M, Moats R, Brenker F, Lynch MD, Vinters HV, Engel J. Functionalized magnetonanoparticles for MRI diagnosis and localization in epilepsy. Epilepsia 2008; 49:1419-30. [PMID: 18479391 DOI: 10.1111/j.1528-1167.2008.01615.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE The development of nonradioactive and targeted magnetonanoparticles (MNP) capable of crossing the blood-brain barrier (BBB) and of concentrating in the epileptogenic tissues of acute and chronic animal models of temporal lobe epilepsy to render these tissues visible on magnetic resonance imaging (MRI). METHODS Nonradioactive alpha methyl tryptophan (AMT) was covalently attached to MNP composed of iron oxide and dextran. A rodent model of temporal lobe epilepsy was prepared by injecting kainic acid into the right hippocampus. AMT-MNP or plain MNP was injected in the tail-vein of two animals during the acute stage 3 days after status epilepticus, and AMT-MNP in five animals during the chronic stage. MRIs were obtained before and after particle injection in all animals. Intracranial EEGs were obtained in all chronic animals after completion of MRI studies. RESULTS AMT-MNP crossed the BBB and intraparenchymal uptake was visible on MRI. In the acute condition, AMT-MNP appeared to localize to both hippocampi, whereas plain MNP only identified unilateral, presumably inflammatory, changes. In the chronic condition, AMT-MNP uptake correlated with the occurrence of spontaneous seizures, and the location of uptake appeared to agree with bilateral or unilateral epileptogenicity confirmed by subsequent intracranial EEG. DISCUSSION Nonradioactive AMT-MNP can cross the BBB and may accurately localize epileptogenic cerebral regions. The MNP-MRI approach is potentially applicable to the use of any bioactive molecules as ligands for imaging normal and abnormal localized cerebral functions, accurately, safely, and inexpensively.
Collapse
Affiliation(s)
- Massoud Akhtari
- Jane & Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, USA.
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Abstract
Gliosis is a pathological hallmark of posttraumatic epileptic foci, but little is known about these reactive astrocytes beyond their high glial fibrillary acidic protein (GFAP) expression. Using diolistic labeling, we show that cortical astrocytes lost their nonoverlapping domain organization in three mouse models of epilepsy: posttraumatic injury, genetic susceptibility, and systemic kainate exposure. Neighboring astrocytes in epileptic mice showed a 10-fold increase in overlap of processes. Concurrently, spine density was increased on dendrites of excitatory neurons. Suppression of seizures by the common antiepileptic, valproate, reduced the overlap of astrocytic processes. Astrocytic domain organization was also preserved in APP transgenic mice expressing a mutant variant of human amyloid precursor protein despite a marked upregulation of GFAP. Our data suggest that loss of astrocytic domains was not universally associated with gliosis, but restricted to seizure pathologies. Reorganization of astrocytes may, in concert with dendritic sprouting and new synapse formation, form the structural basis for recurrent excitation in the epileptic brain.
Collapse
|
186
|
Nelson R, Myers SM, Simonotto JD, Furman MD, Spano M, Norman WM, Liu Z, DeMarse TB, Carney PR, Ditto WL. Detection of high frequency oscillations with Teager energy in an animal model of limbic epilepsy. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2008; 2006:2578-80. [PMID: 17946122 DOI: 10.1109/iembs.2006.259694] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
High frequency oscillations (HFO) in limbic epilepsy represent a marked difference between abnormal and normal brain activity. Faced with the difficult of visually detecting HFOs in large amounts of intracranial EEG data, it is necessary to develop an automated process. This paper presents Teager Energy as a method of finding HFOs. Teager energy is an ideal measure because unlike conventional energy it takes into account the frequency component of the signal as well as signal amplitude. This greatly aids in the dissection of HFOs out of the noise and other signals contained in the EEG. Therein, Teager energy analysis is able to detect high-frequency, low-amplitude components that conventional energy measurements would miss.
Collapse
Affiliation(s)
- Ryan Nelson
- Dept. of Biomed. Eng., Florida Univ., Gainesville, FL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Chronic subdural electrodes in the management of epilepsy. Clin Neurophysiol 2007; 119:11-28. [PMID: 18035590 DOI: 10.1016/j.clinph.2007.09.117] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 08/30/2007] [Accepted: 09/26/2007] [Indexed: 11/22/2022]
Abstract
Subdural electrodes play a very important role in the evaluation of a percentage of patients being considered for epilepsy surgery. Electrical activity at very low and very high frequencies, beyond the practical range of scalp EEG, can be recorded subdurally and may contain considerable information not available non-invasively. The recording and stimulating procedures for using chronically implanted subdural electrodes to localize the epileptogenic zone and map eloquent functions of the human cortex are well established, and complication rates are low. Complications include infections, CSF leak, and focal neurologic deficits, all of which tend to be increased with a higher number of electrodes and longer duration of recordings. Careful consideration of the risks and benefits should be coupled with a firm hypothesis about the epileptogenic zone derived from the non-invasive components of the epilepsy workup to guide the decision about whether and where to implant subdural electrodes. When they are employed to answer a specific question in an individual patient, subdural electrodes can optimize the clinical outcome of a candidate for epilepsy surgery.
Collapse
|
188
|
Williams PA, Dudek FE. A chronic histopathological and electrophysiological analysis of a rodent hypoxic-ischemic brain injury model and its use as a model of epilepsy. Neuroscience 2007; 149:943-61. [PMID: 17935893 PMCID: PMC2897748 DOI: 10.1016/j.neuroscience.2007.07.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/24/2007] [Accepted: 08/15/2007] [Indexed: 11/24/2022]
Abstract
Ischemic brain injury is one of the leading causes of epilepsy in the elderly, and there are currently no adult rodent models of global ischemia, unilateral hemispheric ischemia, or focal ischemia that report the occurrence of spontaneous motor seizures following ischemic brain injury. The rodent hypoxic-ischemic (H-I) model of brain injury in adult rats is a model of unilateral hemispheric ischemic injury. Recent studies have shown that an H-I injury in perinatal rats causes hippocampal mossy fiber sprouting and epilepsy. These experiments aimed to test the hypothesis that a unilateral H-I injury leading to severe neuronal loss in young-adult rats also causes mossy fiber sprouting and spontaneous motor seizures many months after the injury, and that the mossy fiber sprouting induced by the H-I injury forms new functional recurrent excitatory synapses. The right common carotid artery of 30-day old rats was permanently ligated, and the rats were placed into a chamber with 8% oxygen for 30 min. A quantitative stereologic analysis revealed that the ipsilateral hippocampus had significant hilar and CA1 pyramidal neuronal loss compared with the contralateral and sham-control hippocampi. The septal region from the ipsilateral and contralateral hippocampus had small but significantly increased amounts of Timm staining in the inner molecular layer compared with the sham-control hippocampi. Three of 20 lesioned animals (15%) were observed to have at least one spontaneous motor seizure 6-12 months after treatment. Approximately 50% of the ipsilateral and contralateral hippocampal slices displayed abnormal electrophysiological responses in the dentate gyrus, manifest as all-or-none bursts to hilar stimulation. This study suggests that H-I injury is associated with synaptic reorganization in the lesioned region of the hippocampus, and that new recurrent excitatory circuits can predispose the hippocampus to abnormal electrophysiological activity and spontaneous motor seizures.
Collapse
|
189
|
El-Hassar L, Esclapez M, Bernard C. Hyperexcitability of the CA1 hippocampal region during epileptogenesis. Epilepsia 2007; 48 Suppl 5:131-9. [PMID: 17910593 DOI: 10.1111/j.1528-1167.2007.01301.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Temporal Lobe Epilepsy (TLE) is often preceded by a latent (seizure-free) period during which complex network reorganizations occur. In experimental epilepsy, network hyperexcitability is already present during the latent period, suggesting a modification of information processing. The purpose of this study was to assess the input/output relationship in the hippocampal CA1 region during epileptogenesis. Field recordings in strata pyramidale and radiatum were used to measure the output of CA1 pyramidal cells as a function of the synaptic inputs they receive following the stimulation of Shaffer collaterals in slices obtained from sham and pilocarpine-treated animals during the latent and chronic periods. We show that there is a transient increase of the input and output field responses during the latent period as compared to sham and epileptic animals. The coupling between excitatory inputs and cell firing was also increased during the latent period. This increase persisted in epileptic animals, although to a lesser extent. We also confirm that paired-pulse facilitation occurs before the chronic phase. The present data further support the view that hyperexcitability is present at an early stage of epileptogenesis. Network output is more facilitated during the latent than during the chronic period. Hyperexcitability may participate to epileptogenesis, but it is not sufficient in itself to produce seizures.
Collapse
Affiliation(s)
- Lynda El-Hassar
- INMED-INSERM U29, Université de la Méditerranée, Marseille, France
| | | | | |
Collapse
|
190
|
Mohns EJ, Karlsson KAE, Blumberg MS. Developmental emergence of transient and persistent hippocampal events and oscillations and their association with infant seizure susceptibility. Eur J Neurosci 2007; 26:2719-30. [PMID: 17973923 DOI: 10.1111/j.1460-9568.2007.05928.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During the second postnatal week in rats, the hippocampus exhibits a transient period of hyperexcitability. To systematically assess the relationship between the onset and end of this period and spontaneous hippocampal activity, we used silicon depth electrodes in unanaesthetized head-fixed rats from postnatal day (P)2 to P18. At all ages, hippocampal sharp waves (SPWs) were prominent in the EEG. Beginning at P6, however, marked changes in SPWs and associated oscillations were detected. SPW-related 'gamma tails' (60-100 Hz) and 'ripples' (140-200 Hz) were first observed at P6 and P7, respectively, and both oscillations persisted up to P18. Transiently, between P6 and P11, SPW duration decreased and the occurrence of SPW doublets increased. In addition, between P8 and P11, a subset of rats exhibited 'spontaneous potentiated SPWs' characterized by double polarity reversals, enhanced likelihood of gamma tails, and population spikes. Having identified a suite of transient hippocampal features consistent with a window of increased excitability, we next assessed whether electrographic seizure activity would be most easily induced during this period. To do this, kainic acid (KA; 200 ng/infusion) was infused into the hippocampus contralateral to the recording probe. KA did not induce seizure activity until P7 and reached peak effectiveness at P9. Thereafter, sensitivity to KA declined. All together, these findings provide in vivo neurophysiological support for the notion of a developmental window of heightened seizure susceptibility during the second postnatal week, and also suggest that spontaneous nonpathological hippocampal activity can be used to mark the onset and end of this period.
Collapse
Affiliation(s)
- Ethan J Mohns
- Program in Behavioural and Cognitive Neuroscience, Department of Psychology, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
191
|
Bragin A, Claeys P, Vonck K, Van Roost D, Wilson C, Boon P, Engel J. Analysis of initial slow waves (ISWs) at the seizure onset in patients with drug resistant temporal lobe epilepsy. Epilepsia 2007; 48:1883-94. [PMID: 17559569 DOI: 10.1111/j.1528-1167.2007.01149.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RATIONALE The goal of this study is to analyze initial slow waves (ISWs) at seizure onset in patients with refractory temporal lobe epilepsy. ISWs are a specific type of ictal EEG pattern characterized by a slow wave at the seizure onset followed by low voltage fast activity. METHODS Investigations were carried out on 14 patients from the UCLA hospital (USA) and 10 from the Ghent University Hospital (Belgium) implanted with depth and grid electrodes for localization of the epileptogenic zone. RESULTS Sixty-one seizures in the UCLA group and 30 seizures in the Ghent group were analyzed. Fourteen UCLA and seven Ghent patients had ISWs at seizure onset. The duration of ISWs varied between 0.3 to 6.0 s and maximum amplitude varied from 0.2 to 1.4 mV. ISWs in three of 14 UCLA patients (30% of seizures) had a consistent positive polarity at the deepest contacts that were located in the amygdala, hippocampus, or entorhinal cortex and reversed polarity outside of these brain areas (ISWs1). ISWs in 11 of 14 UCLA patients (70% of seizures) had negative polarity at the deepest electrodes and their amplitude increased toward the recording contacts located in the white matter or neocortex (ISWs2). All ISWs from the seven Ghent patients were negative in the depth contacts (ISWs2) and positive on grid electrodes at the cortical surface. ISWs1 were associated with EEG spikes at the onset and on increase in amplitude of 10-20 Hz sinusoidal activity. In contrast, ISWs2 were associated with suppression of EEG amplitude, an increase in frequency in the range of 20-50 Hz, and did not have EEG spikes at the onset. Multiunit neuronal activity showed strong synchronization of neuronal discharges during interictal spikes, but multiunit synchronization was not obvious during ISWs2. CONCLUSION The existence of EEG spikes and phase reversal with ISWs1 indicates this type of seizure may be triggered by hypersynchronous neuronal discharges; however, seizures with ISWs2 at the onset may be triggered by different mechanisms, perhaps nonneuronal.
Collapse
Affiliation(s)
- Anatol Bragin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | |
Collapse
|
192
|
Abstract
In recent years, there has been increasing evidence that serotonergic neurotransmission modulates a wide variety of experimentally induced seizures. Generally, agents that elevate extracellular serotonin (5-HT) levels, such as 5-hydroxytryptophan and serotonin reuptake blockers, inhibit both focal and generalized seizures, although exceptions have been described, too. Conversely, depletion of brain 5-HT lowers the threshold to audiogenically, chemically and electrically evoked convulsions. Furthermore, it has been shown that several anti-epileptic drugs increase endogenous extracellular 5-HT concentration. 5-HT receptors are expressed in almost all networks involved in epilepsies. Currently, the role of at least 5-HT(1A), 5-HT(2C), 5-HT(3) and 5-HT(7) receptor subtypes in epileptogenesis and/or propagation has been described. Mutant mice lacking 5-HT(1A) or 5-HT(2C) receptors show increased seizure activity and/or lower threshold. In general, hyperpolarization of glutamatergic neurons by 5-HT(1A) receptors and depolarization of GABAergic neurons by 5-HT(2C) receptors as well as antagonists of 5-HT(3) and 5-HT(7) receptors decrease the excitability in most, but not all, networks involved in epilepsies. Imaging data and analysis of resected tissue of epileptic patients, and studies in animal models all provide evidence that endogenous 5-HT, the activity of its receptors, and pharmaceuticals with serotonin agonist and/or antagonist properties play a significant role in the pathogenesis of epilepsies.
Collapse
Affiliation(s)
- Gyorgy Bagdy
- Laboratory of Neurochemistry and Experimental Medicine, National Institute of Psychiatry and Neurology, Budapest, Hungary.
| | | | | | | |
Collapse
|
193
|
Shi LH, Luo F, Woodward DJ, McIntyre DC, Chang JY. Temporal sequence of ictal discharges propagation in the corticolimbic basal ganglia system during amygdala kindled seizures in freely moving rats. Epilepsy Res 2006; 73:85-97. [PMID: 17049434 PMCID: PMC1941664 DOI: 10.1016/j.eplepsyres.2006.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 08/16/2006] [Accepted: 08/29/2006] [Indexed: 10/24/2022]
Abstract
We used a multiple channel, single unit recording technique to investigate the neural activity in different corticolimbic and basal ganglia regions in freely moving rats before and during generalized amygdala kindled seizures. Neural activity was recorded simultaneously in the sensorimotor cortex (Ctx), hippocampus, amygdala, substantia nigra pars reticulata (SNr) and the subthalamic nucleus (STN). We observed massive synchronized activity among neurons of different brain regions during seizure episodes. Neurons in the kindled amygdala led other regions in synchronized firing, revealed by time lags of neurons in other regions in crosscorrelogram analysis. While there was no obvious time lag between Ctx and SNr, the STN and hippocampus did lag behind the Ctx and SNr in correlated firing. Activity in the amygdala and SNr contralateral to the kindling stimulation site lagged behind their ipsilateral counterparts. However, no time lag was found between the kindling and contralateral sides of Ctx, hippocampus and STN. Our data confirm that the amygdala is an epileptic focus that emits ictal discharges to other brain regions. The observed temporal pattern indicates that ictal discharges from the amygdala arrive first at Ctx and SNr, and then spread to the hippocampus and STN. The simultaneous activation of both sides of the Ctx suggests that the neocortex participates in kindled seizures as a unisonant entity to provoke the clonic motor seizures. Early activation of the SNr (before the STN and hippocampus) points to an important role of the SNr in amygdala kindled seizures and supports the view that different SNr manipulations may be effective ways to control seizures.
Collapse
Affiliation(s)
- Li-Hong Shi
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|
194
|
Fellin T, Gomez-Gonzalo M, Gobbo S, Carmignoto G, Haydon PG. Astrocytic glutamate is not necessary for the generation of epileptiform neuronal activity in hippocampal slices. J Neurosci 2006; 26:9312-22. [PMID: 16957087 PMCID: PMC6674496 DOI: 10.1523/jneurosci.2836-06.2006] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The release of glutamate from astrocytes activates synchronous slow inward currents (SICs) in hippocampal pyramidal neurons, which are mediated by the NMDA receptor and represent a nonsynaptic mechanism to promote the synchronization of neuronal activity. Two recent studies demonstrate that SICs generate neuronal paroxysmal depolarizations resembling those typical of interictal epileptiform activity and proposed that there could be an astrocytic basis of epilepsy (Kang et al., 2005; Tian et al., 2005). We tested this hypothesis using two in vitro models of epileptiform activity in hippocampal slices. Removal of extracellular Mg2+ and application of picrotoxin or perfusion with 0.5 mM Mg2+ and 8.5 mM K+-containing saline result mainly in neuronal ictal- and interictal-like epileptiform activity, respectively. Although both models trigger epileptiform activity, astrocytic Ca2+ oscillations were increased only after slice perfusion with 0 mM Mg2+ and picrotoxin. The activation of astrocytic Ca2+ signaling correlates with an increased frequency of SICs, and, when paired neurons were within 100 microm of one another with synchronous neuronal Ca2+ elevations, the generation of synchronous neuronal depolarizations and action potential discharges. TTX blocked both ictal- and interictal-like epileptiform activity without affecting SICs or SIC-mediated neuronal synchronization. In contrast, NMDA receptor antagonists, which block SICs, did not prevent the generation of either ictal- or interictal-like events. Based on this clear-cut pharmacology, our data demonstrate that nonsynaptic glutamate release from astrocytes is not necessary for the generation of epileptiform activity in vitro, although we cannot exclude the possibility that it may modulate the strength of the ictal (seizure)-like event.
Collapse
Affiliation(s)
- Tommaso Fellin
- Silvio Conte Center for Integration at the Tripartite Synapse, Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, and
- Consiglio Nazionale delle Ricerche Istituto di Neuroscienze and Dipartimento di Scienze Biomediche Sperimentali, Università di Padova, 35121 Padova, Italy
| | - Marta Gomez-Gonzalo
- Consiglio Nazionale delle Ricerche Istituto di Neuroscienze and Dipartimento di Scienze Biomediche Sperimentali, Università di Padova, 35121 Padova, Italy
| | - Sara Gobbo
- Consiglio Nazionale delle Ricerche Istituto di Neuroscienze and Dipartimento di Scienze Biomediche Sperimentali, Università di Padova, 35121 Padova, Italy
| | - Giorgio Carmignoto
- Consiglio Nazionale delle Ricerche Istituto di Neuroscienze and Dipartimento di Scienze Biomediche Sperimentali, Università di Padova, 35121 Padova, Italy
| | - Philip G. Haydon
- Silvio Conte Center for Integration at the Tripartite Synapse, Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, and
| |
Collapse
|
195
|
van Drongelen W, Koch H, Elsen FP, Lee HC, Mrejeru A, Doren E, Marcuccilli CJ, Hereld M, Stevens RL, Ramirez JM. Role of persistent sodium current in bursting activity of mouse neocortical networks in vitro. J Neurophysiol 2006; 96:2564-77. [PMID: 16870839 DOI: 10.1152/jn.00446.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Most types of electrographic epileptiform activity can be characterized by isolated or repetitive bursts in brain electrical activity. This observation is our motivation to determine mechanisms that underlie bursting behavior of neuronal networks. Here we show that the persistent sodium (Na(P)) current in mouse neocortical slices is associated with cellular bursting and our data suggest that these cells are capable of driving networks into a bursting state. This conclusion is supported by the following observations. 1) Both low concentrations of tetrodotoxin (TTX) and riluzole reduce and eventually stop network bursting while they simultaneously abolish intrinsic bursting properties and sensitivity levels to electrical stimulation in individual intrinsically bursting cells. 2) The sensitivity levels of regular spiking neurons are not significantly affected by riluzole or TTX at the termination of network bursting. 3) Propagation of cellular bursting in a neuronal network depended on excitatory connectivity and disappeared on bath application of CNQX (20 microM) + CPP (10 microM). 4) Voltage-clamp measurements show that riluzole (20 microM) and very low concentrations of TTX (50 nM) attenuate Na(P) currents in the neural membrane within a 1-min interval after bath application of the drug. 5) Recordings of synaptic activity demonstrate that riluzole at this concentration does not affect synaptic properties. 6) Simulations with a neocortical network model including different types of pyramidal cells, inhibitory interneurons, neurons with and without Na(P) currents, and recurrent excitation confirm the essence of our experimental observations that Na(P) conductance can be a critical factor sustaining slow population bursting.
Collapse
Affiliation(s)
- Wim van Drongelen
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637-1470, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Colom LV, García-Hernández A, Castañeda MT, Perez-Cordova MG, Garrido-Sanabria ER. Septo-hippocampal networks in chronically epileptic rats: potential antiepileptic effects of theta rhythm generation. J Neurophysiol 2006; 95:3645-53. [PMID: 16554504 DOI: 10.1152/jn.00040.2006] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A series of experiments was carried out testing the hypothesis that the septal region decreases the hippocampal susceptibility to hyperexcitability states through theta rhythm generation. Medial septal neurons were simultaneously recorded with hippocampal field potentials to investigate the septo-hippocampal function in the pilocarpine model of chronic epilepsy. The theta rhythm from chronically epileptic rats had lower amplitude (20% less) and higher frequency than controls (from 3.38 to 4.25 Hz), suggesting that both generator and pacemaker structures are affected during the epileptic process. At the cellular level, the group of rhythmically bursting firing medial septal neurons, in the epileptic animals, significantly and chronically increased their firing rates in relation to controls (from 13.86 to 29.14 spikes/s). Peristimulus histograms performed around hippocampal sharp waves showed that all high-frequency firing neurons, including rhythmically bursting neurons and most slow firing neurons, decreased firing rates immediately after hippocampal epileptic discharges. Thus inhibitory hippocampo-septal influences prevail during hippocampal epileptic discharges. The occurrence of epileptic discharges was reduced 86-97% of the number observed during spontaneous theta and theta induced by sensory (tail pinch) or chemical stimulation (carbachol), suggesting that the presence of the theta state regardless of how it was produced was responsible for the reduction in epileptic discharge frequency. The understanding of the theta rhythm "anti-epileptic" effect at the cellular and molecular levels may result in novel therapeutic approaches dedicated to protect the brain against abnormal excitability states.
Collapse
Affiliation(s)
- Luis V Colom
- Department of Biological Sciences and Center for Biomedical Studies, The University of Texas at Brownsville/Texas Southmost College, USA.
| | | | | | | | | |
Collapse
|
197
|
Dubé C, Richichi C, Bender RA, Chung G, Litt B, Baram TZ. Temporal lobe epilepsy after experimental prolonged febrile seizures: prospective analysis. ACTA ACUST UNITED AC 2006; 129:911-22. [PMID: 16446281 PMCID: PMC3100674 DOI: 10.1093/brain/awl018] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Experimental prolonged febrile seizures (FS) lead to structural and molecular changes that promote hippocampal hyperexcitability and reduce seizure threshold to further convulsants. However, whether these seizures provoke later-onset epilepsy, as has been suspected in humans, has remained unclear. Previously, intermittent EEGs with behavioural observations for motor seizures failed to demonstrate spontaneous seizures in adult rats subjected to experimental prolonged FS during infancy. Because limbic seizures may be behaviourally subtle, here we determined the presence of spontaneous limbic seizures using chronic video monitoring with concurrent hippocampal and cortical EEGs, in adult rats (starting around 3 months of age) that had sustained experimental FS on postnatal day 10. These subjects were compared with groups that had undergone hyperthermia but in whom seizures had been prevented (hyperthermic controls), as well as with normothermic controls. Only events that fulfilled both EEG and behavioural criteria, i.e. electro-clinical events, were considered spontaneous seizures. EEGs (over 400 recorded hours) were normal in all normothermic and hyperthermic control rats, and none of these animals developed spontaneous seizures. In contrast, prolonged early-life FS evoked spontaneous electro-clinical seizures in 6 out of 17 experimental rats (35.2%). These seizures consisted of sudden freezing (altered consciousness) and typical limbic automatisms that were coupled with polyspike/sharp-wave trains with increasing amplitude and slowing frequency on EEG. In addition, interictal epileptiform discharges were recorded in 15 (88.2%) of the experimental FS group and in none of the controls. The large majority of hippocampally-recorded seizures were heralded by diminished amplitude of cortical EEG, that commenced half a minute prior to the hippocampal ictus and persisted after seizure termination. This suggests a substantial perturbation of normal cortical neuronal activity by these limbic spontaneous seizures. In summary, prolonged experimental FS lead to later-onset limbic (temporal lobe) epilepsy in a significant proportion of rats, and to interictal epileptifom EEG abnormalities in most others, and thus represent a model that may be useful to study the relationship between FS and human temporal lobe epilepsy.
Collapse
Affiliation(s)
- Céline Dubé
- Department of Anatomy/Neurobiology, University of California, Irvine, CA
| | - Cristina Richichi
- Department of Anatomy/Neurobiology, University of California, Irvine, CA
| | | | - Grace Chung
- Department of Anatomy/Neurobiology, University of California, Irvine, CA
| | - Brian Litt
- Department of Neurology and Bioengineering, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Tallie Z. Baram
- Department of Anatomy/Neurobiology, University of California, Irvine, CA
- Department of Pediatrics, University of California, Irvine, CA
| |
Collapse
|
198
|
White AM, Williams PA, Ferraro DJ, Clark S, Kadam SD, Dudek FE, Staley KJ. Efficient unsupervised algorithms for the detection of seizures in continuous EEG recordings from rats after brain injury. J Neurosci Methods 2005; 152:255-66. [PMID: 16337006 DOI: 10.1016/j.jneumeth.2005.09.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Accepted: 09/15/2005] [Indexed: 11/21/2022]
Abstract
Long-term EEG monitoring in chronically epileptic animals produces very large EEG data files which require efficient algorithms to differentiate interictal spikes and seizures from normal brain activity, noise, and, artifact. We compared four methods for seizure detection based on (1) EEG power as computed using amplitude squared (the power method), (2) the sum of the distances between consecutive data points (the coastline method), (3) automated spike frequency and duration detection (the spike frequency method), and (4) data range autocorrelation combined with spike frequency (the autocorrelation method). These methods were used to analyze a randomly selected test set of 13 days of continuous EEG data in which 75 seizures were imbedded. The EEG recordings were from eight different rats representing two different models of chronic epilepsy (five kainate-treated and three hypoxic-ischemic). The EEG power method had a positive predictive value (PPV, or true positives divided by the sum of true positives and false positives) of 18% and a sensitivity (true positives divided by the sum of true positives and false negatives) of 95%, the coastline method had a PPV of 78% and sensitivity of 99.59, the spike frequency method had a PPV of 78% and a sensitivity of 95%, and the autocorrelation method yielded a PPV of 96% and a sensitivity of 100%. It is possible to detect seizures automatically in a prolonged EEG recording using computationally efficient unsupervised algorithms. Both the quality of the EEG and the analysis method employed affect PPV and sensitivity.
Collapse
Affiliation(s)
- Andrew M White
- Department of Neurology, University of Colorado Health Sciences Center, 4200 E. 9th Avenue, Denver, CO 80262, USA
| | | | | | | | | | | | | |
Collapse
|
199
|
Khalilov I, Le Van Quyen M, Gozlan H, Ben-Ari Y. Epileptogenic Actions of GABA and Fast Oscillations in the Developing Hippocampus. Neuron 2005; 48:787-96. [PMID: 16337916 DOI: 10.1016/j.neuron.2005.09.026] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 07/28/2005] [Accepted: 09/22/2005] [Indexed: 11/28/2022]
Abstract
GABA excites immature neurons and inhibits adult ones, but whether this contributes to seizures in the developing brain is not known. We now report that in the developing, but not the adult, hippocampus, seizures beget seizures only if GABAergic synapses are functional. In the immature hippocampus, seizures generated with functional GABAergic synapses include fast oscillations that are required to transform a naive network to an epileptic one: blocking GABA receptors prevents the long-lasting sequels of seizures. In contrast, in adult neurons, full blockade of GABA(A) receptors generates epileptogenic high-frequency seizures. Therefore, purely glutamatergic seizures are not epileptogenic in the developing hippocampus. We suggest that the density of glutamatergic synapses is not sufficient for epileptogenesis in immature neurons; excitatory GABAergic synapses are required for that purpose. We suggest that the synergistic actions of GABA and NMDA receptors trigger the cascades involved in epileptogenesis in the developing hippocampus.
Collapse
Affiliation(s)
- Ilgam Khalilov
- INMED-INSERM, U 29 Marseille, 163, route de Luminy, 13273 Marseille Cedex 09, France
| | | | | | | |
Collapse
|
200
|
Bragin A, Azizyan A, Almajano J, Wilson CL, Engel J. Analysis of chronic seizure onsets after intrahippocampal kainic acid injection in freely moving rats. Epilepsia 2005; 46:1592-8. [PMID: 16190929 DOI: 10.1111/j.1528-1167.2005.00268.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE The goal of this study was to analyze the transition period between interictal and ictal activity in freely moving rats with recurrent spontaneous seizures after unilateral intrahippocampal kainic acid (KA) injection. METHODS Pairs of tungsten electrodes (50 microm O/D) were implanted bilaterally under anesthesia at symmetrical points in the dentate gyrus (DG) and CA1 regions of anterior and posterior hippocampi and entorhinal cortex of adult Wistar rats. Stimulating electrodes were placed in the right angular bundle and KA was injected into the right posterior CA3 area of hippocampus after 1 week of baseline EEG recording. Beginning 24 h after injection, electrographic activity was recorded with video monitoring for seizures every day for 8 h/day for 60 days. RESULTS Seventy percent of seizures started locally in the DG ipsilateral to injection, with an increase in frequency of interictal EEG spikes (hypersynchronous type, HYP), and 26% of seizures started with a decrease of EEG amplitude with parallel increase in frequency (low-voltage fast type, LVF). During HYP seizures, a significant increase was observed in amplitude of beta-gamma range frequencies, ripple frequency, and fast ripple (FR) frequency, whereas during LVF seizure, an increase was noted only in the beta-gamma range. In all cases but one, an EEG wave preceded ripple and FR oscillations. Before seizure onset, the amplitude of DG-evoked responses to single pulses decreased, whereas the amplitude of the response to the second pulse delivered at 30-ms interval increased. CONCLUSIONS If ripple and FR oscillations indicate the seizure-generating neuronal substrate, these areas must be small and widespread, so that the probability of recording from them directly is very low. The decreased response to electrical stimulation before seizures could indicate a protective inhibitory mechanism that contains or prevents seizure occurrence. The presence of decreased paired-pulse suppression could indicate a network predisposition to follow an external input with a certain frequency.
Collapse
Affiliation(s)
- Anatol Bragin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|