151
|
Delgado-Ortiz JC, Beltrán-Beache M, Cerna-Chávez E, Aguirre-Uribe LA, Landero-Flores J, Rodríguez-Pagaza Y, Ochoa-Fuentes YM. Candidatus Liberibacter solanacearum patógeno vascular de solanáceas: Diagnóstico y control. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2019. [DOI: 10.22201/fesz.23958723e.2019.0.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Candidatus Liberibacter solanacearum (CLso) es una bacteria fitopatógena Gram-negativa, limitada al floema en solanáceas y no cultivable in vitro. Es transmitida de manera vertical y horizontal por el psílido Bactericera cockerelli. En México se asocia como responsable de la enfermedad "permanente del tomate", "punta morada de la papa" (Zebra chip) y "variegado del chile". Los síntomas causados por la bacteria varían según el cultivar y la etapa de crecimiento del hospedante pero consisten principalmente en amarillamientos y deformación de la lámina foliar, debido a la alimentación del vector y la colonización del patógeno. Las infecciones ocasionadas por CLso reducen la calidad del producto y el valor comercial en el mercado. La presencia de esta bacteria ha sido detectada en los estados de Coahuila, Sinaloa y Guanajuato, México a través de técnicas moleculares; mientras que el control de la enfermedad se encuentra enfocado en el vector, mediante prácticas culturales y la aplicación de agentes químicos y biológicos. Por lo anterior el objetivo del trabajo es puntualizar la situación actual de la distribución de CLso en México, los métodos de diagnóstico y las estrategias para el manejo integrado de la enfermedad y el vector.
Collapse
|
152
|
Ostolaza H, González-Bullón D, Uribe KB, Martín C, Amuategi J, Fernandez-Martínez X. Membrane Permeabilization by Pore-Forming RTX Toxins: What Kind of Lesions Do These Toxins Form? Toxins (Basel) 2019; 11:toxins11060354. [PMID: 31216745 PMCID: PMC6628442 DOI: 10.3390/toxins11060354] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/12/2019] [Accepted: 06/16/2019] [Indexed: 12/22/2022] Open
Abstract
Pore-forming toxins (PFTs) form nanoscale pores across target membranes causing cell death. The pore-forming cytolysins of the RTX (repeats in toxin) family belong to a steadily increasing family of proteins characterized by having in their primary sequences a number of glycine- and aspartate-rich nonapeptide repeats. They are secreted by a variety of Gram-negative bacteria and form ion-permeable pores in several cell types, such as immune cells, epithelial cells, or erythrocytes. Pore-formation by RTX-toxins leads to the dissipation of ionic gradients and membrane potential across the cytoplasmic membrane of target cells, which results in cell death. The pores formed in lipid bilayers by the RTX-toxins share some common properties such as cation selectivity and voltage-dependence. Hemolytic and cytolytic RTX-toxins are important virulence factors in the pathogenesis of the producing bacteria. And hence, understanding the function of these proteins at the molecular level is critical to elucidating their role in disease processes. In this review we summarize the current state of knowledge on pore-formation by RTX toxins, and include recent results from our own laboratory regarding the pore-forming activity of adenylate cyclase toxin (ACT or CyaA), a large protein toxin secreted by Bordetella pertussis, the bacterium causative of whooping cough.
Collapse
Affiliation(s)
- Helena Ostolaza
- Departamento de Bioquímica y Biología Molecular (UPV/EHU) and Instituto Biofisika (UPV/EHU, CSIC), Aptdo. 644, 48080 Bilbao, Spain.
| | - David González-Bullón
- Departamento de Bioquímica y Biología Molecular (UPV/EHU) and Instituto Biofisika (UPV/EHU, CSIC), Aptdo. 644, 48080 Bilbao, Spain.
| | - Kepa B Uribe
- Departamento de Bioquímica y Biología Molecular (UPV/EHU) and Instituto Biofisika (UPV/EHU, CSIC), Aptdo. 644, 48080 Bilbao, Spain.
| | - Cesar Martín
- Departamento de Bioquímica y Biología Molecular (UPV/EHU) and Instituto Biofisika (UPV/EHU, CSIC), Aptdo. 644, 48080 Bilbao, Spain.
| | - Jone Amuategi
- Departamento de Bioquímica y Biología Molecular (UPV/EHU) and Instituto Biofisika (UPV/EHU, CSIC), Aptdo. 644, 48080 Bilbao, Spain.
| | - Xabier Fernandez-Martínez
- Departamento de Bioquímica y Biología Molecular (UPV/EHU) and Instituto Biofisika (UPV/EHU, CSIC), Aptdo. 644, 48080 Bilbao, Spain.
| |
Collapse
|
153
|
Li Y, Cao S, Zhang L, Yuan J, Zhao Q, Wen Y, Wu R, Huang X, Yan Q, Huang Y, Ma X, Han X, Miao C, Wen X. A requirement of TolC1 for effective survival, colonization and pathogenicity of Actinobacillus pleuropneumoniae. Microb Pathog 2019; 134:103596. [PMID: 31212036 DOI: 10.1016/j.micpath.2019.103596] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 01/18/2023]
Abstract
To establish infection in the host, pathogens have evolved sophisticated systems to cope with environmental conditions and to protect cells against host immunity. TolC is the outer membrane channel component of type 1 secretion systems and multidrug efflux pumps that plays critical roles during the infection process in many pathogens. However, little is known about the exact roles of TolC1 in the pathogenicity of A. pleuropneumoniae, an etiological agent of the porcine contagious pleuropneumoniae that causes severe respiratory disease. In this study, deletion of tolC1 causes apparent ultrastructural defects in A. pleuropneumoniae cell examined by transmission electron microscopy. The tolC1 mutant is hypersensitivity to oxidative, osmotic and acid challenges by in vitro stress assays. Analysis on secreted proteins shows that the excretion of ApxIIA and an ApxIVA-like protein, ApxIVA-S, is abolished in the absence of TolC1. This result confirms the essential role of TolC1 in the secretion of Apx toxins and this is the first identification of an ApxIVA-like protein in in vitro culture of A. pleuropneumoniae. Besides, disruption of TolC1 leads to a significant attenuation of virulence in mice by an intraperitoneal route of A. pleuropneumoniae. The basis for the attenuation is further investigated using a mouse intranasal infection model, which reveals an impaired ability to colonize and induce lesions in the lungs for the loss of TolC1 of A. pleuropneumoniae. In conclusion, our findings demonstrate significant roles of TolC1 in facilitating bacterial survival in hostile conditions, maximum colonization as well as pathogenicity during the infection of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Ying Li
- Department of Immunology, School of Basic Medical Science, Southwest Medical University, No. 319 Zhongshan Road, Luzhou, Sichuan, China; Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Sanjie Cao
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China.
| | - Luhua Zhang
- Department of Pathogenic Biology, School of Basic Medical Science, Southwest Medical University, No. 319 Zhongshan Road, Luzhou, Sichuan, China
| | - Jianlin Yuan
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Qin Zhao
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Yiping Wen
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Rui Wu
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Xiaobo Huang
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Qigui Yan
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Yong Huang
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Xiaoping Ma
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Xinfeng Han
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Chang Miao
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China
| | - Xintian Wen
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu, Sichuan, China.
| |
Collapse
|
154
|
Rapid Purification of Endotoxin-Free RTX Toxins. Toxins (Basel) 2019; 11:toxins11060336. [PMID: 31212877 PMCID: PMC6628407 DOI: 10.3390/toxins11060336] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 12/26/2022] Open
Abstract
Cytolytic leukotoxins of the repeat in toxin (RTX) family are large proteins excreted by gram-negative bacterial pathogens through the type 1 secretion system (T1SS). Due to low yields and poor stability in cultures of the original pathogens, it is useful to purify recombinant fatty-acylated RTX cytolysins from inclusion bodies produced in E. coli. Such preparations are, however, typically contaminated by high amounts of E. coli lipopolysaccharide (LPS or endotoxin). We report a simple procedure for purification of large amounts of biologically active and endotoxin-free RTX toxins. It is based on the common feature of RTX cytolysins that are T1SS-excreted as unfolded polypeptides and fold into a biologically active toxin only upon binding of calcium ions outside of the bacterial cell. Mimicking this process, the RTX proteins are solubilized from inclusion bodies with buffered 8 M urea, bound onto a suitable chromatographic medium under denaturing conditions and the contaminating LPS is removed through extensive on-column washes with buffers containing 6 to 8 M urea and 1% Triton X-100 or Triton X-114. Extensive on-column rinsing with 8 M urea buffer removes residual detergent and the eluted highly active RTX protein preparations then contain only trace amounts of LPS. The procedure is exemplified using four prototypic RTX cytolysins, the Bordetella pertussis CyaA and the hemolysins of Escherichia coli (HlyA), Kingella kingae (RtxA), and Actinobacillus pleuropneumoniae (ApxIA).
Collapse
|
155
|
Functional Reconstitution of HlyB, a Type I Secretion ABC Transporter, in Saposin-A Nanoparticles. Sci Rep 2019; 9:8436. [PMID: 31182729 PMCID: PMC6558041 DOI: 10.1038/s41598-019-44812-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/23/2019] [Indexed: 11/08/2022] Open
Abstract
Type I secretion systems (T1SS) are ubiquitous transport machineries in Gram-negative bacteria. They comprise a relatively simple assembly of three membrane-localised proteins: an inner-membrane complex composed of an ABC transporter and a membrane fusion protein, and a TolC-like outer membrane component. T1SS transport a wide variety of substrates with broad functional diversity. The ABC transporter hemolysin B (HlyB), for example, is part of the hemolysin A-T1SS in Escherichia coli. In contrast to canonical ABC transporters, an accessory domain, a C39 peptidase-like domain (CLD), is located at the N-terminus of HlyB and is essential for secretion. In this study, we have established an optimised purification protocol for HlyB and the subsequent reconstitution employing the saposin-nanoparticle system. We point out the negative influence of free detergent on the basal ATPase activity of HlyB, studied the influence of a lysolipid or lipid matrix on activity and present functional studies with the full-length substrate proHlyA in its folded and unfolded states, which both have a stimulatory effect on the ATPase activity.
Collapse
|
156
|
Lazzaro M, Krapf D, García Véscovi E. Selective blockage of Serratia marcescens ShlA by nickel inhibits the pore-forming toxin-mediated phenotypes in eukaryotic cells. Cell Microbiol 2019; 21:e13045. [PMID: 31099073 DOI: 10.1111/cmi.13045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/29/2019] [Accepted: 05/08/2019] [Indexed: 12/29/2022]
Abstract
Serratia marcescens is an opportunistic pathogen with increasing incidence in clinical settings. This is mainly attributed to the timely expression of a wide diversity of virulence factors and intrinsic and acquired resistance to antibiotics, including β-lactams, aminoglycosides, quinolones, and polypeptides. For these reasons, S. marcescens has been recently categorised by the World Health Organization as one priority to strengthen efforts directed to develop new antibacterial agents. Therefore, it becomes critical to understand the underlying mechanisms that allow Serratia to succeed within the host. S. marcescens ShlA pore-forming toxin mediates phenotypes that alter homeostatic and signal transduction pathways of host cells. It has been previously demonstrated that ShlA provokes cytotoxicity, haemolysis and autophagy and also directs Serratia egress and dissemination from invaded nonphagocytic cells. However, molecular details of ShlA mechanism of action are still not fully elucidated. In this work, we demonstrate that Ni2+ selectively and reversibly blocks ShlA action, turning wild-type S. marcescens into a shlA mutant strain phenocopy. Combined use of Ni2+ and calcium chelators allow to discern ShlA-triggered phenotypes that require intracellular calcium mobilisation and reveal ShlA function as a calcium channel, providing new insights into ShlA mode of action on target cells.
Collapse
Affiliation(s)
- Martina Lazzaro
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Darío Krapf
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Eleonora García Véscovi
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
157
|
Antimicrobial Peptides, Polymorphic Toxins, and Self-Nonself Recognition Systems in Archaea: an Untapped Armory for Intermicrobial Conflicts. mBio 2019; 10:mBio.00715-19. [PMID: 31064832 PMCID: PMC6509191 DOI: 10.1128/mbio.00715-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Diverse and highly variable systems involved in biological conflicts and self-versus-nonself discrimination are ubiquitous in bacteria but much less studied in archaea. We performed comprehensive comparative genomic analyses of the archaeal systems that share components with analogous bacterial systems and propose an approach to identify new systems that could be involved in these functions. We predict polymorphic toxin systems in 141 archaeal genomes and identify new, archaea-specific toxin and immunity protein families. These systems are widely represented in archaea and are predicted to play major roles in interactions between species and in intermicrobial conflicts. This work is expected to stimulate experimental research to advance the understanding of poorly characterized major aspects of archaeal biology. Numerous, diverse, highly variable defense and offense genetic systems are encoded in most bacterial genomes and are involved in various forms of conflict among competing microbes or their eukaryotic hosts. Here we focus on the offense and self-versus-nonself discrimination systems encoded by archaeal genomes that so far have remained largely uncharacterized and unannotated. Specifically, we analyze archaeal genomic loci encoding polymorphic and related toxin systems and ribosomally synthesized antimicrobial peptides. Using sensitive methods for sequence comparison and the “guilt by association” approach, we identified such systems in 141 archaeal genomes. These toxins can be classified into four major groups based on the structure of the components involved in the toxin delivery. The toxin domains are often shared between and within each system. We revisit halocin families and substantially expand the halocin C8 family, which was identified in diverse archaeal genomes and also certain bacteria. Finally, we employ features of protein sequences and genomic locus organization characteristic of archaeocins and polymorphic toxins to identify candidates for analogous but not necessarily homologous systems among uncharacterized protein families. This work confidently predicts that more than 1,600 archaeal proteins, currently annotated as “hypothetical” in public databases, are components of conflict and self-versus-nonself discrimination systems.
Collapse
|
158
|
Guo S, Vance TD, Stevens CA, Voets I, Davies PL. RTX Adhesins are Key Bacterial Surface Megaproteins in the Formation of Biofilms. Trends Microbiol 2019; 27:453-467. [DOI: 10.1016/j.tim.2018.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/13/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022]
|
159
|
Roderova J, Osickova A, Sukova A, Mikusova G, Fiser R, Sebo P, Osicka R, Masin J. Residues 529 to 549 participate in membrane penetration and pore-forming activity of the Bordetella adenylate cyclase toxin. Sci Rep 2019; 9:5758. [PMID: 30962483 PMCID: PMC6453906 DOI: 10.1038/s41598-019-42200-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/27/2019] [Indexed: 11/30/2022] Open
Abstract
The adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) of pathogenic Bordetellae delivers its adenylyl cyclase (AC) enzyme domain into the cytosol of host cells and catalyzes uncontrolled conversion of cellular ATP to cAMP. In parallel, the toxin forms small cation-selective pores that permeabilize target cell membrane and account for the hemolytic activity of CyaA on erythrocytes. The pore-forming domain of CyaA is predicted to consist of five transmembrane α-helices, of which the helices I, III, IV and V have previously been characterized. We examined here the α-helix II that is predicted to form between residues 529 to 549. Substitution of the glycine 531 residue by a proline selectively reduced the hemolytic capacity but did not affect the AC translocating activity of the CyaA-G531P toxin. In contrast, CyaA toxins with alanine 538 or 546 replaced by diverse residues were selectively impaired in the capacity to translocate the AC domain across cell membrane but remained fully hemolytic. Such toxins, however, formed pores in planar asolectin bilayer membranes with a very low frequency and with at least two different conducting states. The helix-breaking substitution of alanine 538 by a proline residue abolished the voltage-activated increase of membrane activity of CyaA in asolectin bilayers. These results reveal that the predicted α-helix comprising the residues 529 to 549 plays a key role in CyaA penetration into the target plasma membrane and pore-forming activity of the toxin.
Collapse
Affiliation(s)
- Jana Roderova
- Institute of Microbiology of the CAS, v.v.i., Videnska 1083, 142 20, Prague, Czech Republic
| | - Adriana Osickova
- Institute of Microbiology of the CAS, v.v.i., Videnska 1083, 142 20, Prague, Czech Republic
| | - Anna Sukova
- Institute of Microbiology of the CAS, v.v.i., Videnska 1083, 142 20, Prague, Czech Republic
| | - Gabriela Mikusova
- Charles University, Department of Genetics and Microbiology, Faculty of Science, Vinicna 5, 128 43, Prague, Czech Republic
| | - Radovan Fiser
- Institute of Microbiology of the CAS, v.v.i., Videnska 1083, 142 20, Prague, Czech Republic.,Charles University, Department of Genetics and Microbiology, Faculty of Science, Vinicna 5, 128 43, Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the CAS, v.v.i., Videnska 1083, 142 20, Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the CAS, v.v.i., Videnska 1083, 142 20, Prague, Czech Republic
| | - Jiri Masin
- Institute of Microbiology of the CAS, v.v.i., Videnska 1083, 142 20, Prague, Czech Republic.
| |
Collapse
|
160
|
Verma V, Gupta S, Kumar P, Rawat A, Singh Dhanda R, Yadav M. Efficient production of endotoxin depleted bioactive α-hemolysin of uropathogenicEscherichia coli. Prep Biochem Biotechnol 2019; 49:616-622. [DOI: 10.1080/10826068.2019.1591993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Vivek Verma
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Surbhi Gupta
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Parveen Kumar
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Ankita Rawat
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | | | - Manisha Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| |
Collapse
|
161
|
Richard KL, Kelley BR, Johnson JG. Heme Uptake and Utilization by Gram-Negative Bacterial Pathogens. Front Cell Infect Microbiol 2019; 9:81. [PMID: 30984629 PMCID: PMC6449446 DOI: 10.3389/fcimb.2019.00081] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
Iron is a transition metal utilized by nearly all forms of life for essential cellular processes, such as DNA synthesis and cellular respiration. During infection by bacterial pathogens, the host utilizes various strategies to sequester iron in a process termed, nutritional immunity. To circumvent these defenses, Gram-negative pathogens have evolved numerous mechanisms to obtain iron from heme. In this review we outline the systems that exist in several Gram-negative pathogens that are associated with heme transport and utilization, beginning with hemolysis and concluding with heme degradation. In addition, Gram-negative pathogens must also closely regulate the intracellular concentrations of iron and heme, since high levels of iron can lead to the generation of toxic reactive oxygen species. As such, we also provide several examples of regulatory pathways that control heme utilization, showing that co-regulation with other cellular processes is complex and often not completely understood.
Collapse
Affiliation(s)
- Kaylie L Richard
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Brittni R Kelley
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Jeremiah G Johnson
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
162
|
Spitz O, Erenburg IN, Beer T, Kanonenberg K, Holland IB, Schmitt L. Type I Secretion Systems-One Mechanism for All? Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0003-2018. [PMID: 30848237 PMCID: PMC11588160 DOI: 10.1128/microbiolspec.psib-0003-2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Indexed: 02/07/2023] Open
Abstract
Type I secretion systems (T1SS) are widespread in Gram-negative bacteria, especially in pathogenic bacteria, and they secrete adhesins, iron-scavenger proteins, lipases, proteases, or pore-forming toxins in the unfolded state in one step across two membranes without any periplasmic intermediate into the extracellular space. The substrates of T1SS are in general characterized by a C-terminal secretion sequence and nonapeptide repeats, so-called GG repeats, located N terminal to the secretion sequence. These GG repeats bind Ca2+ ions in the extracellular space, which triggers folding of the entire protein. Here we summarize our current knowledge of how Gram-negative bacteria secrete these substrates, which can possess a molecular mass of up to 1,500 kDa. We also describe recent findings that demonstrate that the absence of periplasmic intermediates, the "classic" mode of action, does not hold true for all T1SS and that we are beginning to realize modifications of a common theme.
Collapse
Affiliation(s)
- Olivia Spitz
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Isabelle N Erenburg
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Beer
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kerstin Kanonenberg
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - I Barry Holland
- Institute of Genetics and Microbiology, University of Paris-Sud, Orsay, France
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
163
|
Bulutoglu B, Banta S. Calcium-Dependent RTX Domains in the Development of Protein Hydrogels. Gels 2019; 5:E10. [PMID: 30823512 PMCID: PMC6473919 DOI: 10.3390/gels5010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022] Open
Abstract
The RTX domains found in some pathogenic proteins encode repetitive peptide sequences that reversibly bind calcium and fold into the unique the β-roll secondary structure. Several of these domains have been studied in isolation, yielding key insights into their structure/function relationships. These domains are increasingly being used in protein engineering applications, where the calcium-induced control over structure can be exploited to gain new functions. Here we review recent advances in the use of RTX domains in the creation of calcium responsive biomaterials.
Collapse
Affiliation(s)
- Beyza Bulutoglu
- Department of Chemical Engineering, Columbia University, 500 W 120th Street, New York, NY 10027, USA.
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, 500 W 120th Street, New York, NY 10027, USA.
| |
Collapse
|
164
|
Gavin HE, Satchell KJF. RRSP and RID Effector Domains Dominate the Virulence Impact of Vibrio vulnificus MARTX Toxin. J Infect Dis 2019; 219:889-897. [PMID: 30289477 PMCID: PMC6386806 DOI: 10.1093/infdis/jiy590] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 10/04/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The bacterial pathogen Vibrio vulnificus causes severe septic foodborne infections. The multifunctional autoprocessing repeats-in-toxins (MARTX) toxin is an important secreted virulence factor. The effector domain region is essential for lethal intestinal infection in mice, but the contribution of each of the 5 effector domains to infection has not been investigated. METHODS V. vulnificus mutants with varying effector domain content were inoculated intragastrically to mice, and the time to death was monitored to establish the contribution of each effector domain to overall virulence. Each strain was also tested for bacterial dissemination from the intestine to internal organs and for inhibition of phagocytosis. RESULTS The effector domain region was required for V. vulnificus to inhibit phagocytosis by J774 macrophages, but no single effector domain was required. No single MARTX effector domain was necessary for bacterial dissemination. Nonetheless, overall survival of infected mice differed with respect to the infecting V. vulnificus strain. Removal of rid or rrsp significantly reduced the virulence potential of V. vulnificus, while deletion of duf1 or abh accelerated the time to death. CONCLUSION Rho GTPases inactivation domain and Ras/Rap1-specific endopeptidase each exert greater effects on virulence than other MARTX domains, suggesting that modulation of the Rho/Ras family of GTPases is a critical function of the toxin during intestinal infection.
Collapse
Affiliation(s)
- Hannah E Gavin
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
165
|
Newberry EA, Ebrahim M, Timilsina S, Zlatković N, Obradović A, Bull CT, Goss EM, Huguet-Tapia JC, Paret ML, Jones JB, Potnis N. Inference of Convergent Gene Acquisition Among Pseudomonas syringae Strains Isolated From Watermelon, Cantaloupe, and Squash. Front Microbiol 2019; 10:270. [PMID: 30837979 PMCID: PMC6390507 DOI: 10.3389/fmicb.2019.00270] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/01/2019] [Indexed: 01/01/2023] Open
Abstract
Pseudomonas syringae sensu stricto (phylogroup 2; referred to as P. syringae) consists of an environmentally ubiquitous bacterial population associated with diseases of numerous plant species. Recent studies using multilocus sequence analysis have indicated the clonal expansion of several P. syringae lineages, located in phylogroups 2a and 2b, in association with outbreaks of bacterial spot disease of watermelon, cantaloupe, and squash in the United States. To investigate the evolutionary processes that led to the emergence of these epidemic lineages, we sequenced the genomes of six P. syringae strains that were isolated from cucurbits grown in the United States, Europe, and China over a period of more than a decade, as well as eight strains that were isolated from watermelon and squash grown in six different Florida counties during the 2013 and 2014 seasons. These data were subjected to comparative analyses along with 42 previously sequenced genomes of P. syringae stains collected from diverse plant species and environments available from GenBank. Maximum likelihood reconstruction of the P. syringae core genome revealed the presence of a hybrid phylogenetic group, comprised of cucurbit strains collected in Florida, Italy, Serbia, and France, which emerged through genome-wide homologous recombination between phylogroups 2a and 2b. Functional analysis of the recombinant core genome showed that pathways involved in the ATP-dependent transport and metabolism of amino acids, bacterial motility, and secretion systems were enriched for recombination. A survey of described virulence factors indicated the convergent acquisition of several accessory type 3 secreted effectors (T3SEs) among phylogenetically distinct lineages through integrative and conjugative element and plasmid loci. Finally, pathogenicity assays on watermelon and squash showed qualitative differences in virulence between strains of the same clonal lineage, which correlated with T3SEs acquired through various mechanisms of horizontal gene transfer (HGT). This study provides novel insights into the interplay of homologous recombination and HGT toward pathogen emergence and highlights the dynamic nature of P. syringae sensu lato genomes.
Collapse
Affiliation(s)
- Eric A Newberry
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States.,Department of Plant Pathology, North Florida Research and Education Center, University of Florida, Quincy, FL, United States
| | - Mohamed Ebrahim
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States.,Department of Plant Pathology, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Sujan Timilsina
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Nevena Zlatković
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Aleksa Obradović
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Carolee T Bull
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, State College, PA, United States
| | - Erica M Goss
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Jose C Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Mathews L Paret
- Department of Plant Pathology, North Florida Research and Education Center, University of Florida, Quincy, FL, United States
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| |
Collapse
|
166
|
Voegele A, Sadi M, Raoux-Barbot D, Douché T, Matondo M, Ladant D, Chenal A. The Adenylate Cyclase (CyaA) Toxin from Bordetella pertussis Has No Detectable Phospholipase A (PLA) Activity In Vitro. Toxins (Basel) 2019; 11:E111. [PMID: 30781809 PMCID: PMC6409671 DOI: 10.3390/toxins11020111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/11/2019] [Indexed: 12/11/2022] Open
Abstract
The adenylate cyclase (CyaA) toxin produced in Bordetella pertussis is the causative agent of whooping cough. CyaA exhibits the remarkable capacity to translocate its N-terminal adenyl cyclase domain (ACD) directly across the plasma membrane into the cytosol of eukaryotic cells. Once translocated, calmodulin binds and activates ACD, leading to a burst of cAMP that intoxicates the target cell. Previously, Gonzalez-Bullon et al. reported that CyaA exhibits a phospholipase A activity that could destabilize the membrane to facilitate ACD membrane translocation. However, Bumba and collaborators lately reported that they could not replicate these results. To clarify this controversy, we assayed the putative PLA activity of two CyaA samples purified in two different laboratories by using two distinct fluorescent probes reporting either PLA2 or both PLA1 and PLA2 activities, as well as in various experimental conditions (i.e., neutral or negatively charged membranes in different buffers.) However, we could not detect any PLA activity in these CyaA batches. Thus, our data independently confirm that CyaA does not possess any PLA activity.
Collapse
Affiliation(s)
- Alexis Voegele
- Chemistry and Structural Biology Department, Institut Pasteur, UMR CNRS 3528, CEDEX 15, 75724 Paris, France.
- Université Paris Diderot Paris VII, 75013 Paris, France.
| | - Mirko Sadi
- Chemistry and Structural Biology Department, Institut Pasteur, UMR CNRS 3528, CEDEX 15, 75724 Paris, France.
| | - Dorothée Raoux-Barbot
- Chemistry and Structural Biology Department, Institut Pasteur, UMR CNRS 3528, CEDEX 15, 75724 Paris, France.
| | - Thibaut Douché
- Mass Spectrometry for Biology Unit, Proteomics Platform, Institut Pasteur, USR CNRS 2000, CEDEX 15, 75724 Paris, France.
| | - Mariette Matondo
- Mass Spectrometry for Biology Unit, Proteomics Platform, Institut Pasteur, USR CNRS 2000, CEDEX 15, 75724 Paris, France.
| | - Daniel Ladant
- Chemistry and Structural Biology Department, Institut Pasteur, UMR CNRS 3528, CEDEX 15, 75724 Paris, France.
| | - Alexandre Chenal
- Chemistry and Structural Biology Department, Institut Pasteur, UMR CNRS 3528, CEDEX 15, 75724 Paris, France.
| |
Collapse
|
167
|
Kumar R, Feltrup TM, Kukreja RV, Patel KB, Cai S, Singh BR. Evolutionary Features in the Structure and Function of Bacterial Toxins. Toxins (Basel) 2019; 11:toxins11010015. [PMID: 30609803 PMCID: PMC6356308 DOI: 10.3390/toxins11010015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/24/2018] [Accepted: 12/25/2018] [Indexed: 12/21/2022] Open
Abstract
Toxins can function both as a harmful and therapeutic molecule, depending on their concentrations. The diversity in their function allows us to ask some very pertinent questions related to their origin and roles: (a) What makes them such effective molecules? (b) Are there evolutionary features encoded within the structures of the toxins for their function? (c) Is structural hierarchy in the toxins important for maintaining their structure and function? (d) Do protein dynamics play a role in the function of toxins? and (e) Do the evolutionary connections to these unique features and functions provide the fundamental points in driving evolution? In light of the growing evidence in structural biology, it would be appropriate to suggest that protein dynamics and flexibility play a much bigger role in the function of the toxin than the structure itself. Discovery of IDPs (intrinsically disorder proteins), multifunctionality, and the concept of native aggregation are shaking the paradigm of the requirement of a fixed three-dimensional structure for the protein’s function. Growing evidence supporting the above concepts allow us to redesign the structure-function aspects of the protein molecules. An evolutionary model is necessary and needs to be developed to study these important aspects. The criteria for a well-defined model would be: (a) diversity in structure and function, (b) unique functionality, and (c) must belong to a family to define the evolutionary relationships. All these characteristics are largely fulfilled by bacterial toxins. Bacterial toxins are diverse and widely distributed in all three forms of life (Bacteria, Archaea and Eukaryotes). Some of the unique characteristics include structural folding, sequence and functional combination of domains, targeting a cellular process to execute their function, and most importantly their flexibility and dynamics. In this work, we summarize certain unique aspects of bacterial toxins, including role of structure in defining toxin function, uniqueness in their enzymatic function, and interaction with their substrates and other proteins. Finally, we have discussed the evolutionary aspects of toxins in detail, which will help us rethink the current evolutionary theories. A careful study, and appropriate interpretations, will provide answers to several questions related to the structure-function relationship of proteins, in general. Additionally, this will also allow us to refine the current evolution theories.
Collapse
Affiliation(s)
- Raj Kumar
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA.
| | - Thomas M Feltrup
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA.
| | - Roshan V Kukreja
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA.
| | - Kruti B Patel
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA.
| | - Shuowei Cai
- Department of Chemistry and Biochemistry, University of Massachusetts, Dartmouth, MA 02747, USA.
| | - Bal Ram Singh
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA.
| |
Collapse
|
168
|
Gil C, Dorca-Arévalo J, Blasi J. Calcium enhances binding of Clostridium perfringens epsilon toxin to sulfatide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:161-169. [PMID: 30463699 DOI: 10.1016/j.bbamem.2018.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/20/2018] [Accepted: 08/07/2018] [Indexed: 01/07/2023]
Abstract
Epsilon toxin (Etx) from Clostridium perfringens is synthesized as a very low-active prototoxin form (proEtx) that becomes active upon proteolytic activation and has the capacity to cross the blood-brain barrier (BBB), thereby producing severe neurological effects. The identity and requirements of host receptors of Etx remain a matter of controversy. In the present study, we analysed the binding of proEtx or Etx to liposomes containing distearoylphosphatidylcholine (DSPC), cholesterol and sulfatide, or alternatively to detergent-solubilized lipids, using surface plasmon resonance (SPR). We also tested the influence of calcium on Etx or proEtx binding. Our findings show that the presence of sulfatide in liposomes increases both Etx and proEtx binding, and Etx binding is enhanced by calcium. These results were corroborated when SPR was conducted with immobilized toxin, since detergent-solubilized sulfatide increases its binding to Etx in the presence of calcium, but not to proEtx. Moreover, binding affinity is also affected, since the treatment of liposomes with sulfatase causes the dissociation rate constants (KD) in both proEtx and Etx to increase, especially in the case of proEtx in the presence of calcium. In addition, protein-lipid overlay assays corroborated the calcium-induced enhancement of Etx binding to sulfatide, and to lipids extracted from sulfatide-enriched rat brain lipid rafts. In conclusion, the present work highlights the role of sulfatide as an important element in the pathophysiology of Etx and reveals the influence of calcium in the interaction of Etx, but not of proEtx, with the target membrane.
Collapse
Affiliation(s)
- C Gil
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Catalunya, Spain.
| | - J Dorca-Arévalo
- Laboratory of Cellular and Molecular Neurobiology, Department of Pathology and Experimental Therapeutics, School of Medicine, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain; Biomedical Research Institute of Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, Spain
| | - J Blasi
- Laboratory of Cellular and Molecular Neurobiology, Department of Pathology and Experimental Therapeutics, School of Medicine, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain; Biomedical Research Institute of Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, Spain
| |
Collapse
|
169
|
Rouhani M, Valizadeh V, Ahangari Cohan R, Norouzian D. Computational design, structure refinement and molecular dynamics simulation of novel engineered serratiopeptidase analogs. J Biomol Struct Dyn 2018; 37:4171-4180. [PMID: 30451085 DOI: 10.1080/07391102.2018.1540361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maryam Rouhani
- Nano-Biotechnology Department, New Technologies Research Group, Pasteur Institute of Iran , Tehran , Iran
| | - Vahideh Valizadeh
- Nano-Biotechnology Department, New Technologies Research Group, Pasteur Institute of Iran , Tehran , Iran
| | - Reza Ahangari Cohan
- Nano-Biotechnology Department, New Technologies Research Group, Pasteur Institute of Iran , Tehran , Iran
| | - Dariush Norouzian
- Nano-Biotechnology Department, New Technologies Research Group, Pasteur Institute of Iran , Tehran , Iran
| |
Collapse
|
170
|
Guttula D, Yao M, Baker K, Yang L, Goult BT, Doyle PS, Yan J. Calcium-mediated Protein Folding and Stabilization of Salmonella Biofilm-associated Protein A. J Mol Biol 2018; 431:433-443. [PMID: 30452884 DOI: 10.1016/j.jmb.2018.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 12/26/2022]
Abstract
Biofilm-associated proteins (BAPs) are important for early biofilm formation (adhesion) by bacteria and are also found in mature biofilms. BapA from Salmonella is a ~386-kDa surface protein, comprising 27 tandem repeats predicted to be bacterial Ig-like (BIg) domains. Such tandem repeats are conserved for BAPs across different bacterial species, but the function of these domains is not completely understood. In this work, we report the first study of the mechanical stability of the BapA protein. Using magnetic tweezers, we show that the folding of BapA BIg domains requires calcium binding and the folded domains have differential mechanical stabilities. Importantly, we identify that >100 nM concentration of calcium is needed for folding of the BIg domains, and the stability of the folded BIg domains is regulated by calcium over a wide concentration range from sub-micromolar (μM) to millimolar (mM). Only at mM calcium concentrations, as found in the extracellular environment, do the BIg domains have the saturated mechanical stability. BapA has been suggested to be involved in Salmonella invasion, and it is likely a crucial mechanical component of biofilms. Therefore, our results provide new insights into the potential roles of BapA as a structural maintenance component of Salmonella biofilm and also Salmonella invasion.
Collapse
Affiliation(s)
- Durgarao Guttula
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 138602, Republic of Singapore; Mechanobiology Institute (MBI), National University of Singapore (NUS), 117411, Republic of Singapore
| | - Mingxi Yao
- Mechanobiology Institute (MBI), National University of Singapore (NUS), 117411, Republic of Singapore
| | - Karen Baker
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Patrick S Doyle
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 138602, Republic of Singapore; Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA.
| | - Jie Yan
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 138602, Republic of Singapore; Mechanobiology Institute (MBI), National University of Singapore (NUS), 117411, Republic of Singapore; Department of Physics, National University of Singapore (NUS), 117542, Republic of Singapore.
| |
Collapse
|
171
|
Osickova A, Balashova N, Masin J, Sulc M, Roderova J, Wald T, Brown AC, Koufos E, Chang EH, Giannakakis A, Lally ET, Osicka R. Cytotoxic activity of Kingella kingae RtxA toxin depends on post-translational acylation of lysine residues and cholesterol binding. Emerg Microbes Infect 2018; 7:178. [PMID: 30405113 PMCID: PMC6221878 DOI: 10.1038/s41426-018-0179-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 11/28/2022]
Abstract
Kingella kingae is a member of the commensal oropharyngeal flora of young children. Improvements in detection methods have led to the recognition of K. kingae as an emerging pathogen that frequently causes osteoarticular infections in children and a severe form of infective endocarditis in children and adults. Kingella kingae secretes a membrane-damaging RTX (Repeat in ToXin) toxin, RtxA, which is implicated in the development of clinical infections. However, the mechanism by which RtxA recognizes and kills host cells is largely unexplored. To facilitate structure-function studies of RtxA, we have developed a procedure for the overproduction and purification of milligram amounts of biologically active recombinant RtxA. Mass spectrometry analysis revealed the activation of RtxA by post-translational fatty acyl modification on the lysine residues 558 and/or 689 by the fatty-acyltransferase RtxC. Acylated RtxA was toxic to various human cells in a calcium-dependent manner and possessed pore-forming activity in planar lipid bilayers. Using various biochemical and biophysical approaches, we demonstrated that cholesterol facilitates the interaction of RtxA with artificial and cell membranes. The results of analyses using RtxA mutant variants suggested that the interaction between the toxin and cholesterol occurs via two cholesterol recognition/interaction amino acid consensus motifs located in the C-terminal portion of the pore-forming domain of the toxin. Based on our observations, we conclude that the cytotoxic activity of RtxA depends on post-translational acylation of the K558 and/or K689 residues and on the toxin binding to cholesterol in the membrane.
Collapse
Affiliation(s)
- Adriana Osickova
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Nataliya Balashova
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiri Masin
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | - Miroslav Sulc
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Jana Roderova
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | - Tomas Wald
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic.,Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA, USA
| | - Angela C Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - Evan Koufos
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - En Hyung Chang
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - Alexander Giannakakis
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Department of Cell and Molecular Biology at Karolinska Institutet, Stockholm, Sweden
| | - Edward T Lally
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Radim Osicka
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic.
| |
Collapse
|
172
|
Voegele A, O'Brien DP, Subrini O, Sapay N, Cannella SE, Enguéné VYN, Hessel A, Karst J, Hourdel V, Perez ACS, Davi M, Veneziano R, Chopineau J, Vachette P, Durand D, Brier S, Ladant D, Chenal A. Translocation and calmodulin-activation of the adenylate cyclase toxin (CyaA) of Bordetella pertussis. Pathog Dis 2018; 76:5188676. [PMID: 30452651 DOI: 10.1093/femspd/fty085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/16/2018] [Indexed: 01/19/2023] Open
Abstract
The adenylate cyclase toxin (CyaA) is a multi-domain protein secreted by Bordetella pertussis, the causative agent of whooping cough. CyaA is involved in the early stages of respiratory tract colonization by Bordetella pertussis. CyaA is produced and acylated in the bacteria, and secreted via a dedicated secretion system. The cell intoxication process involves a unique mechanism of transport of the CyaA toxin catalytic domain (ACD) across the plasma membrane of eukaryotic cells. Once translocated, ACD binds to and is activated by calmodulin and produces high amounts of cAMP, subverting the physiology of eukaryotic cells. Here, we review our work on the identification and characterization of a critical region of CyaA, the translocation region, required to deliver ACD into the cytosol of target cells. The translocation region contains a segment that exhibits membrane-active properties, i.e. is able to fold upon membrane interaction and permeabilize lipid bilayers. We proposed that this region is required to locally destabilize the membrane, decreasing the energy required for ACD translocation. To further study the translocation process, we developed a tethered bilayer lipid membrane (tBLM) design that recapitulate the ACD transport across a membrane separating two hermetic compartments. We showed that ACD translocation is critically dependent on calcium, membrane potential, CyaA acylation and on the presence of calmodulin in the trans compartment. Finally, we describe how calmodulin-binding triggers key conformational changes in ACD, leading to its activation and production of supraphysiological concentrations of cAMP.
Collapse
Affiliation(s)
- Alexis Voegele
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France.,Université Paris Diderot Paris VII, 75013 Paris, France
| | - Darragh P O'Brien
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France.,University of Oxford, United Kingdom
| | - Orso Subrini
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France
| | - Nicolas Sapay
- Bioaster Technology Research Institute, 69007 Lyon, France
| | - Sara E Cannella
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France.,University of Oxford, United Kingdom
| | - Véronique Yvette Ntsogo Enguéné
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France
| | - Audrey Hessel
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France
| | - Johanna Karst
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France
| | - Véronique Hourdel
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France
| | - Ana Cristina Sotomayor Perez
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France
| | - Marilyne Davi
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France
| | - Rémi Veneziano
- ICGM, UMR 5253 Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France.,Department of Bioengineering, Volgenau School of Engineering, George Mason University, Fairfax, VA 22030-4422, USA
| | - Joel Chopineau
- ICGM, UMR 5253 Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Patrice Vachette
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France
| | - Dominique Durand
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France
| | - Sébastien Brier
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France
| | - Daniel Ladant
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France
| | - Alexandre Chenal
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR 3528, 28 Rue du Dr Roux, 75724 Paris, CEDEX 15, France
| |
Collapse
|
173
|
Ca2+ signals triggered by bacterial pathogens and microdomains. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1838-1845. [DOI: 10.1016/j.bbamcr.2018.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/15/2022]
|
174
|
Trautwein K, Hensler M, Wiegmann K, Skorubskaya E, Wöhlbrand L, Wünsch D, Hinrichs C, Feenders C, Müller C, Schell K, Ruppersberg H, Vagts J, Koßmehl S, Steinbüchel A, Schmidt-Kopplin P, Wilkes H, Hillebrand H, Blasius B, Schomburg D, Rabus R. The marine bacterium Phaeobacter inhibens secures external ammonium by rapid buildup of intracellular nitrogen stocks. FEMS Microbiol Ecol 2018; 94:5074353. [PMID: 30124819 PMCID: PMC6122490 DOI: 10.1093/femsec/fiy154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 08/13/2018] [Indexed: 11/27/2022] Open
Abstract
Reduced nitrogen species are key nutrients for biological productivity in the oceans. Ammonium is often present in low and growth-limiting concentrations, albeit peaks occur during collapse of algal blooms or via input from deep sea upwelling and riverine inflow. Autotrophic phytoplankton exploit ammonium peaks by storing nitrogen intracellularly. In contrast, the strategy of heterotrophic bacterioplankton to acquire ammonium is less well understood. This study revealed the marine bacterium Phaeobacter inhibens DSM 17395, a Roseobacter group member, to have already depleted the external ammonium when only ∼⅓ of the ultimately attained biomass is formed. This was paralleled by a three-fold increase in cellular nitrogen levels and rapid buildup of various nitrogen-containing intracellular metabolites (and enzymes for their biosynthesis) and biopolymers (DNA, RNA and proteins). Moreover, nitrogen-rich cells secreted potential RTX proteins and the antibiotic tropodithietic acid, perhaps to competitively secure pulses of external ammonium and to protect themselves from predation. This complex response may ensure growing cells and their descendants exclusive provision with internal nitrogen stocks. This nutritional strategy appears prevalent also in other roseobacters from distant geographical provenances and could provide a new perspective on the distribution of reduced nitrogen in marine environments, i.e. temporary accumulation in bacterioplankton cells.
Collapse
Affiliation(s)
- Kathleen Trautwein
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Michael Hensler
- Bioinformatics and Biochemistry, Institute for Biochemistry and Biotechnology, Technische Universität Braunschweig, Rebenring 56, Braunschweig 38106, Germany
| | - Katharina Wiegmann
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Ekaterina Skorubskaya
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Daniel Wünsch
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Christina Hinrichs
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Christoph Feenders
- Mathematical Modelling, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Constanze Müller
- Analytical BioGeoChemistry, HelmholtzZentrum München, German Research Centre for Environmental Health, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Kristina Schell
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Hanna Ruppersberg
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Jannes Vagts
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Sebastian Koßmehl
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Alexander Steinbüchel
- Institute for Molecular Microbiology and Biotechnology, WWU Münster, Corrensstr. 3, Münster 48149, Germany
| | - Philippe Schmidt-Kopplin
- Analytical BioGeoChemistry, HelmholtzZentrum München, German Research Centre for Environmental Health, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Heinz Wilkes
- Organic Geochemistry, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Helmut Hillebrand
- Planktology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstr. 231, Oldenburg 23129, Germany
| | - Bernd Blasius
- Mathematical Modelling, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Dietmar Schomburg
- Bioinformatics and Biochemistry, Institute for Biochemistry and Biotechnology, Technische Universität Braunschweig, Rebenring 56, Braunschweig 38106, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| |
Collapse
|
175
|
Pérez-Reytor D, Jaña V, Pavez L, Navarrete P, García K. Accessory Toxins of Vibrio Pathogens and Their Role in Epithelial Disruption During Infection. Front Microbiol 2018; 9:2248. [PMID: 30294318 PMCID: PMC6158335 DOI: 10.3389/fmicb.2018.02248] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/03/2018] [Indexed: 01/21/2023] Open
Abstract
Gastrointestinal episodes associated with Vibrio species have been rising worldwide in the last few years. Consequently, it is important to comprehend how occurs the production of diarrhea, to establish new preventive and therapeutic measures. Besides the classical CT and TCP toxins, Zot, RTX, and Ace among others have been deeply studied in V. cholerae. However, in other Vibrio species of clinical interest, where some of these toxins have been reported, there is practically no information. Zot activates a cascade of signals inside of the cell that increase the permeability of epithelial barrier, while RTX causes depolymerization of the actin cytoskeleton and Ace increases the permeability of intestinal cell monolayers. The goal of this study is to acquire information about the distribution of these toxins in human pathogenic Vibrios and to review the progress in the study of their role in the intestinal epithelium during infection.
Collapse
Affiliation(s)
- Diliana Pérez-Reytor
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Victor Jaña
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Leonardo Pavez
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile.,Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Paola Navarrete
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
176
|
Lee A, Kim MS, Cho D, Jang KK, Choi SH, Kim TS. Vibrio vulnificus RtxA Is a Major Factor Driving Inflammatory T Helper Type 17 Cell Responses in vitro and in vivo. Front Immunol 2018; 9:2095. [PMID: 30283443 PMCID: PMC6157323 DOI: 10.3389/fimmu.2018.02095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/24/2018] [Indexed: 12/18/2022] Open
Abstract
T helper type 17 (Th17) cells are a subset of pro-inflammatory T helper cells that mediate host defense and pathological inflammation. We have previously reported that host dendritic cells (DCs) infected with Vibrio vulnificus induce Th17 responses through the production of several pro-inflammatory cytokines, including interleukin (IL)-1β and IL-6. V. vulnificus produces RTX toxin (RtxA), an important virulence factor that determines successful pathophysiology. In this study, we investigated the involvement of RtxA from V. vulnificus in Th17 cell induction through the activation and maturation of DCs. The increased expression of the DC surface marker CD40 caused by V. vulnificus wild-type infection was reduced by rtxA gene mutation in V. vulnificus. The mRNA and protein levels of Th17 polarization-related cytokines also decreased in V. vulnificus rtxA mutant-infected DCs. In addition, the co-culture of Th cells and DCs infected with rtxA mutant V. vulnificus resulted in reduction in DC-mediated Th17 responses. Th17 cell responses in the small intestinal lamina propria decreased in mice inoculated with V. vulnificus rtxA mutant as compared to those inoculated with the wild-type strain. These decreases in DC maturation, Th17-polarizing cytokine secretion, and Th17 responses attributed to rtxA mutation were restored following infection with the rtxA revertant strain. Furthermore, the mutation in the hlyU gene encoding the activator of rtxA1 gene reproduced the results observed with rtxA mutation. Taken together, V. vulnificus, by means of RtxA, induces inflammatory Th17 responses, which may be associated with adaptive responses of the host against V. vulnificus infection.
Collapse
Affiliation(s)
- Arim Lee
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Myun Soo Kim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Daeho Cho
- Institute of Convergence Science, Korea University, Seoul, South Korea
| | - Kyung Ku Jang
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Tae Sung Kim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
177
|
Type 1 Does the Two-Step: Type 1 Secretion Substrates with a Functional Periplasmic Intermediate. J Bacteriol 2018; 200:JB.00168-18. [PMID: 29866808 DOI: 10.1128/jb.00168-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bacteria have evolved several secretion strategies for polling and responding to environmental flux and insult. Of these, the type 1 secretion system (T1SS) is known to secrete an array of biologically diverse proteins-from small, <10-kDa bacteriocins to gigantic adhesins with a mass >1 MDa. For the last several decades, T1SSs have been characterized as a one-step translocation strategy whereby the secreted substrate is transported directly into the extracellular environment from the cytoplasm with no periplasmic intermediate. Recent phylogenetic, biochemical, and genetic evidences point to a distinct subgroup of T1SS machinery linked with a bacterial transglutaminase-like cysteine proteinase (BTLCP), which uses a two-step secretion mechanism. BTLCP-linked T1SSs transport a class of repeats-in-toxin (RTX) adhesins that are critical for biofilm formation. The prototype of this RTX adhesin group, LapA of Pseudomonas fluorescens Pf0-1, uses a novel N-terminal retention module to anchor the adhesin at the cell surface as a secretion intermediate threaded through the outer membrane-localized TolC-like protein LapE. This secretion intermediate is posttranslationally cleaved by the BTLCP family LapG protein to release LapA from its cognate T1SS pore. Thus, the secretion of LapA and related RTX adhesins into the extracellular environment appears to be a T1SS-mediated two-step process that involves a periplasmic intermediate. In this review, we contrast the T1SS machinery and substrates of the BLTCP-linked two-step secretion process with those of the classical one-step T1SS to better understand the newly recognized and expanded role of this secretion machinery.
Collapse
|
178
|
Abdullahi M, Olotu FA, Soliman ME. Solving the riddle: Unraveling the mechanisms of blocking the binding of leukotoxin by therapeutic antagonists in periodontal diseases. J Cell Biochem 2018; 119:9364-9379. [PMID: 30129224 DOI: 10.1002/jcb.27254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022]
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative bacteria that has gained wide recognition for its causative role in the development of various immune diseases, which includes localized aggressive periodontitis. Its ability to evade host defense mechanisms is mediated by the secretion of leukotoxin (LtxA), which induces death of white blood cells (leukocytes) by specific binding to their surface-expressed leukocyte function-associated receptor (LFA-1) in its active state. Therapeutic compounds that interfere with this pathogenic process and abrogate A. actinomycetemcomitans virulence have been reported in literature. These include doxycycline, and more recently phytochemical compounds such as hamamelitanin, resveratrol, naringin, and quercetin. However, the question remains how do they work? Therefore, with the aid of computational tools, we explore the molecular mechanisms by which they possibly elicit their therapeutic functions. Molecular mechanics Poisson/Boltzmann surface area analyses revealed that these compounds bind favorably to active LFA-1 with high affinity and considerable stability, indicative of their ability to occupy the LtxA binding site (LBS) and prevent LtxA binding. The conformational transition of open LFA-1 to its closed state further describe the mechanistic activity of these compounds. In addition to notable reductions in structural mobility and flexibility, the burial of surface-exposed interactive side chains at the LBS was observed, an occurrence that could alter the complementary binding of LtxA. It is also important to mention that these occurrences were induced more prominently by the phytochemicals. We believe that these findings will enhance the scope of drug design and discovery for potent LtxA antagonists with improved activities and therapeutic efficacies in the treatment of virulent A. actinomycetemcomitans diseases.
Collapse
Affiliation(s)
- Maryam Abdullahi
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Fisayo A Olotu
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mahmoud E Soliman
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
179
|
Li D, Shen M, Xu Y, Liu C, Wang W, Wu J, Luo X, Jia X, Ma Y. Virulence gene profiles and molecular genetic characteristics of diarrheagenic Escherichia coli from a hospital in western China. Gut Pathog 2018; 10:35. [PMID: 30127859 PMCID: PMC6097206 DOI: 10.1186/s13099-018-0262-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/09/2018] [Indexed: 02/05/2023] Open
Abstract
Background Diarrheagenic Escherichia coli (DEC) is one of the most important etiological agents of diarrheal diseases. In this study we investigated the prevalence, virulence gene profiles, antimicrobial resistance, and molecular genetic characteristics of DEC at a hospital in western China. Methods A total of 110 Escherichia coli clinical isolates were collected from the First Affiliated Hospital of Chengdu Medical College from 2015 to 2016. Microbiological methods, PCR, antimicrobial susceptibility test, pulsed-field gel electrophoresis and multilocus sequence typing were used in this study. Results Molecular analysis of six DEC pathotype marker genes showed that 13 of the 110 E. coli isolates (11.82%) were DEC including nine (8.18%) diffusely adherent Escherichia coli (DAEC) and four (3.64%) enteroaggregative Escherichia coli (EAEC). The adherence genes fimC and fimH were present in all DAEC and EAEC isolates. All nine DAEC isolates harbored the virulence genes fyuA and irp2 and four (44.44%) also carried the hlyA and sat genes. The virulence genes fyuA, irp2, cnf1, hlyA, and sat were found in 100%, 100%, 75%, 50%, and 50% of EAEC isolates, respectively. In addition, all DEC isolates were multidrug resistant and had high frequencies of antimicrobial resistance. Molecular genetic characterization showed that the 13 DEC isolates were divided into 11 pulsed-field gel electrophoresis patterns and 10 sequence types. Conclusions To the best of our knowledge, this study provides the first report of DEC, including DAEC and EAEC, in western China. Our analyses identified the virulence genes present in E. coli from a hospital indicating their role in the isolated DEC strains’ pathogenesis. At the same time, the analyses revealed, the antimicrobial resistance pattern of the DEC isolates. Thus, DAEC and EAEC among the DEC strains should be considered a significant risk to humans in western China due to their evolved pathogenicity and antimicrobial resistance pattern.
Collapse
Affiliation(s)
- Dan Li
- 1Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China.,2School of Medical Laboratory Science, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Min Shen
- 3Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Ying Xu
- 4Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Chao Liu
- 3Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Wen Wang
- 5West China School of Public Health, Sichuan University, Chengdu, 610041 Sichuan China
| | - Jinyan Wu
- 3Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Xianmei Luo
- 3Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Xu Jia
- 3Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Yongxin Ma
- 1Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China
| |
Collapse
|
180
|
Chenal A, Ladant D. Bioengineering of Bordetella pertussis Adenylate Cyclase Toxin for Antigen-Delivery and Immunotherapy. Toxins (Basel) 2018; 10:E302. [PMID: 30037010 PMCID: PMC6070788 DOI: 10.3390/toxins10070302] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 11/16/2022] Open
Abstract
The adenylate cyclase toxin (CyaA) is one of the major virulence factors of Bordetella pertussis, the causative agent of whooping cough. CyaA is able to invade eukaryotic cells where, upon activation by endogenous calmodulin, it synthesizes massive amounts of cAMP that alters cellular physiology. The CyaA toxin is a 1706 residues-long bifunctional protein: the catalytic domain is located in the 400 amino-proximal residues, whereas the carboxy-terminal 1306 residues are implicated in toxin binding to the cellular receptor, the αMβ₂ (CD11b/CD18) integrin, and subsequently in the translocation of the catalytic domain across the cytoplasmic membrane of the target cells. Indeed, this protein is endowed with the unique capability of delivering its N-terminal catalytic domain directly across the plasma membrane of eukaryotic target cells. These properties have been exploited to engineer the CyaA toxin as a potent non-replicating vector able to deliver antigens into antigen presenting cells and elicit specific cell-mediated immune responses. Antigens of interest can be inserted into the CyaA protein to yield recombinant molecules that are targeted in vivo to dendritic cells, where the antigens are processed and presented by the major class I and class II histocompatibility complexes (MHC-I and II). CyaA turned out to be a remarkably effective and versatile vaccine vector capable of inducing all the components of the immune response (T-CD4, T-CD8, and antibody). In this chapter, we summarize the basic knowledge on the adenylate cyclase toxin and then describe the application of CyaA in vaccinology, including some recent results of clinical trials of immunotherapy using a recombinant CyaA vaccine.
Collapse
Affiliation(s)
- Alexandre Chenal
- Institut Pasteur, Biochemistry of Macromolecular Interactions Unit, UMR CNRS 3528, Structural Biology and Chemistry Department, 28 rue du Docteur Roux, 75724 Paris CEDEX 15, France.
| | - Daniel Ladant
- Institut Pasteur, Biochemistry of Macromolecular Interactions Unit, UMR CNRS 3528, Structural Biology and Chemistry Department, 28 rue du Docteur Roux, 75724 Paris CEDEX 15, France.
| |
Collapse
|
181
|
Krueger E, Hayes S, Chang EH, Yutuc S, Brown AC. Receptor-Based Peptides for Inhibition of Leukotoxin Activity. ACS Infect Dis 2018; 4:1073-1081. [PMID: 29742342 DOI: 10.1021/acsinfecdis.7b00230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Gram-negative bacterium Aggregatibacter actinomycetemcomitans, commonly associated with localized aggressive periodontitis (LAP), secretes an RTX (repeats-in-toxin) protein leukotoxin (LtxA) that targets human white blood cells, an interaction that is driven by its recognition of the lymphocyte function-associated antigen-1 (LFA-1) integrin. In this study, we report on the inhibition of LtxA-LFA-1 binding as an antivirulence strategy to inhibit LtxA-mediated cytotoxicity. Specifically, we designed and synthesized peptides corresponding to the reported LtxA binding domain on LFA-1 and characterized their capability to inhibit LtxA binding to LFA-1 and subsequent cytotoxic activity in human immune cells. We found that several of these peptides, corresponding to sequential β-strands in the LtxA-binding domain of LFA-1, inhibit LtxA activity, demonstrating the effectiveness of this approach. Further investigations into the mechanism by which these peptides inhibit LtxA binding to LFA-1 reveal a correlation between toxin-peptide affinity and LtxA-mediated cytotoxicity, leading to a diminished association between LtxA and LFA-1 on the cell membrane. Our results demonstrate the possibility of using target-based peptides to inhibit LtxA activity, and we expect that a similar approach could be used to hinder the activity of other RTX toxins.
Collapse
Affiliation(s)
- Eric Krueger
- Department of Chemical and Biomolecular Engineering, Lehigh University, Iacocca Hall, Room B323, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Shannon Hayes
- Department of Chemical and Biomolecular Engineering, Lehigh University, Iacocca Hall, Room B323, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - En Hyung Chang
- Department of Chemical and Biomolecular Engineering, Lehigh University, Iacocca Hall, Room B323, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Shailagne Yutuc
- Department of Chemical and Biomolecular Engineering, Lehigh University, Iacocca Hall, Room B323, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Iacocca Hall, Room B323, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
182
|
O'Brien DP, Perez ACS, Karst J, Cannella SE, Enguéné VYN, Hessel A, Raoux-Barbot D, Voegele A, Subrini O, Davi M, Guijarro JI, Raynal B, Baron B, England P, Hernandez B, Ghomi M, Hourdel V, Malosse C, Chamot-Rooke J, Vachette P, Durand D, Brier S, Ladant D, Chenal A. Calcium-dependent disorder-to-order transitions are central to the secretion and folding of the CyaA toxin of Bordetella pertussis, the causative agent of whooping cough. Toxicon 2018; 149:37-44. [DOI: 10.1016/j.toxicon.2018.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/20/2017] [Accepted: 01/10/2018] [Indexed: 02/07/2023]
|
183
|
RtxA like protein contributes to infection of Francisella novicida in silkworm and human macrophage THP-1. Microb Pathog 2018; 123:74-81. [PMID: 29969671 DOI: 10.1016/j.micpath.2018.06.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/21/2018] [Accepted: 06/29/2018] [Indexed: 01/01/2023]
Abstract
Tularemia is a zoonosis caused by CDC-declared Tier 1 threat agent Francisella tularensis. F. tularensis subsp. novicida (F. novicida) is virulent in mice but non-pathogenic in immunocompetent humans and serves as a potential surrogate organism. In a recent study, we established a silkworm (Bombyx mori) model of infection for F. novicida. Francisella secretes its virulence factors through various mechanisms that modify the intracellular environment to ensure its replication and survival. To identify new pathogenic factors, we focused on the type I secretory system (T1SS) of Francisella. In silico analysis revealed a RtxA (Repeats-in-toxin) like protein in the Francisella genome. The characteristics of RtxA like protein were investigated using mutant analysis. Firstly, the role of rtxA in silkworms was investigated by infecting them with F. novicida strains into the hemocoel. The rtxA mutant failed to kill the silkworms, whereas F. novicida wild-type (WT) strain killed silkworms within 3-7 days post infection. The arrested growth of the mutant strain in silkworms was observed using a whole-body CFU count assay. We also investigated the growth characteristics of the rtxA mutant in hemocytes, one of the primary multiplication sites of Francisella within silkworms. Interrupted growth of the rtxA mutant with significantly reduced cytotoxicity was observed in hemocytes via confocal microscopy. Next, we analyzed the effect of rtxA in human monocyte cell line THP-1. The mutant strain showed significantly decreased growth and reduced cytotoxicity compared with its parental strain in THP-1 cells. This study newly identified RtxA like protein of F. novicida as an important lethal pathogenic factor in silkworm and mammalian cells.
Collapse
|
184
|
Calcium-Binding Proteins with Disordered Structure and Their Role in Secretion, Storage, and Cellular Signaling. Biomolecules 2018; 8:biom8020042. [PMID: 29921816 PMCID: PMC6022996 DOI: 10.3390/biom8020042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 12/19/2022] Open
Abstract
Calcium is one of the most important second messengers and its intracellular signaling regulates many aspects of cell physiology. Calcium ions, like phosphate ions, are highly charged and thus are able to alter protein conformation upon binding; thereby they constitute key factors in signal transduction. One of the most common calcium-binding structural motifs is the EF-hand, a well-defined helix-loop-helix structural domain, present in many calcium-binding proteins (CBPs). Nonetheless, some CBPs contain non-canonical, disordered motifs, which usually bind calcium with high capacity and low affinity, and which represent a subset of proteins with specific functions, but these functions rarely involve signaling. When compared with phosphorylation-mediated signal transduction, the role of intrinsic disorder in calcium signaling is significantly less prominent and not direct. The list of known examples of intrinsically disordered CBPs is relatively short and the disorder in these examples seems to be linked to secretion and storage. Calcium-sensitive phosphatase calcineurin is an exception, but it represents an example of transient disorder, which is, nevertheless, vital to the functioning of this protein. The underlying reason for the different role of disordered proteins in the two main cellular signaling systems appears to be linked to the gradient of calcium concentration, present in all living cells.
Collapse
|
185
|
McQuade R, Stock SP. Secretion Systems and Secreted Proteins in Gram-Negative Entomopathogenic Bacteria: Their Roles in Insect Virulence and Beyond. INSECTS 2018; 9:insects9020068. [PMID: 29921761 PMCID: PMC6023292 DOI: 10.3390/insects9020068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022]
Abstract
Many Gram-negative bacteria have evolved insect pathogenic lifestyles. In all cases, the ability to cause disease in insects involves specific bacterial proteins exported either to the surface, the extracellular environment, or the cytoplasm of the host cell. They also have several distinct mechanisms for secreting such proteins. In this review, we summarize the major protein secretion systems and discuss examples of secreted proteins that contribute to the virulence of a variety of Gram-negative entomopathogenic bacteria, including Photorhabdus, Xenorhabdus, Serratia, Yersinia, and Pseudomonas species. We also briefly summarize two classes of exported protein complexes, the PVC-like elements, and the Tc toxin complexes that were first described in entomopathogenic bacteria.
Collapse
Affiliation(s)
- Rebecca McQuade
- Center for Insect Science, University of Arizona, 1007 E. Lowell Street, Tucson, AZ 85721, USA.
| | - S Patricia Stock
- Department of Entomology and School of Animal and Comparative Biomedical Sciences, University of Arizona, 1140 E. South Campus Dr., Tucson, AZ 85721, USA.
| |
Collapse
|
186
|
Bordetella Pertussis Adenylate Cyclase Toxin Does Not Possess a Phospholipase A Activity; Serine 606 and Aspartate 1079 Residues Are Not Involved in Target Cell Delivery of the Adenylyl Cyclase Enzyme Domain. Toxins (Basel) 2018; 10:toxins10060245. [PMID: 29914160 PMCID: PMC6024677 DOI: 10.3390/toxins10060245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/02/2022] Open
Abstract
The adenylate cyclase toxin-hemolysin (CyaA, ACT, or AC-Hly) plays a crucial role in virulence and airway colonization capacity of the whooping cough agent Bordetella pertussis. The toxin penetrates target cell membranes and exhibits three distinct biological activities. A population of CyaA conformers forms small cation-selective pores that permeabilize the cell membrane for potassium efflux, which can provoke colloid-osmotic (oncotic) cell lysis. The other two activities are due to CyaA conformers that transiently form calcium influx conduits in the target cell membrane and translocate the adenylate cyclase (AC) enzyme into cytosol of cells. A fourth putative biological activity has recently been reported; an intrinsic phospholipase A (PLA) activity was claimed to be associated with the CyaA polypeptide and be involved in the mechanism of translocation of the AC enzyme polypeptide across cell membrane lipid bilayer. However, the conclusions drawn by the authors contradicted their own results and we show them to be erroneous. We demonstrate that highly purified CyaA is devoid of any detectable phospholipase A1 activity and that contrary to the published claims, the two putative conserved phospholipase A catalytic residues, namely the Ser606 and Asp1079 residues, are not involved in the process of membrane translocation of the AC domain of CyaA across target membranes.
Collapse
|
187
|
Balashova N, Giannakakis A, Brown AC, Koufos E, Benz R, Arakawa T, Tang HY, Lally ET. Generation of a recombinant Aggregatibacter actinomycetemcomitans RTX toxin in Escherichia coli. Gene 2018; 672:106-114. [PMID: 29879499 DOI: 10.1016/j.gene.2018.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/28/2018] [Accepted: 06/03/2018] [Indexed: 10/14/2022]
Abstract
A leukotoxin (LtxA) that is produced by Aggregatibacter actinomycetemcomitans (Aa) is an important virulence determinant in an aggressive form of periodontitis in adolescents. Understanding the function of this protein at the molecular level is critical to elucidating its role in the disease process. To accomplish genetic analysis of the protein structure and relating these observations to toxin function, we have developed an E. coli expression system for the generation and rapid purification of LtxA. Cloning the structural toxin gene, ltxA, from Aa strain JP2 under control of T7 promoter-1 of pCDFDuet-1 vector resulted in expression of a 114 KDa protein which could be easily purified by the presence of a carboxy-terminal engineered double hexahistidine (double-His6) tag and was immunologically reactive with an anti-LtxA monoclonal antibody, but was not cytotoxic. Cloning a second gene, ltxC, an acyltransferase gene, into the vector under control of T7 promoter-2, resulted in expression of the biologically active LtxA. The toxin was extracted from E. coli inclusion bodies, purified by immobilized metal affinity chromatography, and refolded by dialysis. When compared by circular dichroism (CD) spectroscopy analysis, acylated recombinant LtxA has a secondary structure consistent with wt LtxA, while variations in α-helical structure of nonacylated LtxA were observed. No modifications in α-helix were found upon the toxin's binding with liposome-incorporated cholesterol. Our results suggest that pure, biologically active recombinant LtxA can be isolated by a one-step affinity chromatography from E. coli. The toxic and structural properties of the recombinant LtxA are similar to its wt counterpart.
Collapse
Affiliation(s)
- Nataliya Balashova
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander Giannakakis
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Angela C Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - Evan Koufos
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - Roland Benz
- Department of Life Science and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Tsutomu Arakawa
- Alliance Protein Laboratories, a Division of KBI Biopharma, San Diego, CA, USA
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA, USA
| | - Edward T Lally
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
188
|
Whole-Genome Sequencing and Comparative Genome Analysis Provided Insight into the Predatory Features and Genetic Diversity of Two Bdellovibrio Species Isolated from Soil. Int J Genomics 2018; 2018:9402073. [PMID: 29850478 PMCID: PMC5941755 DOI: 10.1155/2018/9402073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/24/2018] [Accepted: 02/19/2018] [Indexed: 01/07/2023] Open
Abstract
Bdellovibrio spp. are predatory bacteria with great potential as antimicrobial agents. Studies have shown that members of the genus Bdellovibrio exhibit peculiar characteristics that influence their ecological adaptations. In this study, whole genomes of two different Bdellovibrio spp. designated SKB1291214 and SSB218315 isolated from soil were sequenced. The core genes shared by all the Bdellovibrio spp. considered for the pangenome analysis including the epibiotic B. exovorus were 795. The number of unique genes identified in Bdellovibrio spp. SKB1291214, SSB218315, W, and B. exovorus JJS was 1343, 113, 857, and 1572, respectively. These unique genes encode hydrolytic, chemotaxis, and transporter proteins which might be useful for predation in the Bdellovibrio strains. Furthermore, the two Bdellovibrio strains exhibited differences based on the % GC content, amino acid identity, and 16S rRNA gene sequence. The 16S rRNA gene sequence of Bdellovibrio sp. SKB1291214 shared 99% identity with that of an uncultured Bdellovibrio sp. clone 12L 106 (a pairwise distance of 0.008) and 95-97% identity (a pairwise distance of 0.043) with that of other culturable terrestrial Bdellovibrio spp., including strain SSB218315. In Bdellovibrio sp. SKB1291214, 174 bp sequence was inserted at the host interaction (hit) locus region usually attributed to prey attachment, invasion, and development of host independent Bdellovibrio phenotypes. Also, a gene equivalent to Bd0108 in B. bacteriovorus HD100 was not conserved in Bdellovibrio sp. SKB1291214. The results of this study provided information on the genetic characteristics and diversity of the genus Bdellovibrio that can contribute to their successful applications as a biocontrol agent.
Collapse
|
189
|
Neuberger A, Du D, Luisi BF. Structure and mechanism of bacterial tripartite efflux pumps. Res Microbiol 2018; 169:401-413. [PMID: 29787834 DOI: 10.1016/j.resmic.2018.05.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/20/2018] [Accepted: 05/14/2018] [Indexed: 12/22/2022]
Abstract
Efflux pumps are membrane proteins which contribute to multi-drug resistance. In Gram-negative bacteria, some of these pumps form complex tripartite assemblies in association with an outer membrane channel and a periplasmic membrane fusion protein. These tripartite machineries span both membranes and the periplasmic space, and they extrude from the bacterium chemically diverse toxic substrates. In this chapter, we summarise current understanding of the structural architecture, functionality, and regulation of tripartite multi-drug efflux assemblies.
Collapse
Affiliation(s)
- Arthur Neuberger
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Dijun Du
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
190
|
Alex A, Antunes A. Genus-wide comparison of Pseudovibrio bacterial genomes reveal diverse adaptations to different marine invertebrate hosts. PLoS One 2018; 13:e0194368. [PMID: 29775460 PMCID: PMC5959193 DOI: 10.1371/journal.pone.0194368] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 03/01/2018] [Indexed: 11/18/2022] Open
Abstract
Bacteria belonging to the genus Pseudovibrio have been frequently found in association with a wide variety of marine eukaryotic invertebrate hosts, indicative of their versatile and symbiotic lifestyle. A recent comparison of the sponge-associated Pseudovibrio genomes has shed light on the mechanisms influencing a successful symbiotic association with sponges. In contrast, the genomic architecture of Pseudovibrio bacteria associated with other marine hosts has received less attention. Here, we performed genus-wide comparative analyses of 18 Pseudovibrio isolated from sponges, coral, tunicates, flatworm, and seawater. The analyses revealed a certain degree of commonality among the majority of sponge- and coral-associated bacteria. Isolates from other marine invertebrate host, tunicates, exhibited a genetic repertoire for cold adaptation and specific metabolic abilities including mucin degradation in the Antarctic tunicate-associated bacterium Pseudovibrio sp. Tun.PHSC04_5.I4. Reductive genome evolution was simultaneously detected in the flatworm-associated bacteria and the sponge-associated bacterium P. axinellae AD2, through the loss of major secretion systems (type III/VI) and virulence/symbioses factors such as proteins involved in adhesion and attachment to the host. Our study also unraveled the presence of a CRISPR-Cas system in P. stylochi UST20140214-052 a flatworm-associated bacterium possibly suggesting the role of CRISPR-based adaptive immune system against the invading virus particles. Detection of mobile elements and genomic islands (GIs) in all bacterial members highlighted the role of horizontal gene transfer for the acquisition of novel genetic features, likely enhancing the bacterial ecological fitness. These findings are insightful to understand the role of genome diversity in Pseudovibrio as an evolutionary strategy to increase their colonizing success across a wide range of marine eukaryotic hosts.
Collapse
Affiliation(s)
- Anoop Alex
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- * E-mail: (AA); (AA)
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- * E-mail: (AA); (AA)
| |
Collapse
|
191
|
Homologous Recombination in Core Genomes Facilitates Marine Bacterial Adaptation. Appl Environ Microbiol 2018; 84:AEM.02545-17. [PMID: 29572211 DOI: 10.1128/aem.02545-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/20/2018] [Indexed: 01/01/2023] Open
Abstract
Acquisition of ecologically relevant genes is common among ocean bacteria, but whether it has a major impact on genome evolution in marine environments remains unknown. Here, we analyzed the core genomes of 16 phylogenetically diverse and ecologically relevant bacterioplankton lineages, each consisting of up to five genomes varying at the strain level. Statistical approaches identified from each lineage up to ∼50 loci showing anomalously high divergence at synonymous sites, which is best explained by recombination with distantly related organisms. The enriched gene categories in these outlier loci match well with the characteristics previously identified as the key phenotypes of these lineages. Examples are antibiotic synthesis and detoxification in Phaeobacter inhibens, exopolysaccharide production in Alteromonas macleodii, hydrocarbon degradation in Marinobacter hydrocarbonoclasticus, and cold adaptation in Pseudoalteromonas haloplanktis Intriguingly, the outlier loci feature polysaccharide catabolism in Cellulophaga baltica but not in Cellulophaga lytica, consistent with their primary habitat preferences in macroalgae and beach sands, respectively. Likewise, analysis of Prochlorococcus showed that photosynthesis-related genes listed in the outlier loci are found only in the high-light-adapted ecotype and not in the low-light adapted ecotype. These observations strongly suggest that recombination with distant relatives is a key mechanism driving the ecological diversification among marine bacterial lineages.IMPORTANCE Acquisition of new metabolic genes has been known as an important mechanism driving bacterial evolution and adaptation in the ocean, but acquisition of novel alleles of existing genes and its potential ecological role have not been examined. Guided by population genetic theories, our genomic analysis showed that divergent allele acquisition is prevalent in phylogenetically diverse marine bacterial lineages and that the affected loci often encode metabolic functions that underlie the known ecological roles of the lineages under study.
Collapse
|
192
|
TosR-Mediated Regulation of Adhesins and Biofilm Formation in Uropathogenic Escherichia coli. mSphere 2018; 3:3/3/e00222-18. [PMID: 29769381 PMCID: PMC5956150 DOI: 10.1128/msphere.00222-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023] Open
Abstract
Uropathogenic Escherichia coli strains utilize a variety of adherence factors that assist in colonization of the host urinary tract. TosA (type one secretion A) is a nonfimbrial adhesin that is predominately expressed during murine urinary tract infection (UTI), binds to kidney epithelial cells, and promotes survival during invasive infections. The tosRCBDAEF operon encodes the secretory machinery necessary for TosA localization to the E. coli cell surface, as well as the transcriptional regulator TosR. TosR binds upstream of the tos operon and in a concentration-dependent manner either induces or represses tosA expression. TosR is a member of the PapB family of fimbrial regulators that can participate in cross talk between fimbrial operons. TosR also binds upstream of the pap operon and suppresses PapA production. However, the scope of TosR-mediated cross talk is understudied and may be underestimated. To quantify the global effects of TosR-mediated regulation on the E. coli CFT073 genome, we induced expression of tosR, collected mRNA, and performed high-throughput RNA sequencing (RNA-Seq). These findings show that production of TosR affected the expression of genes involved with adhesins, including P, F1C, and Auf fimbriae, nitrate-nitrite transport, microcin secretion, and biofilm formation.IMPORTANCE Uropathogenic E. coli strains cause the majority of UTIs, which are the second most common bacterial infection in humans. During a UTI, bacteria adhere to cells within the urinary tract, using a number of different fimbrial and nonfimbrial adhesins. Biofilms can also develop on the surfaces of catheters, resulting in complications such as blockage. In this work, we further characterized the regulator TosR, which links both adhesin production and biofilm formation and likely plays a crucial function during UTI and disseminated infection.
Collapse
|
193
|
Kanonenberg K, Spitz O, Erenburg IN, Beer T, Schmitt L. Type I secretion system—it takes three and a substrate. FEMS Microbiol Lett 2018; 365:4966979. [DOI: 10.1093/femsle/fny094] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Kerstin Kanonenberg
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Olivia Spitz
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Isabelle N Erenburg
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Tobias Beer
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
194
|
Antonets KS, Kliver SF, Nizhnikov AA. Exploring Proteins Containing Amyloidogenic Regions in the Proteomes of Bacteria of the Order Rhizobiales. Evol Bioinform Online 2018; 14:1176934318768781. [PMID: 29720870 PMCID: PMC5922492 DOI: 10.1177/1176934318768781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/27/2018] [Indexed: 11/16/2022] Open
Abstract
Amyloids are protein fibrils with a highly ordered spatial structure called cross-β. To date, amyloids were shown to be implicated in a wide range of biological processes, both pathogenic and functional. In bacteria, functional amyloids are involved in forming biofilms, storing toxins, overcoming the surface tension, and other functions. Rhizobiales represent an economically important group of Alphaproteobacteria, various species of which are not only capable of fixing nitrogen in the symbiosis with leguminous plants but also act as the causative agents of infectious diseases in animals and plants. Here, we implemented bioinformatic screening for potentially amyloidogenic proteins in the proteomes of more than 80 species belonging to the order Rhizobiales. Using SARP (Sequence Analysis based on the Ranking of Probabilities) and Waltz bioinformatic algorithms, we identified the biological processes, where potentially amyloidogenic proteins are overrepresented. We detected protein domains and regions associated with amyloidogenic sequences in the proteomes of various Rhizobiales species. We demonstrated that amyloidogenic regions tend to occur in the membrane or extracellular proteins, many of which are involved in pathogenesis-related processes, including adhesion, assembly of flagellum, and transport of siderophores and lipopolysaccharides, and contain domains typical of the virulence factors (hemolysin, RTX, YadA, LptD); some of them (rhizobiocins, LptD) are also related to symbiosis.
Collapse
Affiliation(s)
- Kirill S Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russian Federation.,Department of Genetics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Sergey F Kliver
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russian Federation.,Department of Genetics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Anton A Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russian Federation.,Department of Genetics, St. Petersburg State University, St. Petersburg, Russian Federation
| |
Collapse
|
195
|
Raksanoh V, Prangkio P, Imtong C, Thamwiriyasati N, Suvarnapunya K, Shank L, Angsuthanasombat C. Structural requirement of the hydrophobic region of the Bordetella pertussis CyaA-hemolysin for functional association with CyaC-acyltransferase in toxin acylation. Biochem Biophys Res Commun 2018; 499:862-867. [PMID: 29625104 DOI: 10.1016/j.bbrc.2018.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/01/2018] [Indexed: 01/21/2023]
Abstract
Previously, we demonstrated that the ∼130-kDa CyaA-hemolysin (CyaA-Hly, Met482-Arg1706) from Bordetella pertussis was palmitoylated at Lys983 when co-expressed with CyaC-acyltransferase in Escherichia coli, and thus activated its hemolytic activity. Here, further investigation on a possible requirement of the N-terminal hydrophobic region (HP, Met482-Leu750) for toxin acylation was performed. The ∼100-kDa RTX (Repeat-in-ToXin) fragment (CyaA-RTX, Ala751-Arg1706) containing the Lys983-acylation region (AR, Ala751-Gln1000), but lacking HP, was co-produced with CyaC in E. coli. Hemolysis assay indicated that CyaA-RTX showed no hemolytic activity. Additionally, MALDI-TOF/MS and LC-MS/MS analyses confirmed that CyaA-RTX was non-acylated, although the co-expressed CyaC-acyltransferase was able to hydrolyze its chromogenic substrate-p-nitrophenyl palmitate and acylate CyaA-Hly to become hemolytically active. Unlike CyaA-RTX, the ∼70-kDa His-tagged CyaA-HP/BI fragment which is hemolytically inactive and contains both HP and AR was constantly co-eluted with CyaC during IMAC-purification as the presence of CyaC was verified by Western blotting. Such potential interactions between the two proteins were also revealed by semi-native PAGE. Moreover, structural analysis via electrostatic potential calculations and molecular docking suggested that CyaA-HP comprising α1-α5 (Leu500-Val698) can interact with CyaC through several hydrogen and ionic bonds formed between their opposite electrostatic surfaces. Overall, our results demonstrated that the HP region of CyaA-Hly is conceivably required for not only membrane-pore formation but also functional association with CyaC-acyltransferase, and hence effective palmitoylation at Lys983.
Collapse
Affiliation(s)
- Veerada Raksanoh
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Biochemistry and Biochemical Technology, Department of Chemistry, Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Center of Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Panchika Prangkio
- Division of Biochemistry and Biochemical Technology, Department of Chemistry, Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Center of Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chompounoot Imtong
- Division of Biology, Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Niramon Thamwiriyasati
- Department of Medical Technology, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| | - Kittipong Suvarnapunya
- Graduate Program in Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Bacterial Toxin Research Innovation Cluster (BRIC), Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand
| | - Lalida Shank
- Division of Biochemistry and Biochemical Technology, Department of Chemistry, Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Center of Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Chanan Angsuthanasombat
- Bacterial Toxin Research Innovation Cluster (BRIC), Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand; Laboratory of Molecular Biophysics and Chemical Biology, Biophysics Institute for Research and Development (BIRD), Fang, Chiang Mai 50110, Thailand.
| |
Collapse
|
196
|
Sakib SN, Reddi G, Almagro-Moreno S. Environmental role of pathogenic traits in Vibrio cholerae. J Bacteriol 2018; 200:e00795-17. [PMID: 29581410 PMCID: PMC6040180 DOI: 10.1128/jb.00795-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Vibrio cholerae is a natural inhabitant of aquatic ecosystems. Some strains of V. cholerae can colonize the human host and cause cholera, a profuse watery diarrhea. The major pathogenicity factors and virulence regulators of V. cholerae are either encoded in mobile genetic elements acquired in the environment (e.g. pathogenicity islands or lysogenic phages) or in the core genome. Several lines of evidence indicate that the emergence of numerous virulence traits of V. cholerae occurred in its natural environment due to biotic and abiotic pressures. Here, we discuss the connection between the human host and the potential ecological role of these virulent traits. Unraveling these connections will help us understand the emergence of this organism and other facultative bacterial pathogens.
Collapse
Affiliation(s)
- S Nazmus Sakib
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816, USA
| | - Geethika Reddi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816, USA
| | - Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816, USA.
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, Florida 32816, USA
| |
Collapse
|
197
|
Insights into the Evolution of Host Association through the Isolation and Characterization of a Novel Human Periodontal Pathobiont, Desulfobulbus oralis. mBio 2018. [PMID: 29535201 PMCID: PMC5850319 DOI: 10.1128/mbio.02061-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human oral microbiota encompasses representatives of many bacterial lineages that have not yet been cultured. Here we describe the isolation and characterization of previously uncultured Desulfobulbus oralis, the first human-associated representative of its genus. As mammalian-associated microbes rarely have free-living close relatives, D. oralis provides opportunities to study how bacteria adapt and evolve within a host. This sulfate-reducing deltaproteobacterium has adapted to the human oral subgingival niche by curtailing its physiological repertoire, losing some biosynthetic abilities and metabolic independence, and by dramatically reducing environmental sensing and signaling capabilities. The genes that enable free-living Desulfobulbus to synthesize the potent neurotoxin methylmercury were also lost by D. oralis, a notably positive outcome of host association. However, horizontal gene acquisitions from other members of the microbiota provided novel mechanisms of interaction with the human host, including toxins like leukotoxin and hemolysins. Proteomic and transcriptomic analysis revealed that most of those factors are actively expressed, including in the subgingival environment, and some are secreted. Similar to other known oral pathobionts, D. oralis can trigger a proinflammatory response in oral epithelial cells, suggesting a direct role in the development of periodontal disease. Animal-associated microbiota likely assembled as a result of numerous independent colonization events by free-living microbes followed by coevolution with their host and other microbes. Through specific adaptation to various body sites and physiological niches, microbes have a wide range of contributions, from beneficial to disease causing. Desulfobulbus oralis provides insights into genomic and physiological transformations associated with transition from an open environment to a host-dependent lifestyle and the emergence of pathogenicity. Through a multifaceted mechanism triggering a proinflammatory response, D. oralis is a novel periodontal pathobiont. Even though culture-independent approaches can provide insights into the potential role of the human microbiome “dark matter,” cultivation and experimental characterization remain important to studying the roles of individual organisms in health and disease.
Collapse
|
198
|
Ravindran A, Saenkham P, Levy J, Tamborindeguy C, Lin H, Gross DC, Pierson E. Characterization of the Serralysin-Like Gene of 'Candidatus Liberibacter solanacearum' Associated with Potato Zebra Chip Disease. PHYTOPATHOLOGY 2018; 108:327-335. [PMID: 29106346 DOI: 10.1094/phyto-02-17-0064-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The nonculturable bacterium 'Candidatus Liberibacter solanacearum' is the causative agent of zebra chip disease in potato. Computational analysis of the 'Ca. L. solanacearum' genome revealed a serralysin-like gene based on conserved domains characteristic of genes encoding metalloprotease enzymes similar to serralysin. Serralysin and other serralysin family metalloprotease are typically characterized as virulence factors and are secreted by the type I secretion system (T1SS). The 'Ca. L. solanacearum' serralysin-like gene is located next to and divergently transcribed from genes encoding a T1SS. Based on its relationship to the T1SS and the role of other serralysin family proteases in circumventing host antimicrobial defenses, it was speculated that a functional 'Ca. L. solanacearum' serralysin-like protease could be a potent virulence factor. Gene expression analysis showed that, from weeks 2 to 6, the expression of the 'Ca. L. solanacearum' serralysin-like gene was at least twofold higher than week 1, indicating that gene expression stays high as the disease progresses. A previously constructed serralysin-deficient mutant of Serratia liquefaciens FK01, an endophyte associated with insects, as well as an Escherichia coli lacking serralysin production were used as surrogates for expression analysis of the 'Ca. L. solanacearum' serralysin-like gene. The LsoA and LsoB proteins were expressed as both intact proteins and chimeric S. liquefaciens-'Ca. L. solanacearum' serralysin-like proteins to facilitate secretion in the S. liquefaciens surrogate and as intact proteins or as a truncated LsoB protein containing just the putative catalytic domains in the E. coli surrogate. None of the 'Ca. L. solanacearum' protein constructs expressed in either surrogate demonstrated proteolytic activity in skim milk or zymogram assays, or in colorimetric assays using purified protein, suggesting that the 'Ca. L. solanacearum' serralysin-like gene does not encode a functional protease, or at least not in our surrogate systems.
Collapse
Affiliation(s)
- Aravind Ravindran
- First and sixth authors: Department of Plant Pathology and Microbiology, second, third, and seventh authors: Department of Horticultural Sciences, and fourth author: Department of Entomology, Texas A&M University, College Station 77843; and fifth author: Department of Agriculture-Agricultural Research Service, CDPG, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Panatda Saenkham
- First and sixth authors: Department of Plant Pathology and Microbiology, second, third, and seventh authors: Department of Horticultural Sciences, and fourth author: Department of Entomology, Texas A&M University, College Station 77843; and fifth author: Department of Agriculture-Agricultural Research Service, CDPG, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Julien Levy
- First and sixth authors: Department of Plant Pathology and Microbiology, second, third, and seventh authors: Department of Horticultural Sciences, and fourth author: Department of Entomology, Texas A&M University, College Station 77843; and fifth author: Department of Agriculture-Agricultural Research Service, CDPG, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Cecilia Tamborindeguy
- First and sixth authors: Department of Plant Pathology and Microbiology, second, third, and seventh authors: Department of Horticultural Sciences, and fourth author: Department of Entomology, Texas A&M University, College Station 77843; and fifth author: Department of Agriculture-Agricultural Research Service, CDPG, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Hong Lin
- First and sixth authors: Department of Plant Pathology and Microbiology, second, third, and seventh authors: Department of Horticultural Sciences, and fourth author: Department of Entomology, Texas A&M University, College Station 77843; and fifth author: Department of Agriculture-Agricultural Research Service, CDPG, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Dennis C Gross
- First and sixth authors: Department of Plant Pathology and Microbiology, second, third, and seventh authors: Department of Horticultural Sciences, and fourth author: Department of Entomology, Texas A&M University, College Station 77843; and fifth author: Department of Agriculture-Agricultural Research Service, CDPG, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Elizabeth Pierson
- First and sixth authors: Department of Plant Pathology and Microbiology, second, third, and seventh authors: Department of Horticultural Sciences, and fourth author: Department of Entomology, Texas A&M University, College Station 77843; and fifth author: Department of Agriculture-Agricultural Research Service, CDPG, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| |
Collapse
|
199
|
IcmF and DotU are required for the virulence of Acidovorax oryzae strain RS-1. Arch Microbiol 2018; 200:897-910. [DOI: 10.1007/s00203-018-1497-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/06/2018] [Accepted: 02/16/2018] [Indexed: 10/18/2022]
|
200
|
Discovery of novel bacterial toxins by genomics and computational biology. Toxicon 2018; 147:2-12. [PMID: 29438679 DOI: 10.1016/j.toxicon.2018.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/23/2017] [Accepted: 02/07/2018] [Indexed: 12/13/2022]
Abstract
Hundreds and hundreds of bacterial protein toxins are presently known. Traditionally, toxin identification begins with pathological studies of bacterial infectious disease. Following identification and cultivation of a bacterial pathogen, the protein toxin is purified from the culture medium and its pathogenic activity is studied using the methods of biochemistry and structural biology, cell biology, tissue and organ biology, and appropriate animal models, supplemented by bioimaging techniques. The ongoing and explosive development of high-throughput DNA sequencing and bioinformatic approaches have set in motion a revolution in many fields of biology, including microbiology. One consequence is that genes encoding novel bacterial toxins can be identified by bioinformatic and computational methods based on previous knowledge accumulated from studies of the biology and pathology of thousands of known bacterial protein toxins. Starting from the paradigmatic cases of diphtheria toxin, tetanus and botulinum neurotoxins, this review discusses traditional experimental approaches as well as bioinformatics and genomics-driven approaches that facilitate the discovery of novel bacterial toxins. We discuss recent work on the identification of novel botulinum-like toxins from genera such as Weissella, Chryseobacterium, and Enteroccocus, and the implications of these computationally identified toxins in the field. Finally, we discuss the promise of metagenomics in the discovery of novel toxins and their ecological niches, and present data suggesting the existence of uncharacterized, botulinum-like toxin genes in insect gut metagenomes.
Collapse
|