151
|
Detection of Extended-Spectrum β-Lactamases (ESBL) Producing Enterobacteriaceae from Fish Trapped in the Lagoon Area of Bizerte, Tunisia. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7132812. [PMID: 32596358 PMCID: PMC7303757 DOI: 10.1155/2020/7132812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
Extended-spectrum β-lactamase and their molecular mechanism in Enterobacteriaceae were analyzed in 126 fish samples of 9 various wild species, living in the lagoon of Bizerte in Tunisia. Fifty-nine (59) Gram-negative strains were isolated and identified as Escherichia coli (n = 24), Klebsiella pneumonia (n = 21), Citrobacter freundii (n = 8), and Shigella boydii (n = 6). Forty-seven ESBL producers were identified using the synergic test. β-Lactamase genes detected were blaCTX-M-1 (E. coli/15; K. pneumonia/8; C. freundii/1; Sh. boydii/1), blaCTX-M-1+ blaOXA-1 (E. coli/4; K. pneumonia/3), blaCTX-M-1+ blaTEM-1-a (K. pneumonia/2), blaCTX-M-15+ blaTEM-1-a (K. pneumonia/1; Sh. boydii/1), blaCTX-M-15+ blaOXA-1 (K. pneumonia/1), blaCTX-M-15 (E. coli/3; K. pneumonia/1; Sh. boydii/3), and blaCTX-M-9 (C. freundii/3). Most strains (84.7%) showed a multiresistant phenotype. qnrA and qnrB genes were identified in six E. coli and in ten E. coli+one K. pneumonia isolates, respectively. The resistance to tetracycline and sulfonamide was conferred by the tet and sul genes. Characterization of phylogenic groups in E. coli isolates revealed phylogroups D (n = 20 strains), B2 (n = 2), and A (n = 2). The studied virulence factor showed prevalence of fimA genes in 9 E. coli isolates (37.5%). Similarly, no strain revealed the three other virulence factors tested (eae, aer, and cnf1). Our findings confirmed that the lagoons of Bizerte may be a reservoir of multidrug resistance/ESBL-producing Enterobacteriaceae. This could lead to indisputable impacts on human and animal health, through the food chain.
Collapse
|
152
|
Distribution of integrons and phylogenetic groups among highly virulent serotypes of Klebsiella pneumoniae in a Chinese tertiary hospital. J Glob Antimicrob Resist 2020; 21:278-284. [DOI: 10.1016/j.jgar.2019.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/24/2019] [Accepted: 11/27/2019] [Indexed: 11/17/2022] Open
|
153
|
Riaz L, Wang Q, Yang Q, Li X, Yuan W. Potential of industrial composting and anaerobic digestion for the removal of antibiotics, antibiotic resistance genes and heavy metals from chicken manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137414. [PMID: 32105920 DOI: 10.1016/j.scitotenv.2020.137414] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Composting and anaerobic digestion techniques are widely used for manure recycling, but these methods have shown conflicting results in the removal of antibiotics, antibiotic resistance genes (ARGs), and heavy metals. In the present study, anaerobically digested chicken manure and various types of composted chicken manure were investigated on an industrial scale. Antibiotics, ARGs, and heavy metals had shown inconsistent results for anaerobic digestion and composting. The different composting processes either declined or completely removed the blaCTX-M, intl1 and oqxB genes. In addition, composting processes decreased the absolute abundance of aac6'-Ib and aadA genes, while increased the absolute abundance of qnrD, sul1, and tet(A) genes. On the other hand, anaerobic digestion of chicken manure increased the absolute abundance of ere(A) and tet(A). High throughput sequencing showed that Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria dominated the total bacterial composition of composted and anaerobically digested samples. Network analysis revealed the co-occurrence of ARGs and intl1. The redundancy analysis showed a significant correlation between some heavy metals and ARGs. Similarly, the bacterial composition showed a positive correlation with the prevalence of ARGs in treated manure. These findings suggest that bacterial community, heavy metals, and mobile genetic elements can play a significant role in the abundance and variation of ARGs during composting and anaerobic digestion. In conclusion, anaerobic digestion and composting methods at industrial scale need to be improved for the effective removal of antibiotics, ARGs and heavy metals from chicken manure.
Collapse
Affiliation(s)
- Luqman Riaz
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology (Henan Provincial Department of Science and Technology), Henan Normal University, Xinxiang 453007, China
| | - Qianqian Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology (Henan Provincial Department of Science and Technology), Henan Normal University, Xinxiang 453007, China
| | - Qingxiang Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology (Henan Provincial Department of Science and Technology), Henan Normal University, Xinxiang 453007, China.
| | - Xunan Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology (Henan Provincial Department of Science and Technology), Henan Normal University, Xinxiang 453007, China
| | - Wei Yuan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology (Henan Provincial Department of Science and Technology), Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
154
|
Liu M, Ma J, Jia W, Li W. Antimicrobial Resistance and Molecular Characterization of Gene Cassettes from Class 1 Integrons in Pseudomonas aeruginosa Strains. Microb Drug Resist 2020; 26:670-676. [PMID: 32407190 PMCID: PMC7307683 DOI: 10.1089/mdr.2019.0406] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We investigated the antibiotic-resistance phenotypes and molecularly characterized class 1 integron gene cassettes from 113 Pseudomonas aeruginosa isolates from patients. Primers specific for the class 1 integron integrase (intI1) gene were used to screen for these integrons using polymerase chain reactions (PCRs). The variable regions of the integrons were PCR-amplified and sequenced. Sputum was the most common specimen (69.9%; 79/113) followed by aseptic sites (21.2%; 24/113). Of the 113 isolates with phenotypic resistance to the tested antimicrobials, the highest resistances were to ciprofloxacin (CIP) (26.55%), imipenem (IPM) (23.89%), and meropenem (MEM) (23%). Carbapenem-sensitive P. aeruginosa (CS-PA) isolates displayed 23 patterns, and the predominant multidrug resistance phenotype was CIP-levofloxacin (7.23%, 6/83). Carbapenem-resistant P. aeruginosa (CR-PA) isolates displayed 12 patterns, and the predominant multidrug resistance phenotype was IPM-MEM (23.33%, 7/30). Class 1 integrons were detected in 14 (12.4%, 14/113) isolates, 7.22% (6/83) in CS-PA isolates, and 26.67% (8/30) in CR-PA isolates. Six gene cassette arrays were detected, the most prevalent being aacA4-blaOXA101-aadA5 in five isolates (4.4%, 5/113). Seventeen gene cassettes were detected. The most prevalent antibiotic-resistance gene cassettes were aacA4 (6.2%, 7/113), blaOXA-1, and blaOXA-101. Extended-spectrum β-lactamase resistance genes were detected. Some of the genes carried were similar to those in other species, but some had shared characteristics among the P. aeruginosa isolates. Long-standing drug resistance genes appeared to be under elimination in P. aeruginosa, whereas integrons conferring resistance to commonly used clinical drugs such as β-lactamases, fluoroquinolones, and even carbapenems, as well as some other gene elements, were found to be newly integrated.
Collapse
Affiliation(s)
- Mi Liu
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong, China
| | - Jie Ma
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong, China
| | - Wei Jia
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong, China
| | - Wanxiang Li
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong, China
| |
Collapse
|
155
|
Bilinskaya A, Linder KE, Kuti JL. Plazomicin: an intravenous aminoglycoside antibacterial for the treatment of complicated urinary tract infections. Expert Rev Anti Infect Ther 2020; 18:705-720. [PMID: 32319833 DOI: 10.1080/14787210.2020.1759419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Antimicrobial resistance continues to be a major public health concern due to the emergence and spread of multi-drug resistant (MDR) organisms, including extended spectrum ß-lactamase (ESBL) and carbapenemase producing Enterobacterales. Plazomicin is a novel aminoglycoside that demonstrates activity against MDR gram-negatives, including those producing ESBLs and most carbapenemases, and retains activity against aminoglycoside modifying enzymes as a result of structural modifications. The information discussed is meant to assist in identifying plazomicin's place in therapy and to expand the clinician's armamentarium. AREAS COVERED Herein, we review the pharmacology, microbiology, clinical efficacy, and safety of plazomicin. To gather relevant information, a literature search was performed using PubMed, Ovid, and Google Scholar electronic databases. Search terms used include plazomicin, ACHN-490, extended spectrum ß-lactamase, ESBL, CRE, aminoglycoside modifying enzymes, and AME. Additional information was obtained from FDA review documents and research abstracts presented at international conferences. EXPERT OPINION Plazomicin is a promising carbapenem or β-lactam/β-lactamase inhibitor-sparing alternative for the treatment of complicated urinary tract infections caused by MDR Enterobacterales. Although robust data for bloodstream infections and bacterial pneumonias are lacking, plazomicin may be considered in individual clinical scenarios if combination therapy is warranted provided supportive microbiological data and therapeutic drug monitoring are available.
Collapse
Affiliation(s)
| | - Kristin E Linder
- Department of Pharmacy Services, Harford Hospital , Hartford, CT, USA
| | - Joseph L Kuti
- Center for Anti-Infective Research and Development, Harford Hospital , Hartford, CT, USA
| |
Collapse
|
156
|
Vrancianu CO, Popa LI, Bleotu C, Chifiriuc MC. Targeting Plasmids to Limit Acquisition and Transmission of Antimicrobial Resistance. Front Microbiol 2020; 11:761. [PMID: 32435238 PMCID: PMC7219019 DOI: 10.3389/fmicb.2020.00761] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance (AMR) is a significant global threat to both public health and the environment. The emergence and expansion of AMR is sustained by the enormous diversity and mobility of antimicrobial resistance genes (ARGs). Different mechanisms of horizontal gene transfer (HGT), including conjugation, transduction, and transformation, have facilitated the accumulation and dissemination of ARGs in Gram-negative and Gram-positive bacteria. This has resulted in the development of multidrug resistance in some bacteria. The most clinically significant ARGs are usually located on different mobile genetic elements (MGEs) that can move intracellularly (between the bacterial chromosome and plasmids) or intercellularly (within the same species or between different species or genera). Resistance plasmids play a central role both in HGT and as support elements for other MGEs, in which ARGs are assembled by transposition and recombination mechanisms. Considering the crucial role of MGEs in the acquisition and transmission of ARGs, a potential strategy to control AMR is to eliminate MGEs. This review discusses current progress on the development of chemical and biological approaches for the elimination of ARG carriers.
Collapse
Affiliation(s)
- Corneliu Ovidiu Vrancianu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| | - Laura Ioana Popa
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- The National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Coralia Bleotu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| |
Collapse
|
157
|
Zhao X, Shen JP, Zhang LM, Du S, Hu HW, He JZ. Arsenic and cadmium as predominant factors shaping the distribution patterns of antibiotic resistance genes in polluted paddy soils. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121838. [PMID: 31848095 DOI: 10.1016/j.jhazmat.2019.121838] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 05/28/2023]
Abstract
Heavy metals have been recognized as potential factors driving the evolution and development of antibiotic resistance. However, the relative effects of cadmium (Cd) and arsenic (As) on the prevalence and distribution of antibiotic resistance genes (ARGs) remain unclear. We investigated the co-selection effects of Cd and As on ARGs in 45 paddy soils polluted by heavy metals, using high-throughput quantitative PCR. A total of 119 ARGs and 9 mobile genetic elements (MGEs) were detected in all samples. Regression analysis showed that the single pollution index (PIAs and PICd) and Nemerow integrated pollution index (NIPI) both had significant and positive correlations with ARGs (P < 0.05), indicating the co-selective effects of Cd and As on ARGs distribution. The significant correlations between bacterial taxa and different ARGs in network analysis revealed potential hosts of ARGs. Structural equation models indicated that the effects of As on ARGs were stronger than that of Cd. The profile of ARGs could be impacted by Cd and As indirectly by strongly affecting the bacterial abundance. Overall, this study extended our knowledge about the co-selection of Cd and As on ARGs in paddy soil, and had important implications for assessing the potential risks of ARGs in paddy soils.
Collapse
Affiliation(s)
- Xiang Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Ju-Pei Shen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China.
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Shuai Du
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Victoria 3010, Australia
| | - Ji-Zheng He
- University of Chinese Academy of Sciences, Beijing, 100085, China; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Victoria 3010, Australia
| |
Collapse
|
158
|
Hastak P, Cummins ML, Gottlieb T, Cheong E, Merlino J, Myers GSA, Djordjevic SP, Roy Chowdhury P. Genomic profiling of Escherichia coli isolates from bacteraemia patients: a 3-year cohort study of isolates collected at a Sydney teaching hospital. Microb Genom 2020; 6:e000371. [PMID: 32374251 PMCID: PMC7371115 DOI: 10.1099/mgen.0.000371] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 04/03/2020] [Indexed: 11/29/2022] Open
Abstract
This study sought to assess the genetic variability of Escherichia coli isolated from bloodstream infections (BSIs) presenting at Concord Hospital, Sydney during 2013-2016. Whole-genome sequencing was used to characterize 81 E. coli isolates sourced from community-onset (CO) and hospital-onset (HO) BSIs. The cohort comprised 64 CO and 17 HO isolates, including 35 multidrug-resistant (MDR) isolates exhibiting phenotypic resistance to three or more antibiotic classes. Phylogenetic analysis identified two major ancestral clades. One was genetically diverse with 25 isolates distributed in 16 different sequence types (STs) representing phylogroups A, B1, B2, C and F, while the other comprised phylogroup B2 isolates in subclades representing the ST131, ST73 and ST95 lineages. Forty-seven isolates contained a class 1 integron, of which 14 carried blaCTX -M-gene. Isolates with a class 1 integron carried more antibiotic resistance genes than isolates without an integron and, in most instances, resistance genes were localized within complex resistance loci (CRL). Resistance to fluoroquinolones could be attributed to point mutations in chromosomal parC and gyrB genes and, in addition, two isolates carried a plasmid-associated qnrB4 gene. Co-resistance to fluoroquinolone and broad-spectrum beta-lactam antibiotics was associated with ST131 (HO and CO), ST38 (HO), ST393 (CO), ST2003 (CO) and ST8196 (CO and HO), a novel ST identified in this study. Notably, 10/81 (12.3 %) isolates with ST95 (5 isolates), ST131 (2 isolates), ST88 (2 isolates) and a ST540 likely carry IncFII-IncFIB plasmid replicons with a full spectrum of virulence genes consistent with the carriage of ColV-like plasmids. Our data indicate that IncF plasmids play an important role in shaping virulence and resistance gene carriage in BSI E. coli in Australia.
Collapse
Affiliation(s)
- Priyanka Hastak
- The ithree institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Max L. Cummins
- The ithree institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia
| | - Thomas Gottlieb
- Department of Microbiology and Infectious Diseases, Concord Hospital and NSW Health Pathology, Hospital Road, Concord 2139, NSW, Australia
- Faculty of Medicine, University of Sydney, NSW Australia
| | - Elaine Cheong
- Department of Microbiology and Infectious Diseases, Concord Hospital and NSW Health Pathology, Hospital Road, Concord 2139, NSW, Australia
| | - John Merlino
- Department of Microbiology and Infectious Diseases, Concord Hospital and NSW Health Pathology, Hospital Road, Concord 2139, NSW, Australia
- Faculty of Medicine, University of Sydney, NSW Australia
| | - Garry S. A. Myers
- The ithree institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia
| | - Steven P. Djordjevic
- The ithree institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Piklu Roy Chowdhury
- The ithree institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| |
Collapse
|
159
|
Schages L, Wichern F, Kalscheuer R, Bockmühl D. Winter is coming - Impact of temperature on the variation of beta-lactamase and mcr genes in a wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:136499. [PMID: 31945531 DOI: 10.1016/j.scitotenv.2020.136499] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/18/2019] [Accepted: 01/01/2020] [Indexed: 05/29/2023]
Abstract
Wastewater treatment plants (WWTP) play a key role in the dissemination of antibiotic resistance and analyzing the abundance of antibiotic resistance genes (ARGs) and resistant bacteria is necessary to evaluate the risk of proliferation caused by WWTPs. Since few studies investigated the seasonal variation of antibiotic resistance, this study aimed to determine the abundance of beta-lactamase and mcr genes and to characterize phenotypic resistant strains in a WWTP in Germany over the seasons. Wastewater, sewage sludge and effluent samples were collected over a one year period and analyzed using quantitative real-time PCR. Resistant strains were isolated, followed by identification and antibiotic susceptibility testing using VITEK 2. The results show a significantly higher occurrence of nearly all investigated ARGs in the wastewater compared to sewage sludge and effluent. ARG abundance and temperature showed a negative correlation in wastewater and significant differences between ARG abundance during warmer and colder seasons were determined, indicating a seasonal effect. Co-occurrence of mcr-1 and carbapenemase genes in a multi-drug resistant Enterobacter cloacae and Escherichia coli producing extended-spectrum beta-lactamase (ESBL) was determined. To the best of our knowledge, this is the first detection of mcr-1, blaVIM and blaOXA-48 in an ESBL-producing E. coli. Although wastewater treatment reduced the abundance of ARGs and resistant strains, a dissemination into the river might be possible because carbapenemase-, CTX-M- and mcr-1-gene harboring strains were still present in the effluent.
Collapse
Affiliation(s)
- Laura Schages
- Rhine-Waal University of Applied Sciences, Faculty of Life Sciences, Kleve, Germany; Heinrich-Heine University Düsseldorf, Institute of Pharmaceutical Biology and Biotechnology, Germany
| | - Florian Wichern
- Rhine-Waal University of Applied Sciences, Faculty of Life Sciences, Kleve, Germany
| | - Rainer Kalscheuer
- Heinrich-Heine University Düsseldorf, Institute of Pharmaceutical Biology and Biotechnology, Germany
| | - Dirk Bockmühl
- Rhine-Waal University of Applied Sciences, Faculty of Life Sciences, Kleve, Germany.
| |
Collapse
|
160
|
Ludden C, Decano AG, Jamrozy D, Pickard D, Morris D, Parkhill J, Peacock SJ, Cormican M, Downing T. Genomic surveillance of Escherichia coli ST131 identifies local expansion and serial replacement of subclones. Microb Genom 2020; 6:e000352. [PMID: 32213258 PMCID: PMC7276707 DOI: 10.1099/mgen.0.000352] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/23/2020] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli sequence type 131 (ST131) is a pandemic clone that is evolving rapidly with increasing levels of antimicrobial resistance. Here, we investigated an outbreak of E. coli ST131 producing extended spectrum β-lactamases (ESBLs) in a long-term care facility (LTCF) in Ireland by combining data from this LTCF (n=69) with other Irish (n=35) and global (n=690) ST131 genomes to reconstruct the evolutionary history and understand changes in population structure and genome architecture over time. This required a combination of short- and long-read genome sequencing, de novo assembly, read mapping, ESBL gene screening, plasmid alignment and temporal phylogenetics. We found that Clade C was the most prevalent (686 out of 794 isolates, 86 %) of the three major ST131 clades circulating worldwide (A with fimH41, B with fimH22, C with fimH30), and was associated with the presence of different ESBL alleles, diverse plasmids and transposable elements. Clade C was estimated to have emerged in c. 1985 and subsequently acquired different ESBL gene variants (blaCTX-M-14 vs blaCTX-M-15). An ISEcp1-mediated transposition of the blaCTX-M-15 gene further increased the diversity within Clade C. We discovered a local clonal expansion of a rare C2 lineage (C2_8) with a chromosomal insertion of blaCTX-M-15 at the mppA gene. This was acquired from an IncFIA plasmid. The C2_8 lineage clonally expanded in the Irish LTCF from 2006, displacing the existing C1 strain (C1_10), highlighting the potential for novel ESBL-producing ST131 with a distinct genetic profile to cause outbreaks strongly associated with specific healthcare environments.
Collapse
Affiliation(s)
- Catherine Ludden
- London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | | | - Dorota Jamrozy
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Derek Pickard
- Department of Medicine, University of Cambridge, Box 157 Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Dearbhaile Morris
- Discipline of Bacteriology, School of Medicine, National University of Ireland, Galway, Ireland
- Ryan Institute Centre for One Health, National University of Ireland Galway, Ireland
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Sharon J. Peacock
- Department of Medicine, University of Cambridge, Box 157 Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, UK
| | - Martin Cormican
- Discipline of Bacteriology, School of Medicine, National University of Ireland, Galway, Ireland
| | - Tim Downing
- School of Biotechnology, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
161
|
Böhm ME, Razavi M, Flach CF, Larsson DGJ. A Novel, Integron-Regulated, Class C β-Lactamase. Antibiotics (Basel) 2020; 9:antibiotics9030123. [PMID: 32183280 PMCID: PMC7148499 DOI: 10.3390/antibiotics9030123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/26/2022] Open
Abstract
AmpC-type β-lactamases severely impair treatment of many bacterial infections, due to their broad spectrum (they hydrolyze virtually all β-lactams, except fourth-generation cephalosporins and carbapenems) and the increasing incidence of plasmid-mediated versions. The original chromosomal AmpCs are often tightly regulated, and their expression is induced in response to exposure to β-lactams. Regulation of mobile ampC expression is in many cases less controlled, giving rise to constitutively resistant strains with increased potential for development or acquisition of additional resistances. We present here the identification of two integron-encoded ampC genes, blaIDC-1 and blaIDC-2 (integron-derived cephalosporinase), with less than 85% amino acid sequence identity to any previously annotated AmpC. While their resistance pattern identifies them as class C β-lactamases, their low isoelectric point (pI) values make differentiation from other β-lactamases by isoelectric focusing impossible. To the best of our knowledge, this is the first evidence of an ampC gene cassette within a class 1 integron, providing a mobile context with profound potential for transfer and spread into clinics. It also allows bacteria to adapt expression levels, and thus reduce fitness costs, e.g., by cassette-reshuffling. Analyses of public metagenomes, including sewage metagenomes, show that the discovered ampCs are primarily found in Asian countries.
Collapse
Affiliation(s)
- Maria-Elisabeth Böhm
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; (M.-E.B.); (M.R.); (C.-F.F.)
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Mohammad Razavi
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; (M.-E.B.); (M.R.); (C.-F.F.)
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; (M.-E.B.); (M.R.); (C.-F.F.)
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - D. G. Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; (M.-E.B.); (M.R.); (C.-F.F.)
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
- Correspondence:
| |
Collapse
|
162
|
Cazares A, Moore MP, Hall JPJ, Wright LL, Grimes M, Emond-Rhéault JG, Pongchaikul P, Santanirand P, Levesque RC, Fothergill JL, Winstanley C. A megaplasmid family driving dissemination of multidrug resistance in Pseudomonas. Nat Commun 2020; 11:1370. [PMID: 32170080 PMCID: PMC7070040 DOI: 10.1038/s41467-020-15081-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 02/13/2020] [Indexed: 11/10/2022] Open
Abstract
Multidrug resistance (MDR) represents a global threat to health. Here, we used whole genome sequencing to characterise Pseudomonas aeruginosa MDR clinical isolates from a hospital in Thailand. Using long-read sequence data we obtained complete sequences of two closely related megaplasmids (>420 kb) carrying large arrays of antibiotic resistance genes located in discrete, complex and dynamic resistance regions, and revealing evidence of extensive duplication and recombination events. A comprehensive pangenomic and phylogenomic analysis indicates that: 1) these large plasmids comprise an emerging family present in different members of the Pseudomonas genus, and associated with multiple sources (geographical, clinical or environmental); 2) the megaplasmids encode diverse niche-adaptive accessory traits, including multidrug resistance; 3) the accessory genome of the megaplasmid family is highly flexible and diverse. The history of the megaplasmid family, inferred from our analysis of the available database, suggests that members carrying multiple resistance genes date back to at least the 1970s.
Collapse
Affiliation(s)
- Adrian Cazares
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.
| | - Matthew P Moore
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - James P J Hall
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK
| | - Laura L Wright
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Macauley Grimes
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | | | | | | | - Roger C Levesque
- Institute for Integrative and Systems Biology (IBIS), University Laval, Quebec City, QC, Canada
| | - Joanne L Fothergill
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.
| |
Collapse
|
163
|
Liu C, Chen Y, Li X, Zhang Y, Ye J, Huang H, Zhu C. Temporal effects of repeated application of biogas slurry on soil antibiotic resistance genes and their potential bacterial hosts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113652. [PMID: 31818620 DOI: 10.1016/j.envpol.2019.113652] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Biogas slurry, a liquid end product of animal manure fermentation, is widely used as fertilizer in crop fields. Land application may introduce antibiotics and related resistance genes from livestock production into agricultural soil. Nevertheless, changes in antimicrobial resistance in soil where biogas slurry has been repeatedly applied are not fully understood. In the present study, 13 veterinary antibiotics were analyzed in soils that were repeatedly sprayed with biogas slurry, and simultaneously, temporal changes in antibiotic resistance genes (ARGs) and bacterial community composition were investigated using a real-time quantitative PCR assay and MiSeq sequencing. Long-term repeated application of biogas slurry did not result in excessive accumulation of antibiotic residuals in the soil but increased the abundance of ARGs and facilitated ARG transfer among potential hosts. Although the quantitative PCR assay showed a decreasing trend for the relative abundance of ARGs over time, a relevance network analysis revealed highly complex bacteria-ARG co-occurrence after long-term application, which implied that repeated application might intensify horizontal gene transfer (HGT) of ARGs among different bacterial hosts in soil. The increased relative abundance of the intl1 gene supported the shift in ARG-bacteria co-occurrence. Furthermore, ordination analysis showed that the distributions of antibiotic resistance bacteria (ARB) and ARGs were closely related to application duration than to the influence of antibiotic residuals in the biogas slurry-treated soil environment. Additionally, natural level of ARG abundance in untreated soils indirectly suggested the presence/absence of antibiotics was not a key determinant causing the spread of antimicrobial resistance. This study provides improved insight into the effects of long-term repeated application of biogas slurry on the shift in ARG abundances and bacteria-ARG co-occurrence in soils, highlighting the need to focus on the influence of changed soil environment on the ARG transfer.
Collapse
Affiliation(s)
- Chong Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongxing Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaohua Li
- Rural Energy & Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Yanrong Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Ye
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongkun Huang
- Rural Energy & Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Changxiong Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
164
|
Transfer of class 1 integron-mediated antibiotic resistance genes from Salmonella enterica of farm fly origin to susceptible Escherichia coli and Salmonella strains. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
165
|
|
166
|
Girlich D, Bonnin RA, Dortet L, Naas T. Genetics of Acquired Antibiotic Resistance Genes in Proteus spp. Front Microbiol 2020; 11:256. [PMID: 32153540 PMCID: PMC7046756 DOI: 10.3389/fmicb.2020.00256] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/03/2020] [Indexed: 01/30/2023] Open
Abstract
Proteus spp. are commensal Enterobacterales of the human digestive tract. At the same time, P. mirabilis is commonly involved in urinary tract infections (UTI). P. mirabilis is naturally resistant to several antibiotics including colistin and shows reduced susceptibility to imipenem. However higher levels of resistance to imipenem commonly occur in P. mirabilis isolates consecutively to the loss of porins, reduced expression of penicillin binding proteins (PBPs) PBP1a, PBP2, or acquisition of several antibiotic resistance genes, including carbapenemase genes. In addition, resistance to non-β-lactams is also frequently reported including molecules used for treating UTI infections (e.g., fluoroquinolones, nitrofurans). Emergence and spread of multidrug resistant P. mirabilis isolates, including those producing ESBLs, AmpC cephalosporinases and carbapenemases, are being more and more frequently reported. This review covers Proteus spp. with a focus on the different genetic mechanisms involved in the acquisition of resistance genes to multiple antibiotic classes turning P. mirabilis into a dreadful pandrug resistant bacteria and resulting in difficult to treat infections.
Collapse
Affiliation(s)
- Delphine Girlich
- EA7361 "Structure, dynamic, function and expression of broad spectrum β-lactamases", LabEx Lermit, Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur - APHP - Université Paris-Saclay, Paris, France
| | - Rémy A Bonnin
- EA7361 "Structure, dynamic, function and expression of broad spectrum β-lactamases", LabEx Lermit, Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur - APHP - Université Paris-Saclay, Paris, France
| | - Laurent Dortet
- EA7361 "Structure, dynamic, function and expression of broad spectrum β-lactamases", LabEx Lermit, Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur - APHP - Université Paris-Saclay, Paris, France
| | - Thierry Naas
- EA7361 "Structure, dynamic, function and expression of broad spectrum β-lactamases", LabEx Lermit, Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur - APHP - Université Paris-Saclay, Paris, France
| |
Collapse
|
167
|
Li Q, Zhao P, Li L, Zhao H, Shi L, Tian P. Engineering a CRISPR Interference System To Repress a Class 1 Integron in Escherichia coli. Antimicrob Agents Chemother 2020; 64:e01789-19. [PMID: 31871091 PMCID: PMC7038292 DOI: 10.1128/aac.01789-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
Microbial multidrug resistance (MDR) poses a huge threat to human health. Bacterial acquisition of MDR relies primarily on class 1 integron-involved horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs). To date, no strategies other than the use of antibiotics can efficiently cope with MDR. Here, we report that an engineered CRISPR interference (CRISPRi) system can markedly reduce MDR by blocking a class 1 integron in Escherichia coli Using CRISPRi to block plasmid R388 class 1 integron, E. coli recombinants showed halted growth upon exposure to relevant antibiotics. A microplate alamarBlue assay showed that both subgenomic RNAs (sgRNAs) R3 and R6 led to 8- and 32-fold decreases in half-maximal inhibitory concentrations (IC50) for trimethoprim and sulfamethoxazole, respectively. Reverse transcription and quantitative PCR (RT-qPCR) revealed that the strain employing sgRNA R6 exhibited 97% and 84% decreases in the transcriptional levels of the dfrB2 cassette and sul1, two typical ARGs, respectively. RT-qPCR analysis also demonstrated that the strain recruiting sgRNA R3 showed a 96% decrease in the transcriptional level of intI1, and a conjugation assay revealed a 1,000-fold decrease in HGT rates of ARGs. Overall, the sgRNA R3 targeting the 31 bp downstream of the Pc promoter on the intI1 nontemplate strand outperformed other sgRNAs in reducing integron activity. Furthermore, this CRISPRi system is reversible, genetically stable, and titratable by varying the concentration of the inducer. To our knowledge, this is the first report on exploiting a CRISPRi system to reduce the class 1 integron in E. coli This study provides valuable insights for future development of CRISPRi-based antimicrobial agents and cellular therapy to suppress MDR.
Collapse
Affiliation(s)
- Qingyang Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Peng Zhao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lili Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Pingfang Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
168
|
Vidovic N, Vidovic S. Antimicrobial Resistance and Food Animals: Influence of Livestock Environment on the Emergence and Dissemination of Antimicrobial Resistance. Antibiotics (Basel) 2020; 9:antibiotics9020052. [PMID: 32023977 PMCID: PMC7168261 DOI: 10.3390/antibiotics9020052] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023] Open
Abstract
The emergence and dissemination of antimicrobial resistance among human, animal and zoonotic pathogens pose an enormous threat to human health worldwide. The use of antibiotics in human and veterinary medicine, and especially the use of large quantities of antibiotics in livestock for the purpose of growth promotion of food animals is believed to be contributing to the modern trend of the emergence and spread of bacteria with antibiotic resistant traits. To better control the emergence and spread of antimicrobial resistance several countries from Western Europe implemented a ban for antibiotic use in livestock, specifically the use of antibiotics for growth promotion of food animals. This review article summarizes the recent knowledge of molecular acquisition of antimicrobial resistance and the effects of implementation of antibiotic growth promoter bans on the spread of antimicrobial resistant bacteria in animals and humans. In this article, we also discuss the main zoonotic transmission routes of antimicrobial resistance and novel approaches designed to prevent or slow down the emergence and spread of antimicrobial resistance worldwide. Finally, we provide future perspectives associated with the control and management of the emergence and spread of antimicrobial resistant bacteria.
Collapse
Affiliation(s)
- Nikola Vidovic
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7K 4H3, Canada;
| | - Sinisa Vidovic
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA
- Correspondence:
| |
Collapse
|
169
|
Truncated Class 1 Integron Gene Cassette Arrays Contribute to Antimicrobial Resistance of Diarrheagenic Escherichia coli. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4908189. [PMID: 32090095 PMCID: PMC7013361 DOI: 10.1155/2020/4908189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/30/2019] [Indexed: 11/17/2022]
Abstract
Class 1 integrons (c1-integrons) are associated with multidrug resistance in diarrheagenic Escherichia coli (DEC). However, little is known about gene cassettes located within these c1-integrons, particularly truncated c1-integrons, in DEC strains. Therefore, the aims of the present study were to reveal the relationship between antimicrobial resistance and the presence of truncated c1-integrons in DEC isolates derived from human stool samples in Japan. A total of 162 human stool-derived DEC isolates from Japan were examined by antimicrobial susceptibility testing, PCR-based gene detection, and next-generation sequencing analyses. Results showed that 44.4% (12/27) of c1-integrons identified in the DEC isolates harbored only intI1 (an element of c1-integrons) and were truncated by IS26, Tn3, or IS1-group insertion sequences. No difference in the frequency of antimicrobial resistance was recorded between intact and truncated c1-integron-positive DEC isolates. Isolates containing intact/truncated c1-integrons, particularly enteroaggregative E. coli isolates, were resistant to a greater number of antimicrobials than isolates without c1-integrons. aadA and dfrA were the most prevalent antimicrobial resistance genes in the intact/truncated c1-integrons examined in this study. Therefore, gene cassettes located within these intact/truncated c1-integrons may only play a limited role in conferring antimicrobial resistance among DEC. However, DEC harboring truncated c1-integrons may be resistant to a greater number of antimicrobials than c1-integron-negative DEC, similar to strains harboring intact c1-integrons.
Collapse
|
170
|
Yang Y, Xie X, Tang M, Liu J, Tuo H, Gu J, Tang Y, Lei C, Wang H, Zhang A. Exploring the profile of antimicrobial resistance genes harboring by bacteriophage in chicken feces. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134446. [PMID: 31648121 DOI: 10.1016/j.scitotenv.2019.134446] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 05/04/2023]
Abstract
Bacteriophage may play an important role in antimicrobial resistance genes (ARGs) transmission. However, the contribution of bacteriophage to the spread of ARGs in environment, especially in poultry farm environment, is rarely known. In this study, the prevalence of ARGs in bacteriophage DNA was investigated in chicken feces from 30 different poultry farms in China. Then the abundance of the aac(6')-Ib-cr, blaCTX-M, ermB, floR, mcr-1, sul1, tetM and intI1 genes was determined by qPCR in bacteriophage and compared with certain representative plasmid DNA samples. The results showed that 12 ARGs (aac(6')-Ib-cr, aph(3')-IIIa, blaCTX-M, ermB, ermF, floR, mcr-1, qnrS, sul1, sul2, vanA, tetM genes) and class 1 integron gene intI1 were detected in bacteriophage DNA fraction. The sul1, tetM and aac(6')-Ib-cr genes were most prevalent with high detection rates of 77%, 61% and 55%, respectively. To our best knowledge, this study firstly reported the presence of the mcr-1 gene in bacteriophage DNA derived from farms environments. We found that the gene copy (GC) numbers of the aac(6')-Ib-cr, ermB and sul1 genes were as high as 5.47, 5.22 and 5.54 log10 GC/g, respectively. Both the prevalence and abundance of ARGs in broiler fecal wastes were also generally higher than in laying hens. In addition, although the GC numbers of the aac(6')-Ib-cr, floR and tetM genes in plasmid DNA was higher than that in phage DNA fraction by 4.68, 3.59 and 3.9 orders of magnitude, respectively, the absolute abundances of the blaCTX-M and mcr-1 genes in phage DNA were close to or even higher than that in plasmid DNA at farm SIL2, SIL4 and SIB1. As potential vessels for ARGs, bacteriophage could not be ignored due to their unique extracellular persistence in environments. Overall, this is the first comprehensive survey about bacteriophage carried ARGs from farms in different regions in China.
Collapse
Affiliation(s)
- Yanxian Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610010, China; Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xianjun Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610010, China
| | - Mengjun Tang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Jiangsu 225009, China
| | - Jinxin Liu
- Department of Food Science and Technology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, CA 95616, USA
| | - Hongmei Tuo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610010, China
| | - Ju Gu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610010, China
| | - Yizhi Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610010, China
| | - Changwei Lei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610010, China
| | - Hongning Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610010, China
| | - Anyun Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610010, China.
| |
Collapse
|
171
|
The Peril and Promise of Integrons: Beyond Antibiotic Resistance. Trends Microbiol 2020; 28:455-464. [PMID: 31948729 DOI: 10.1016/j.tim.2019.12.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/13/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022]
Abstract
Integrons are bacterial genetic elements that can capture, rearrange, and express mobile gene cassettes. They are best known for their role in disseminating antibiotic-resistance genes among pathogens. Their ability to rapidly spread resistance phenotypes makes it important to consider what other integron-mediated traits might impact human health in the future, such as increased virulence, pathogenicity, or resistance to novel antimicrobial strategies. Exploring the functional diversity of cassettes and understanding their de novo creation will allow better pre-emptive management of bacterial growth, while also facilitating development of technologies that could harness integron activity. If we can control integrons and cassette formation, we could use integrons as a platform for enzyme discovery and to construct novel biochemical pathways, with applications in bioremediation or biosynthesis of industrial and therapeutic molecules. Integron activity thus holds both peril and promise for humans.
Collapse
|
172
|
Zaidi FZ, Dali-Yahia R, Zenati K, Yazi L, Lounes M, Aberkane S, Jean Pierre H, Barraud O, Godreuil S, Touati A. Characterization of VIM-4 Producing Clinical Pseudomonas aeruginosa Isolates from Western Algeria: Sequence Type and Class 1 Integron Description. Microb Drug Resist 2019; 26:1437-1441. [PMID: 31829797 DOI: 10.1089/mdr.2019.0225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Objectives: Pseudomonas aeruginosa occupies a central position in nosocomial infections and remains a significant cause of morbidity and mortality. The aim of this study was to characterize carbapenem resistance mechanisms in P. aeruginosa isolates from clinical specimens collected at the University Hospital of Oran, western Algeria. Materials and Methods: The identification of 214 nonduplicated P. aeruginosa isolates (collected from January to December 2016) was confirmed using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Thirteen antibiotics were tested using the disc diffusion method. Carbapenemase-encoding genes were detected with the GeneXpert system and multiplex polymerase chain reaction (PCR). Clonal relatedness was determined using multilocus sequence typing (MLST) and the seven housekeeping genes were further used for phylogenetic analysis of imipenem-resistant P. aeruginosa using concatenated gene fragments. The flanking regions of the blaVIM-4 gene were analyzed by whole-genome sequencing. Results: Eleven isolates (5.39%) were resistant to carbapenems. PCR amplification and sequencing showed that six of these isolates (2.94%) harbored the blaVIM-4 gene that was carried on a novel class 1 integron. MLST analysis assigned the tested isolates to seven different sequence types (STs), of which two were new (ST3349 and ST3350) and five were previously described (ST244, ST499, ST709, ST809, and ST1239). Conclusion: In this study, we reported P. aeruginosa isolates producing VIM-4 in an Algerian hospital. The blaVIM-4 is harbored in class 1 integron with a new arrangement of genes cassettes.
Collapse
Affiliation(s)
- Fatma Zohra Zaidi
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algérie.,Laboratoire de Bactériologie, CHU de Montpellier, MIVEGEC, IRD-CNRS, Université de Montpellier, Montpellier, France
| | | | - Karima Zenati
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algérie
| | - Leila Yazi
- Laboratoire de Bactériologie, EHU d'Oran, Oran, Algérie
| | - Manon Lounes
- Laboratoire de Bactériologie, CHU de Montpellier, MIVEGEC, IRD-CNRS, Université de Montpellier, Montpellier, France
| | - Salim Aberkane
- Laboratoire de Bactériologie, CHU de Montpellier, MIVEGEC, IRD-CNRS, Université de Montpellier, Montpellier, France
| | - Helen Jean Pierre
- Laboratoire de Bactériologie, CHU de Montpellier, MIVEGEC, IRD-CNRS, Université de Montpellier, Montpellier, France
| | - Olivier Barraud
- University Limoges, INSERM, CHU Limoges, RESINFIT, U1092, Limoges, France
| | | | - Abdelaziz Touati
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algérie
| |
Collapse
|
173
|
Wang P, Wu D, You X, Li W, Xie B. Distribution of antibiotics, metals and antibiotic resistance genes during landfilling process in major municipal solid waste landfills. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113222. [PMID: 31563781 DOI: 10.1016/j.envpol.2019.113222] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/14/2019] [Accepted: 09/07/2019] [Indexed: 05/23/2023]
Abstract
Antibiotics, heavy metals and related antibiotic resistance genes (ARGs) in municipal solid waste (MSW) landfills have aroused more attentions due to their potential risk toward the ecosystems and public healthcare, but the contents and relationships of them have yet to be systematically understood during landfilling process. In this study, we selected refuse samples with different ages from two representative landfills and leachate samples from three major landfills. The total contents of measured antibiotics and metals respectively ranged from 157.22 to 1752.01 μg/kg and 19624.62-30624.01 mg/kg in refuse, while 3961.59-4497.12 ng/L and 9.16-10.82 mg/L in detected leachates. Among them, Ten of fourteen antibiotics were relatively higher in aged refuse, and contrary results were presented in most detected metals. Three ARGs (sul1, ermB and sul2) and intl1 were found with a higher abundance across all detected samples. Network analysis indicated that the abundance of tetM and tetQ in refuse were positively correlated with corresponding antibiotics doxycycline (DC) and oxytetracycline (OTC), respectively (P < 0.05). Similarly, ermB and blaCTX-M in leachates were respectively related with corresponding roxithromycin (RTM) and cefalexin (CEF), (P < 0.01). Moreover, Cu exhibited positive and significant correlations with sul1, mexF and intl1 in all refuse and leachates (P < 0.05). Mantel test indicated that the quantified intl1 was closely correlated with detected contents of ARGs (Mantel test, R = 0.48, P < 0.05), and the highly abundant intl1 were correlated with sul1 (P < 0.001) and blaCTX-M (P < 0.05) across all samples.
Collapse
Affiliation(s)
- Panliang Wang
- Key Laboratory for Urban and Ecological Restoration of Shanghai, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Dong Wu
- Key Laboratory for Urban and Ecological Restoration of Shanghai, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Xinxin You
- Key Laboratory for Urban and Ecological Restoration of Shanghai, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Weiying Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Bing Xie
- Key Laboratory for Urban and Ecological Restoration of Shanghai, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
174
|
Karami P, Ghazalibina M, Khaledi A, Saburi E. Frequency of class 1, 2 and 3 integrons in clinical Klebsiella pneumoniae isolates; a systematic review and meta-analysis of cross-sectional studies. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
175
|
Sun C, Li W, Chen Z, Qin W, Wen X. Responses of antibiotics, antibiotic resistance genes, and mobile genetic elements in sewage sludge to thermal hydrolysis pre-treatment and various anaerobic digestion conditions. ENVIRONMENT INTERNATIONAL 2019; 133:105156. [PMID: 31675532 DOI: 10.1016/j.envint.2019.105156] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Sewage sludge from wastewater treatment plants (WWTPs) harbours large amounts of antibiotics, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs), the variation and fate of these emerging pollutants during sludge treatment processes must be thoroughly studied to reduce their potential risks to human health. In this study, 7 pilot-scale CSTR anaerobic digesters were established with the same seed sludge and fed with the same thermal hydrolysis pre-treated sewage sludge, while operating under different conditions. High-throughput quantitative PCR, UPLC-MS/MS and Illumina Hiseq-sequencing were used to systematically evaluate the responses of antibiotics, ARGs, and MGEs in sewage sludge to thermal hydrolysis pre-treatment and various anaerobic digestion (AD) conditions. The results showed that thermal hydrolysis effectively reduced the abundance (>94%) of almost all subtypes of ARGs and MGEs, and it was a powerful technology for reducing tetracyclines, macrolides, and lincosamides. Besides, the abundance of ARGs and MGEs in thermophilic digesters was lower than that in mesophilic digesters, suggesting that thermophilic digesters could be used to avoid the ARGs rebounding. In addition, the thermophilic system further reduced the concentrations of quinolones. For the digesters operated under the mesophilic conditions, a longer hydraulic retention time (HRT) facilitated the removal of antibiotics, ARGs, and MGEs. Furthermore, the microbial community and MGEs had important effects on the persistence and proliferation of ARGs in AD process. The findings of this study provide effective clues for controlling the spread of antibiotic resistance and suggest the optimal operating conditions of digesters.
Collapse
Affiliation(s)
- Chenxiang Sun
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei Li
- Beijing Engineering Technology Research Center for Municipal Sewage Reclamation, R&D Center, Beijing Drainage Group Co., Ltd., Beijing 100124, China
| | - Zhan Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wentao Qin
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xianghua Wen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
176
|
Zhang S, Yang H, Rehman MU, Yang K, Dong M, Yang J, Wang M, Jia R, Chen S, Liu M, Zhu D, Zhao X, Yang Q, Wu Y, Zhang L, Liu Y, Yu Y, Tian B, Pan L, Chen X, Cheng A. Class 1 integrons as predominant carriers in Escherichia coli isolates from waterfowls in Hainan, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109514. [PMID: 31394374 DOI: 10.1016/j.ecoenv.2019.109514] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
This study was conducted to determine the prevalence of integrons and associated gene cassettes in Escherichia coli (E. coli) isolates from waterfowls in Hainan, China. The antimicrobial resistance profile of the isolates was examined by using disc diffusion test. In addition, PCR, RFLP, plasmid replicon typing and DNA sequencing analyses were used for the characterization of integrase genes (class 1, 2 and 3) and associated gene cassettes. Approximatively, 90% of the isolates were positive for the integrase genes by PCR. Specifically, class 1 and class 2 integrons were found in 252 (81%) and 7 (2.3%) strains, respectively. While 21 (6.7%) isolates were positive for both class 1 and class 2 integrons. However, none of the isolate was positive for the class 3 integrons. In addition, 5 various cassette arrays, dfrA1-orfC, aadA2, aadA1, dfrA1-aadA1, and dfrA1-orfC- aadA1, were found within the variable regions (VRs) of class 1 integron isolates. While only single cassette array, dfrA1-sat2- aadA1, was identified within VRs of class 2 integron isolates. We identified incF plasmid as the most common plasmid type, which was detected in 81 of 243 VRs containing isolates. This study is the first report showing the baseline characteristics of integrons in E. coli isolates from waterfowls in Hainan, China. Our results provide evidence of the waterfowl birds as a reservoir of class 1 and class 2 integrons carrying antibiotic resistance gene cassettes. Therefore, strict preventive measures should be taken to avoid the spread of mobile genetic resistance elements in waterfowls in China.
Collapse
Affiliation(s)
- Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China.
| | - Hong Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Mujeeb Ur Rehman
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Kema Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China
| | - Mengyi Dong
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China
| | - Jing Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Ying Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Ling Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yunya Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yanling Yu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Leichang Pan
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xiaoyue Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130,PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China.
| |
Collapse
|
177
|
Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. J Mol Evol 2019; 88:26-40. [PMID: 31659373 DOI: 10.1007/s00239-019-09914-3] [Citation(s) in RCA: 372] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/02/2019] [Indexed: 01/29/2023]
Abstract
In recent years, we have seen antimicrobial resistance rapidly emerge at a global scale and spread from one country to the other faster than previously thought. Superbugs and multidrug-resistant bacteria are endemic in many parts of the world. There is no question that the widespread use, overuse, and misuse of antimicrobials during the last 80 years have been associated with the explosion of antimicrobial resistance. On the other hand, the molecular pathways behind the emergence of antimicrobial resistance in bacteria were present since ancient times. Some of these mechanisms are the ancestors of current resistance determinants. Evidently, there are plenty of putative resistance genes in the environment, however, we cannot yet predict which ones would be able to be expressed as phenotypes in pathogenic bacteria and cause clinical disease. In addition, in the presence of inhibitory and sub-inhibitory concentrations of antibiotics in natural habitats, one could assume that novel resistance mechanisms will arise against antimicrobial compounds. This review presents an overview of antimicrobial resistance mechanisms, and describes how these have evolved and how they continue to emerge. As antimicrobial strategies able to bypass the development of resistance are urgently needed, a better understanding of the critical factors that contribute to the persistence and spread of antimicrobial resistance may yield innovative perspectives on the design of such new therapeutic targets.
Collapse
|
178
|
Berdahl A, Brelsford C, Bacco CD, Dumas M, Ferdinand V, Grochow JA, Hébert-Dufresne L, Kallus Y, Kempes CP, Kolchinsky A, Larremore DB, Libby E, Power EA, Stern CA, Tracey BD. Dynamics of beneficial epidemics. Sci Rep 2019; 9:15093. [PMID: 31641147 PMCID: PMC6805938 DOI: 10.1038/s41598-019-50039-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/28/2019] [Indexed: 11/08/2022] Open
Abstract
Pathogens can spread epidemically through populations. Beneficial contagions, such as viruses that enhance host survival or technological innovations that improve quality of life, also have the potential to spread epidemically. How do the dynamics of beneficial biological and social epidemics differ from those of detrimental epidemics? We investigate this question using a breadth-first modeling approach involving three distinct theoretical models. First, in the context of population genetics, we show that a horizontally-transmissible element that increases fitness, such as viral DNA, spreads superexponentially through a population, more quickly than a beneficial mutation. Second, in the context of behavioral epidemiology, we show that infections that cause increased connectivity lead to superexponential fixation in the population. Third, in the context of dynamic social networks, we find that preferences for increased global infection accelerate spread and produce superexponential fixation, but preferences for local assortativity halt epidemics by disconnecting the infected from the susceptible. We conclude that the dynamics of beneficial biological and social epidemics are characterized by the rapid spread of beneficial elements, which is facilitated in biological systems by horizontal transmission and in social systems by active spreading behavior of infected individuals.
Collapse
Affiliation(s)
- Andrew Berdahl
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98105, USA
| | - Christa Brelsford
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- Arizona State University, Tempe, AZ, 85281, USA
- Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Caterina De Bacco
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Marion Dumas
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- London School of Economics and Political Science, London, United Kingdom
| | - Vanessa Ferdinand
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- Melbourne School of Psychological Sciences, Melbourne, Australia
| | - Joshua A Grochow
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- Departments of Computer Science and Mathematics, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Laurent Hébert-Dufresne
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- Vermont Complex Systems Center, University of Vermont, Burlington, VT, 05401, USA
| | - Yoav Kallus
- Santa Fe Institute, Santa Fe, NM, 87501, USA
| | | | - Artemy Kolchinsky
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel B Larremore
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- Department of Computer Science and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Eric Libby
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, 901 87, Sweden
| | - Eleanor A Power
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- Department of Methodology, London School of Economics and Political Science, London, United Kingdom
| | | | - Brendan D Tracey
- Santa Fe Institute, Santa Fe, NM, 87501, USA
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
179
|
Rauseo J, Barra Caracciolo A, Ademollo N, Cardoni M, Di Lenola M, Gaze W, Stanton I, Grenni P, Pescatore T, Spataro F, Patrolecco L. Dissipation of the antibiotic sulfamethoxazole in a soil amended with anaerobically digested cattle manure. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120769. [PMID: 31216500 DOI: 10.1016/j.jhazmat.2019.120769] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
The application of anaerobically digested cattle manure on agricultural land for both improving its quality and recycling a farm waste is an increasingly frequent practice in line with the circular economy. However, knowledge on the potential risk of spreading antibiotic resistance through this specific practice is quite scarce. The antibiotic sulfamethoxazole (SMX) is one of the most heavily prescribed in veterinary medicine. In this study, SMX dissipation and the possible effects on natural microorganisms were investigated in a soil amended with an anaerobically digested cattle manure produced from a biogas plant inside a livestock farm. Microcosm experiments were performed using amended soil treated with SMX (20 mg/kg soil). During the experimental time (61 days), soil samples were analysed for SMX and N4-acetylsulfamethoxazole, microbial abundance, activity and structure. Furthermore, the prevalence of the intI1 gene was also determined. The overall results showed that, although there was an initial negative effect on microbial abundance, SMX halved in about 7 days in the digestate-amended soil. The intI1 gene found in both the digestate and amended soil suggested that the use of anaerobically digested cattle manure as fertilizer can be a source of antibiotic resistant bacteria (ARBs) and genes (ARGs) in agroecosystems.
Collapse
Affiliation(s)
- J Rauseo
- Water Research Institute- National Research Council (IRSA-CNR), Rome, Italy; Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - A Barra Caracciolo
- Water Research Institute- National Research Council (IRSA-CNR), Rome, Italy.
| | - N Ademollo
- Water Research Institute- National Research Council (IRSA-CNR), Rome, Italy
| | - M Cardoni
- Water Research Institute- National Research Council (IRSA-CNR), Rome, Italy
| | - M Di Lenola
- Water Research Institute- National Research Council (IRSA-CNR), Rome, Italy
| | - W Gaze
- College of Medicine and Health, University of Exeter, Environment & Sustainability Institute, Penryn Campus, Cornwall, TR109FE, United Kingdom
| | - I Stanton
- College of Medicine and Health, University of Exeter, Environment & Sustainability Institute, Penryn Campus, Cornwall, TR109FE, United Kingdom
| | - P Grenni
- Water Research Institute- National Research Council (IRSA-CNR), Rome, Italy
| | - T Pescatore
- Water Research Institute- National Research Council (IRSA-CNR), Rome, Italy; Department of Ecological and Biological Science, Tuscia University, Italy
| | - F Spataro
- Water Research Institute- National Research Council (IRSA-CNR), Rome, Italy
| | - L Patrolecco
- Water Research Institute- National Research Council (IRSA-CNR), Rome, Italy
| |
Collapse
|
180
|
Pincus NB, Bachta KER, Ozer EA, Allen JP, Pura ON, Qi C, Rhodes NJ, Marty FM, Pandit A, Mekalanos JJ, Oliver A, Hauser AR. Long-term Persistence of an Extensively Drug-Resistant Subclade of Globally Distributed Pseudomonas aeruginosa Clonal Complex 446 in an Academic Medical Center. Clin Infect Dis 2019; 71:1524-1531. [PMID: 31583403 PMCID: PMC7486844 DOI: 10.1093/cid/ciz973] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/30/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a major challenge in the treatment of infections caused by Pseudomonas aeruginosa. Highly drug-resistant infections are disproportionally caused by a small subset of globally distributed P. aeruginosa sequence types (STs), termed "high-risk clones." We noted that clonal complex (CC) 446 (which includes STs 298 and 446) isolates were repeatedly cultured at 1 medical center and asked whether this lineage might constitute an emerging high-risk clone. METHODS We searched P. aeruginosa genomes from collections available from several institutions and from a public database for the presence of CC446 isolates. We determined antibacterial susceptibility using microbroth dilution and examined genome sequences to characterize the population structure of CC446 and investigate the genetic basis of AMR. RESULTS CC446 was globally distributed over 5 continents. CC446 isolates demonstrated high rates of AMR, with 51.9% (28/54) being multidrug-resistant (MDR) and 53.6% of these (15/28) being extensively drug-resistant (XDR). Phylogenetic analysis revealed that most MDR/XDR isolates belonged to a subclade of ST298 (designated ST298*) of which 100% (21/21) were MDR and 61.9% (13/21) were XDR. XDR ST298* was identified repeatedly and consistently at a single academic medical center from 2001 through 2017. These isolates harbored a large plasmid that carries a novel antibiotic resistance integron. CONCLUSIONS CC446 isolates are globally distributed with multiple occurrences of high AMR. The subclade ST298* is responsible for a prolonged epidemic (≥16 years) of XDR infections at an academic medical center. These findings indicate that CC446 is an emerging high-risk clone deserving further surveillance.
Collapse
Affiliation(s)
- Nathan B Pincus
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kelly E R Bachta
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA,Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Egon A Ozer
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jonathan P Allen
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA,Present address: Department of Microbiology and Immunology, Loyola University, Chicago, CTRE 218, 2160 S. First Ave. Maywood, IL 60153
| | - Olivia N Pura
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Chao Qi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nathaniel J Rhodes
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, Illinois, USA,Pharmacometrics Center of Excellence, Chicago College of Pharmacy, Midwestern University, Downers Grove, Illinois, USA,Department of Pharmacy, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Francisco M Marty
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Alisha Pandit
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - John J Mekalanos
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Antonio Oliver
- Servicio de Microbiología y Unidad de Investigación, Hospital Universitari Son Espases, Institut d’Investigació Sanitaria Illes Balears, Palma de Mallorca, Spain
| | - Alan R Hauser
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA,Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA,Correspondence: A. R. Hauser, 303 E. Chicago Ave., Ward 6–035, Chicago, IL 60611 ()
| |
Collapse
|
181
|
Chen Y, Huang H, Zheng X. Fate of sulfonamide resistance genes during sludge anaerobic fermentation: Roles of sludge components and fermentation pHs. BIORESOURCE TECHNOLOGY 2019; 289:121636. [PMID: 31226672 DOI: 10.1016/j.biortech.2019.121636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
This study assessed potential effects of two neglected factors (sludge components and pH values) on the fate of sulfonamide (sul) resistance genes during sludge anaerobic fermentation. It was found that sludge with different contents of protein, carbohydrate and humic acid caused no significant changes in the abundances of sul genes. Nevertheless, sul genes were sensitive to pHs (4-10), and the maximum attenuations (0.8-1.1 log unit) were obtained at pH 10. Mechanism exploration indicated that pHs drove the community evolution of sulfonamide resistant bacteria (SRB), most of which were affiliated to the pH-enriched phyla but not the pH-enriched dominant genera. In addition, the relative abundances of SRB were decreased under both acidic and alkaline conditions. Furthermore, the abundances of intI 1 as well as the sul-carrying abilities of plasmid and extracellular DNA were all reduced at test pHs, indicating that the potential of horizontal gene transfer among bacteria was restricted.
Collapse
Affiliation(s)
- Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
182
|
Reid CJ, McKinnon J, Djordjevic SP. Clonal ST131- H22 Escherichia coli strains from a healthy pig and a human urinary tract infection carry highly similar resistance and virulence plasmids. Microb Genom 2019; 5. [PMID: 31526455 PMCID: PMC6807379 DOI: 10.1099/mgen.0.000295] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The interplay between food production animals, humans and the environment with respect to the transmission of drug-resistant pathogens is widely debated and poorly understood. Pandemic uropathogenic Escherichia coli ST131-H30Rx, with conserved fluoroquinolone and cephalosporin resistance, are not frequently identified in animals. However, the phylogenetic precursor lineage ST131-H22 in animals and associated meat products is being reported with increasing frequency. Here we characterized two highly related ST131-H22 strains, one from a healthy pig and the other from a human infection (in 2007 and 2009, respectively). We used both long and short genome sequencing and compared them to ST131-H22 genome sequences available in public repositories. Even within the context of H22 strains, the two strains in question were highly related, separated by only 20 core SNPs. Furthermore, they were closely related to a faecal strain isolated in 2010 from a geographically distinct, healthy human in New South Wales, Australia. The porcine and hospital strains carried highly similar HI2-ST3 multidrug resistant plasmids with differences in the hospital strain arising due to IS-mediated insertions and rearrangements. Near identical ColV plasmids were also present in both strains, further supporting their shared evolutionary history. This work highlights the importance of adopting a One Health approach to genomic surveillance to gain insights into pathogen evolution and spread.
Collapse
Affiliation(s)
- Cameron J Reid
- The i3 institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Jessica McKinnon
- The i3 institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Steven P Djordjevic
- The i3 institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
183
|
Grenni P, Patrolecco L, Rauseo J, Spataro F, Di Lenola M, Aimola G, Zacchini M, Pietrini F, Di Baccio D, Stanton IC, Gaze WH, Barra Caracciolo A. Sulfamethoxazole persistence in a river water ecosystem and its effects on the natural microbial community and Lemna minor plant. Microchem J 2019. [DOI: 10.1016/j.microc.2019.103999] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
184
|
Shen JP, Li ZM, Hu HW, Zeng J, Zhang LM, Du S, He JZ. Distribution and Succession Feature of Antibiotic Resistance Genes Along a Soil Development Chronosequence in Urumqi No.1 Glacier of China. Front Microbiol 2019; 10:1569. [PMID: 31354668 PMCID: PMC6629927 DOI: 10.3389/fmicb.2019.01569] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/24/2019] [Indexed: 01/03/2023] Open
Abstract
Primary succession of plant and microbial communities in the glacier retreating foreland has been extensively studied, but shifts of antibiotic resistance genes (ARGs) with the glacier retreating due to global warming remain elusive. Unraveling the diversity and succession features of ARGs in pristine soil during glacier retreating could contribute to a mechanistic understanding of the evolution and development of soil resistome. In this study, we quantified the abundance and diversity of ARGs along a 50-year soil development chronosequence by using a high-throughput quantitative PCR (HT-qPCR) technique. A total of 24 ARGs and two mobile genetic elements (MGEs) were detected from all the glacier samples, and the numbers of detected ARGs showed a unimodal pattern with an increasing trend at the early stage (0∼8 years) but no significant change at later stages (17∼50 years). The oprJ and mexF genes encoding multidrug resistance were the only two ARGs that were detected across all the succession ages, and the mexF gene showed an increasing trend along the succession time. Structural equation models indicated the predominant role of the intI1 gene encoding the Class 1 integron-integrase in shaping the variation of ARG profiles. These findings suggested the presence of ARGs in pristine soils devoid of anthropogenic impacts, and horizontal gene transfer mediated by MGEs may contribute to the succession patterns of ARGs during the initial soil formation stage along the chronosequence.
Collapse
Affiliation(s)
- Ju-Pei Shen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zong-Ming Li
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
- School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Jun Zeng
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Du
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ji-Zheng He
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
185
|
The Relationship of Class I Integron Gene Cassettes and the Multidrug-Resistance in Extended -Spectrum β-Lactamase Producing Isolates of Escherichia coli. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2019. [DOI: 10.5812/pedinfect.87961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
186
|
Wu D, Wang BH, Xie B. Validated predictive modelling of sulfonamide and beta-lactam resistance genes in landfill leachates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 241:123-130. [PMID: 30991284 DOI: 10.1016/j.jenvman.2019.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
The spread of antimicrobial resistance via landfill leachates jeopardizes millions of people's health, which can be exacerbated due to the unclear quantitative relationships between leachate characteristics and occurrences of antibiotic resistance genes (ARGs). Here, in parallel with sampling raw leachates from a real landfill, we constructed a lab-scale landfill and collected its leachates for 260 days. All leachate samples were analyzed for the abundance of integrons, sulfonamide resistance (sulR; sul1 and sul2) and beta-lactams resistance (blaR; blaOXA, blaCTX-M, and blaTEM) genes. The enrichment of sulR subtypes was closely associated with the integrons' prevalence during the landfilling process (0.65-0.75 log10(copies/mL)), which can be explained by the multiple linear regression that contained intl1, pH, and nitrogen compounds as variables. The predicted abundance of sulR genes (6.06 ± 0.6 log10(copies/mL)) was statistically the same as the observed value in raw leachates (P = 0.73). The abundance of blaR genes decreased from 5.0 to 2.5 log10(copies/mL) during the experiment (P < 0.001); and a locally weighted regression of blaR genes with integrons, COD and total nitrogen accurately predicted blaR genes abundance in raw leachate (Bootstrap = 10,000, P = 0.67). The partial least squares path modelling (PLS-PM) showed that variations of blaR genes in the lab and raw leachates shared an identical pattern (PLS-PM, Bootstrap = 10,000, P > 0.05), which was influenced by integrons and environmental factors with the coefficients of -0.11 and 0.39, respectively. We believe the validated models are highly useful tools to streamline the strategies for monitoring and prediction of ARGs.
Collapse
Affiliation(s)
- Dong Wu
- Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Bing-Han Wang
- Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China
| | - Bing Xie
- Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
187
|
Zhang YJ, Hu HW, Yan H, Wang JT, Lam SK, Chen QL, Chen D, He JZ. Salinity as a predominant factor modulating the distribution patterns of antibiotic resistance genes in ocean and river beach soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:193-203. [PMID: 30851680 DOI: 10.1016/j.scitotenv.2019.02.454] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
Growing evidence points to the pivotal role of the environmental factors in influencing the transmission of antibiotic resistance genes (ARGs) and the propagation of resistant human pathogens. However, our understanding of the ecological and evolutionary environmental factors that contribute to development and dissemination of antibiotic resistance is lacking. Here, we profiled a wide variety of ARGs using the high-throughput quantitative PCR analysis in 61 soil samples collected from ocean and river beaches, which are hotspots for human activities and platforms for potential transmission of environmental ARGs to human pathogens. We identified the dominant abiotic and biotic factors influencing the diversity, abundance and composition of ARGs in these ecosystems. A total of 110 ARGs conferring resistance to eight major categories of antibiotics were detected. The core resistome was mainly affiliated into β-lactam and multidrug resistance, accounting for 66.9% of the total abundance of ARGs. The oprJ gene conferring resistance to multidrug was the most widespread ARG subtype detected in all the samples. The relative abundances of total ARGs and core resistome were significantly correlated with salinity-related properties including electrical conductivity and concentrations of sodium and chloride. Random forest analysis and structural equation modelling revealed that salinity was the most important factor modulating the distribution patterns of beach soil ARGs after accounting for multiple drivers. These findings suggest that beach soil is a rich reservoir of ARGs and that salinity is a predominant factor shaping the distribution patterns of soil resistome.
Collapse
Affiliation(s)
- Yu-Jing Zhang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Hui Yan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Jun-Tao Wang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shu Kee Lam
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Qing-Lin Chen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Deli Chen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
188
|
Partridge SR, Tsafnat G. Automated annotation of mobile antibiotic resistance in Gram-negative bacteria: the Multiple Antibiotic Resistance Annotator (MARA) and database. J Antimicrob Chemother 2019; 73:883-890. [PMID: 29373760 DOI: 10.1093/jac/dkx513] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/08/2017] [Indexed: 01/26/2023] Open
Abstract
Background Multiresistance in Gram-negative bacteria is often due to acquisition of several different antibiotic resistance genes, each associated with a different mobile genetic element, that tend to cluster together in complex conglomerations. Accurate, consistent annotation of resistance genes, the boundaries and fragments of mobile elements, and signatures of insertion, such as DR, facilitates comparative analysis of complex multiresistance regions and plasmids to better understand their evolution and how resistance genes spread. Objectives To extend the Repository of Antibiotic resistance Cassettes (RAC) web site, which includes a database of 'features', and the Attacca automatic DNA annotation system, to encompass additional resistance genes and all types of associated mobile elements. Methods Antibiotic resistance genes and mobile elements were added to RAC, from existing registries where possible. Attacca grammars were extended to accommodate the expanded database, to allow overlapping features to be annotated and to identify and annotate features such as composite transposons and DR. Results The Multiple Antibiotic Resistance Annotator (MARA) database includes antibiotic resistance genes and selected mobile elements from Gram-negative bacteria, distinguishing important variants. Sequences can be submitted to the MARA web site for annotation. A list of positions and orientations of annotated features, indicating those that are truncated, DR and potential composite transposons is provided for each sequence, as well as a diagram showing annotated features approximately to scale. Conclusions The MARA web site (http://mara.spokade.com) provides a comprehensive database for mobile antibiotic resistance in Gram-negative bacteria and accurately annotates resistance genes and associated mobile elements in submitted sequences to facilitate comparative analysis.
Collapse
Affiliation(s)
- Sally R Partridge
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead Hospital, Sydney, Australia
| | - Guy Tsafnat
- Centre for Health Informatics, Australian Institute of Health Innovation, Macquarie University, Sydney, Australia.,Spokade Pty Ltd, Sydney, Australia
| |
Collapse
|
189
|
Wüthrich D, Brilhante M, Hausherr A, Becker J, Meylan M, Perreten V. A Novel Trimethoprim Resistance Gene, dfrA36, Characterized from Escherichia coli from Calves. mSphere 2019; 4:e00255-19. [PMID: 31068437 PMCID: PMC6506621 DOI: 10.1128/msphere.00255-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/23/2019] [Indexed: 11/26/2022] Open
Abstract
Whole-genome sequencing of trimethoprim-resistant Escherichia coli strains MF2165 and PF9285 from healthy Swiss fattening calves revealed a so far uncharacterized dihydrofolate reductase gene, dfrA35 Functionality and association with trimethoprim resistance were demonstrated by cloning and expressing dfrA35 in E. coli The DfrA35 protein showed the closest amino acid identity (49.4%) to DfrA20 from Pasteurella multocida and to the Dfr determinants DfrG (41.2%), DfrD (40.8%), and DfrK (40.0%) found in Gram-positive bacteria. The dfrA35 gene was integrated within a florfenicol/chloramphenicol-sulfonamide resistance ISCR2 element (floR-ISCR2-dfrA35-sul2) next to a Tn21-like transposon that contained genes with resistance to sulfonamides (sul1), streptomycin (aadA1), gentamicin/tobramycin/kanamycin (aadB), and quaternary ammonium compounds (qacEΔ1). A search of GenBank databases revealed that dfrA35 was present in 26 other E. coli strains from different origins as well as in AcinetobacterIMPORTANCE The presence of dfrA35 associated with ISCR2 in Escherichia coli from animals, as well as its presence in other E. coli strains from different sources and countries and in Acinetobacter, highlights the global spread of this gene and its potential for further dissemination. The genetic link of ISCR2-dfrA35 with other antibiotic and disinfectant resistance genes showed that multidrug-resistant E. coli may be selected and maintained by the use of either one of several antimicrobials.
Collapse
Affiliation(s)
- Dominik Wüthrich
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Michael Brilhante
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Anna Hausherr
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jens Becker
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Mireille Meylan
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Vincent Perreten
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
190
|
Kaushik M, Kumar S, Kapoor RK, Gulati P. Integrons and antibiotic resistance genes in water-borne pathogens: threat detection and risk assessment. J Med Microbiol 2019; 68:679-692. [DOI: 10.1099/jmm.0.000972] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Megha Kaushik
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Sanjay Kumar
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Rajeev Kr. Kapoor
- Enzyme Biotechnology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Pooja Gulati
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| |
Collapse
|
191
|
Domínguez M, Miranda CD, Fuentes O, de la Fuente M, Godoy FA, Bello-Toledo H, González-Rocha G. Occurrence of Transferable Integrons and sul and dfr Genes Among Sulfonamide-and/or Trimethoprim-Resistant Bacteria Isolated From Chilean Salmonid Farms. Front Microbiol 2019; 10:748. [PMID: 31031727 PMCID: PMC6474311 DOI: 10.3389/fmicb.2019.00748] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 03/25/2019] [Indexed: 11/17/2022] Open
Abstract
Salmon farming industry in Chile currently uses a significant quantity of antimicrobials to control bacterial pathologies. The main aims of this study were to investigate the presence of transferable sulfonamide- and trimethoprim-resistance genes, sul and dfr, and their association with integrons among bacteria associated to Chilean salmon farming. For this purpose, 91 Gram-negative strains resistant to sulfisoxazole and/or trimethoprim recovered from various sources of seven Chilean salmonid farms and mainly identified as belonging to the Pseudomonas genus (81.0%) were studied. Patterns of antimicrobial resistance of strains showed a high incidence of resistance to florfenicol (98.9%), erythromycin (95.6%), furazolidone (90.1%) and amoxicillin (98.0%), whereas strains exhibited minimum inhibitory concentrations (MIC90) values of sulfisoxazole and trimethoprim of >4,096 and >2,048 μg mL−1, respectively. Strains were studied for their carriage of these genes by polymerase chain reaction, using specific primers, and 28 strains (30.8%) were found to carry at least one type of sul gene, mainly associated to a class 1 integron (17 strains), and identified by 16S rRNA gene sequencing as mainly belonging to the Pseudomonas genus (21 strains). Of these, 22 strains carried the sul1 gene, 3 strains carried the sul2 gene, and 3 strains carried both the sul1 and sul2 genes. Among these, 19 strains also carried the class 1 integron-integrase gene intI1, whereas the dfrA1, dfrA12 and dfrA14 genes were detected, mostly not inserted in the class 1 integron. Otherwise, the sul3 and intI2 genes were not found. In addition, the capability to transfer by conjugation these resistance determinants was evaluated in 22 selected strains, and sul and dfr genes were successfully transferred by 10 assayed strains, mainly mediated by a 10 kb plasmid, with a frequency of transfer of 1.4 × 10−5 to 8.4 × 10−3 transconjugant per recipient cell, and exhibiting a co-transference of resistance to florfenicol and oxytetracycline, currently the most used in Chilean salmon industry, suggesting an antibacterial co-selection phenomenon. This is the first report of the characterization and transferability of integrons as well as sul and dfr genes among bacteria associated to Chilean salmon farms, evidencing a relevant role of this environment as a reservoir of these genes.
Collapse
Affiliation(s)
- Mariana Domínguez
- Laboratorio de Investigación en Agentes Antibacterianos, Departamento de Microbiología, Universidad de Concepción, Concepción, Chile
| | - Claudio D Miranda
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile.,Centro AquaPacífico, Coquimbo, Chile
| | - Oliver Fuentes
- Laboratorio de Investigación en Agentes Antibacterianos, Departamento de Microbiología, Universidad de Concepción, Concepción, Chile.,Facultad de Medicina Veterinaria, Universidad San Sebastián, Concepción, Chile
| | - Mery de la Fuente
- Facultad de Medicina Veterinaria, Universidad San Sebastián, Concepción, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Talcahuano, Chile
| | - Félix A Godoy
- Centro i∼mar, Universidad de Los Lagos, Puerto Montt, Chile
| | - Helia Bello-Toledo
- Laboratorio de Investigación en Agentes Antibacterianos, Departamento de Microbiología, Universidad de Concepción, Concepción, Chile
| | - Gerardo González-Rocha
- Laboratorio de Investigación en Agentes Antibacterianos, Departamento de Microbiología, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
192
|
Comparative Genomic Analysis of Lactobacillus plantarum: An Overview. Int J Genomics 2019; 2019:4973214. [PMID: 31093491 PMCID: PMC6481158 DOI: 10.1155/2019/4973214] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/19/2019] [Accepted: 03/12/2019] [Indexed: 01/21/2023] Open
Abstract
Background Lactobacillus plantarum is widely used in the manufacture of dairy products, fermented foods, and bacteriocins. The genomes of the strains contain multiple genes which may have been acquired by horizontal gene transfer. Many of these genes are important for the regulation, metabolism, and transport of various sugars; however, other genes may carry and spread virulence and antibiotic resistance determinants. In this way, monitoring these genomes is essential to the manufacture of food. In this study, we aim to provide an overview of the genomic properties of L. plantarum based on approaches of comparative genomics. Results The finding of the current study indicates that the core genome of L. plantarum presents 1425 protein-coding genes and is mostly related to the metabolic process. The accessory genome has on average 1320 genes that encodes protein involved in processes as the formation of bacteriocins, degradation of halogen, arsenic detoxification, and nisin resistance. Most of the strains show an ancestral synteny, similar to the one described in the genomes of L. pentosus KCA1 and L. plantarum WCFS1. The lifestyle island analyses did not show a pattern of arrangement or gene content according to habitat. Conclusions Our results suggest that there is a high rate of transfer of genetic material between the strains. We did not identify any virulence factors and antibiotic resistance genes on the genomes. Thus, the strains may be useful for the biotechnology, bioremediation, and production of bacteriocins. The potential applications are, however, restricted to particular strains.
Collapse
|
193
|
Fogler K, Guron GKP, Wind LL, Keenum IM, Hession WC, Krometis LA, Strawn LK, Pruden A, Ponder MA. Microbiota and Antibiotic Resistome of Lettuce Leaves and Radishes Grown in Soils Receiving Manure-Based Amendments Derived From Antibiotic-Treated Cows. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
194
|
Couvé-Deacon E, Jové T, Afouda P, Barraud O, Tilloy V, Scaon E, Hervé B, Burucoa C, Kempf M, Marcos JY, Ploy MC, Garnier F. Class 1 integrons in Acinetobacter baumannii: a weak expression of gene cassettes to counterbalance the lack of LexA-driven integrase repression. Int J Antimicrob Agents 2019; 53:491-499. [DOI: 10.1016/j.ijantimicag.2018.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/12/2018] [Accepted: 11/17/2018] [Indexed: 11/29/2022]
|
195
|
Kaushik M, Khare N, Kumar S, Gulati P. High Prevalence of Antibiotic Resistance and Integrons inEscherichia coliIsolated from Urban River Water, India. Microb Drug Resist 2019; 25:359-370. [DOI: 10.1089/mdr.2018.0194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Megha Kaushik
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Neha Khare
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Sanjay Kumar
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Pooja Gulati
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
196
|
Higher Temperatures Do Not Always Achieve Better Antibiotic Resistance Gene Removal in Anaerobic Digestion of Swine Manure. Appl Environ Microbiol 2019; 85:AEM.02878-18. [PMID: 30683745 DOI: 10.1128/aem.02878-18] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/15/2019] [Indexed: 11/20/2022] Open
Abstract
This study employed high-throughput quantitative PCR and 16S rRNA sequencing to evaluate the effect of temperature and residual antibiotics on the dynamics of antibiotic resistance genes (ARGs) and microbial communities during anaerobic digestion of swine manure. The abundances of total ARGs and 16S rRNA genes significantly decreased in all of four treatments (25°C, 37°C, and 37°C with 50 mg of wet weight antibiotics of body weight, and 55°C). The abundances of most ARG types were significantly correlated with those of the 16S rRNA gene and transposase gene (P < 0.01). However, the abundances of total ARGs at 55°C were much higher than those of other treatments. Meanwhile, the microbial communities at 55°C, where the Streptococcus pathogen remained at a relatively high abundance and cellulose degraders and hydrogen producers, such as Ethanoligenens and Coprococcus bacteria, increased, were markedly different from those of other treatments. Redundancy analysis indicates that temperature, pH, and the genus Streptococcus had the highest explanation for ARG variation among experimental factors, chemical properties, and representative genera, respectively. Network analysis further showed that the genus Streptococcus contributed greatly to the higher ARG abundance at 55°C. The moderate antibiotic residue only caused a slight and transitory inhibition for microbially diverse populations and promotion for ARG abundance, probably due to the degradation of antibiotics and microbial adaptability. Our results clarify the cooperativity of gene transfer-related items on ARG variation and intensively prove that higher temperature cannot always achieve better ARG removal in anaerobic digestion unless pathogens and gene transfer elements are more efficiently inhibited.IMPORTANCE Antibiotic resistance genes (ARGs) are frequently detected with high abundance in manure-applied soils. Anaerobic digestion is one of widely used processes for animal waste treatment. Thus, it is critical to understand the potential of anaerobic digestion to attenuate ARGs. Although some previous studies recommended thermophilic digestion for ARG removal, they did not get sufficient evidence to support this view. The antibiotics applied to animals are mostly excreted through feces and urine because of incomplete metabolism. It is indispensable to know whether residual antibiotics in manure will hinder ARG attenuation in anaerobic digesters. The significance of our research is in comprehensively understanding the evolution and mechanism of ARGs in anaerobic digestion of swine manure affected by temperature and residual antibiotics, which will allow the development of an ARG elimination strategy before their release into the environment.
Collapse
|
197
|
Murray AK, Zhang L, Snape J, Gaze WH. Comparing the selective and co-selective effects of different antimicrobials in bacterial communities. Int J Antimicrob Agents 2019; 53:767-773. [PMID: 30885807 PMCID: PMC6546120 DOI: 10.1016/j.ijantimicag.2019.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 02/12/2019] [Accepted: 03/02/2019] [Indexed: 01/15/2023]
Abstract
Selective and co-selective effects of antimicrobials were compared for the first time. Ciprofloxacin and trimethoprim were more co-selective than selective. Benzalkonium chloride (BAC) did not select for antibiotic/metal/qac resistance genes. Metagenomics could identify highly co-selective compounds for further study.
Bacterial communities are exposed to a cocktail of antimicrobial agents, including antibiotics, heavy metals and biocidal antimicrobials such as quaternary ammonium compounds (QACs). The extent to which these compounds may select or co-select for antimicrobial resistance (AMR) is not fully understood. In this study, human-associated, wastewater-derived bacterial communities were exposed to either benzalkonium chloride (BAC), ciprofloxacin or trimethoprim at sub-point-of-use concentrations for one week to determine selective and co-selective potential. Metagenome analyses were performed to determine effects on bacterial community structure and prevalence of antibiotic resistance genes (ARGs) and metal or biocide resistance genes (MBRGS). Ciprofloxacin had the greatest co-selective potential, significantly enriching for resistance mechanisms to multiple antibiotic classes. Conversely, BAC exposure significantly reduced relative abundance of ARGs and MBRGS, including the well characterised qac efflux genes. However, BAC exposure significantly impacted bacterial community structure. Therefore BAC, and potentially other QACs, did not play as significant a role in co-selection for AMR as antibiotics such as ciprofloxacin at sub-point-of-use concentrations in this study. This approach can be used to identify priority compounds for further study, to better understand evolution of AMR in bacterial communities exposed to sub-point-of-use concentrations of antimicrobials.
Collapse
Affiliation(s)
- Aimee K Murray
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment & Sustainability Institute, Penryn Campus, Penryn, Cornwall, TR10 9FE.
| | - Lihong Zhang
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment & Sustainability Institute, Penryn Campus, Penryn, Cornwall, TR10 9FE
| | - Jason Snape
- AstraZeneca Global Environment, Alderly Park, Macclesfield
| | - William H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment & Sustainability Institute, Penryn Campus, Penryn, Cornwall, TR10 9FE
| |
Collapse
|
198
|
Zhao Y, Cocerva T, Cox S, Tardif S, Su JQ, Zhu YG, Brandt KK. Evidence for co-selection of antibiotic resistance genes and mobile genetic elements in metal polluted urban soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:512-520. [PMID: 30529954 DOI: 10.1016/j.scitotenv.2018.11.372] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/19/2018] [Accepted: 11/24/2018] [Indexed: 05/20/2023]
Abstract
Antibiotic resistance genes (ARGs) constitute emerging environmental pollutants and pose risks to public health. Toxic metals are known to select for metal-resistant bacteria in metal-contaminated soils, but there is growing concern that metal contaminants can also act as co-selective agents thereby causing environmental proliferation of antibiotic resistance. In this study, we quantified ARGs and selected mobile genetic elements (MGEs) known to constitute potential ARG hosts in 50 archived urban and suburban soils from the Belfast metropolitan area using a high-throughput qPCR ARG chip. ARG prevalence was linked to concentrations of individual metals and a soil metal toxicity index calculated based on the relative toxicity of different metals to soil microbial processes. A total of 164 ARGs were detected across the 50 soils analyzed with an average absolute abundance of 3.4 × 107 ARG gene copies per gram of soil. A significant correlation between abundance of ARGs and MGEs was observed, suggesting the importance of horizontal gene transfer for ARG dissemination. Network analysis revealed significant co-occurrence patterns between specific metals (As, Cd, Co, Cr, Cu. Hg, Ni and Zn) and associated ARGs. Path analysis further indicated that the soil metal toxicity index significantly affected the number of detected ARGs (λ = 0.32, P < 0.001) and the abundance of metal co-occurring ARGs (λ = 0.612, P < 0.001) via effects on MGEs. Collectively, our results indicate a role of soil metals in co-selection of ARGs and MGEs in urban and semi-urban soils and suggest a risk for environmental ARG dissemination via horizontal gene transfer.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark.
| | - Tatiana Cocerva
- School of Natural and Built Environment, Queen's University of Belfast, David Keir Building, Stranmillis Road, Belfast BT9 6AX, United Kingdom
| | - Siobhan Cox
- School of Natural and Built Environment, Queen's University of Belfast, David Keir Building, Stranmillis Road, Belfast BT9 6AX, United Kingdom
| | - Stacie Tardif
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Kristian Koefoed Brandt
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; Sino-Danish Centre for Education and Research, Huairou District, Beijing, China.
| |
Collapse
|
199
|
Bats as reservoirs of antibiotic resistance determinants: A survey of class 1 integrons in Grey-headed Flying Foxes (Pteropus poliocephalus). INFECTION GENETICS AND EVOLUTION 2019; 70:107-113. [PMID: 30798035 DOI: 10.1016/j.meegid.2019.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 01/10/2023]
Abstract
Increasing reports of antimicrobial resistance in wildlife highlight the significance of a One Health approach to managing resistance. We investigated the prevalence and diversity of class 1 integrons, a genetic determinant of resistance, in grey-headed flying foxes, a large fruit bat species belonging to the order Chiroptera. Class 1 integrons were detected in both wild flying foxes (5.3%) and captive flying foxes (41.2%) housed in wildlife rehabilitation facilities. Genes encoding resistance to aminoglycosides, trimethoprim and beta-lactams, and Qac efflux pumps were detected. Analysis of conserved integron elements and gene cassette arrays indicate the direction of integron transfer is from humans to flying foxes. The detection of two novel gene cassette arrays (5'CS-qacH-aacA34-blaOXA-21-3'CS and 5'CS-qacF-3'CS strongly suggests acquisition of genes from the environmental resistome into class 1 integrons within the flying fox microbiota. The dynamics of class 1 integrons in flying foxes indicates bats have a role in the emergence of novel antibiotic resistance determinants.
Collapse
|
200
|
Murray R, Tien YC, Scott A, Topp E. The impact of municipal sewage sludge stabilization processes on the abundance, field persistence, and transmission of antibiotic resistant bacteria and antibiotic resistance genes to vegetables at harvest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1680-1687. [PMID: 30316087 DOI: 10.1016/j.scitotenv.2018.10.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 06/08/2023]
Abstract
Biosolids were obtained from four Ontario municipalities that vary in how the sewage sludge is treated. These included a Class B biosolids that was anaerobically digested, a Class A biosolids that were heat treated and pelletized (Propell), and two Class A biosolids that were stabilized using either the N-Viro (N-Rich) or Lystek (LysteGro) processes. Viable enteric indicator or pathogenic bacteria in the biosolids were enumerated by plate count, gene targets associated with antibiotic resistance or horizontal gene transfer were detected by PCR, and a subset of these gene targets were quantified by qPCR. Following application at commercial rates to field plots, the persistence of enteric bacteria and gene targets in soil was followed during the growing season. Carrots, radishes and lettuce were sown into the amended and unamended control plots, and the diversity and abundance of gene targets they carried at harvest determined. All three Class A biosolids carried fewer and less abundant antibiotic resistance genes than did the Class B biosolids, in particular the very alkaline N-Viro product (N-Rich). Following application, some gene targets (e.g. int1, sul1, strA/B, aadA) that are typically associated with mobile gene cassettes remained detectable throughout the growing season, whereas others (e.g. ermB, ermF, blaOXA20) that are not associated with cassettes became undetectable within three weeks or less. At harvest a larger number of gene targets were detected on the carrots and radishes than in the lettuce. Overall, land application of Class A biosolids will entrain fewer viable bacteria and genes associated with antibiotic resistance into crop ground than will amendment with Class B biosolids.
Collapse
Affiliation(s)
- Roger Murray
- Agriculture and Agri-Food Canada, London, Ontario, Canada
| | | | - Andrew Scott
- Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Edward Topp
- Agriculture and Agri-Food Canada, London, Ontario, Canada; Department of Biology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|