151
|
Donertas B, Cengelli Unel C, Aydin S, Ulupinar E, Ozatik O, Kaygisiz B, Yildirim E, Erol K. Agmatine co-treatment attenuates allodynia and structural abnormalities in cisplatin-induced neuropathy in rats. Fundam Clin Pharmacol 2018; 32:288-296. [DOI: 10.1111/fcp.12351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/09/2018] [Accepted: 01/23/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Basak Donertas
- Department of Medical Pharmacology; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| | - Cigdem Cengelli Unel
- Department of Medical Pharmacology; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| | - Sule Aydin
- Department of Medical Pharmacology; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| | - Emel Ulupinar
- Department of Anatomy; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| | - Orhan Ozatik
- Department of Histology and Embryology; Faculty of Medicine; Dumlupinar University; Kutahya 43000 Turkey
| | - Bilgin Kaygisiz
- Department of Medical Pharmacology; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| | - Engin Yildirim
- Department of Medical Pharmacology; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| | - Kevser Erol
- Department of Medical Pharmacology; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| |
Collapse
|
152
|
Sonobe M, Hamaji M, Motoyama H, Menju T, Aoyama A, Chen-Yoshikawa TF, Sato T, Date H. Adjuvant vinorelbine and cisplatin after complete resection of stage II and III non-small cell lung cancer: long-term follow-up of our study of Japanese patients. Surg Today 2018; 48:687-694. [PMID: 29502152 DOI: 10.1007/s00595-018-1646-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/06/2018] [Indexed: 11/30/2022]
Abstract
PURPOSE We reported previously a phase II study of adjuvant chemotherapy consisting of four cycles of vinorelbine (25 mg/m2) and cisplatin (40 mg/m2), given on days 1 and 8, every 4 weeks, to Japanese patients with completely resected stage II or III non-small cell lung cancer (NSCLC; UMIN 000005055). However, the follow-up was too short for us to evaluate a definitive 5-year overall survival rate and after-effects. METHODS Between December 2006 and January 2011, 60 patients were enrolled in this study. We analyzed relapse-free and overall survival, long-lasting adverse effects, the influence of treatment on recurrent tumors, and the development of a second primary cancer, in relation with the regimen. RESULTS After a median follow-up period of 95.8 months, the 5-year relapse-free and overall survival rates were 51.7 and 76.7%, respectively. Neuralgia developed in one patient and this was the only case of a long-lasting adverse effect. Recurrence developed in 31 patients, 29 of whom received intensive treatment. Although 16 s (or more) primary neoplasms developed among 13 patients, these were common carcinomas in Japan and did not include sarcoma or hematologic malignancies. CONCLUSION Adjuvant vinorelbine and cisplatin chemotherapy showed encouraging relapse-free and overall survival rates, and long-term safety in Japanese patients with resected NSCLC.
Collapse
Affiliation(s)
- Makoto Sonobe
- Department of Thoracic Surgery, Kyoto University Hospital, Shogoin-Kawara-cho 54, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Masatsugu Hamaji
- Department of Thoracic Surgery, Kyoto University Hospital, Shogoin-Kawara-cho 54, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hideki Motoyama
- Department of Thoracic Surgery, Kyoto University Hospital, Shogoin-Kawara-cho 54, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toshi Menju
- Department of Thoracic Surgery, Kyoto University Hospital, Shogoin-Kawara-cho 54, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akihiro Aoyama
- Department of Thoracic Surgery, Kyoto University Hospital, Shogoin-Kawara-cho 54, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toyofumi F Chen-Yoshikawa
- Department of Thoracic Surgery, Kyoto University Hospital, Shogoin-Kawara-cho 54, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toshihiko Sato
- Department of Thoracic Surgery, Kyoto University Hospital, Shogoin-Kawara-cho 54, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Kyoto University Hospital, Shogoin-Kawara-cho 54, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
153
|
Ferioli M, Zauli G, Martelli AM, Vitale M, McCubrey JA, Ultimo S, Capitani S, Neri LM. Impact of physical exercise in cancer survivors during and after antineoplastic treatments. Oncotarget 2018; 9:14005-14034. [PMID: 29568412 PMCID: PMC5862633 DOI: 10.18632/oncotarget.24456] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer patients experience symptoms and adverse effects of treatments that may last even after the end of treatments. Exercise is a safe, non-pharmacological and cost-effective therapy that can provide several health benefits in cancer patient and survivors, reducing cancer symptoms and cancer treatment side effects. The purpose of this review is to describe how the physical exercise is capable to reduce cancer symptoms and cancer treatment side effects. We realized a pragmatic classification of symptoms, dividing them into physical, psychological and psycho-physical aspects. For each symptom we discuss causes, therapies, we analyse the effects of physical exercise and we summarize the most effective type of exercise to reduce the symptoms. This review also points out what are the difficulties that patients and survivors face during the practice of physical activity and provides some solutions to overcome these barriers. Related to each specific cancer, it emerges that type, frequency and intensity of physical exercise could be prescribed and supervised as a therapeutic program, like it occurs for the type, dose and duration of a drug treatment.
Collapse
Affiliation(s)
- Martina Ferioli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- CoreLab, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - James A. McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Simona Ultimo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M. Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
154
|
Woo V, Cheng C, Duraikannu A, Chandrasekhar A, Purdy K, Martinez J, Zochodne D. Caspase-6 is a Dispensable Enabler of Adult Mammalian Axonal Degeneration. Neuroscience 2018; 371:242-253. [DOI: 10.1016/j.neuroscience.2017.11.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 02/06/2023]
|
155
|
Cetinkaya-Fisgin A, Joo MG, Ping X, Thakor NV, Ozturk C, Hoke A, Yang IH. Identification of fluocinolone acetonide to prevent paclitaxel-induced peripheral neuropathy. J Peripher Nerv Syst 2018; 21:128-33. [PMID: 27117347 DOI: 10.1111/jns.12172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/04/2016] [Accepted: 04/04/2016] [Indexed: 01/24/2023]
Abstract
Paclitaxel (PTX) is among the most commonly used cancer drugs that cause chemotherapy-induced peripheral neuropathy (CIPN), a debilitating and serious dose-limiting side effect. Currently, no drugs exist to prevent CIPN, and symptomatic therapy is often ineffective. In order to identify therapeutic candidates to prevent axonal degeneration induced by PTX, we carried out a phenotypic drug screening using primary rodent dorsal root ganglion sensory neurons. We identified fluocinolone acetonide as a neuroprotective compound and verified it through secondary screens. Furthermore, we showed its efficacy in a mouse model of PTX-induced peripheral neuropathy and confirmed with four different cancer cell lines that fluocinolone acetonide does not interfere with PTX's antitumor activity. Our study identifies fluocinolone acetonide as a potential therapy to prevent CIPN caused by PTX.
Collapse
Affiliation(s)
- Aysel Cetinkaya-Fisgin
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey.,Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Min Geol Joo
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Xiang Ping
- Singapore Institute for Neurotechnology, National University of Singapore, Singapore, Singapore
| | - Nitish V Thakor
- Singapore Institute for Neurotechnology, National University of Singapore, Singapore, Singapore.,Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Cengizhan Ozturk
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| | - Ahmet Hoke
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - In Hong Yang
- Singapore Institute for Neurotechnology, National University of Singapore, Singapore, Singapore.,Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
156
|
Bao T, Seidman A, Li Q, Seluzicki C, Blinder V, Meghani SH, Farrar JT, Mao JJ. Living with chronic pain: perceptions of breast cancer survivors. Breast Cancer Res Treat 2018; 169:133-140. [PMID: 29350307 DOI: 10.1007/s10549-018-4670-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/13/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Breast cancer treatments may lead to chronic pain. For some breast cancer survivors (BCS), this experience can develop into the perception of living with chronic pain. The majority of BCS are postmenopausal and have hormone receptor-positive (HR+) breast cancer requiring aromatase inhibitors (AIs). Neither the prevalence nor risk factors associated with the perception of living with chronic pain among this population are well defined. METHODS We conducted a cross-sectional survey among postmenopausal, HR+ BCS who previously took or were currently taking AIs. The primary outcome was patients' perception of living with chronic pain over the past 6 months. We measured pain and demographic and clinical variables. Multivariable logistic regression analysis was performed to evaluate risk factors associated with the perception of chronic pain. RESULTS Among 1280 participants, 167 (13%) reported having the perception of living with chronic pain before their breast cancer diagnosis; 426 (34%) reported this perception after completion of non-hormonal cancer treatment. Seventy-eight percent of BCSs reported experiencing at least one type of treatment-related pain within the past 7 days, with 23% experiencing at least three types. The most common types of pain were AI-induced musculoskeletal pain (49%) and pain at the surgery or radiation site (31%). Younger age (< 56), BMI > 25, and the perception of living with chronic pain before diagnosis were risk factors associated with the perception of living with chronic pain. CONCLUSIONS One in three postmenopausal, HR+ BCS considered themselves to be living with chronic pain. Effective interventions to reduce chronic pain are needed.
Collapse
Affiliation(s)
- Ting Bao
- Memorial Sloan Kettering Cancer Center, 1429 First Avenue, New York, NY, 10021, USA.
| | - Andrew Seidman
- Memorial Sloan Kettering Cancer Center, 1429 First Avenue, New York, NY, 10021, USA
| | - Qing Li
- Memorial Sloan Kettering Cancer Center, 1429 First Avenue, New York, NY, 10021, USA
| | - Christina Seluzicki
- Memorial Sloan Kettering Cancer Center, 1429 First Avenue, New York, NY, 10021, USA
| | - Victoria Blinder
- Memorial Sloan Kettering Cancer Center, 1429 First Avenue, New York, NY, 10021, USA
| | | | - John T Farrar
- University of Pennsylvania Center for Clinical Epidemiology and Biostatistics, Philadelphia, PA, USA
| | - Jun J Mao
- Memorial Sloan Kettering Cancer Center, 1429 First Avenue, New York, NY, 10021, USA
| |
Collapse
|
157
|
Evaluation of the Profile and Mechanism of Neurotoxicity of Water-Soluble [Cu(P)4]PF6 and [Au(P)4]PF6 (P = thp or PTA) Anticancer Complexes. Neurotox Res 2018; 34:93-108. [DOI: 10.1007/s12640-018-9864-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/07/2017] [Accepted: 01/03/2018] [Indexed: 01/18/2023]
|
158
|
Effects of exercise on cancer patients suffering chemotherapy-induced peripheral neuropathy undergoing treatment: A systematic review. Crit Rev Oncol Hematol 2018; 121:90-100. [DOI: 10.1016/j.critrevonc.2017.11.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 10/12/2017] [Accepted: 11/05/2017] [Indexed: 12/14/2022] Open
|
159
|
Abstract
With the favorable trend regarding survival of cancer in the Western world, there is an increasing focus among patients, clinicians, researchers, and politicians regarding cancer survivors' health and well-being. The number of survivors grows rapidly, and more than 3% of the adult populations in Western countries have survived cancer for 5 years or more. Cancer survivors are at increased risk for a variety of late effects after treatment, some life-threatening such as secondary cancer and cardiac diseases, while others mainly have negative impact on daily functioning and health-related quality of life (HRQOL). The latter factors include fatigue, anxiety disorders, sexual problems, insomnia, and reduced work ability, while depression does not seem to be more common among survivors than in the general population. Life style factors are highly relevant for cancer survivors concerning risk of relapse and somatic comorbidity. The field of cancer survivorship research has grown rapidly. How to best integrate the knowledge of the field into clinical practice with adequate follow-up of cancer survivors at risk for developing late effects, is still an unresolved question, although several models are under consideration.
Collapse
|
160
|
Wieczorek M, Tcherkezian J, Bernier C, Prota AE, Chaaban S, Rolland Y, Godbout C, Hancock MA, Arezzo JC, Ocal O, Rocha C, Olieric N, Hall A, Ding H, Bramoullé A, Annis MG, Zogopoulos G, Harran PG, Wilkie TM, Brekken RA, Siegel PM, Steinmetz MO, Shore GC, Brouhard GJ, Roulston A. The synthetic diazonamide DZ-2384 has distinct effects on microtubule curvature and dynamics without neurotoxicity. Sci Transl Med 2017; 8:365ra159. [PMID: 27856798 DOI: 10.1126/scitranslmed.aag1093] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/28/2016] [Indexed: 01/02/2023]
Abstract
Microtubule-targeting agents (MTAs) are widely used anticancer agents, but toxicities such as neuropathy limit their clinical use. MTAs bind to and alter the stability of microtubules, causing cell death in mitosis. We describe DZ-2384, a preclinical compound that exhibits potent antitumor activity in models of multiple cancer types. It has an unusually high safety margin and lacks neurotoxicity in rats at effective plasma concentrations. DZ-2384 binds the vinca domain of tubulin in a distinct way, imparting structurally and functionally different effects on microtubule dynamics compared to other vinca-binding compounds. X-ray crystallography and electron microscopy studies demonstrate that DZ-2384 causes straightening of curved protofilaments, an effect proposed to favor polymerization of tubulin. Both DZ-2384 and the vinca alkaloid vinorelbine inhibit microtubule growth rate; however, DZ-2384 increases the rescue frequency and preserves the microtubule network in nonmitotic cells and in primary neurons. This differential modulation of tubulin results in a potent MTA therapeutic with enhanced safety.
Collapse
Affiliation(s)
- Michal Wieczorek
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Joseph Tcherkezian
- Laboratory for Therapeutic Development, Rosalind and Morris Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Cynthia Bernier
- Laboratory for Therapeutic Development, Rosalind and Morris Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Andrea E Prota
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Sami Chaaban
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Yannève Rolland
- Laboratory for Therapeutic Development, Rosalind and Morris Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Claude Godbout
- Laboratory for Therapeutic Development, Rosalind and Morris Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Mark A Hancock
- McGill SPR-MS Facility, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Joseph C Arezzo
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10561, USA
| | - Ozhan Ocal
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cecilia Rocha
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Natacha Olieric
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Anita Hall
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Hui Ding
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Alexandre Bramoullé
- Laboratory for Therapeutic Development, Rosalind and Morris Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Matthew G Annis
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - George Zogopoulos
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Patrick G Harran
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas M Wilkie
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rolf A Brekken
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peter M Siegel
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Gordon C Shore
- Laboratory for Therapeutic Development, Rosalind and Morris Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Gary J Brouhard
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada.
| | - Anne Roulston
- Laboratory for Therapeutic Development, Rosalind and Morris Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada.
| |
Collapse
|
161
|
Kim ST, Kyung EJ, Suh JS, Lee HS, Lee JH, Chae SI, Park ES, Chung YH, Bae J, Lee TJ, Lee WM, Sohn UD, Jeong JH. Phosphatidylcholine attenuated docetaxel-induced peripheral neurotoxicity in rats. Drug Chem Toxicol 2017; 41:476-485. [PMID: 29210293 DOI: 10.1080/01480545.2017.1390580] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Docetaxel is a taxane chemotherapeutic agent used in the treatment of breast cancer, prostate cancer and gastric cancer, but several side effects such as peripheral neurotoxicity could occur. The present study was designed to investigate the therapeutic potential of phosphatidylcholine (PC) on docetaxel-induced peripheral neurotoxicity. Rats were randomly divided into three groups and treated for 4 weeks. Behavioral tests were conducted to measure the effects of PC on docetaxel-induced decreases in mechanical & thermal nociceptive threshold. Biochemical tests were conducted to measure the level of oxidative stress on sciatic nerve. Histopathological and immunohistochemical experiments were also conducted to assess neuronal damage and glial activation. PC treatment significantly attenuated docetaxel-induced changes in mechanical & thermal nociceptive response latencies. PC decreased oxidative stress in sciatic nerve by increasing antioxidant levels (glutathione, glutathione peroxidase and superoxide dismutase activity). In immunohistochemical evaluation, PC treatment ameliorated docetaxel-induced neuronal damage and microglial activation in the sciatic nerve and spinal cord. Thus, PC showed protective effects against docetaxel-induced peripheral neurotoxicity. These effects may be attributed to its antioxidant properties and modulation of microglia.
Collapse
Affiliation(s)
- Sung Tae Kim
- a Department of Pharmacology, College of Medicine , Chung-Ang University , Seoul , Republic of Korea
| | - Eun Jung Kyung
- a Department of Pharmacology, College of Medicine , Chung-Ang University , Seoul , Republic of Korea
| | - Jung Sook Suh
- c Department of Pharmacology, College of Pharmacy , Chung-Ang University , Seoul , Republic of Korea
| | - Ho Sung Lee
- a Department of Pharmacology, College of Medicine , Chung-Ang University , Seoul , Republic of Korea
| | - Jun Ho Lee
- a Department of Pharmacology, College of Medicine , Chung-Ang University , Seoul , Republic of Korea
| | - Soo In Chae
- a Department of Pharmacology, College of Medicine , Chung-Ang University , Seoul , Republic of Korea
| | - Eon Sub Park
- b Department of Pathology, College of Medicine , Chung-Ang University , Seoul , Republic of Korea
| | - Yoon Hee Chung
- d Department of Anatomy, College of Medicine , Chung-Ang University , Seoul , Republic of Korea
| | - Jinhyung Bae
- c Department of Pharmacology, College of Pharmacy , Chung-Ang University , Seoul , Republic of Korea
| | - Tae Jin Lee
- b Department of Pathology, College of Medicine , Chung-Ang University , Seoul , Republic of Korea
| | - Won Mo Lee
- c Department of Pharmacology, College of Pharmacy , Chung-Ang University , Seoul , Republic of Korea
| | - Uy Dong Sohn
- c Department of Pharmacology, College of Pharmacy , Chung-Ang University , Seoul , Republic of Korea
| | - Ji Hoon Jeong
- a Department of Pharmacology, College of Medicine , Chung-Ang University , Seoul , Republic of Korea
| |
Collapse
|
162
|
Marshall TF, Zipp GP, Battaglia F, Moss R, Bryan S. Chemotherapy-induced-peripheral neuropathy, gait and fall risk in older adults following cancer treatment. JOURNAL OF CANCER RESEARCH AND PRACTICE 2017. [DOI: 10.1016/j.jcrpr.2017.03.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
163
|
Wozniak KM, Vornov JJ, Wu Y, Liu Y, Carozzi VA, Rodriguez-Menendez V, Ballarini E, Alberti P, Pozzi E, Semperboni S, Cook BM, Littlefield BA, Nomoto K, Condon K, Eckley S, DesJardins C, Wilson L, Jordan MA, Feinstein SC, Cavaletti G, Polydefkis M, Slusher BS. Peripheral Neuropathy Induced by Microtubule-Targeted Chemotherapies: Insights into Acute Injury and Long-term Recovery. Cancer Res 2017; 78:817-829. [PMID: 29191802 DOI: 10.1158/0008-5472.can-17-1467] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/30/2017] [Accepted: 11/21/2017] [Indexed: 01/01/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major cause of disability in cancer survivors. CIPN investigations in preclinical model systems have focused on either behaviors or acute changes in nerve conduction velocity (NCV) and amplitude, but greater understanding of the underlying nature of axonal injury and its long-term processes is needed as cancer patients live longer. In this study, we used multiple independent endpoints to systematically characterize CIPN recovery in mice exposed to the antitubulin cancer drugs eribulin, ixabepilone, paclitaxel, or vinorelbine at MTDs. All of the drugs ablated intraepidermal nerve fibers and produced axonopathy, with a secondary disruption in myelin structure within 2 weeks of drug administration. In addition, all of the drugs reduced sensory NCV and amplitude, with greater deficits after paclitaxel and lesser deficits after ixabepilone. These effects correlated with degeneration in dorsal root ganglia (DRG) and sciatic nerve and abundance of Schwann cells. Although most injuries were fully reversible after 3-6 months after administration of eribulin, vinorelbine, and ixabepilone, we observed delayed recovery after paclitaxel that produced a more severe, pervasive, and prolonged neurotoxicity. Compared with other agents, paclitaxel also displayed a unique prolonged exposure in sciatic nerve and DRG. The most sensitive indicator of toxicity was axonopathy and secondary myelin changes accompanied by a reduction in intraepidermal nerve fiber density. Taken together, our findings suggest that intraepidermal nerve fiber density and changes in NCV and amplitude might provide measures of axonal injury to guide clinical practice.Significance: This detailed preclinical study of the long-term effects of widely used antitubulin cancer drugs on the peripheral nervous system may help guide clinical evaluations to improve personalized care in limiting neurotoxicity in cancer survivors. Cancer Res; 78(3); 817-29. ©2017 AACR.
Collapse
Affiliation(s)
- Krystyna M Wozniak
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | - Ying Wu
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ying Liu
- Department of Neurology and the Cutaneous Nerve Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Valentina A Carozzi
- Experimental Neurology Unit and PhD program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Virginia Rodriguez-Menendez
- Experimental Neurology Unit and PhD program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Elisa Ballarini
- Experimental Neurology Unit and PhD program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Paola Alberti
- Experimental Neurology Unit and PhD program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Eleonora Pozzi
- Experimental Neurology Unit and PhD program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Sara Semperboni
- Experimental Neurology Unit and PhD program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Brett M Cook
- Neurosci Research Institute, University of California, Santa Barbara, California.,Biomolecular Science and Engineering Program, University of California, Santa Barbara, California
| | | | | | | | | | | | - Leslie Wilson
- Neurosci Research Institute, University of California, Santa Barbara, California.,Biomolecular Science and Engineering Program, University of California, Santa Barbara, California.,Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, California
| | - Mary A Jordan
- Neurosci Research Institute, University of California, Santa Barbara, California.,Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, California
| | - Stuart C Feinstein
- Neurosci Research Institute, University of California, Santa Barbara, California.,Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, California
| | - Guido Cavaletti
- Experimental Neurology Unit and PhD program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Michael Polydefkis
- Department of Neurology and the Cutaneous Nerve Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery and Departments of Neurology, Psychiatry, Neuroscience, Medicine and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland.
| |
Collapse
|
164
|
Leo M, Schmitt LI, Jastrow H, Thomale J, Kleinschnitz C, Hagenacker T. Cisplatin alters the function and expression of N-type voltage-gated calcium channels in the absence of morphological damage of sensory neurons. Mol Pain 2017; 13:1744806917746565. [PMID: 29166837 PMCID: PMC5731623 DOI: 10.1177/1744806917746565] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Platinum-based chemotherapeutic agents, such as cisplatin, are still frequently used for treating various types of cancer. Besides its high effectiveness, cisplatin has several serious side effects. One of the most common side effects is dorsal root ganglion (DRG) neurotoxicity. However, the mechanisms underlying this neurotoxicity are still unclear and controversially discussed. Cisplatin-mediated modulation of voltage-gated calcium channels (VGCCs) in the DRG neurons has been shown to alter intracellular calcium homeostasis, a process critical for the induction of neurotoxicity. Using the whole-cell patch-clamp technique, immunostaining, behavioural experiments and electron microscopy (EM) of rat DRGs, we here demonstrate that cisplatin-induced neurotoxicity is due to functional alteration of VGCC, but not due to morphological damage. In vitro application of cisplatin (0.5 µM) increased N-type VGCC currents (ICa(V)) in small DRG neurons. Repetitive in vivo administration of cisplatin (1.5 mg/kg, cumulative 12 mg/kg) increased the protein level of N-type VGCC over 26 days, with the protein level being increased for at least 14 days after the final cisplatin administration. Behavioural studies revealed that N-type VGCCs are crucial for inducing symptoms of cisplatin-related neuropathic pain, such as thermal and mechanical hyperalgesia. EM and histology showed no evidence of any structural damage, apoptosis or necrosis in DRG cells after cisplatin exposure for 26 days. Furthermore, no nuclear DNA damage in sensory neurons was observed. Here, we provide evidence for a mainly functionally driven induction of neuropathic pain by cisplatin.
Collapse
Affiliation(s)
- Markus Leo
- 1 Department of Neurology, University Hospital Essen, Essen, Germany
| | | | - Holger Jastrow
- 2 Institute of Anatomy, University Hospital Essen, Essen, Germany
| | - Jürgen Thomale
- 3 Institute for Cell Biology, University of Duisburg-Essen, Essen, Germany
| | | | - Tim Hagenacker
- 1 Department of Neurology, University Hospital Essen, Essen, Germany
| |
Collapse
|
165
|
LoCoco PM, Risinger AL, Smith HR, Chavera TS, Berg KA, Clarke WP. Pharmacological augmentation of nicotinamide phosphoribosyltransferase (NAMPT) protects against paclitaxel-induced peripheral neuropathy. eLife 2017; 6:e29626. [PMID: 29125463 PMCID: PMC5701795 DOI: 10.7554/elife.29626] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/03/2017] [Indexed: 01/03/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) arises from collateral damage to peripheral afferent sensory neurons by anticancer pharmacotherapy, leading to debilitating neuropathic pain. No effective treatment for CIPN exists, short of dose-reduction which worsens cancer prognosis. Here, we report that stimulation of nicotinamide phosphoribosyltransferase (NAMPT) produced robust neuroprotection in an aggressive CIPN model utilizing the frontline anticancer drug, paclitaxel (PTX). Daily treatment of rats with the first-in-class NAMPT stimulator, P7C3-A20, prevented behavioral and histologic indicators of peripheral neuropathy, stimulated tissue NAD recovery, improved general health, and abolished attrition produced by a near maximum-tolerated dose of PTX. Inhibition of NAMPT blocked P7C3-A20-mediated neuroprotection, whereas supplementation with the NAMPT substrate, nicotinamide, potentiated a subthreshold dose of P7C3-A20 to full efficacy. Importantly, P7C3-A20 blocked PTX-induced allodynia in tumored mice without reducing antitumoral efficacy. These findings identify enhancement of NAMPT activity as a promising new therapeutic strategy to protect against anticancer drug-induced peripheral neurotoxicity.
Collapse
Affiliation(s)
- Peter M LoCoco
- Department of PharmacologyUniversity of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - April L Risinger
- Department of PharmacologyUniversity of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - Hudson R Smith
- Department of PharmacologyUniversity of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - Teresa S Chavera
- Department of PharmacologyUniversity of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - Kelly A Berg
- Department of PharmacologyUniversity of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - William P Clarke
- Department of PharmacologyUniversity of Texas Health Science Center at San AntonioSan AntonioUnited States
| |
Collapse
|
166
|
Johnston K, Deliva R, Evans C. Mobilization patterns of children on a hematology/oncology inpatient ward. Pediatr Blood Cancer 2017; 64. [PMID: 28409889 DOI: 10.1002/pbc.26552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 11/09/2022]
Abstract
BACKGROUND Children being treated for cancer are admitted to the hospital for treatment of their disease or complications of therapy. Periods of bed rest during hospitalization can cause impairments detrimental to children with cancer who endure many side effects of therapy. Little is known about how these children mobilize while admitted to the hospital. The purpose of this study was to examine how children admitted to a hematology/oncology ward are mobilizing and analyze factors associated with delayed or infrequent mobility. PROCEDURE A retrospective chart review was conducted on 228 charts with data recorded on documented mobilization and referrals to physiotherapy. Primary outcome was related to mobility including timing, frequency, type, and nature of mobilization. RESULTS Almost half of children (43%) mobilized between 3 and 5 days per week, with median time to first mobilization being 2 days (interquartile range 1-3). Caregivers assisted with mobilization 91% of the time. Children isolated to their room and those reporting fever had a statistically significant decrease in the percent of admission days involving mobilization (mean difference 15 and 8%, respectively) than those not isolated and without fever. Children who were isolated also mobilized 1 day later (P = 0.016) than children who were not isolated. Percentage of time in isolation was positively correlated with timing (P = 0.04) and negatively correlated with frequency of mobilization (P < 0.001). CONCLUSION Most children admitted to the hospital for treatment of oncologic or hematologic conditions were noted to mobilize early, but frequency of mobilization could be improved. Periods of time in isolation appear to negatively affect mobilization.
Collapse
Affiliation(s)
- Krista Johnston
- Department of Physical Therapy, University of Toronto, Toronto, Ontario, Canada.,Department of Rehabilitation, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Robin Deliva
- Department of Rehabilitation, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cathy Evans
- Department of Physical Therapy, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
167
|
Bortezomib pharmacokinetics in tumor response and peripheral neuropathy in multiple myeloma patients receiving bortezomib-containing therapy. Anticancer Drugs 2017; 28:660-668. [PMID: 28430745 DOI: 10.1097/cad.0000000000000506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The usefulness of pharmacokinetics of bortezomib for multiple myeloma (MM) with respect to the maximum response to bortezomib and bortezomib-induced peripheral neuropathy (BIPN) development was studied. Maximum response to subcutaneous bortezomib therapy and BIPN occurrence for the first 12 weeks of treatment in 35 MM patients treated by bortezomib-dexamethasone (VD) and bortezomib-melphalan-prednisone (VMP) were evaluated. On day 1 of cycle 1, seven whole-blood samples were collected for 3 h after dosing completion to obtain the maximum plasma concentration and area under the time-concentration curve during 3 h postdose (AUC0-3) in each patient. A total of 35 patients with complete data were analyzed and the overall response rate was 91.4%. Complete response (CR) was observed in 42.9% patients. The maximum plasma concentration (Cmax) was significant for the CR rate in two different models [full model: odds ratio (OR)=1.092; P=0.038, final model: OR=1.081; P=0.038]. In addition, Cmax was associated with a progression-free survival advantage. Overall, 48.6% of patients developed BIPN including peripheral sensory neuropathy and neuralgia. The VMP-treated patients had a higher risk compared with the VD-treated patients (OR=21.662; P=0.029). Cmax had a tendency to affect the occurrence of BIPN (≥grade 2) (OR=1.064; P=0.092). In real-world clinical practice using bortezomib for MM patients, Cmax among pharmacokinetic factors significantly affected the achievement of CR. The VMP-treated patients showed vulnerability to BIPN, suggesting the necessity for more careful monitoring.
Collapse
|
168
|
McNeely ML, Dolgoy N, Onazi M, Suderman K. The Interdisciplinary Rehabilitation Care Team and the Role of Physical Therapy in Survivor Exercise. Clin J Oncol Nurs 2017; 20:S8-S16. [PMID: 27857275 DOI: 10.1188/16.cjon.s2.8-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Rehabilitation professionals offer expertise in functional assessment, treatment of impairments and functional limitations, and disability prevention. To optimize recovery, and often prior to participating in community-based exercise programming, survivors may need rehabilitation services from a range of healthcare professionals, including physiatrists, nurses, nutritionists, psychologists, and speech, occupational, and physical therapists. OBJECTIVES Survivors with physical impairments and functional limitations may benefit from interdisciplinary rehabilitation and physical therapy, including tailored therapeutic exercise interventions. METHODS A literature review was conducted using the key words cancer survivor, cancer rehabilitation, impairment, fatigue, lymphedema, chemotherapy-induced peripheral neuropathy, and exercise. MEDLINE®, EMBASE, Cochrane Database of Systematic Reviews, and CINAHL® databases were searched. FINDINGS Nurses play a critical role in identifying survivors whose function or fitness is compromised to the point where participation in community-based exercise programming would be inappropriate or unsafe. The interdisciplinary rehabilitation care team can help facilitate the survivor's transition to community-based exercise programming.
Collapse
|
169
|
Kourie HR, Mavroudakis N, Aftimos P, Piccart M. Charcot-Marie-Tooth hereditary neuropathy revealed after administration of docetaxel in advanced breast cancer. World J Clin Oncol 2017; 8:425-428. [PMID: 29067280 PMCID: PMC5638719 DOI: 10.5306/wjco.v8.i5.425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 07/24/2017] [Accepted: 08/16/2017] [Indexed: 02/06/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) neuropathy is the most common hereditary cause of neuropathy. Diagnosis is usually not made during the childhood but in adolescence or late adulthood. It is reported in the literature that some neurotoxic chemotherapeutical agents can reveal an asymptomatic CMT IA hereditary neuropathy. To our knowledge, we report here the first case of CMT IA revealed in a 55-year-old woman after the administration of docetaxel/trastuzumab/pertuzumab for metastatic breast cancer. This case stresses again the necessity to obtain a complete personal and familial anamnesis and to perform a neurologic examination before the administration of neurotoxic chemotherapeutical agents to prevent the clinical expression of these hereditary neuropathies.
Collapse
Affiliation(s)
- Hampig Raphael Kourie
- Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut 880, Lebanon
| | | | - Philippe Aftimos
- Oncology Department, Jules Bordet Institute, 1000 Brussels, Belgium
| | - Martine Piccart
- Oncology Department, Jules Bordet Institute, 1000 Brussels, Belgium
| |
Collapse
|
170
|
Ettari R, Zappalà M, Grasso S, Musolino C, Innao V, Allegra A. Immunoproteasome-selective and non-selective inhibitors: A promising approach for the treatment of multiple myeloma. Pharmacol Ther 2017; 182:176-192. [PMID: 28911826 DOI: 10.1016/j.pharmthera.2017.09.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ubiquitin-proteasome system (UPS) is the major non-lysosomal proteolytic system for the degradation of abnormal or damaged proteins no longer required. The proteasome is involved in degradation of numerous proteins which regulate the cell cycle, indicating a role in controlling cell proliferation and maintaining cell survival. Defects in the UPS can lead to anarchic cell proliferation and to tumor development. For these reasons UPS inhibition has become a significant new strategy for drug development in cancer treatment. In addition to the constitutive proteasome, which is expressed in all cells and tissues, higher organisms such as vertebrates possess two immune-type proteasomes, the thymoproteasome and the immunoproteasome. The thymoproteasome is specifically expressed by thymic cortical epithelial cells and has a role in positive selection of CD8+ T cells, whereas the immunoproteasome is predominantly expressed in monocytes and lymphocytes and is responsible for the generation of antigenic peptides for cell-mediated immunity. Recent studies demonstrated that the immunoproteasome has a preservative role during oxidative stress and is up-regulated in a number of pathological disorders including cancer, inflammatory and autoimmune diseases. As a consequence, immunoproteasome-selective inhibitors are currently the focus of anticancer drug design. At present, the commercially available proteasome inhibitors bortezomib and carfilzomib which have been validated in multiple myeloma and other model systems, appear to target both the constitutive and immunoproteasomes, indiscriminately. This lack of specificity may, in part, explain some of the side effects of these agents, such as peripheral neuropathy and gastrointestinal effects, which may be due to targeting of the constitutive proteasome in these tissues. In contrast, by selectively inhibiting the immunoproteasome, it may be possible to maintain the antimyeloma and antilymphoma efficacy while reducing these toxicities, thereby increasing the therapeutic index. This review article will be focused on the discussion of the most promising immunoproteasome specific inhibitors which have been developed in recent years. Particular attention will be devoted to the description of their mechanism of action, their structure-activity relationship, and their potential application in therapy.
Collapse
Affiliation(s)
- Roberta Ettari
- Dipartimento di Scienze del Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Viale Annunziata, 98168 Messina, Italy
| | - Maria Zappalà
- Dipartimento di Scienze del Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Viale Annunziata, 98168 Messina, Italy
| | - Silvana Grasso
- Dipartimento di Scienze del Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Viale Annunziata, 98168 Messina, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Patologia Umana dell'Adulto e dell'Età Evolutiva, University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Vanessa Innao
- Division of Hematology, Department of Patologia Umana dell'Adulto e dell'Età Evolutiva, University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Patologia Umana dell'Adulto e dell'Età Evolutiva, University of Messina, Via Consolare Valeria, 90100 Messina, Italy.
| |
Collapse
|
171
|
Abstract
PURPOSE OF REVIEW The sensory neuronopathies are sensory-predominant polyneuropathies that result from damage to the dorsal root and trigeminal sensory ganglia. This review explores the various causes of acquired sensory neuronopathies, the approach to diagnosis, and treatment. RECENT FINDINGS Diagnostic criteria have recently been published and validated to allow differentiation of sensory neuronopathies from other polyneuropathies. On the basis of serial electrodiagnostic studies, the treatment window for the acquired sensory neuronopathies has been identified as approximately 8 months. If treatment is initiated within 2 months of symptom onset, there is a better opportunity for improvement of the patient's condition. Even though sensory neuronopathies are rare, significant progress has been made regarding characterization of their clinical, electrophysiologic, and imaging features. This does not hold true, however, for treatment. There have been no randomized controlled clinical trials to guide management of these diseases, and a standard treatment approach remains undetermined.
Collapse
Affiliation(s)
- Allison Crowell
- Department of Neurology, University of Virginia, P.O. Box 800394, Charlottesville, VA, 22908, USA
| | - Kelly G Gwathmey
- Department of Neurology, University of Virginia, P.O. Box 800394, Charlottesville, VA, 22908, USA.
| |
Collapse
|
172
|
High-dose 8% capsaicin patch in treatment of chemotherapy-induced peripheral neuropathy: single-center experience. Med Oncol 2017; 34:162. [PMID: 28819738 PMCID: PMC5561154 DOI: 10.1007/s12032-017-1015-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/28/2017] [Indexed: 11/09/2022]
Abstract
High-dose capsaicin patch is effective in treatment of neuropathic pain in HIV-associated neuropathy and diabetic neuropathy. There are no studies assessing effectiveness of high-dose capsaicin patch in treatment of chemotherapy-induced peripheral neuropathy. We sought to determine the effectiveness of treatment of pain associated with chemotherapy-induced peripheral neuropathy with high-dose capsaicin patch. Our study group consisted of 18 patients with clinically confirmed oxaliplatin-induced neuropathy. Baseline characteristic including underling disease, received cumulative dose of neurotoxic agent, neuropathic symptoms, prior treatment and initial pain level were recorded. Pain was evaluated with Numeric Rating Scale prior to treatment with high-dose capsaicin and after 1.8 day and after 8 and 12 weeks after introducing treatment. Patients were divided into two groups accordingly to the amount of neurotoxic agent that caused neuropathy (high sensitivity and low sensitivity group). Most frequent symptoms of chemotherapy-induced neuropathy were: pain (88.89%), paresthesis (100%), sock and gloves sensation (100%) and hypoesthesis (100%). Initial pain level was 7.45 ± 1.14. Mean cumulative dose of oxaliplatin after which patients developed symptoms was 648.07 mg/m2. Mean pain level after 12 weeks of treatment was 0.20 ± 0.41. When examined according to high and low sensitivity to neurotoxic agent patients with low sensitivity had higher pain reduction, especially after 8 days after introducing treatment (69.55 ± 12.09 vs. 49.40 ± 20.34%; p = 0.02) and after 12 weeks (96.96 ± 5.56 vs. 83.93 ± 18.59%; p = 0.04). High-dose capsaicin patch is an effective treatment for pain associated with chemotherapy-induced neuropathy in patients treated with oxaliplatin. Patients with lower sensitivity to neurotoxic agents have better response to treatment and pain reduction.
Collapse
|
173
|
Liu CN, Berryman E, Zakur D, Shoieb AM, Pardo ID, Boucher M, Somps CJ, Bagi CM, Cook JC. A novel endpoint for the assessment of chemotherapy-induced peripheral neuropathy in rodents: biomechanical properties of peripheral nerve. J Appl Toxicol 2017; 38:193-200. [PMID: 28815646 DOI: 10.1002/jat.3513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 01/09/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CiPN) is a frequent adverse effect in patients and a leading safety consideration in oncology drug development. Although behavioral assessment and microscopic examination of the nerves and dorsal root ganglia can be incorporated into toxicity studies to assess CiPN risk, more sensitive and less labor-intensive endpoints are often lacking. In this study, rats and mice administered vincristine (75 μg kg-1 day-1 , i.p., for 10 days in rats and 100 μg kg-1 day-1 , i.p., for 11 days in mice, respectively) were employed as the CiPN models. Behavioral changes were assessed during the dosing phase. At necropsy, the sural or sciatic nerve was harvested from the rats and mice, respectively, and assessed for mechanical and histopathological endpoints. It was found that the maximal load and the load/extension ratio were significantly decreased in the nerves collected from the animals dosed with vincristine compared with the vehicle-treated animals (P < 0.05). Additionally, the gait analysis revealed that the paw print areas were significantly increased in mice (P < 0.01), but not in rats following vincristine administration. Light microscopic histopathology of the nerves and dorsal root ganglia were unaffected by vincristine administration. We concluded that ex vivo mechanical properties of the nerves is a sensitive endpoint, providing a new method to predict CiPN in rodent. Gait analysis may also be a useful tool in these pre-clinical animal models.
Collapse
Affiliation(s)
- Chang-Ning Liu
- Worldwide Comparative Medicine, Pfizer Worldwide R&D, Groton, Connecticut, 06340, USA
| | - Edwin Berryman
- Worldwide Comparative Medicine, Pfizer Worldwide R&D, Groton, Connecticut, 06340, USA
| | - David Zakur
- Worldwide Comparative Medicine, Pfizer Worldwide R&D, Groton, Connecticut, 06340, USA
| | - Ahmed M Shoieb
- Drug Safety Research & Development, Pfizer Worldwide R&D, Groton, Connecticut, 06340, USA
| | - Ingrid D Pardo
- Drug Safety Research & Development, Pfizer Worldwide R&D, Groton, Connecticut, 06340, USA
| | - Magalie Boucher
- Drug Safety Research & Development, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139, USA
| | - Chris J Somps
- Drug Safety Research & Development, Pfizer Worldwide R&D, Groton, Connecticut, 06340, USA
| | - Chedo M Bagi
- Worldwide Comparative Medicine, Pfizer Worldwide R&D, Groton, Connecticut, 06340, USA
| | - Jon C Cook
- Drug Safety Research & Development, Pfizer Worldwide R&D, Groton, Connecticut, 06340, USA
| |
Collapse
|
174
|
Association of CYP3A5 Expression and Vincristine Neurotoxicity in Pediatric Malignancies in Turkish Population. J Pediatr Hematol Oncol 2017; 39:458-462. [PMID: 28697165 DOI: 10.1097/mph.0000000000000910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Vincristine is a widely used chemotherapeutic agent in the treatment of childhood malignancies. Neuropathy is the most common adverse effect. CYP3A4 and CYP3A5 enzymes of cytochrome p450 enzyme system are responsible in vincristine metabolism. Genetic polymorphism may alter the vincristine metabolism and the neurotoxicity rate. In this study, distribution of CYP3A5 alleles among Turkish children with malignancies, relation between CYP3A5 genotype and neurotoxicity rates, as well as severity and duration of neuropathy and total vincristine doses were investigated. Patient group consisted of 115 patients (age, 1 to 17 y) with acute lymphoblastic leukemia and solid tumors, who were treated with vincristine consisting chemotherapy protocols. Control group consisted of 50 children without any neurological symptom or disorders. All patient files were reviewed for presence and severeness of neurotoxicity symptoms. Blood samples were obtained and CYP3A5 genotypes were analyzed. Neurotoxicity occurred in 20.8% of patients. Although it was found to occur more frequently after 4 doses of vincristine, and rates were higher in the low-dose vincristine group suggesting other contributing factors. Although neurotoxicity rate in the CYP3A5*1/*3 genotype was 17.6%, it was 21.6% in the CYP3A5*3/*3 genotype and the difference was not statistically significant (P<0.05). This study suggested that vincristine-related neurotoxicity is dose-independent and genotype is not the only causative factor in the occurrence of neurotoxicity in these patients.
Collapse
|
175
|
CD8+ T Cells and Endogenous IL-10 Are Required for Resolution of Chemotherapy-Induced Neuropathic Pain. J Neurosci 2017; 36:11074-11083. [PMID: 27798187 DOI: 10.1523/jneurosci.3708-15.2016] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 09/07/2016] [Indexed: 12/22/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN), characterized by pain and numbness in hands and feet, is a common side effect of cancer treatment. In most patients, symptoms of CIPN subside after treatment completion. However, in a substantial subgroup, CIPN persists long into survivorship. Impairment in pain resolution pathways may explain persistent CIPN. We investigated the contribution of T cells and endogenous interleukin (IL)-10 to resolution of CIPN. Paclitaxel-induced mechanical allodynia was prolonged in T-cell-deficient (Rag1-/-) mice compared with wild-type (WT) mice. There were no differences between WT and Rag1-/- mice in severity of paclitaxel-induced mechanical allodynia. Adoptive transfer of either CD3+ or CD8+, but not CD4+, T cells to Rag1-/- mice normalized resolution of CIPN. Paclitaxel treatment increased the number of T cells in lumbar dorsal root ganglia (DRG), where CD8+ T cells were the major subset. Inhibition of endogenous IL-10 signaling by intrathecal injection of anti-IL-10 to WT mice or Rag1-/- mice reconstituted with CD8+ T cells delayed recovery from paclitaxel-induced mechanical allodynia. Recovery was also delayed in IL-10 knock-out mice. Conversely, administration of exogenous IL-10 attenuated paclitaxel-induced allodynia. In vitro, IL-10 suppressed abnormal paclitaxel-induced spontaneous discharges in DRG neurons. Paclitaxel increased DRG IL-10 receptor expression and this effect requires CD8+ T cells. In conclusion, we identified a novel mechanism for resolution of CIPN that requires CD8+ T cells and endogenous IL-10. We propose that CD8+ T cells increase DRG IL-10 receptor expression and that IL-10 suppresses the abnormal paclitaxel-induced spontaneous discharges by DRG neurons to promote recovery from CIPN. SIGNIFICANCE STATEMENT Chemotherapy-induced peripheral neuropathy persists after completion of cancer treatment in a significant subset of patients, whereas others recover. Persistent neuropathy after completion of cancer treatment severely affects quality of life. We propose that understanding how neuropathy resolves will identify novel avenues for treatment. We identified a novel and critical role for CD8+ T cells and for endogenous IL-10 in recovery from paclitaxel-induced neuropathy in mice. Enhancing the capacity of CD8+ T cells to promote resolution or increasing IL-10 signaling are promising targets for novel interventions. Clinically, peripheral blood CD8+ T-cell function and/or the capacity of individuals to produce IL-10 may represent biomarkers of risk for developing persistent peripheral neuropathy after completion of cancer treatment.
Collapse
|
176
|
Galiè E, Villani V, Terrenato I, Pace A. Tapentadol in neuropathic pain cancer patients: a prospective open label study. Neurol Sci 2017; 38:1747-1752. [PMID: 28699105 DOI: 10.1007/s10072-017-3035-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/14/2017] [Indexed: 12/20/2022]
Abstract
Many chemotherapy treatments induce peripheral neuropathy (CIPN). These patients often experience neuropathic pain (NP) that reduces the quality of life. The aim of this prospective, open label study was to evaluate the efficacy and tolerability of tapentadol (TP) in patients affected by CIPN. CIPN were consecutively enrolled in a prospective open label study at the Neuro-Oncology Unit of the Regina Elena National Cancer Institute in Rome. During the titration phase, each patient initially received doses of TP 50 mg twice a day. All patients underwent pain intensity (NRS) and DN4. For evaluation of quality of life, patients underwent EORTC QLQ-C30 and EORTC QLQ-CIPN2 QLQ-CIPN20. We enrolled 31 patients, 19 were females with a median age of 60 years. After 3 months of treatment with TP, 22 patients completed the statistical package for social sciences (SPSS). Nineteen patients out of 22 showed a response to treatment (86%). We also observed that TP reduced the NRS and DN4 values from baseline to the last visit in a significant way (p < 0.001, respectively). Seven patients (22.5%) discontinued the TP therapy after the first week of occurrence of side effects. Furthermore, we observed that TP improved also the global health status measured by EORT QLQ-C30. TP is well tolerated and efficacy in the treatment of NP. The important reduction of neuropathic pain, the improvement in NRS and QoL scores after therapy with TP makes it a candidate in the management of patients suffering from neuropathic pain of CIPN also as a first line of therapy.
Collapse
Affiliation(s)
- Edvina Galiè
- Neuro-Oncology Unit, "Regina Elena" National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Veronica Villani
- Neuro-Oncology Unit, "Regina Elena" National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Irene Terrenato
- Biostatistic Unit-Scientific Direction, "Regina Elena" National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Andrea Pace
- Neuro-Oncology Unit, "Regina Elena" National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| |
Collapse
|
177
|
Kolb NA, Smith AG, Singleton JR, Beck SL, Stoddard GJ, Brown S, Mooney K. The Association of Chemotherapy-Induced Peripheral Neuropathy Symptoms and the Risk of Falling. JAMA Neurol 2017; 73:860-6. [PMID: 27183099 DOI: 10.1001/jamaneurol.2016.0383] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
IMPORTANCE Chemotherapy-induced peripheral neuropathy (CIPN) is a common adverse effect of neurotoxic chemotherapy resulting in pain, sensory loss, and decreased quality of life. Few studies have prospectively examined the relationship between sensory neuropathy symptoms, falls, and fall-related injuries for patients receiving neurotoxic chemotherapy. OBJECTIVE To determine the association between the symptoms of CIPN and the risk of falls for patients receiving neurotoxic chemotherapy. DESIGN, SETTING, AND PARTICIPANTS In this secondary analysis of a prospective study, 116 patients with breast, ovarian, or lung cancer who were beginning neurotoxic chemotherapy with a taxane or platinum agent were recruited from oncology clinics. These patients would call a novel automated telephone system daily for 1 full course of chemotherapy. The telephone system (SymptomCare@Home) used a series of relevant CIPN questions to track symptoms on a 0 to 10 ordinal scale and contained a questionnaire about falls. Those reporting a numbness and tingling severity score of 3 or greater for at least 10 days were considered to have significant CIPN symptoms and were compared with those patients who did not. Data analysis was performed in November 2015. EXPOSURE Chemotherapy with a neurotoxic taxane or platinum agent. MAIN OUTCOMES AND MEASURES Patient-reported falls or near falls and fall-related injuries. The hypothesis was generated after data collection but prior to data analysis. RESULTS Of the 116 patients who started neurotoxic chemotherapy (mean [SD] age was 55.5 [11.9] years, and 109 [94.0%] were female), 32 met the predetermined criteria for CIPN symptoms. The mean duration of follow-up was 62 days, with 51 telephone calls completed per participant. Seventy-four falls or near falls were reported. The participants with CIPN symptoms were nearly 3 times more likely to report a fall or near fall than the participants without CIPN symptoms (hazard ratio, 2.67 [95% CI, 1.62-4.41]; P < .001). The participants with CIPN symptoms were more likely than the participants without CIPN symptoms to obtain medical care for falls (8 of 32 participants with CIPN symptoms [25.0%] vs 6 of 84 participants without CIPN symptoms [7.1%]; P = .01). CONCLUSIONS AND RELEVANCE These findings suggest that the sensory symptoms of CIPN are an indicator of an increased risk of falling and an increased use of health care resources. This study demonstrates the utility of a novel telephone-based system to track neuropathy symptoms. Careful monitoring and coaching of patients receiving neurotoxic chemotherapy for new sensory symptoms may facilitate more effective fall prevention strategies.
Collapse
Affiliation(s)
- Noah A Kolb
- Department of Neurology, University of Utah School of Medicine, Salt Lake City
| | - A Gordon Smith
- Department of Neurology, University of Utah School of Medicine, Salt Lake City
| | | | - Susan L Beck
- College of Nursing, University of Utah, Salt Lake City
| | - Gregory J Stoddard
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City
| | - Summer Brown
- Department of Neurology, University of Utah School of Medicine, Salt Lake City
| | - Kathi Mooney
- College of Nursing, University of Utah, Salt Lake City
| |
Collapse
|
178
|
Safety of BTZ retreatment for patients with low-grade peripheral neuropathy during the initial treatment. Support Care Cancer 2017; 25:3217-3224. [PMID: 28455546 DOI: 10.1007/s00520-017-3732-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 04/24/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Neuropathy is an important complication that may limit treatment options for patients with multiple myeloma. Previous studies have focused on treatment efficacy and have shown that retreatment with bortezomib (BTZ) is an effective treatment option. The goal of this study was to focus on the clinical manifestations of peripheral neuropathy (PN) and to retrospectively compare the incidence and severity of PN between the initial BTZ regimen and upon retreatment. Furthermore, this study evaluated how certain factors affect BIPN, which will help determine what conditions should be considered prior to retreatment. METHODS Charts were reviewed from 93 patients who were retreated with a BTZ-containing regimen after previously being treated with this drug. RESULTS Among the patients who developed PN, most patients in the study had low-grade neuropathy during the initial BTZ treatment (n = 52, 68%). The results showed no evidence of cumulative toxicity, and there was no significant difference in the incidence and severity of PN upon retreatment. Factors such as the presence of baseline PN, number of prior treatments, dose of BTZ, and comorbidities did not increase the severity of PN upon retreatment. The lapse of time between the two regimens also did not affect the severity of PN. CONCLUSION The results suggest that retreatment with BTZ may be a feasible option, without additional risks of PN, for MM patients even with peripheral neuropathy during their initial treatment with this drug.
Collapse
|
179
|
Benbow SJ, Wozniak KM, Kulesh B, Savage A, Slusher BS, Littlefield BA, Jordan MA, Wilson L, Feinstein SC. Microtubule-Targeting Agents Eribulin and Paclitaxel Differentially Affect Neuronal Cell Bodies in Chemotherapy-Induced Peripheral Neuropathy. Neurotox Res 2017; 32:151-162. [PMID: 28391556 DOI: 10.1007/s12640-017-9729-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 01/05/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of anticancer treatment with microtubule-targeted agents (MTAs). The frequency of severe CIPN, which can be dose limiting and even life threatening, varies widely among different MTAs. For example, paclitaxel induces a higher frequency of severe CIPN than does eribulin. Different MTAs also possess distinct mechanisms of microtubule-targeted action. Recently, we demonstrated that paclitaxel and eribulin differentially affect sciatic nerve axons, with paclitaxel inducing more pronounced neurodegenerative effects and eribulin inducing greater microtubule stabilizing biochemical effects. Here, we complement and extend these axonal studies by assessing the effects of paclitaxel and eribulin in the cell bodies of sciatic nerve axons, housed in the dorsal root ganglia (DRG). Importantly, the microtubule network in cell bodies is known to be significantly more dynamic than in axons. Paclitaxel induced activating transcription factor 3 expression, a marker of neuronal stress/injury. Paclitaxel also increased expression levels of acetylated tubulin and end binding protein 1, markers of microtubule stability and growth, respectively. These effects are hypothesized to be detrimental to the dynamic microtubule network within the cell bodies. In contrast, eribulin had no significant effect on any of these parameters in the cell bodies. Taken together, DRG cell bodies and their axons, two distinct neuronal cell compartments, contain functionally distinct microtubule networks that exhibit unique biochemical responses to different MTA treatments. We hypothesize that these distinct mechanistic actions may underlie the variability seen in the initiation, progression, persistence, and recovery from CIPN.
Collapse
Affiliation(s)
- Sarah J Benbow
- Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Krystyna M Wozniak
- Johns Hopkins Drug Discovery Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Bridget Kulesh
- Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - April Savage
- Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery Program, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Departments of Neurology, Psychiatry, Neuroscience, Medicine and Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Mary Ann Jordan
- Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Leslie Wilson
- Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Stuart C Feinstein
- Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA. .,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
180
|
Vincristine-induced peripheral neuropathy in children with cancer: A systematic review. Crit Rev Oncol Hematol 2017; 114:114-130. [PMID: 28477739 DOI: 10.1016/j.critrevonc.2017.04.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 11/20/2022] Open
Abstract
Vincristine-induced peripheral neuropathy (VIPN) is a dose-limiting side effect of vincristine (VCR) treatment in children, leading to diminished quality of life. Much remains unknown about the underlying mechanisms of VIPN. This review systematically summarizes the available literature concerning contributing factors of VIPN development in children. Studied factors include patient characteristics, VCR dose, administration method, pharmacokinetics, and genetic factors. Furthermore, this review reports on currently available tools to assess VIPN in children. In total, twenty-eight publications were included. Results indicate that Caucasian race, higher VCR dose, older age and low clearance negatively influence VIPN, although results regarding the latter two factors were rather conflicting. Moreover, genetic pathways influencing VIPN were identified. Furthermore, the studied tools to assess VIPN seriously impairs comparability across study results. Studying the factors and their interactions that seem to influence VIPN in children, should aid in personalized VCR treatment, thereby increasing VCR effectiveness while minimizing toxicity.
Collapse
|
181
|
Development of TRPM8 Antagonists to Treat Chronic Pain and Migraine. Pharmaceuticals (Basel) 2017; 10:ph10020037. [PMID: 28358322 PMCID: PMC5490394 DOI: 10.3390/ph10020037] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/16/2017] [Accepted: 03/23/2017] [Indexed: 01/17/2023] Open
Abstract
A review. Development of pharmaceutical antagonists of transient receptor potential melastatin 8 (TRPM8) have been pursued for the treatment of chronic pain and migraine. This review focuses on the current state of this progress.
Collapse
|
182
|
Abstract
Metal ions play critical roles in neurotransmission, memory formation, and sensory perception. Understanding the molecular details of these processes is the Holy Grail of metalloneurochemistry. Here we describe five challenges for collaborative teams of chemists, biologists, and neuroscientists to help make this dream a reality.
Collapse
Affiliation(s)
- Jacob M. Goldberg
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
183
|
Ben-Horin I, Kahan P, Ryvo L, Inbar M, Lev-Ari S, Geva R. Acupuncture and Reflexology for Chemotherapy-Induced Peripheral Neuropathy in Breast Cancer. Integr Cancer Ther 2017; 16:258-262. [PMID: 28150504 PMCID: PMC5759933 DOI: 10.1177/1534735417690254] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Treatment of chemotherapy-induced peripheral neuropathy (CIPN), which affects approximately 30% to 40% of patients treated with neuropathy-causing agents, is mainly symptomatic. Currently available interventions are of little benefit. STUDY DESIGN This study was conducted as a retrospective analysis of the efficacy of acupuncture and reflexology in alleviating CIPN in breast cancer patients. METHODS Medical records of 30 consecutive breast cancer patients who received both chemotherapy and treatment for CIPN according to our Acupuncture and Reflexology Treatment for Neuropathy (ART-N) protocol between 2011 and 2012 were reviewed. Symptom severity was rated at baseline, during, and after treatment. RESULTS The records of 30 breast cancer patients who had been concomitantly treated with chemotherapy and ART-N for CIPN were retrieved. Two records were incomplete, leaving a total of 28 patients who were enrolled into the study. Twenty patients (71%) had sensory neuropathy, 7 (25%) had motor neuropathy, and 1 (4%) had both sensory and motor neuropathy. Only 2 (10%) of the 20 patients with grades 1 to 2 neuropathy still reported symptoms at 12 months since starting the ART-N protocol. All 8 patients who presented with grades 3 to 4 neuropathy were symptom-free at the 12-month evaluation. Overall, 26 patients (93%) had complete resolution of CIPN symptoms. CONCLUSION The results of this study demonstrated that a joint protocol of acupuncture and reflexology has a potential to improve symptoms of CIPN in breast cancer patients. The protocol should be validated on a larger cohort with a control group. It also warrants testing as a preventive intervention.
Collapse
Affiliation(s)
- Idan Ben-Horin
- 1 Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Peretz Kahan
- 1 Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Larisa Ryvo
- 1 Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Inbar
- 1 Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Lev-Ari
- 1 Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Ravit Geva
- 1 Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
184
|
Zhang X, Chen WW, Huang WJ. Chemotherapy-induced peripheral neuropathy. Biomed Rep 2017; 6:267-271. [PMID: 28451384 PMCID: PMC5403454 DOI: 10.3892/br.2017.851] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 07/28/2016] [Indexed: 12/30/2022] Open
Abstract
Neuropathy is associated with side effects of frontline chemotherapeutics, which is a prominent therapy utilized in prevalent cancers. Peripheral neuropathy negatively impacts quality of life in cancer patients and survivors. It also affects the dose plan of the treatment, thereby limiting the efficacy of the treatment. We searched the electronic database PubMed for pre-clinically and clinically controlled trials reporting neuropathy of adverse effects, a result of chemotherapy in cancer patients. It was observed clearly that many reports provide clinical evidence to rapidly growing neuropathy cases of cancer patients. Furthermore, the reports clearly showed enhanced cold pain, sensorimotor deficits, sensory innervation of the skin and sensorimotor deficits in the patients with cancer who underwent treatment mainly with the chemotherapeutic approach. The present review highlighted the current view of peripheral neuropathy during chemotherapeutic approaches.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Wei-Wei Chen
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Wen-Juan Huang
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
185
|
Kim HK, Hwang SH, Abdi S. Tempol Ameliorates and Prevents Mechanical Hyperalgesia in a Rat Model of Chemotherapy-Induced Neuropathic Pain. Front Pharmacol 2017; 7:532. [PMID: 28138318 PMCID: PMC5237846 DOI: 10.3389/fphar.2016.00532] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/22/2016] [Indexed: 01/01/2023] Open
Abstract
Chemotherapy-induced neuropathic pain is difficult to treat and prevent. Tempol decreases cellular superoxide radical levels and oxidative stress. The aims of our study were to investigate the analgesic and preventive effects of tempol on paclitaxel-induced neuropathic pain in rats and to identify the associated mechanisms of action. Neuropathic pain was induced with intraperitoneally injected paclitaxel on four alternate days in male Sprague-Dawley rats. Tempol was administered systemically as a single injection and a continuous infusion before or after the injection of paclitaxel. The mechanical threshold for allodynia, protein levels, and free radical levels were measured using von Frey filaments, Western blotting, and live cell imaging, respectively. After the rats developed neuropathic pain behavior, a single intraperitoneal injection and continuous infusion of tempol ameliorated paclitaxel-induced mechanical allodynia. Systemic infusion of tempol in the early phase of the development of pain behavior prevented the development of paclitaxel-induced pain behavior. Paclitaxel increased the levels of phosphorylated protein kinase C, phosphorylated nuclear factor κB, phosphodiesterase 4D (PDE4D), IL-1β, and monocyte chemoattractant protein-1 in the lumbar dorsal root ganglia; however, tempol decreased these levels. Paclitaxel also increased superoxide levels in a culture of primary dorsal root ganglion cells and tempol decreased these levels. In conclusion, tempol alleviates and prevents chemotherapy-induced neuropathic pain in rats by reducing the levels of inflammatory cytokines and free radicals in dorsal root ganglia.
Collapse
Affiliation(s)
- Hee Kee Kim
- Department of Pain Medicine, Division of Anesthesiology and Critical Care, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| | - Seon-Hee Hwang
- Department of Pain Medicine, Division of Anesthesiology and Critical Care, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| | - Salahadin Abdi
- Department of Pain Medicine, Division of Anesthesiology and Critical Care, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| |
Collapse
|
186
|
Jung Y, Lee JH, Kim W, Yoon SH, Kim SK. Anti-allodynic effect of Buja in a rat model of oxaliplatin-induced peripheral neuropathy via spinal astrocytes and pro-inflammatory cytokines suppression. Altern Ther Health Med 2017; 17:48. [PMID: 28088201 PMCID: PMC5237549 DOI: 10.1186/s12906-017-1556-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/05/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Oxaliplatin, a widely used anticancer drug against metastatic colorectal cancer, can induce acute peripheral neuropathy, which is characterized by cold and mechanical allodynia. Activation of glial cells (e.g. astrocytes and microglia) and increase of pro-inflammatory cytokines (e.g. IL-1β and TNF-α) in the spinal cord play a crucial role in the pathogenesis of neuropathic pain. Our previous study demonstrated that Gyejigachulbu-Tang (GBT), a herbal complex formula, alleviates oxaliplatin-induced neuropathic pain in rats by suppressing spinal glial activation. However, it remains to be elucidated whether and how Buja (Aconiti Tuber), a major ingredient of GBT, is involved in the efficacy of GBT. METHODS Cold and mechanical allodynia induced by an oxaliplatin injection (6 mg/kg, i.p.) in Sprauge-Dawley rats were evaluated by a tail immersion test in cold water (4 °C) and a von Frey hair test, respectively. Buja (300 mg/kg) was orally administrated for five consecutive days after the oxaliplatin injection. Glial activation in the spinal cord was quantified by immunohistochemical staining using GFAP (for astrocytes) and Iba-1 (for microglia) antibodies. The amount of spinal pro-inflammatory cytokines, IL-1β and TNF-α, were measured by ELISA. RESULTS Significant behavioral signs of cold and mechanical allodynia were observed 3 days after an oxaliplatin injection. Oral administration of Buja significantly alleviated oxaliplatin-induced cold and mechanical allodynia by increasing the tail withdrawal latency to cold stimuli and mechanical threshold. Immunohistochemical analysis showed the activation of astrocytes and microglia and the increase of the IL-1β and TNF-α levels in the spinal cord after an oxaliplatin injection. Administration of Buja suppressed the activation of spinal astrocytes without affecting microglial activation and down-regulated both IL-1β and TNF-α levels in the spinal cord. CONCLUSIONS Our results indicate that Buja has a potent anti-allodynic effect in a rat model of oxaliplatin-induced neuropathic pain, which is associated with the inhibition of activation of astrocytes and release of pro-inflammatory cytokines in the spinal cord. Thus, our findings suggest that administration of Buja could be an alternative therapeutic option for the management of peripheral neuropathy, a common side-effect of oxaliplatin.
Collapse
|
187
|
Sundar R, Bandla A, Tan SSH, Liao LD, Kumarakulasinghe NB, Jeyasekharan AD, Ow SGW, Ho J, Tan DSP, Lim JSJ, Vijayan J, Therimadasamy AK, Hairom Z, Ang E, Ang S, Thakor NV, Lee SC, Wilder-Smith EPV. Limb Hypothermia for Preventing Paclitaxel-Induced Peripheral Neuropathy in Breast Cancer Patients: A Pilot Study. Front Oncol 2017; 6:274. [PMID: 28119855 PMCID: PMC5222823 DOI: 10.3389/fonc.2016.00274] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/23/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Peripheral neuropathy (PN) due to paclitaxel is a common dose-limiting toxicity with no effective prevention or treatment. We hypothesize that continuous-flow limb hypothermia can reduce paclitaxel-induced PN. PATIENTS AND METHODS An internally controlled pilot trial was conducted to investigate the neuroprotective effect of continuous-flow limb hypothermia in breast cancer patients receiving weekly paclitaxel. Patients underwent limb hypothermia of one limb for a duration of 3 h with every paclitaxel infusion, with the contralateral limb used as control. PN was primarily assessed using nerve conduction studies (NCSs) before the start of chemotherapy, and after 1, 3, and 6 months. Skin temperature and tolerability to hypothermia were monitored using validated scores. RESULTS Twenty patients underwent a total of 218 cycles of continuous-flow limb hypothermia at a coolant temperature of 22°C. Continuous-flow limb hypothermia achieved mean skin temperature reduction of 1.5 ± 0.7°C and was well tolerated, with no premature termination of cooling due to intolerance. Grade 3 PN occurred in 2 patients (10%), grade 2 in 2 (10%), and grade 1 in 12 (60%). Significant correlation was observed between amount of skin cooling and motor nerve amplitude preservation at 6 months (p < 0.0005). Sensory velocity and amplitude in the cooled limbs were less preserved than in the control limbs, but the difference did not attain statistical significance. One patient with a history of diabetes mellitus had significant preservation of compound muscle action potential in the cooled limb on NCS analysis. CONCLUSION This study suggests that continuous limb hypothermia accompanying paclitaxel infusion may reduce paclitaxel-induced PN and have therapeutic potential in select patients and warrants further investigation. The method is safe and well tolerated.
Collapse
Affiliation(s)
- Raghav Sundar
- Department of Haematology-Oncology, National University Health System , Singapore , Singapore
| | - Aishwarya Bandla
- Singapore Institute for Neurotechnology, National University of Singapore, Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Stacey Sze Hui Tan
- Singapore Institute for Neurotechnology, National University of Singapore , Singapore , Singapore
| | - Lun-De Liao
- Singapore Institute for Neurotechnology, National University of Singapore, Singapore, Singapore; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Township, Taiwan
| | | | - Anand D Jeyasekharan
- Department of Haematology-Oncology, National University Health System , Singapore , Singapore
| | - Samuel Guan Wei Ow
- Department of Haematology-Oncology, National University Health System , Singapore , Singapore
| | - Jingshan Ho
- Department of Haematology-Oncology, National University Health System , Singapore , Singapore
| | - David Shao Peng Tan
- Department of Haematology-Oncology, National University Health System , Singapore , Singapore
| | - Joline Si Jing Lim
- Department of Haematology-Oncology, National University Health System , Singapore , Singapore
| | - Joy Vijayan
- Department of Medicine, National University Health System , Singapore , Singapore
| | | | - Zarinah Hairom
- National University Cancer Institute, National University Health System , Singapore , Singapore
| | - Emily Ang
- National University Cancer Institute, National University Health System , Singapore , Singapore
| | - Sally Ang
- Department of Haematology-Oncology, National University Health System , Singapore , Singapore
| | - Nitish V Thakor
- Singapore Institute for Neurotechnology, National University of Singapore, Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Soo-Chin Lee
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Einar P V Wilder-Smith
- Singapore Institute for Neurotechnology, National University of Singapore, Singapore, Singapore; Department of Medicine, National University Health System, Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
188
|
Cortellini A, Verna L, Cannita K, Napoleoni L, Parisi A, Ficorella C, Porzio G. Topical Menthol for Treatment of Chemotherapy-induced Peripheral Neuropathy. Indian J Palliat Care 2017; 23:350-352. [PMID: 28827946 PMCID: PMC5545968 DOI: 10.4103/ijpc.ijpc_23_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy is a frequent treatment-limiting factor that significantly impairs patients’ everyday life, also because of a lack of valid palliative options. Here, we report a case of a male patient with a history of metastatic colon cancer and previous chemotherapies. He came to our attention with a peripheral neuropathy that impaired his quality of life and could limit the further line of chemotherapy. We treated the neuropathy with menthol aqueous cream with benefit.
Collapse
Affiliation(s)
- Alessio Cortellini
- Department of Medical Oncology, San Salvatore Hospital, University of L'Aquila, L'Aquila, Italy
| | - Lucilla Verna
- Department of Medical Oncology, San Salvatore Hospital, University of L'Aquila, L'Aquila, Italy
| | - Katia Cannita
- Department of Medical Oncology, San Salvatore Hospital, University of L'Aquila, L'Aquila, Italy
| | - Luca Napoleoni
- Department of Medical Oncology, San Salvatore Hospital, University of L'Aquila, L'Aquila, Italy
| | - Alessandro Parisi
- Department of Medical Oncology, San Salvatore Hospital, University of L'Aquila, L'Aquila, Italy
| | - Corrado Ficorella
- Department of Medical Oncology, San Salvatore Hospital, University of L'Aquila, L'Aquila, Italy
| | - Giampiero Porzio
- Department of Medical Oncology, San Salvatore Hospital, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
189
|
Gopalakrishnan D, Ganeshpandian M, Loganathan R, Bhuvanesh NSP, Sabina XJ, Karthikeyan J. Water soluble Ru(ii)–arene complexes of the antidiabetic drug metformin: DNA and protein binding, molecular docking, cytotoxicity and apoptosis-inducing activity. RSC Adv 2017. [DOI: 10.1039/c7ra06514k] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The incorporation of antidiabetic drug metformin with organometallic Ru(arene) pharmacophore is a promising approach to develop new anticancer agents.
Collapse
Affiliation(s)
| | | | | | | | | | - J. Karthikeyan
- Department of Chemistry
- Sathyabama University
- Chennai – 600119
- India
| |
Collapse
|
190
|
Affiliation(s)
- Ji Hye Hwang
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joon-Sung Kim
- Department of Rehabilitation Medicine, St. Vincent's Hospital, The Catholic University of Korea College of Medicine, Suwon, Korea
| |
Collapse
|
191
|
Leo M, Schmitt LI, Erkel M, Melnikova M, Thomale J, Hagenacker T. Cisplatin-induced neuropathic pain is mediated by upregulation of N-type voltage-gated calcium channels in dorsal root ganglion neurons. Exp Neurol 2016; 288:62-74. [PMID: 27823926 DOI: 10.1016/j.expneurol.2016.11.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/04/2016] [Accepted: 11/03/2016] [Indexed: 12/25/2022]
Abstract
Cisplatin is important in the treatment of various types of cancer. Although it is highly effective, it also has severe side effects, with neurotoxicity in dorsal root ganglion (DRG) neurons being one of the most common. The key mechanisms of neurotoxicity are still controversially discussed; however, disturbances of the calcium homeostasis in DRG neurons have been suggested to mediate cisplatin neurotoxicity. By using the whole-cell patch-clamp technique, immunostaining and behavioral experiments with Sprague-Dawley rats, we examined the influence of short- and long-term exposure to cisplatin on voltage-gated calcium channel (VGCC) currents (ICa(V)) in small DRG neurons. In vitro exposure to cisplatin reduced ICa(V) in a concentration-dependent manner (0.01-50μM; 13.8-77.3%; IC50 5.07μM). Subtype-specific measurements of VGCCs showed differential effects on ICa(V). While the ICa(V) of P/Q-, L- and T-type VGCCs were reduced, ICa(V) of N-type VGCCs were increased by 30.3% during depolarization to 0mV. Exposure of DRG neurons to cisplatin (0.5 or 5μM) for 24-48h in vitro significantly increased a CaMK II-mediated ICa(V) current density. Immunostaining and western blot analysis revealed an increase of N-type VGCC protein level in DRG neurons 24h after cisplatin exposure. Cisplatin-mediated activation of caspase-3 was prevented by inhibition of N-type VGCCs using Ɯ-conotoxin MVIIA. Behavioral experiments showed that Ɯ-conotoxin MVIIA treatment prevented neuropathic syndromes in vivo by inhibiting upregulation of the N-type protein level. Here we show evidence for the first time for a crucial role of N-type VGCC in the genesis of cisplatin-induced polyneuropathy.
Collapse
Affiliation(s)
- Markus Leo
- Department of Neurology, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Linda-Isabell Schmitt
- Department of Neurology, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Martin Erkel
- Department of Neurology, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Margarita Melnikova
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Jürgen Thomale
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Tim Hagenacker
- Department of Neurology, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany.
| |
Collapse
|
192
|
Donvito G, Wilkerson JL, Damaj MI, Lichtman AH. Palmitoylethanolamide Reverses Paclitaxel-Induced Allodynia in Mice. J Pharmacol Exp Ther 2016; 359:310-318. [PMID: 27608657 PMCID: PMC5074488 DOI: 10.1124/jpet.116.236182] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/07/2016] [Indexed: 12/29/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) represents a serious complication associated with antineoplastic drugs. Although there are no medications available that effectively prevent CIPN, many classes of drugs have been used to treat this condition, including anticonvulsants, serotonin and noradrenaline reuptake inhibitors, and opioids. However, these therapeutic options yielded inconclusive results in CIPN clinical trials and produced assorted side effects with their prolonged use. Thus, there is an urgent need to develop efficacious and safe treatments for CIPN. In this report, we tested whether the endogenous lipid palmitoylethanolamide (PEA) alone or in combination with the anticonvulsant gabapentin would reduce allodynia in a mouse paclitaxel model of CIPN. Gabapentin and PEA reversed paclitaxel-induced allodynia with respective ED50 doses (95% confidence interval) of 67.4 (61.52-73.94) and 9.2 (8.39-10.16) mg/kg. Isobolographic analysis of these drugs in combination revealed synergistic antiallodynic effects. The PPAR-α antagonist receptor antagonist GW6471 [N-((2S)-2-(((1Z)-1-methyl-3-oxo-3-(4-(trifluoromethyl)phenyl)prop-1-enyl)amino)-3-(4-(2-(5-methyl-2-phenyl-1,3-oxazol-4-yl)ethoxy)phenyl)propyl)propanamide] completely blocked the antinociceptive effects of PEA. In addition, PEA administered via intraplantar injection into a paw, intrathecal injection, and intracerebroventricular injection reversed paclitaxel-induced allodynia, suggesting that it may act at multiple sites in the neuroaxis and periphery. Finally, repeated administration of PEA (30 mg/kg, 7 days) preserved the antiallodynic effects with no evidence of tolerance. These findings taken together suggest that PEA possesses potential to treat peripheral neuropathy in cancer patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Giulia Donvito
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (G.D.; J.L.W.; M.I.D.; A.H.L.); and Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy (G.D.)
| | - Jenny L Wilkerson
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (G.D.; J.L.W.; M.I.D.; A.H.L.); and Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy (G.D.)
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (G.D.; J.L.W.; M.I.D.; A.H.L.); and Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy (G.D.)
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (G.D.; J.L.W.; M.I.D.; A.H.L.); and Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy (G.D.)
| |
Collapse
|
193
|
Colombo N, Hardy-Bessard AC, Ferrandina G, Marth C, Romero I. Experience with trabectedin + pegylated liposomal doxorubicin for recurrent platinum-sensitive ovarian cancer unsuited to platinum rechallenge. Expert Rev Anticancer Ther 2016; 16:11-19. [DOI: 10.1080/14737140.2016.1243475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
194
|
Effects of Microtubule Stabilization by Epothilone B Depend on the Type and Age of Neurons. Neural Plast 2016; 2016:5056418. [PMID: 27872763 PMCID: PMC5107872 DOI: 10.1155/2016/5056418] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/07/2016] [Accepted: 09/21/2016] [Indexed: 01/06/2023] Open
Abstract
Several studies have demonstrated the therapeutic potential of applying microtubule- (MT-) stabilizing agents (MSAs) that cross the blood-brain barrier to promote axon regeneration and prevent axonal dystrophy in rodent models of spinal cord injury and neurodegenerative diseases. Paradoxically, administration of MSAs, which have been widely prescribed to treat malignancies, is well known to cause debilitating peripheral neuropathy and axon degeneration. Despite the growing interest of applying MSAs to treat the injured or degenerating central nervous system (CNS), consequences of MSA exposure to neurons in the central and peripheral nervous system (PNS) have not been thoroughly investigated. Here, we have examined and compared the effects of a brain-penetrant MSA, epothilone B, on cortical and sensory neurons in culture and show that epothilone B exhibits both beneficial and detrimental effects, depending on not only the concentration of drug but also the type and age of a neuron, as seen in clinical settings. Therefore, to exploit MSAs to their full benefit and minimize unwanted side effects, it is important to understand the properties of neuronal MTs and strategies should be devised to deliver minimal effective concentration directly to the site where needed.
Collapse
|
195
|
Jin HY, Lee NY, Ko HA, Lee KA, Park TS. Comparison of sensory tests and neuronal quantity of peripheral nerves between streptozotocin (STZ)-induced diabetic rats and paclitaxel (PAC)-treated rats. Somatosens Mot Res 2016; 33:186-195. [DOI: 10.1080/08990220.2016.1239577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
196
|
Podratz JL, Lee H, Knorr P, Koehler S, Forsythe S, Lambrecht K, Arias S, Schmidt K, Steinhoff G, Yudintsev G, Yang A, Trushina E, Windebank A. Cisplatin induces mitochondrial deficits in Drosophila larval segmental nerve. Neurobiol Dis 2016; 97:60-69. [PMID: 27765583 DOI: 10.1016/j.nbd.2016.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 10/04/2016] [Accepted: 10/16/2016] [Indexed: 12/23/2022] Open
Abstract
Cisplatin is an effective chemotherapy drug that induces peripheral neuropathy in cancer patients. In rodent dorsal root ganglion neurons, cisplatin binds nuclear and mitochondrial DNA (mtDNA) inducing DNA damage and apoptosis. Platinum-mtDNA adducts inhibit mtDNA replication and transcription leading to mitochondrial degradation. Cisplatin also induces climbing deficiencies associated with neuronal apoptosis in adult Drosophila melanogaster. Here we used Drosophila larvae that express green fluorescent protein in the mitochondria of motor neurons to observe the effects of cisplatin on mitochondrial dynamics and function. Larvae treated with 10μg/ml cisplatin had normal survival with deficiencies in righting and heat sensing behavior. Behavior was abrogated by, the pan caspase inhibitor, p35. However, active caspase 3 was not detected by immunostaining. There was a 27% decrease in mitochondrial membrane potential and a 42% increase in reactive oxygen species (ROS) in mitochondria along the axon. Examination of mitochondrial axonal trafficking showed no changes in velocity, flux or mitochondrial length. However, cisplatin treatment resulted in a greater number of stationary organelles caused by extended pausing during axonal motility. These results demonstrate that cisplatin induces behavior deficiencies in Drosophila larvae, decreased mitochondrial activity, increased ROS production and mitochondrial pausing without killing the larvae. Thus, we identified particular aspects of mitochondrial dynamics and function that are affected in cisplatin-induced peripheral neuropathy and may represent key therapeutic targets.
Collapse
Affiliation(s)
| | - Han Lee
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Patrizia Knorr
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Suzette Arias
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Kiley Schmidt
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Georgiy Yudintsev
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Amy Yang
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
197
|
Isakoff SJ, Puhalla S, Domchek SM, Friedlander M, Kaufman B, Robson M, Telli ML, Diéras V, Han HS, Garber JE, Johnson EF, Maag D, Qin Q, Giranda VL, Shepherd SP. A randomized Phase II study of veliparib with temozolomide or carboplatin/paclitaxel versus placebo with carboplatin/paclitaxel in BRCA1/2 metastatic breast cancer: design and rationale. Future Oncol 2016; 13:307-320. [PMID: 27739325 PMCID: PMC5618936 DOI: 10.2217/fon-2016-0412] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Veliparib is an orally administered poly(ADP-ribose) polymerase inhibitor that is being studied in Phase I–III clinical trials, including Phase III studies in non-small-cell lung cancer, ovarian cancer and breast cancer. Tumor cells with deleterious BRCA1 or BRCA2 mutations are deficient in homologous recombination DNA repair and are intrinsically sensitive to platinum therapy and poly(ADP-ribose) polymerase inhibitors. We describe herein the design and rationale of a Phase II trial investigating whether the addition of veliparib to temozolomide or carboplatin/paclitaxel provides clinical benefit over carboplatin/paclitaxel with placebo in patients with locally recurrent or metastatic breast cancer harboring a deleterious BRCA1 or BRCA2 germline mutation (Trial registration: EudraCT 2011-002913-12, NCT01506609).
Collapse
Affiliation(s)
- Steven J Isakoff
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Shannon Puhalla
- Department of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA
| | - Susan M Domchek
- Basser Center for BRCA, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Friedlander
- Gynaecological Cancer Centre, Royal Hospital for Women, Sydney, NSW 2031, Australia
| | - Bella Kaufman
- Department of General Oncology, Chaim Sheba Medical Center, Ramat Gan 52 621, Israel
| | - Mark Robson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10022, USA
| | - Melinda L Telli
- Department of Medical Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Véronique Diéras
- Department of Medical Oncology, Institut Curie, Paris 75248, France
| | - Hyo Sook Han
- The Center for Women's Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | | - Qin Qin
- AbbVie Inc., Chicago, IL 60064, USA
| | | | | |
Collapse
|
198
|
Sundar R, Jeyasekharan AD, Pang B, Soong RCT, Kumarakulasinghe NB, Ow SGW, Ho J, Lim JSJ, Tan DSP, Wilder-Smith EPV, Bandla A, Tan SSH, Asuncion BR, Fazreen Z, Hoppe MM, Putti TC, Poh LM, Goh BC, Lee SC. Low Levels of NDRG1 in Nerve Tissue Are Predictive of Severe Paclitaxel-Induced Neuropathy. PLoS One 2016; 11:e0164319. [PMID: 27716814 PMCID: PMC5055363 DOI: 10.1371/journal.pone.0164319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/22/2016] [Indexed: 11/23/2022] Open
Abstract
Introduction Sensory peripheral neuropathy caused by paclitaxel is a common and dose limiting toxicity, for which there are currently no validated predictive biomarkers. We investigated the relationship between the Charcot-Marie-Tooth protein NDRG1 and paclitaxel-induced neuropathy. Methods/Materials Archived mammary tissue specimen blocks of breast cancer patients who received weekly paclitaxel in a single centre were retrieved and NDRG1 immunohistochemistry was performed on normal nerve tissue found within the sample. The mean nerve NDRG1 score was defined by an algorithm based on intensity of staining and percentage of stained nerve bundles. NDRG1 scores were correlated with paclitaxel induced neuropathy Results 111 patients were studied. 17 of 111 (15%) developed severe paclitaxel-induced neuropathy. The mean nerve NDRG1 expression score was 5.4 in patients with severe neuropathy versus 7.7 in those without severe neuropathy (p = 0.0019). A Receiver operating characteristic (ROC) curve analysis of the mean nerve NDRG1 score revealed an area under the curve of 0.74 (p = 0.0013) for the identification of severe neuropathy, with a score of 7 being most discriminative. 13/54 (24%) subjects with an NDRG1 score < = 7 developed severe neuropathy, compared to only 4/57 (7%) in those with a score >7 (p = 0.017). Conclusion Low NDRG1 expression in nerve tissue present within samples of surgical resection may identify subjects at risk for severe paclitaxel-induced neuropathy. Since nerve biopsies are not routinely feasible for patients undergoing chemotherapy for early breast cancer, this promising biomarker strategy is compatible with current clinical workflow.
Collapse
Affiliation(s)
- Raghav Sundar
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - Anand D. Jeyasekharan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Brendan Pang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pathology, National University Health System, Singapore, Singapore
| | - Richie Chuan Teck Soong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pathology, National University Health System, Singapore, Singapore
| | - Nesaretnam Barr Kumarakulasinghe
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - Samuel Guan Wei Ow
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - Jingshan Ho
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - Joline Si Jing Lim
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - David Shao Peng Tan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - Einar P. V. Wilder-Smith
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore, Singapore
- Department of Medicine, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Aishwarya Bandla
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Stacey Sze Hui Tan
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore, Singapore
| | | | - Zul Fazreen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Michal Marek Hoppe
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | - Lay Mui Poh
- Department of Pharmacy, National University Cancer Institute Singapore, National University Health System, Singapore, Singapore
| | - Boon Cher Goh
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Soo-Chin Lee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
199
|
Abstract
Clinical stage I testicular germ cell tumours (TGCT) are highly curable neoplasms. The treatment of stage I testicular cancer is complex and requires a multidisciplinary approach. Standard options after radical orchiectomy for seminoma include active surveillance, radiation therapy or 1-2 cycles of carboplatin, and options for nonseminoma include active surveillance, retroperitoneal lymph node dissection (RPLND) or 1-2 cycles of bleomycin plus etoposide plus cisplatin (BEP). All the options should be discussed with each patient and treatment choices should be made by shared decision making as virtually all patients with clinical stage I TGCT can be cured of their disease. Long-term survival of men with stage I disease is ∼99% and care must be taken to limit the long-term risks of treatment. Orchiectomy is curative in the majority of patients. The management of clinical stage I TGCT remains controversial among experts at high-volume centres throughout the world. The main controversy is whether to overtreat a substantial number of patients with stage I disease to prevent relapse, or to observe and treat only patients who experience disease relapse as adjuvant treatment and surveillance strategy both bring curative outcome. Thus, a summary of the available evidence in stage I disease and recommendations for disease management from a high-volume centre such as Indiana University might be of interest to treating clinicians.
Collapse
|
200
|
Bao T, Basal C, Seluzicki C, Li SQ, Seidman AD, Mao JJ. Long-term chemotherapy-induced peripheral neuropathy among breast cancer survivors: prevalence, risk factors, and fall risk. Breast Cancer Res Treat 2016; 159:327-33. [PMID: 27510185 PMCID: PMC5509538 DOI: 10.1007/s10549-016-3939-0] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/06/2016] [Indexed: 12/25/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common toxicity associated with chemotherapy, but researchers rarely study its risk factors, fall risk, and prevalence in long-term breast cancer survivors. We aimed to determine CIPN prevalence, risk factors, and association with psychological distress and falls among long-term breast cancer survivors. We conducted Cross-sectional analyses among postmenopausal women with a history of stage I-III breast cancer who received taxane-based chemotherapy. Participants reported neuropathic symptoms of tingling/numbness in hands and/or feet on a 0-10 numerical rating scale. We conducted multivariate logistic regression analyses to evaluate risk factors associated with the presence of CIPN and the relationship between CIPN and anxiety, depression, insomnia, and patient-reported falls. Among 296 participants, 173 (58.4 %) reported CIPN symptoms, 91 (30.7 %) rated their symptoms as mild, and 82 (27.7 %) rated them moderate to severe. Compared with women of normal weight, being obese was associated with increased risk of CIPN (adjusted OR 1.94, 95 % CI: 1.03-3.65). Patients with CIPN reported greater insomnia severity, anxiety, and depression than those without (all p < 0.05). Severity of CIPN was associated with higher rates of falls, with 23.8, 31.9, and 41.5 % in the "no CIPN," "mild," and "moderate-to-severe" groups, respectively, experiencing falls (p = 0.028). The majority of long-term breast cancer survivors who received taxane-based chemotherapy reported CIPN symptoms; obesity was a significant risk factor. Those with CIPN also reported increased psychological distress and falls. Interventions need to target CIPN and comorbid psychological symptoms, and incorporate fall prevention strategies for aging breast cancer survivors.
Collapse
Affiliation(s)
- Ting Bao
- Memorial Sloan Kettering Cancer Center, 1429 First Avenue, New York, NY, 10021, USA.
| | - Coby Basal
- Memorial Sloan Kettering Cancer Center, 1429 First Avenue, New York, NY, 10021, USA
| | - Christina Seluzicki
- Memorial Sloan Kettering Cancer Center, 1429 First Avenue, New York, NY, 10021, USA
| | - Susan Q Li
- Memorial Sloan Kettering Cancer Center, 1429 First Avenue, New York, NY, 10021, USA
| | - Andrew D Seidman
- Memorial Sloan Kettering Cancer Center, 300 66th Street, New York, NY, 10065, USA
| | - Jun J Mao
- Memorial Sloan Kettering Cancer Center, 1429 First Avenue, New York, NY, 10021, USA
| |
Collapse
|