151
|
Eggeling L, Bott M. A giant market and a powerful metabolism: L-lysine provided by Corynebacterium glutamicum. Appl Microbiol Biotechnol 2015; 99:3387-94. [PMID: 25761623 DOI: 10.1007/s00253-015-6508-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 11/30/2022]
Abstract
L-lysine is made in an exceptional large quantity of currently 2,200,000 tons/year and belongs therefore to one of the leading biotechnological products. Production is done almost exclusively with mutants of Corynebacterium glutamicum. The increasing L-lysine market forces companies to improve the production process fostering also a deeper understanding of the microbial physiology of C. glutamicum. Current major challenges are the identification of ancillary mutations not intuitively related with product increase. This review gives insights on how cellular characteristics enable to push the carbon flux in metabolism towards its theoretical maximum, and this example may also serve as a guide to achieve and increase the formation of other products of interest in microbial biotechnology.
Collapse
Affiliation(s)
- Lothar Eggeling
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, 52458, Jülich, Germany,
| | | |
Collapse
|
152
|
Abstract
For decades, proteins were thought to be the sole or at least the dominant source of antigens for T cells. Studies in the 1990s demonstrated that CD1 proteins and mycobacterial lipids form specific targets of human αβ T cells. The molecular basis by which T-cell receptors (TCRs) recognize CD1-lipid complexes is now well understood. Many types of mycobacterial lipids function as antigens in the CD1 system, and new studies done with CD1 tetramers identify T-cell populations in the blood of tuberculosis patients. In human populations, a fundamental difference between the CD1 and major histocompatibility complex systems is that all humans express nearly identical CD1 proteins. Correspondingly, human CD1 responsive T cells show evidence of conserved TCRs. In addition to natural killer T cells and mucosal-associated invariant T (MAIT cells), conserved TCRs define other subsets of human T cells, including germline-encoded mycolyl-reactive (GEM) T cells. The simple immunogenetics of the CD1 system and new investigative tools to measure T-cell responses in humans now creates a situation in which known lipid antigens can be developed as immunodiagnostic and immunotherapeutic reagents for tuberculosis disease.
Collapse
Affiliation(s)
- Ildiko Van Rhijn
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
153
|
Sipos A, Pató J, Székely R, Hartkoorn RC, Kékesi L, Őrfi L, Szántai-Kis C, Mikušová K, Svetlíková Z, Korduláková J, Nagaraja V, Godbole AA, Bush N, Collin F, Maxwell A, Cole ST, Kéri G. Lead selection and characterization of antitubercular compounds using the Nested Chemical Library. Tuberculosis (Edinb) 2015; 95 Suppl 1:S200-6. [PMID: 25801335 DOI: 10.1016/j.tube.2015.02.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Discovering new drugs to treat tuberculosis more efficiently and to overcome multidrug resistance is a world health priority. To find novel antitubercular agents several approaches have been used in various institutions worldwide, including target-based approaches against several validated mycobacterial enzymes and phenotypic screens. We screened more than 17,000 compounds from Vichem's Nested Chemical Library™ using an integrated strategy involving whole cell-based assays with Corynebacterium glutamicum and Mycobacterium tuberculosis, and target-based assays with protein kinases PknA, PknB and PknG as well as other targets such as PimA and bacterial topoisomerases simultaneously. With the help of the target-based approach we have found very potent hits inhibiting the selected target enzymes, but good minimal inhibitory concentrations (MIC) against M. tuberculosis were not achieved. Focussing on the whole cell-based approach several potent hits were found which displayed minimal inhibitory concentrations (MIC) against M. tuberculosis below 10 μM and were non-mutagenic, non-cytotoxic and the targets of some of the hits were also identified. The most active hits represented various scaffolds. Medicinal chemistry-based lead optimization was performed applying various strategies and, as a consequence, a series of novel potent compounds were synthesized. These efforts resulted in some effective potential antitubercular lead compounds which were confirmed in phenotypic assays.
Collapse
Affiliation(s)
- Anna Sipos
- MTA-SE Pathobiochemistry Research Group, Department of Medical Chemistry, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary; Vichem Chemie Research Ltd., Herman Ottó u. 15, H-1022 Budapest, Hungary.
| | - János Pató
- Vichem Chemie Research Ltd., Herman Ottó u. 15, H-1022 Budapest, Hungary
| | - Rita Székely
- Vichem Chemie Research Ltd., Herman Ottó u. 15, H-1022 Budapest, Hungary; Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Ruben C Hartkoorn
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - László Kékesi
- Vichem Chemie Research Ltd., Herman Ottó u. 15, H-1022 Budapest, Hungary
| | - László Őrfi
- Vichem Chemie Research Ltd., Herman Ottó u. 15, H-1022 Budapest, Hungary; Semmelweis University, Department of Pharmaceutical Chemistry, Hőgyes Endre u. 9, H-1092 Budapest, Hungary
| | - Csaba Szántai-Kis
- Vichem Chemie Research Ltd., Herman Ottó u. 15, H-1022 Budapest, Hungary
| | - Katarína Mikušová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina CH-1, Bratislava, Slovakia
| | - Zuzana Svetlíková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina CH-1, Bratislava, Slovakia
| | - Jana Korduláková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina CH-1, Bratislava, Slovakia
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | - Adwait Anand Godbole
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | - Natassja Bush
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH United Kingdom
| | - Frédéric Collin
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH United Kingdom
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH United Kingdom
| | - Stewart T Cole
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - György Kéri
- MTA-SE Pathobiochemistry Research Group, Department of Medical Chemistry, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary; Vichem Chemie Research Ltd., Herman Ottó u. 15, H-1022 Budapest, Hungary.
| |
Collapse
|
154
|
Li W, Fan X, Long Q, Xie L, Xie J. Mycobacterium tuberculosis effectors involved in host-pathogen interaction revealed by a multiple scales integrative pipeline. INFECTION GENETICS AND EVOLUTION 2015; 32:1-11. [PMID: 25709069 DOI: 10.1016/j.meegid.2015.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/02/2015] [Accepted: 02/14/2015] [Indexed: 01/04/2023]
Abstract
BACKGROUND Mycobacterium tuberculosis (Mtb) has evolved multiple strategies to counter host immunity. Proteins are one important player in the host-pathogen interaction. A comprehensive list of such proteins will benefit our understanding of pathogenesis of Mtb. METHODS A genome-scale dataset was created from different sources of published data: global gene expression studies in disease models; genome-wide insertional mutagenesis defining gene essentiality under different conditions; genes lost in clinical isolates; subcellular localization analysis and non-homology analysis. Using data mining and meta-analysis, expressed proteins critical for intracellular survival of Mtb are first identified, followed by subcellular localization analysis, finally filtering a series of subtractive channel of analysis to find out promising drug target candidates. RESULTS The analysis found 54 potential candidates essential for the intracellular survival of the pathogen and non-homologous to host or gut flora, and might be promising drug targets. CONCLUSION Based on our meta-analysis and bioinformatics analysis, 54 hits were found from Mtb around 4000 open reading frames. These hits can be good candidates for further experimental investigation.
Collapse
Affiliation(s)
- Wu Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiangyu Fan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China; School of Biological Science and Technology, University of Jinan, Shandong 250022, China
| | - Quanxin Long
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China; The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases of the Ministry of Education, Chongqing Medical University, 1 Medical Road, Yuzhong District, Chongqing 400016, China
| | - Longxiang Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
155
|
The α-glucan phosphorylase MalP of Corynebacterium glutamicum is subject to transcriptional regulation and competitive inhibition by ADP-glucose. J Bacteriol 2015; 197:1394-407. [PMID: 25666133 DOI: 10.1128/jb.02395-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED α-Glucan phosphorylases contribute to degradation of glycogen and maltodextrins formed in the course of maltose metabolism in bacteria. Accordingly, bacterial α-glucan phosphorylases are classified as either glycogen or maltodextrin phosphorylase, GlgP or MalP, respectively. GlgP and MalP enzymes follow the same catalytic mechanism, and thus their substrate spectra overlap; however, they differ in their regulation: GlgP genes are constitutively expressed and the enzymes are controlled on the activity level, whereas expression of MalP genes are transcriptionally controlled in response to the carbon source used for cultivation. We characterize here the modes of control of the α-glucan phosphorylase MalP of the Gram-positive Corynebacterium glutamicum. In accordance to the proposed function of the malP gene product as MalP, we found transcription of malP to be regulated in response to the carbon source. Moreover, malP transcription is shown to depend on the growth phase and to occur independently of the cell glycogen content. Surprisingly, we also found MalP activity to be tightly regulated competitively by the presence of ADP-glucose, an intermediate of glycogen synthesis. Since the latter is considered a typical feature of GlgPs, we propose that C. glutamicum MalP acts as both maltodextrin and glycogen phosphorylase and, based on these findings, we question the current system for classification of bacterial α-glucan phosphorylases. IMPORTANCE Bacterial α-glucan phosphorylases have been classified conferring to their purpose as either glycogen or maltodextrin phosphorylases. We found transcription of malP in C. glutamicum to be regulated in response to the carbon source, which is recognized as typical for maltodextrin phosphorylases. Surprisingly, we also found MalP activity to be tightly regulated competitively by the presence of ADP-glucose, an intermediate of glycogen synthesis. The latter is considered a typical feature of GlgPs. These findings, taken together, suggest that C. glutamicum MalP is the first α-glucan phosphorylase that does not fit into the current system for classification of bacterial α-glucan phosphorylases and exemplifies the complex mechanisms underlying the control of glycogen content and maltose metabolism in this model organism.
Collapse
|
156
|
Vergne I, Gilleron M, Nigou J. Manipulation of the endocytic pathway and phagocyte functions by Mycobacterium tuberculosis lipoarabinomannan. Front Cell Infect Microbiol 2015; 4:187. [PMID: 25629008 PMCID: PMC4290680 DOI: 10.3389/fcimb.2014.00187] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/15/2014] [Indexed: 12/11/2022] Open
Abstract
Lipoarabinomannan is a major immunomodulatory lipoglycan found in the cell envelope of Mycobacterium tuberculosis and related human pathogens. It reproduces several salient properties of M. tuberculosis in phagocytic cells, including inhibition of pro-inflammatory cytokine production, inhibition of phagolysosome biogenesis, and inhibition of apoptosis as well as autophagy. In this review, we present our current knowledge on lipoarabinomannan structure and ability to manipulate the endocytic pathway as well as phagocyte functions. A special focus is put on the molecular mechanisms employed and the signaling pathways hijacked. Available information is discussed in the context of M. tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Isabelle Vergne
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique Toulouse, France ; Institut de Pharmacologie et de Biologie Structurale, Université Toulouse III - Paul Sabatier Toulouse, France
| | - Martine Gilleron
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique Toulouse, France ; Institut de Pharmacologie et de Biologie Structurale, Université Toulouse III - Paul Sabatier Toulouse, France
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique Toulouse, France ; Institut de Pharmacologie et de Biologie Structurale, Université Toulouse III - Paul Sabatier Toulouse, France
| |
Collapse
|
157
|
Gifford JC, Bresee J, Carter CJ, Wang G, Melander RJ, Melander C, Feldheim DL. Thiol-modified gold nanoparticles for the inhibition of Mycobacterium smegmatis. Chem Commun (Camb) 2014; 50:15860-3. [PMID: 25350535 PMCID: PMC4433471 DOI: 10.1039/c4cc06236a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antimicrobial drug discovery has slowed considerably over the last few decades. One major cause for concern is the lack of innovative approaches to treat infections caused by mycobacteria such as TB. Herein we demonstrate that our Small Molecule Variable Ligand Display (SMLVD) method for nanoparticle antibiotic discovery can be expanded around a ligand feed ratio parameter space to identify gold nanoparticle conjugates that are potent inhibitors of mycobacteria growth, with our most potent inhibitor able to reduce growth by five orders of magnitude at 8 μM.
Collapse
Affiliation(s)
- Jennifer C. Gifford
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Jamee Bresee
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Carly Jo Carter
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Guankui Wang
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Roberta J. Melander
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8024, USA
| | - Christian Melander
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8024, USA
| | - Daniel L. Feldheim
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
158
|
Arutyunov D, Singh U, El-Hawiet A, Seckler HDS, Nikjah S, Joe M, Bai Y, Lowary TL, Klassen JS, Evoy S, Szymanski CM. Mycobacteriophage cell binding proteins for the capture of mycobacteria. BACTERIOPHAGE 2014; 4:e960346. [PMID: 26713219 DOI: 10.4161/21597073.2014.960346] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/20/2014] [Accepted: 08/28/2014] [Indexed: 12/20/2022]
Abstract
Slow growing Mycobacteriumavium subsp. paratuberculosis (MAP) causes a deadly condition in cattle known as Johne's disease where asymptomatic carriers are the major source of disease transmission. MAP was also shown to be associated with chronic Crohn's disease in humans. Mycobacterium smegmatis is a model mycobacterium that can cause opportunistic infections in a number of human tissues and, rarely, a respiratory disease. Currently, there are no rapid, culture-independent, reliable and inexpensive tests for the diagnostics of MAP or M. smegmatis infections. Bacteriophages are viruses producing a number of proteins that effectively and specifically recognize the cell envelopes of their bacterial hosts. We demonstrate that the mycobacterial phage L5 minor tail protein Gp6 and lysin Gp10 are useful tools for the rapid capture of mycobacteria. Immobilized Gp10 was able to bind both MAP and M. smegmatis cells whereas Gp6 was M. smegmatis specific. Neither of the 2 proteins was able to capture E. coli, salmonella, campylobacter or Mycobacterium marinum cells. Gp6 was detected previously as a component of the phage particle and shows no homology to proteins with known function. Therefore, electrospray ionization mass spectrometry was used to determine whether recombinant Gp6 could bind to a number of chemically synthesized fragments of mycobacterial surface glycans. These findings demonstrate that mycobacteriophage proteins could be used as a pathogen capturing platform that can potentially improve the effectiveness of existing diagnostic methods.
Collapse
Affiliation(s)
- Denis Arutyunov
- Department of Biological Sciences; University of Alberta , Edmonton, AB Canada ; Alberta Glycomics Center; University of Alberta ; Edmonton, AB Canada
| | - Upasana Singh
- Department of Electrical and Computer Engineering; University of Alberta ; Edmonton, AB Canada
| | - Amr El-Hawiet
- Alberta Glycomics Center; University of Alberta ; Edmonton, AB Canada ; Department of Chemistry; University of Alberta ; Edmonton, AB Canada
| | - Henrique Dos Santos Seckler
- Department of Biological Sciences; University of Alberta , Edmonton, AB Canada ; Alberta Glycomics Center; University of Alberta ; Edmonton, AB Canada
| | - Sanaz Nikjah
- Alberta Glycomics Center; University of Alberta ; Edmonton, AB Canada ; Department of Chemistry; University of Alberta ; Edmonton, AB Canada
| | - Maju Joe
- Alberta Glycomics Center; University of Alberta ; Edmonton, AB Canada ; Department of Chemistry; University of Alberta ; Edmonton, AB Canada
| | - Yu Bai
- Alberta Glycomics Center; University of Alberta ; Edmonton, AB Canada ; Department of Chemistry; University of Alberta ; Edmonton, AB Canada
| | - Todd L Lowary
- Alberta Glycomics Center; University of Alberta ; Edmonton, AB Canada ; Department of Chemistry; University of Alberta ; Edmonton, AB Canada
| | - John S Klassen
- Alberta Glycomics Center; University of Alberta ; Edmonton, AB Canada ; Department of Chemistry; University of Alberta ; Edmonton, AB Canada
| | - Stephane Evoy
- Department of Electrical and Computer Engineering; University of Alberta ; Edmonton, AB Canada
| | - Christine M Szymanski
- Department of Biological Sciences; University of Alberta , Edmonton, AB Canada ; Alberta Glycomics Center; University of Alberta ; Edmonton, AB Canada
| |
Collapse
|
159
|
Arbues A, Lugo-Villarino G, Neyrolles O, Guilhot C, Astarie-Dequeker C. Playing hide-and-seek with host macrophages through the use of mycobacterial cell envelope phthiocerol dimycocerosates and phenolic glycolipids. Front Cell Infect Microbiol 2014; 4:173. [PMID: 25538905 PMCID: PMC4260522 DOI: 10.3389/fcimb.2014.00173] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 11/24/2014] [Indexed: 01/28/2023] Open
Abstract
Mycobacterial pathogens, including Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), have evolved a remarkable ability to evade the immune system in order to survive and to colonize the host. Among the most important evasion strategies is the capacity of these bacilli to parasitize host macrophages, since these are major effector cells against intracellular pathogens that can be used as long-term cellular reservoirs. Mycobacterial pathogens employ an array of virulence factors that manipulate macrophage function to survive and establish infection. Until recently, however, the role of mycobacterial cell envelope lipids as virulence factors in macrophage subversion has remained elusive. Here, we will address exclusively the proposed role for phthiocerol dimycocerosates (DIM) in the modulation of the resident macrophage response and that of phenolic glycolipids (PGL) in the regulation of the recruitment and phenotype of incoming macrophage precursors to the site of infection. We will provide a unique perspective of potential additional functions for these lipids, and highlight obstacles and opportunities to further understand their role in the pathogenesis of TB and other mycobacterial diseases.
Collapse
Affiliation(s)
- Ainhoa Arbues
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale Toulouse, France ; Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Université Paul Sabatier Toulouse, France
| | - GeanCarlo Lugo-Villarino
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale Toulouse, France ; Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Université Paul Sabatier Toulouse, France
| | - Olivier Neyrolles
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale Toulouse, France ; Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Université Paul Sabatier Toulouse, France
| | - Christophe Guilhot
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale Toulouse, France ; Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Université Paul Sabatier Toulouse, France
| | - Catherine Astarie-Dequeker
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale Toulouse, France ; Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Université Paul Sabatier Toulouse, France
| |
Collapse
|
160
|
Korkegian A, Roberts DM, Blair R, Parish T. Mutations in the essential arabinosyltransferase EmbC lead to alterations in Mycobacterium tuberculosis lipoarabinomannan. J Biol Chem 2014; 289:35172-81. [PMID: 25352598 DOI: 10.1074/jbc.m114.583112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Mycobacterium tuberculosis cell wall is a complex structure essential for the viability of the organism and its interaction with the host. The glycolipid lipoarabinomannan (LAM) plays an important role in mediating host-bacteria interactions and is involved in modulation of the immune response. The arabinosyltransferase EmbC required for LAM biosynthesis is essential. We constructed recombinant strains of M. tuberculosis expressing a variety of alleles of EmbC. We demonstrated that EmbC has a functional signal peptide in M. tuberculosis. Over- or underexpression of EmbC resulted in reduced or increased sensitivity to ethambutol, respectively. The C-terminal domain of EmbC was essential for activity because truncated alleles were unable to mediate LAM production in Mycobacterium smegmatis and were unable to complement an embC deletion in M. tuberculosis. The C-terminal domain of the closely related arabinosyltransferase EmbB was unable to complement the function of the EmbC C-terminal domain. Two functional motifs were identified. The GT-C motif contains two aspartate residues essential for function in the DDX motif. The proline-rich region contains two highly conserved asparagines (Asn-638 and Asn-652). Mutation of these residues was tolerated, but loss of Asn-638 resulted in the synthesis of truncated LAM, which appeared to lack arabinose branching. All embC alleles that were incapable of complementing LAM production in M. smegmatis were not viable in M. tuberculosis, supporting the hypothesis that LAM itself is essential in M. tuberculosis.
Collapse
Affiliation(s)
- Aaron Korkegian
- From TB Discovery Research, Infectious Disease Research Institute, Seattle, Washington 98102
| | - David M Roberts
- From TB Discovery Research, Infectious Disease Research Institute, Seattle, Washington 98102
| | - Rachel Blair
- From TB Discovery Research, Infectious Disease Research Institute, Seattle, Washington 98102
| | - Tanya Parish
- From TB Discovery Research, Infectious Disease Research Institute, Seattle, Washington 98102
| |
Collapse
|
161
|
LprG-mediated surface expression of lipoarabinomannan is essential for virulence of Mycobacterium tuberculosis. PLoS Pathog 2014; 10:e1004376. [PMID: 25232742 PMCID: PMC4169494 DOI: 10.1371/journal.ppat.1004376] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 07/28/2014] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium tuberculosis employs various virulence strategies to subvert host immune responses in order to persist and cause disease. Interaction of M. tuberculosis with mannose receptor on macrophages via surface-exposed lipoarabinomannan (LAM) is believed to be critical for cell entry, inhibition of phagosome-lysosome fusion, and intracellular survival, but in vivo evidence is lacking. LprG, a cell envelope lipoprotein that is essential for virulence of M. tuberculosis, has been shown to bind to the acyl groups of lipoglycans but the role of LprG in LAM biosynthesis and localization remains unknown. Using an M. tuberculosis lprG mutant, we show that LprG is essential for normal surface expression of LAM and virulence of M. tuberculosis attributed to LAM. The lprG mutant had a normal quantity of LAM in the cell envelope, but its surface was altered and showed reduced expression of surface-exposed LAM. Functionally, the lprG mutant was defective for macrophage entry and inhibition of phagosome-lysosome fusion, was attenuated in macrophages, and was killed in the mouse lung with the onset of adaptive immunity. This study identifies the role of LprG in surface-exposed LAM expression and provides in vivo evidence for the essential role surface LAM plays in M. tuberculosis virulence. Findings have translational implications for therapy and vaccine development. Mycobacterium tuberculosis is among the leading infectious causes of human death. A better understanding of its virulence mechanisms is needed to facilitate development of novel therapeutics and a preventative vaccine. Lipoarabinomannan (LAM), an abundant surface-exposed lipoglycan, is believed to be a critical virulence determinant for intracellular survival and latency of M. tuberculosis. In vitro experiments with purified LAM have led to a model in which surface-exposed LAM binds to macrophage mannose receptor and facilitates bacterium entry, inhibition of phagosome-lysosome fusion, and modulation of innate immune responses. However, confirmation of these findings in vivo has not been possible due to the essentiality of genes involved in the LAM biosynthetic pathway. It was recently shown that LprG, a cell envelope lipoprotein, binds to the acyl groups of lipoglycan, but the role of LprG in LAM biosynthesis and localization remains unknown. Here, using an M. tuberculosis lprG mutant and a novel cell-imprinting assay, we show that LprG is essential for normal surface expression of LAM and virulence of M. tuberculosis attributed to LAM. Our study provides new insights into the mechanism of surface expression of LAM and confirms the essential role surface LAM serves in pathogenesis of M. tuberculosis.
Collapse
|
162
|
Angala SK, Belardinelli JM, Huc-Claustre E, Wheat WH, Jackson M. The cell envelope glycoconjugates of Mycobacterium tuberculosis. Crit Rev Biochem Mol Biol 2014; 49:361-99. [PMID: 24915502 PMCID: PMC4436706 DOI: 10.3109/10409238.2014.925420] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tuberculosis (TB) remains the second most common cause of death due to a single infectious agent. The cell envelope of Mycobacterium tuberculosis (Mtb), the causative agent of the disease in humans, is a source of unique glycoconjugates and the most distinctive feature of the biology of this organism. It is the basis of much of Mtb pathogenesis and one of the major causes of its intrinsic resistance to chemotherapeutic agents. At the same time, the unique structures of Mtb cell envelope glycoconjugates, their antigenicity and essentiality for mycobacterial growth provide opportunities for drug, vaccine, diagnostic and biomarker development, as clearly illustrated by recent advances in all of these translational aspects. This review focuses on our current understanding of the structure and biogenesis of Mtb glycoconjugates with particular emphasis on one of the most intriguing and least understood aspect of the physiology of mycobacteria: the translocation of these complex macromolecules across the different layers of the cell envelope. It further reviews the rather impressive progress made in the last 10 years in the discovery and development of novel inhibitors targeting their biogenesis.
Collapse
Affiliation(s)
- Shiva Kumar Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University , Fort Collins, CO , USA
| | | | | | | | | |
Collapse
|
163
|
Yonekawa A, Saijo S, Hoshino Y, Miyake Y, Ishikawa E, Suzukawa M, Inoue H, Tanaka M, Yoneyama M, Oh-Hora M, Akashi K, Yamasaki S. Dectin-2 is a direct receptor for mannose-capped lipoarabinomannan of mycobacteria. Immunity 2014; 41:402-413. [PMID: 25176311 DOI: 10.1016/j.immuni.2014.08.005] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 08/07/2014] [Indexed: 11/15/2022]
Abstract
Mycobacteria possess various immunomodulatory molecules on the cell wall. Mannose-capped lipoarabinomannan (Man-LAM), a major lipoglycan of Mycobacterium tuberculosis, has long been known to have both inhibitory and stimulatory effects on host immunity. However, the direct Man-LAM receptor that explains its pleiotropic activities has not been clearly identified. Here, we report that a C-type lectin receptor Dectin-2 (gene symbol Clec4n) is a direct receptor for Man-LAM. Man-LAM activated bone-marrow-derived dendritic cells (BMDCs) to produce pro- and anti-inflammatory cytokines, whereas it was completely abrogated in Clec4n(-/-) BMDCs. Man-LAM promoted antigen-specific T cell responses through Dectin-2 on DCs. Furthermore, Man-LAM induced experimental autoimmune encephalitis (EAE) as an adjuvant in mice, whereas Clec4n(-/-) mice were resistant. Upon mycobacterial infection, Clec4n(-/-) mice showed augmented lung pathology. These results demonstrate that Dectin-2 contributes to host immunity against mycobacterial infection through the recognition of Man-LAM.
Collapse
Affiliation(s)
- Akiko Yonekawa
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shinobu Saijo
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan; PRESTO, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Yoshihiko Hoshino
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo 189-0002, Japan
| | - Yasunobu Miyake
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Eri Ishikawa
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Maho Suzukawa
- Center for Pulmonary Diseases, National Hospital Organization, Tokyo National Hospital, Tokyo 204-8585, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Masato Tanaka
- Laboratory for Immune Regulation, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Masatsugu Oh-Hora
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; PRESTO, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Sho Yamasaki
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan.
| |
Collapse
|
164
|
Subbian S, Eugenin E, Kaplan G. Detection of Mycobacterium tuberculosis in latently infected lungs by immunohistochemistry and confocal microscopy. J Med Microbiol 2014; 63:1432-1435. [PMID: 25161200 DOI: 10.1099/jmm.0.081091-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Detection of latent Mycobacterium tuberculosis is a challenge in the diagnosis of asymptomatic, subclinical tuberculosis. We report the development of an immunofluorescence technique to visualize and enumerate M. tuberculosis in latently infected rabbit lungs where no acid-fast-stained organisms were seen and no cultivable bacilli were obtained by the agar-plating method.
Collapse
Affiliation(s)
- Selvakumar Subbian
- Public Health Research Institute (PHRI), Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ, USA.,Laboratory of Mycobacterial Immunity and Pathogenesis, Rutgers University, Newark, NJ, USA
| | - Eliseo Eugenin
- Public Health Research Institute (PHRI), Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ, USA
| | - Gilla Kaplan
- The Bill & Melinda Gates Foundation, Seattle, WA, USA.,Public Health Research Institute (PHRI), Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ, USA.,Laboratory of Mycobacterial Immunity and Pathogenesis, Rutgers University, Newark, NJ, USA
| |
Collapse
|
165
|
Prozorov AA, Fedorova IA, Bekker OB, Danilenko VN. The virulence factors of Mycobacterium tuberculosis: Genetic control, new conceptions. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414080055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
166
|
The phosphatidyl-myo-inositol mannosyltransferase PimA is essential for Mycobacterium tuberculosis growth in vitro and in vivo. J Bacteriol 2014; 196:3441-51. [PMID: 25049093 DOI: 10.1128/jb.01346-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The cell envelope of Mycobacterium tuberculosis contains glycans and lipids of peculiar structure that play prominent roles in the biology and pathogenesis of tuberculosis. Consequently, the chemical structure and biosynthesis of the cell wall have been intensively investigated in order to identify novel drug targets. Here, we validate that the function of phosphatidyl-myo-inositol mannosyltransferase PimA is vital for M. tuberculosis in vitro and in vivo. PimA initiates the biosynthesis of phosphatidyl-myo-inositol mannosides by transferring a mannosyl residue from GDP-Man to phosphatidyl-myo-inositol on the cytoplasmic side of the plasma membrane. To prove the essential nature of pimA in M. tuberculosis, we constructed a pimA conditional mutant by using the TetR-Pip off system and showed that downregulation of PimA expression causes bactericidality in batch cultures. Consistent with the biochemical reaction catalyzed by PimA, this phenotype was associated with markedly reduced levels of phosphatidyl-myo-inositol dimannosides, essential structural components of the mycobacterial cell envelope. In addition, the requirement of PimA for viability was clearly demonstrated during macrophage infection and in two different mouse models of infection, where a dramatic decrease in viable counts was observed upon silencing of the gene. Notably, depletion of PimA resulted in complete clearance of the mouse lungs during both the acute and chronic phases of infection. Altogether, the experimental data highlight the importance of the phosphatidyl-myo-inositol mannoside biosynthetic pathway for M. tuberculosis and confirm that PimA is a novel target for future drug discovery programs.
Collapse
|
167
|
Baumann R, Kaempfer S, Chegou NN, Oehlmann W, Loxton AG, Kaufmann SHE, van Helden PD, Black GF, Singh M, Walzl G. Serologic diagnosis of tuberculosis by combining Ig classes against selected mycobacterial targets. J Infect 2014; 69:581-9. [PMID: 24968240 DOI: 10.1016/j.jinf.2014.05.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Accurate, simple and cost-effective diagnostic tests are needed for diagnosis of active tuberculosis (TB). Serodiagnosis is attractive as it can be harnessed for point-of-care tests. METHODS We evaluated, in a blinded fashion, the sensitivity and specificity of serologic immunoglobulin (Ig)G, IgA and/or IgM responses to Apa, heat shock protein (HSP) 16.3, HSP20, PE35, probable thiol peroxidase Tpx and lipoarabinomannan (LAM) in 42 HIV-negative South African pulmonary TB patients and 67 control individuals. The status of latent Mycobacterium tuberculosis infection (LTBI) among controls was defined through the TST and IFN-γ release assays (IGRAs). We evaluated 47 definite LTBI (IGRA(+)/LTBI), 8 putative LTBI (IGRA(-)/TST(+)) and 12 TB-uninfected (non-LTBI) subjects. RESULTS In contrast to anti-PE35 IgA, anti-PE35 IgG and particularly anti-Apa IgA, performances of anti-LAM IgG and selected anti-protein antibodies were less affected by inclusion of LTBI participants into the analysis. Anti-LAM IgG showed with a sensitivity/specificity of 71.4%/86.6% (p < 0.001) the best discrimination between TB and non-TB subjects. Selected five-antibody-combinations (including anti-LAM IgG, anti-LAM IgA and anti-Tpx IgG) further improved this performance to an accuracy exceeding 86%. CONCLUSIONS Antibody responses to some Mycobacterium tuberculosis antigens often also reflect latent infection explaining the poor performance of antibody-based tests for active TB in TB-endemic settings. Our results suggest that rather a combination of serological responses against selected protein and non-protein antigens and different Ig classes should be investigated for TB serodiagnostics.
Collapse
Affiliation(s)
- Ralf Baumann
- DST/NRF Centre of Excellence for Biomedical TB Research and MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 19063, Tygerberg 7505, South Africa; Lionex Diagnostics and Therapeutics, 38126 Braunschweig, Germany
| | - Susanne Kaempfer
- Lionex Diagnostics and Therapeutics, 38126 Braunschweig, Germany
| | - Novel N Chegou
- DST/NRF Centre of Excellence for Biomedical TB Research and MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 19063, Tygerberg 7505, South Africa
| | - Wulf Oehlmann
- Lionex Diagnostics and Therapeutics, 38126 Braunschweig, Germany
| | - André G Loxton
- DST/NRF Centre of Excellence for Biomedical TB Research and MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 19063, Tygerberg 7505, South Africa
| | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Paul D van Helden
- DST/NRF Centre of Excellence for Biomedical TB Research and MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 19063, Tygerberg 7505, South Africa
| | - Gillian F Black
- DST/NRF Centre of Excellence for Biomedical TB Research and MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 19063, Tygerberg 7505, South Africa
| | - Mahavir Singh
- Lionex Diagnostics and Therapeutics, 38126 Braunschweig, Germany.
| | - Gerhard Walzl
- DST/NRF Centre of Excellence for Biomedical TB Research and MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 19063, Tygerberg 7505, South Africa
| |
Collapse
|
168
|
Detection of stealthy small amphiphilic biomarkers. J Microbiol Methods 2014; 103:112-7. [PMID: 24880131 DOI: 10.1016/j.mimet.2014.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/20/2014] [Accepted: 05/20/2014] [Indexed: 11/21/2022]
Abstract
Pathogen-specific biomarkers are secreted in the host during infection. Many important biomarkers are not proteins but rather small molecules that cannot be directly detected by conventional methods. However, these small molecule biomarkers, such as phenolic glycolipid-I (PGL-I) of Mycobacterium leprae and Mycobactin T (MbT) of Mycobacterium tuberculosis, are critical to the pathophysiology of infection, and may be important in the development of diagnostics, vaccines, and novel therapeutic strategies. Methods for the direct detection of these biomarkers may be of significance both for the diagnosis of infectious disease, and also for the laboratory study of such molecules. Herein, we present, for the first time, a transduction approach for the direct and rapid (30min) detection of small amphiphilic biomarkers in complex samples (e.g. serum) using a single affinity reagent. To our knowledge, this is the first demonstration of an assay for the direct detection of PGL-I, and the first single-reporter assay for the detection of MbT. The assay format exploits the amphiphilic chemistry of the small molecule biomarkers, and is universally applicable to all amphiphiles. The assay is only the first step towards developing a robust system for the detection of amphiphilic biomarkers that are critical to infectious disease pathophysiology.
Collapse
|
169
|
Nobre A, Alarico S, Maranha A, Mendes V, Empadinhas N. The molecular biology of mycobacterial trehalose in the quest for advanced tuberculosis therapies. MICROBIOLOGY-SGM 2014; 160:1547-1570. [PMID: 24858083 DOI: 10.1099/mic.0.075895-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Trehalose is a natural glucose disaccharide identified in the 19th century in fungi and insect cocoons, and later across the three domains of life. In members of the genus Mycobacterium, which includes the tuberculosis (TB) pathogen and over 160 species of nontuberculous mycobacteria (NTM), many of which are opportunistic pathogens, trehalose has been an important focus of research over the last 60 years. It is a crucial player in the assembly and architecture of the remarkable mycobacterial cell envelope as an element of unique highly antigenic glycolipids, namely trehalose dimycolate ('cord factor'). Free trehalose has been detected in the mycobacterial cytoplasm and occasionally in oligosaccharides with unknown function. TB and NTM infection statistics and death toll, the decline in immune responses in the aging population, human immunodeficiency virus/AIDS or other debilitating conditions, and the proliferation of strains with different levels of resistance to the dated drugs in use, all merge into a serious public-health threat urging more effective vaccines, efficient diagnostic tools and new drugs. This review deals with the latest findings on mycobacterial trehalose biosynthesis, catabolism, processing and recycling, as well with the ongoing quest for novel trehalose-related mechanisms to be targeted by novel TB therapeutics. In this context, the drug-discovery pipeline has recently included new lead compounds directed toward trehalose-related targets highlighting the potential of these pathways to stem the tide of rising drug resistance.
Collapse
Affiliation(s)
- Ana Nobre
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Susana Alarico
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana Maranha
- Biosciences PhD Program, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.,CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Vitor Mendes
- Department of Biochemistry, University of Cambridge, Cambridge, UK.,CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- III/UC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.,CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
170
|
Svetlíková Z, Baráth P, Jackson M, Korduláková J, Mikušová K. Purification and characterization of the acyltransferase involved in biosynthesis of the major mycobacterial cell envelope glycolipid--monoacylated phosphatidylinositol dimannoside. Protein Expr Purif 2014; 100:33-9. [PMID: 24810911 DOI: 10.1016/j.pep.2014.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/24/2014] [Accepted: 04/26/2014] [Indexed: 10/25/2022]
Abstract
Phosphatidylinositol mannosides are essential structural components of the mycobacterial cell envelope. They are implicated in host-pathogen interactions during infection and serve as a basis for biosynthesis of other unique molecules with immunomodulatory properties - mycobacterial lipopolysaccharides lipoarabinomannan and lipomannan. Acyltransferase Rv2611 is involved in one of the initial steps in the assembly of these molecules in Mycobacterium tuberculosis - the attachment of an acyl group to position-6 of the 2-linked mannosyl residue of the phosphatidylinositol mannoside anchor. Although the function of this enzyme was annotated 10 years ago, it has never been completely biochemically characterized due to lack of the pure protein. We have successfully overexpressed and purified MSMEG_2934, the ortholog of Rv2611c from the non-pathogenic model organism Mycobacteriumsmegmatis mc(2)155 using mycobacterial pJAM2 expression system, which allowed confirmation of its in vitro acyltransferase activity, and establishment of its substrate specificity.
Collapse
Affiliation(s)
- Zuzana Svetlíková
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Mlynská dolina CH-1, 842 15 Bratislava, Slovakia
| | - Peter Baráth
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava, Slovakia
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Jana Korduláková
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Mlynská dolina CH-1, 842 15 Bratislava, Slovakia
| | - Katarína Mikušová
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Mlynská dolina CH-1, 842 15 Bratislava, Slovakia.
| |
Collapse
|
171
|
Castaño D, García LF, Rojas M. Differentiation of human mononuclear phagocytes increases their innate response to Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2014; 94:207-18. [DOI: 10.1016/j.tube.2014.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/20/2013] [Accepted: 01/08/2014] [Indexed: 12/22/2022]
|
172
|
Mycobacterial outer membrane is a lipid bilayer and the inner membrane is unusually rich in diacyl phosphatidylinositol dimannosides. Proc Natl Acad Sci U S A 2014; 111:4958-63. [PMID: 24639491 DOI: 10.1073/pnas.1403078111] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium species, including the human pathogen Mycobacterium tuberculosis, are unique among Gram-positive bacteria in producing a complex cell wall that contains unusual lipids and functions as a permeability barrier. Lipids in the cell wall were hypothesized to form a bilayer or outer membrane that would prevent the entry of chemotherapeutic agents, but this could not be tested because of the difficulty in extracting only the cell-wall lipids. We used reverse micellar extraction to achieve this goal and carried out a quantitative analysis of both the cell wall and the inner membrane lipids of Mycobacterium smegmatis. We found that the outer leaflet of the outer membrane contains a similar number of hydrocarbon chains as the inner leaflet composed of mycolic acids covalently linked to cell-wall arabinogalactan, thus validating the outer membrane model. Furthermore, we found that preliminary extraction with reverse micelles permitted the subsequent complete extraction of inner membrane lipids with chloroform-methanol-water, revealing that one-half of hydrocarbon chains in this membrane are contributed by an unusual lipid, diacyl phosphatidylinositol dimannoside. The inner leaflet of this membrane likely is composed nearly entirely of this lipid. Because it contains four fatty acyl chains within a single molecule, it may produce a bilayer environment of unusually low fluidity and may slow the influx of drugs, contributing to the general drug resistance phenotype of mycobacteria.
Collapse
|
173
|
Aptamer against mannose-capped lipoarabinomannan inhibits virulent Mycobacterium tuberculosis infection in mice and rhesus monkeys. Mol Ther 2014; 22:940-51. [PMID: 24572295 DOI: 10.1038/mt.2014.31] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 02/20/2014] [Indexed: 12/23/2022] Open
Abstract
The major surface lipoglycan of Mycobacterium tuberculosis (M. tb), mannose-capped lipoarabinomannan (ManLAM), is an immunosuppressive epitope of M. tb. We used systematic evolution of ligands by exponential enrichment (SELEX) to generate an aptamer (ZXL1) that specifically bound to ManLAM from the virulent M. tb strain H37Rv. Aptamer ZXL1 had the highest binding affinity, with an equilibrium dissociation constant (Kd) of 436.3 ± 37.84 nmol/l, and competed with the mannose receptor for binding to ManLAM and M. tb H37Rv. ZXL1 significantly inhibited the ManLAM-induced immunosuppression of CD11c(+) dendritic cells (DCs) and enhanced the M. tb antigen-presenting activity of DCs for naive CD4(+) Th1 cell activation. More importantly, we demonstrated that injection of aptamer ZXL1 significantly reduced the progression of M. tb H37Rv infections and bacterial loads in lungs of mice and rhesus monkeys. These results suggest that the aptamer ZXL1 is a new potential antimycobacterial agent and tuberculosis vaccine immune adjuvant.
Collapse
|
174
|
Intravitreal methotrexate in the management of presumed tuberculous serpiginous-like choroiditis. Retina 2014; 33:1943-8. [PMID: 23584698 DOI: 10.1097/iae.0b013e318285cdbe] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE To report on the use of intravitreal methotrexate (IVT MTX) as part of treatment of presumed tuberculous serpiginous-like choroiditis progressing despite the use of tuberculostatics. METHODS Case series of patients suffering from serpiginous-like choroiditis with positive tuberculin skin test who received IVT injections of MTX as part of treatment. Ocular disease was active despite the use of systemic tuberculostatic (isoniazid, rifampicin, pyrazinamide, and ethambutol), and choroidal lesions showed signs of progression. A single injection of IVT MTX (400 μg/0.1 mL) was administered in the eye with macular-threatening features. Change in visual acuity, appearance of the lesion, and staining patterns on angiography were among the main outcome measurements. RESULTS Three eyes from two patients were included. Both cases presented bilateral involvement with mild vitritis. In all three eyes, choroidal lesions healed within the first month after an IVT MTX injection with visual acuity improvement in two. No adverse reaction was related to the medication or to the procedure. Patients were followed for a mean of 13.5 months after being injected. CONCLUSION The use of IVT MTX seems effective in the management of the inflammatory component of tuberculous serpiginous-like choroiditis, whereas systemic tuberculostatics are aimed at controlling the infectious one.
Collapse
|
175
|
Non-replicating Mycobacterium tuberculosis elicits a reduced infectivity profile with corresponding modifications to the cell wall and extracellular matrix. PLoS One 2014; 9:e87329. [PMID: 24516549 PMCID: PMC3916317 DOI: 10.1371/journal.pone.0087329] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 12/20/2013] [Indexed: 12/21/2022] Open
Abstract
A key feature of Mycobacterium tuberculosis is its ability to become dormant in the host. Little is known of the mechanisms by which these bacilli are able to persist in this state. Therefore, the focus of this study was to emulate environmental conditions encountered by M. tuberculosis in the granuloma, and determine the effect of such conditions on the physiology and infectivity of the organism. Non-replicating persistent (NRP) M. tuberculosis was established by the gradual depletion of nutrients in an oxygen-replete and controlled environment. In contrast to rapidly dividing bacilli, NRP bacteria exhibited a distinct phenotype by accumulating an extracellular matrix rich in free mycolate and lipoglycans, with increased arabinosylation. Microarray studies demonstrated a substantial down-regulation of genes involved in energy metabolism in NRP bacteria. Despite this reduction in metabolic activity, cells were still able to infect guinea pigs, but with a delay in the development of disease when compared to exponential phase bacilli. Using these approaches to investigate the interplay between the changing environment of the host and altered physiology of NRP bacteria, this study sheds new light on the conditions that are pertinent to M. tuberculosis dormancy and how this organism could be establishing latent disease.
Collapse
|
176
|
Lipoteichoic acids, phosphate-containing polymers in the envelope of gram-positive bacteria. J Bacteriol 2014; 196:1133-42. [PMID: 24415723 DOI: 10.1128/jb.01155-13] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lipoteichoic acids (LTA) are polymers of alternating units of a polyhydroxy alkane, including glycerol and ribitol, and phosphoric acid, joined to form phosphodiester units that are found in the envelope of Gram-positive bacteria. Here we review four different types of LTA that can be distinguished on the basis of their chemical structure and describe recent advances in the biosynthesis pathway for type I LTA, d-alanylated polyglycerol-phosphate linked to di-glucosyl-diacylglycerol. The physiological functions of type I LTA are discussed in the context of inhibitors that block their synthesis and of mutants with discrete synthesis defects. Research on LTA structure and function represents a large frontier that has been investigated in only few Gram-positive bacteria.
Collapse
|
177
|
Bourke J, Brereton CF, Gordon SV, Lavelle EC, Scanlan EM. The synthesis and biological evaluation of mycobacterial p-hydroxybenzoic acid derivatives (p-HBADs). Org Biomol Chem 2014; 12:1114-23. [DOI: 10.1039/c3ob42277a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Synthetic p-hydroxybenzoic acid derivatives (p-HBADs) from Mycobacterium tuberculosis have the ability to suppress host immune response in vitro.
Collapse
Affiliation(s)
- Jean Bourke
- School of Chemistry
- Trinity Biomedical Sciences Institute
- Dublin 2, Ireland
| | - Corinna F. Brereton
- Adjuvant Research Group
- School of Biochemistry
- Trinity Biomedical Sciences Institute
- Dublin 2, Ireland
| | - Stephen V. Gordon
- Conway Institute of Biomolecular & Biomedical Research
- University College Dublin
- Dublin 4, Ireland
| | - Ed C. Lavelle
- Adjuvant Research Group
- School of Biochemistry
- Trinity Biomedical Sciences Institute
- Dublin 2, Ireland
| | - Eoin M. Scanlan
- School of Chemistry
- Trinity Biomedical Sciences Institute
- Dublin 2, Ireland
| |
Collapse
|
178
|
Baumgart M, Luder K, Grover S, Gätgens C, Besra GS, Frunzke J. IpsA, a novel LacI-type regulator, is required for inositol-derived lipid formation in Corynebacteria and Mycobacteria. BMC Biol 2013; 11:122. [PMID: 24377418 PMCID: PMC3899939 DOI: 10.1186/1741-7007-11-122] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/17/2013] [Indexed: 11/10/2022] Open
Abstract
Background The development of new drugs against tuberculosis and diphtheria is focused on disrupting the biogenesis of the cell wall, the unique architecture of which confers resistance against current therapies. The enzymatic pathways involved in the synthesis of the cell wall by these pathogens are well understood, but the underlying regulatory mechanisms are largely unknown. Results Here, we characterize IpsA, a LacI-type transcriptional regulator conserved among Mycobacteria and Corynebacteria that plays a role in the regulation of cell wall biogenesis. IpsA triggers myo-inositol formation by activating ino1, which encodes inositol phosphate synthase. An ipsA deletion mutant of Corynebacterium glutamicum cultured on glucose displayed significantly impaired growth and presented an elongated cell morphology. Further studies revealed the absence of inositol-derived lipids in the cell wall and a complete loss of mycothiol biosynthesis. The phenotype of the C. glutamicum ipsA deletion mutant was complemented to different extend by homologs from Corynebacterium diphtheriae (dip1969) and Mycobacterium tuberculosis (rv3575), indicating the conserved function of IpsA in the pathogenic species. Additional targets of IpsA with putative functions in cell wall biogenesis were identified and IpsA was shown to bind to a conserved palindromic motif within the corresponding promoter regions. Myo-inositol was identified as an effector of IpsA, causing the dissociation of the IpsA-DNA complex in vitro. Conclusions This characterization of IpsA function and of its regulon sheds light on the complex transcriptional control of cell wall biogenesis in the mycolata taxon and generates novel targets for drug development.
Collapse
Affiliation(s)
| | | | | | | | | | - Julia Frunzke
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, 52425 Jülich, Germany.
| |
Collapse
|
179
|
Inactivation of the phosphoglucomutase gene pgm in Corynebacterium glutamicum affects cell shape and glycogen metabolism. Biosci Rep 2013; 33:BSR20130076. [PMID: 23863124 PMCID: PMC3755335 DOI: 10.1042/bsr20130076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In Corynebacterium glutamicum formation of glc-1-P (α-glucose-1-phosphate) from glc-6-P (glucose-6-phosphate) by α-Pgm (phosphoglucomutase) is supposed to be crucial for synthesis of glycogen and the cell wall precursors trehalose and rhamnose. Furthermore, Pgm is probably necessary for glycogen degradation and maltose utilization as glucan phosphorylases of both pathways form glc-1-P. We here show that C. glutamicum possesses at least two Pgm isoenzymes, the cg2800 (pgm) encoded enzyme contributing most to total Pgm activity. By inactivation of pgm we created C. glutamicum IMpgm showing only about 12% Pgm activity when compared to the parental strain. We characterized both strains during cultivation with either glucose or maltose as substrate and observed that (i) the glc-1-P content in the WT (wild-type) and the mutant remained constant independent of the carbon source used, (ii) the glycogen levels in the pgm mutant were lower during growth on glucose and higher during growth on maltose, and (iii) the morphology of the mutant was altered with maltose as a substrate. We conclude that C. glutamicum employs glycogen as carbon capacitor to perform glc-1-P homeostasis in the exponential growth phase and is therefore able to counteract limited Pgm activity for both anabolic and catabolic metabolic pathways.
Collapse
|
180
|
Stoop EJM, Mishra AK, Driessen NN, van Stempvoort G, Bouchier P, Verboom T, van Leeuwen LM, Sparrius M, Raadsen SA, van Zon M, van der Wel NN, Besra GS, Geurtsen J, Bitter W, Appelmelk BJ, van der Sar AM. Mannan core branching of lipo(arabino)mannan is required for mycobacterial virulence in the context of innate immunity. Cell Microbiol 2013; 15:2093-108. [PMID: 23902464 PMCID: PMC3963455 DOI: 10.1111/cmi.12175] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/03/2013] [Accepted: 07/17/2013] [Indexed: 11/28/2022]
Abstract
The causative agent of tuberculosis (TB), Mycobacterium tuberculosis, remains an important worldwide health threat. Although TB is one of the oldest infectious diseases of man, a detailed understanding of the mycobacterial mechanisms underlying pathogenesis remains elusive. Here, we studied the role of the α(1→2) mannosyltransferase MptC in mycobacterial virulence, using the Mycobacterium marinum zebrafish infection model. Like its M. tuberculosis orthologue, disruption of M. marinum mptC (mmar_3225) results in defective elongation of mannose caps of lipoarabinomannan (LAM) and absence of α(1→2)mannose branches on the lipomannan (LM) and LAM mannan core, as determined by biochemical analysis (NMR and GC-MS) and immunoblotting. We found that the M. marinum mptC mutant is strongly attenuated in embryonic zebrafish, which rely solely on innate immunity, whereas minor virulence defects were observed in adult zebrafish. Strikingly, complementation with the Mycobacterium smegmatis mptC orthologue, which restored mannan core branching but not cap elongation, was sufficient to fully complement the virulence defect of the mptC mutant in embryos. Altogether our data demonstrate that not LAM capping, but mannan core branching of LM/LAM plays an important role in mycobacterial pathogenesis in the context of innate immunity.
Collapse
Affiliation(s)
- Esther J M Stoop
- Department of Medical Microbiology and Infection Control, VU University Medical Center, van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Yang L, Sinha T, Carlson TK, Keiser TL, Torrelles JB, Schlesinger LS. Changes in the major cell envelope components of Mycobacterium tuberculosis during in vitro growth. Glycobiology 2013; 23:926-34. [PMID: 23576535 PMCID: PMC3695751 DOI: 10.1093/glycob/cwt029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/03/2013] [Accepted: 04/07/2013] [Indexed: 12/15/2022] Open
Abstract
One-third of the world's population is infected with Mycobacterium tuberculosis (M.tb), which causes tuberculosis. Mycobacterium tuberculosis cell envelope components such as glycolipids, lipoglycans and polysaccharides play important roles in bacteria-host cell interactions that dictate the host immune response. However, little is known about the changes in the amounts and types of these cell envelope components as the bacillus divides during in vitro culture. To shed light on these phenomena, we examined growth-dependent changes over time in major cell envelope components of virulent M.tb by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, thin-layer chromatography, mass spectrometry, immunoblotting and flow cytometry. Our studies provide evidence that major mannosylated glycoconjugates on the M.tb cell envelope change as M.tb grows in vitro on the widely used Middlebrook 7H11 agar. In particular, our compositional analyses show that from Day 9 to 28 the amounts of mannose-containing molecules, such as mannose-capped lipoarabinomannan, lipomannan and phosphatidyl-myo-inositol mannosides, change continuously in both the cell envelope and outer cell surface. Along with these changes, mannan levels on the outer cell surface also increase significantly over time. The implications of these differences in terms of how M.tb is grown for studies performed in vitro and in vivo for assessing M.tb-host recognition and establishment of infection are discussed.
Collapse
Affiliation(s)
- Lanhao Yang
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology
| | - Tejas Sinha
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology
| | - Tracy K Carlson
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology
- Department of Veterinary Biosciences
| | - Tracy L Keiser
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology
- Department of Microbiology, The Ohio State University, 460 W. 12th Avenue, Biomedical Research Tower, Columbus, OH 43210, USA
| | - Jordi B Torrelles
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology
| | - Larry S Schlesinger
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology
| |
Collapse
|
182
|
Pulido D, Torrent M, Andreu D, Nogués MV, Boix E. Two human host defense ribonucleases against mycobacteria, the eosinophil cationic protein (RNase 3) and RNase 7. Antimicrob Agents Chemother 2013; 57:3797-805. [PMID: 23716047 PMCID: PMC3719706 DOI: 10.1128/aac.00428-13] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/20/2013] [Indexed: 01/21/2023] Open
Abstract
There is an urgent need to develop new agents against mycobacterial infections, such as tuberculosis and other respiratory tract or skin affections. In this study, we have tested two human antimicrobial RNases against mycobacteria. RNase 3, also called the eosinophil cationic protein, and RNase 7 are two small cationic proteins secreted by innate cells during host defense. Both proteins are induced upon infection displaying a wide range of antipathogen activities. In particular, they are released by leukocytes and epithelial cells, contributing to tissue protection. Here, the two RNases have been proven effective against Mycobacterium vaccae at a low micromolar level. High bactericidal activity correlated with their bacterial membrane depolarization and permeabilization activities. Further analysis on both protein-derived peptides identified for RNase 3 an N-terminus fragment that is even more active than the parental protein. Also, a potent bacterial agglutinating activity was unique to RNase 3 and its derived peptide. The particular biophysical properties of the RNase 3 active peptide are envisaged as a suitable reference for the development of novel antimycobacterial drugs. The results support the contribution of secreted RNases to the host immune response against mycobacteria.
Collapse
Affiliation(s)
- David Pulido
- Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marc Torrent
- Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - David Andreu
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Spain
| | - M. Victoria Nogués
- Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
183
|
Feruglio SL, Trøseid M, Damås JK, Kvale D, Dyrhol-Riise AM. Soluble markers of the Toll-like receptor 4 pathway differentiate between active and latent tuberculosis and are associated with treatment responses. PLoS One 2013; 8:e69896. [PMID: 23875007 PMCID: PMC3713063 DOI: 10.1371/journal.pone.0069896] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 06/13/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Biomarkers to differentiate between active tuberculosis (TB) and latent TB infection (LTBI) and to monitor treatment responses are requested to complement TB diagnostics and control, particularly in patients with multi-drug resistant TB. We have studied soluble markers of the Toll-like-receptor 4 (TLR-4) pathway in various stages of TB disease and during anti-TB treatment. METHODS Plasma samples from patients with culture confirmed drug-sensitive TB (n = 19) were collected before and after 2, 8 and 24 weeks of efficient anti-TB treatment and in a LTBI group (n = 6). Soluble (s) CD14 and myeloid differentiation-2 (MD-2) were analyzed by the Enzyme-linked immunosorbent assay (ELISA). Lipopolysaccharide (LPS) was analyzed by the Limulus Amebocyte Lysate colorimetric assay. Nonparametric statistics were applied. RESULTS Plasma levels of sCD14 (p<0.001), MD-2 (p = 0.036) and LPS (p = 0.069) were elevated at baseline in patients with untreated active TB compared to the LTBI group. MD-2 concentrations decreased after 2 weeks of treatment (p = 0.011), while LPS levels decreased after 8 weeks (p = 0.005). In contrast, sCD14 levels increased after 2 weeks (p = 0.047) with a subsequent modest decrease throughout the treatment period. There was no significant difference in concentrations of any of these markers between patients with pulmonary and extrapulmonary TB or between patients with or without symptoms. CONCLUSION Our data suggest that plasma levels of LPS, MD-2 and sCD14 can discriminate between active TB and LTBI. A decline in LPS and MD-2 concentrations was associated with response to anti-TB treatment. The clinical potential of these soluble TLR-4 pathway proteins needs to be further explored.
Collapse
Affiliation(s)
- Siri L. Feruglio
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marius Trøseid
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Jan Kristian Damås
- Department of Infectious Diseases, St. Olavs Hospital, Trondheim, Norway
- Institute of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Dag Kvale
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Anne Ma Dyrhol-Riise
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
184
|
Modification of clearview tuberculosis (TB) enzyme-linked immunosorbent assay for TB patients not infected with HIV. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1479-82. [PMID: 23825194 DOI: 10.1128/cvi.00375-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Diagnosis of active tuberculosis by detection of urinary lipoarabinomannan (uLAM) from Mycobacterium tuberculosis is an attractive approach. Concentrating urine 100-fold allowed quantitation of uLAM at levels equal to picograms/ml of nonconcentrated urine. The approach of concentrating urine 100-fold improved the clinical sensitivity of the Clearview TB enzyme-linked immunosorbent assay (ELISA) from 7% to 57% yet impaired its specificity from 97% to 89%. (This study has been registered at University Hospital of Turku under registration no. 47/180/2009, Helsinki University Central Hospital under 149/2010, University Hospital of Kuopio under 105/2010, and China Medical University Hospital, Taichung, under DMR-99-IRB-075-2.).
Collapse
|
185
|
Sakamuri RM, Price DN, Lee M, Cho SN, Barry CE, Via LE, Swanson BI, Mukundan H. Association of lipoarabinomannan with high density lipoprotein in blood: implications for diagnostics. Tuberculosis (Edinb) 2013; 93:301-7. [PMID: 23507184 DOI: 10.1016/j.tube.2013.02.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 02/11/2013] [Accepted: 02/14/2013] [Indexed: 11/27/2022]
Abstract
Understanding the pathophysiology of tuberculosis, and the bio-distribution of pathogen-associated molecules in the host is essential for the development of efficient methods of intervention. One of the key virulence factors in the pathology of tuberculosis infection is Lipoarabinomannan (LAM). Previously, we have demonstrated the reliable detection of LAM in urine from tuberculosis patients in a sandwich immunoassay format. We have also applied an ultra-sensitive detection strategy developed for amphiphilic biomarkers, membrane insertion, to the detection of LAM with a limit of detection of 10 fM. Herein, we evaluate the application of membrane insertion to the detection of LAM in patient serum, and demonstrate that the circulating concentrations of 'monomeric' LAM in serum are very low, despite significantly higher concentrations in the urine. Using spiked samples, we demonstrate that this discrepancy is due to the association of LAM with high-density lipoprotein (HDL) nanodiscs in human serum. Indeed, pull-down of HDL nanodiscs from human serum allows for the recovery of HDL-associated LAM. These studies suggest that LAM is likely associated with carrier molecules such as HDL in the blood of patients infected with tuberculosis. This phenomenon may not be limited to LAM in that many pathogen-associated molecular patterns like LAM are amphiphilic in nature and may also be associated with host lipid carriers. Such interactions are likely to affect host-pathogen interactions, pathogen bio-distribution and clearance in the host, and must be thoroughly understood for the effective design of vaccines and diagnostics.
Collapse
Affiliation(s)
- Rama Murthy Sakamuri
- Chemistry Division, Los Alamos National Laboratory, MS J567, C-PCS, Los Alamos, NM 87545, USA
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Critical roles for lipomannan and lipoarabinomannan in cell wall integrity of mycobacteria and pathogenesis of tuberculosis. mBio 2013; 4:e00472-12. [PMID: 23422411 PMCID: PMC3573661 DOI: 10.1128/mbio.00472-12] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Lipomannan (LM) and lipoarabinomannan (LAM) are mycobacterial glycolipids containing a long mannose polymer. While they are implicated in immune modulations, the significance of LM and LAM as structural components of the mycobacterial cell wall remains unknown. We have previously reported that a branch-forming mannosyltransferase plays a critical role in controlling the sizes of LM and LAM and that deletion or overexpression of this enzyme results in gross changes in LM/LAM structures. Here, we show that such changes in LM/LAM structures have a significant impact on the cell wall integrity of mycobacteria. In Mycobacterium smegmatis, structural defects in LM and LAM resulted in loss of acid-fast staining, increased sensitivity to β-lactam antibiotics, and faster killing by THP-1 macrophages. Furthermore, equivalent Mycobacterium tuberculosis mutants became more sensitive to β-lactams, and one mutant showed attenuated virulence in mice. Our results revealed previously unknown structural roles for LM and LAM and further demonstrated that they are important for the pathogenesis of tuberculosis. Tuberculosis (TB) is a global burden, affecting millions of people worldwide. Mycobacterium tuberculosis is a causative agent of TB, and understanding the biology of M. tuberculosis is essential for tackling this devastating disease. The cell wall of M. tuberculosis is highly impermeable and plays a protective role in establishing infection. Among the cell wall components, LM and LAM are major glycolipids found in all Mycobacterium species, show various immunomodulatory activities, and have been thought to play roles in TB pathogenesis. However, the roles of LM and LAM as integral parts of the cell wall structure have not been elucidated. Here we show that LM and LAM play critical roles in the integrity of mycobacterial cell wall and the pathogenesis of TB. These findings will now allow us to seek the possibility that the LM/LAM biosynthetic pathway is a chemotherapeutic target.
Collapse
|
187
|
Validation of Mycobacterium tuberculosis Rv1681 protein as a diagnostic marker of active pulmonary tuberculosis. J Clin Microbiol 2013; 51:1367-73. [PMID: 23390284 DOI: 10.1128/jcm.03192-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The development of an accurate antigen detection assay for the diagnosis of active tuberculosis (TB) would represent a major clinical advance. Here, we demonstrate that the Mycobacterium tuberculosis Rv1681 protein is a biomarker for active TB with potential diagnostic utility. We initially identified, by mass spectroscopy, peptides from the Rv1681 protein in urine specimens from 4 patients with untreated active TB. Rabbit IgG anti-recombinant Rv1681 detected Rv1681 protein in lysates and culture filtrates of M. tuberculosis and immunoprecipitated it from pooled urine specimens from two TB patients. An enzyme-linked immunosorbent assay formatted with these antibodies detected Rv1681 protein in unconcentrated urine specimens from 11/25 (44%) TB patients and 1/21 (4.8%) subjects in whom TB was initially clinically suspected but then ruled out by conventional methods. Rv1681 protein was not detected in urine specimens from 10 subjects with Escherichia coli-positive urine cultures, 26 subjects with confirmed non-TB tropical diseases (11 with schistosomiasis, 5 with Chagas' disease, and 10 with cutaneous leishmaniasis), and 14 healthy subjects. These results provide strong validation of Rv1681 protein as a promising biomarker for TB diagnosis.
Collapse
|
188
|
Slayden RA, Jackson M, Zucker J, Ramirez MV, Dawson CC, Crew R, Sampson NS, Thomas ST, Jamshidi N, Sisk P, Caspi R, Crick DC, McNeil MR, Pavelka MS, Niederweis M, Siroy A, Dona V, McFadden J, Boshoff H, Lew JM. Updating and curating metabolic pathways of TB. Tuberculosis (Edinb) 2013; 93:47-59. [PMID: 23375378 DOI: 10.1016/j.tube.2012.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 11/25/2012] [Indexed: 01/08/2023]
Abstract
The sequencing of complete genomes has accelerated biomedical research by providing information about the overall coding capacity of bacterial chromosomes. The original TB annotation resulted in putative functional assignment of ∼60% of the genes to specific metabolic functions, however, the other 40% of the encoded ORFs where annotated as conserved hypothetical proteins, hypothetical proteins or encoding proteins of unknown function. The TB research community is now at the beginning of the next phases of post-genomics; namely reannotation and functional characterization by targeted experimentation. Arguably, this is the most significant time for basic microbiology in recent history. To foster basic TB research, the Tuberculosis Community Annotation Project (TBCAP) jamboree exercise began the reannotation effort by providing additional information for previous annotations, and refining and substantiating the functional assignment of ORFs and genes within metabolic pathways. The overall goal of the TBCAP 2012 exercise was to gather and compile various data types and use this information with oversight from the scientific community to provide additional information to support the functional annotations of encoding genes. Another objective of this effort was to standardize the publicly accessible Mycobacterium tuberculosis reference sequence and its annotation. The greatest benefit of functional annotation information of genome sequence is that it fuels TB research for drug discovery, diagnostics, vaccine development and epidemiology.
Collapse
|
189
|
Cao B, Chen X, Yamaryo-Botte Y, Richardson MB, Martin KL, Khairallah GN, Rupasinghe TW, O’Flaherty RM, O’Hair RA, Ralton JE, Crellin PK, Coppel RL, McConville MJ, Williams SJ. Synthesis, Structural Elucidation, And Biochemical Analysis of Immunoactive Glucuronosyl Diacylglycerides of Mycobacteria and Corynebacteria. J Org Chem 2013; 78:2175-90. [DOI: 10.1021/jo302508e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Paul K. Crellin
- Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Ross L. Coppel
- Department of Microbiology, Monash University, Victoria 3800, Australia
| | | | | |
Collapse
|
190
|
Lattová E, Svetlíková Z, Mikušová K, Perreault H, Poláková M. Novel synthetic (1 → 6)-α-d-mannodisaccharide substrates support processive mannosylation catalysed by the mycobacterial cell envelope enzyme fraction. RSC Adv 2013. [DOI: 10.1039/c3ra43575j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
191
|
Bacterial cell wall macroamphiphiles: Pathogen-/microbe-associated molecular patterns detected by mammalian innate immune system. Biochimie 2013; 95:33-42. [DOI: 10.1016/j.biochi.2012.06.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/06/2012] [Indexed: 02/02/2023]
|
192
|
Patil PS, Lee CC, Huang YW, Zulueta MML, Hung SC. Regioselective and stereoselective benzylidene installation and one-pot protection of d-mannose. Org Biomol Chem 2013; 11:2605-12. [DOI: 10.1039/c3ob40079d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
193
|
Abuhammad A, Fullam E, Lowe ED, Staunton D, Kawamura A, Westwood IM, Bhakta S, Garner AC, Wilson DL, Seden PT, Davies SG, Russell AJ, Garman EF, Sim E. Piperidinols that show anti-tubercular activity as inhibitors of arylamine N-acetyltransferase: an essential enzyme for mycobacterial survival inside macrophages. PLoS One 2012; 7:e52790. [PMID: 23285185 PMCID: PMC3532304 DOI: 10.1371/journal.pone.0052790] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/21/2012] [Indexed: 11/19/2022] Open
Abstract
Latent M. tuberculosis infection presents one of the major obstacles in the global eradication of tuberculosis (TB). Cholesterol plays a critical role in the persistence of M. tuberculosis within the macrophage during latent infection. Catabolism of cholesterol contributes to the pool of propionyl-CoA, a precursor that is incorporated into cell-wall lipids. Arylamine N-acetyltransferase (NAT) is encoded within a gene cluster that is involved in the cholesterol sterol-ring degradation and is essential for intracellular survival. The ability of the NAT from M. tuberculosis (TBNAT) to utilise propionyl-CoA links it to the cholesterol-catabolism pathway. Deleting the nat gene or inhibiting the NAT enzyme prevents intracellular survival and results in depletion of cell-wall lipids. TBNAT has been investigated as a potential target for TB therapies. From a previous high-throughput screen, 3-benzoyl-4-phenyl-1-methylpiperidinol was identified as a selective inhibitor of prokaryotic NAT that exhibited antimycobacterial activity. The compound resulted in time-dependent irreversible inhibition of the NAT activity when tested against NAT from M. marinum (MMNAT). To further evaluate the antimycobacterial activity and the NAT inhibition of this compound, four piperidinol analogues were tested. All five compounds exert potent antimycobacterial activity against M. tuberculosis with MIC values of 2.3-16.9 µM. Treatment of the MMNAT enzyme with this set of inhibitors resulted in an irreversible time-dependent inhibition of NAT activity. Here we investigate the mechanism of NAT inhibition by studying protein-ligand interactions using mass spectrometry in combination with enzyme analysis and structure determination. We propose a covalent mechanism of NAT inhibition that involves the formation of a reactive intermediate and selective cysteine residue modification. These piperidinols present a unique class of antimycobacterial compounds that have a novel mode of action different from known anti-tubercular drugs.
Collapse
Affiliation(s)
- Areej Abuhammad
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Faculty of Pharmacy, University of Jordan, Amman, Jordan
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Elizabeth Fullam
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Edward D. Lowe
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - David Staunton
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Akane Kawamura
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Isaac M. Westwood
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Sanjib Bhakta
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | | | - David L. Wilson
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Peter T. Seden
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Stephen G. Davies
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Angela J. Russell
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Elspeth F. Garman
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Edith Sim
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Faculty of Science, Engineering and Computing Kingston University, Kingston, United Kingdom
| |
Collapse
|
194
|
Afonso-Barroso A, Clark SO, Williams A, Rosa GT, Nóbrega C, Silva-Gomes S, Vale-Costa S, Ummels R, Stoker N, Movahedzadeh F, van der Ley P, Sloots A, Cot M, Appelmelk BJ, Puzo G, Nigou J, Geurtsen J, Appelberg R. Lipoarabinomannan mannose caps do not affect mycobacterial virulence or the induction of protective immunity in experimental animal models of infection and have minimal impact on in vitro inflammatory responses. Cell Microbiol 2012; 15:660-74. [PMID: 23121245 DOI: 10.1111/cmi.12065] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 10/24/2012] [Accepted: 10/28/2012] [Indexed: 11/27/2022]
Abstract
Mannose-capped lipoarabinomannan (ManLAM) is considered an important virulence factor of Mycobacterium tuberculosis. However, while mannose caps have been reported to be responsible for various immunosuppressive activities of ManLAM observed in vitro, there is conflicting evidence about their contribution to mycobacterial virulence in vivo. Therefore, we used Mycobacterium bovis BCG and M. tuberculosis mutants that lack the mannose cap of LAM to assess the role of ManLAM in the interaction of mycobacteria with the host cells, to evaluate vaccine-induced protection and to determine its importance in M. tuberculosis virulence. Deletion of the mannose cap did not affect BCG survival and replication in macrophages, although the capless mutant induced a somewhat higher production of TNF. In dendritic cells, the capless mutant was able to induce the upregulation of co-stimulatory molecules and the only difference we detected was the secretion of slightly higher amounts of IL-10 as compared to the wild type strain. In mice, capless BCG survived equally well and induced an immune response similar to the parental strain. Furthermore, the efficacy of vaccination against a M. tuberculosis challenge in low-dose aerosol infection models in mice and guinea pigs was not affected by the absence of the mannose caps in the BCG. Finally, the lack of the mannose cap in M. tuberculosis did not affect its virulence in mice nor its interaction with macrophages in vitro. Thus, these results do not support a major role for the mannose caps of LAM in determining mycobacterial virulence and immunogenicity in vivo in experimental animal models of infection, possibly because of redundancy of function.
Collapse
|
195
|
Mishra AK, Alves JE, Krumbach K, Nigou J, Castro AG, Geurtsen J, Eggeling L, Saraiva M, Besra GS. Differential arabinan capping of lipoarabinomannan modulates innate immune responses and impacts T helper cell differentiation. J Biol Chem 2012; 287:44173-83. [PMID: 23144457 PMCID: PMC3531733 DOI: 10.1074/jbc.m112.402396] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Toll-like receptors (TLRs) recognize pathogens by interacting with pathogen-associated molecular patterns, such as the phosphatidylinositol-based lipoglycans, lipomannan (LM) and lipoarabinomannan (LAM). Such structures are present in several pathogens, including Mycobacterium tuberculosis, being important for the initiation of immune responses. It is well established that the interaction of LM and LAM with TLR2 is a process dependent on the structure of the ligands. However, the implications of structural variations on TLR2 ligands for the development of T helper (Th) cell responses or in the context of in vivo responses are less studied. Herein, we used Corynebacterium glutamicum as a source of lipoglycan intermediates for host interaction studies. In this study, we have deleted a putative glycosyltransferase, NCgl2096, from C. glutamicum and found that it encodes for a novel α(1→2)arabinofuranosyltransferase, AftE. Biochemical analysis of the lipoglycans obtained in the presence (wild type) or absence of NCgl2096 showed that AftE is involved in the biosynthesis of singular arabinans of LAM. In its absence, the resulting molecule is a hypermannosylated (hLM) form of LAM. Both LAM and hLM were recognized by dendritic cells, mainly via TLR2, and triggered the production of several cytokines. hLM was a stronger stimulus for in vitro cytokine production and, as a result, a more potent inducer of Th17 responses. In vivo data confirmed hLM as a stronger inducer of cytokine responses and suggested the involvement of pattern recognition receptors other than TLR2 as sensors for lipoglycans.
Collapse
Affiliation(s)
- Arun K Mishra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Sarathy JP, Dartois V, Lee EJD. The role of transport mechanisms in mycobacterium tuberculosis drug resistance and tolerance. Pharmaceuticals (Basel) 2012; 5:1210-35. [PMID: 24281307 PMCID: PMC3816664 DOI: 10.3390/ph5111210] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/25/2012] [Accepted: 11/02/2012] [Indexed: 02/02/2023] Open
Abstract
In the fight against tuberculosis, cell wall permeation of chemotherapeutic agents remains a critical but largely unsolved question. Here we review the major mechanisms of small molecule penetration into and efflux from Mycobacterium tuberculosis and other mycobacteria, and outline how these mechanisms may contribute to the development of phenotypic drug tolerance and induction of drug resistance. M. tuberculosis is intrinsically recalcitrant to small molecule permeation thanks to its thick lipid-rich cell wall. Passive diffusion appears to account for only a fraction of total drug permeation. As in other bacterial species, influx of hydrophilic compounds is facilitated by water-filled open channels, or porins, spanning the cell wall. However, the diversity and density of M. tuberculosis porins appears lower than in enterobacteria. Besides, physiological adaptations brought about by unfavorable conditions are thought to reduce the efficacy of porins. While intracellular accumulation of selected drug classes supports the existence of hypothesized active drug influx transporters, efflux pumps contribute to the drug resistant phenotype through their natural abundance and diversity, as well as their highly inducible expression. Modulation of efflux transporter expression has been observed in phagocytosed, non-replicating persistent and multi-drug resistant bacilli. Altogether, M. tuberculosis has evolved both intrinsic properties and acquired mechanisms to increase its level of tolerance towards xenobiotic substances, by preventing or minimizing their entry. Understanding these adaptation mechanisms is critical to counteract the natural mechanisms of defense against toxic compounds and develop new classes of chemotherapeutic agents that positively exploit the influx and efflux pathways of mycobacteria.
Collapse
Affiliation(s)
- Jansy Passiflora Sarathy
- Novartis Institute for Tropical Diseases Pte Ltd, 10 Biopolis Road #05-01, Chromos, 138670, Singapore.
| | | | | |
Collapse
|
197
|
Rana AK, Singh A, Gurcha SS, Cox LR, Bhatt A, Besra GS. Ppm1-encoded polyprenyl monophosphomannose synthase activity is essential for lipoglycan synthesis and survival in mycobacteria. PLoS One 2012; 7:e48211. [PMID: 23118955 PMCID: PMC3485146 DOI: 10.1371/journal.pone.0048211] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/26/2012] [Indexed: 02/03/2023] Open
Abstract
The biosynthesis of mycobacterial mannose-containing lipoglycans, such as lipomannan (LM) and the immunomodulator lipoarabinomanan (LAM), is carried out by the GT-C superfamily of glycosyltransferases that require polyprenylphosphate-based mannose (PPM) as a sugar donor. The essentiality of lipoglycan synthesis for growth makes the glycosyltransferase that synthesizes PPM, a potential drug target in Mycobacterium tuberculosis, the causative agent of tuberculosis. In M. tuberculosis, PPM has been shown to be synthesized by Ppm1 in enzymatic assays. However, genetic evidence for its essentiality and in vivo role in LM/LAM and PPM biosynthesis is lacking. In this study, we demonstrate that MSMEG3859, a Mycobacterium smegmatis gene encoding the homologue of the catalytic domain of M. tuberculosis Ppm1, is essential for survival. Depletion of MSMEG3859 in a conditional mutant of M. smegmatis resulted in the loss of higher order phosphatidyl-myo-inositol mannosides (PIMs) and lipomannan. We were also able to demonstrate that two other M. tuberculosis genes encoding glycosyltransferases that either had been shown to possess PPM synthase activity (Rv3779), or were involved in synthesizing similar polyprenol-linked donors (ppgS), were unable to compensate for the loss of MSMEG3859 in the conditional mutant.
Collapse
Affiliation(s)
- Amrita K. Rana
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Albel Singh
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Sudagar S. Gurcha
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Liam R. Cox
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail: (LRC); (AB); (GSB)
| | - Apoorva Bhatt
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail: (LRC); (AB); (GSB)
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail: (LRC); (AB); (GSB)
| |
Collapse
|
198
|
Rainczuk AK, Yamaryo-Botte Y, Brammananth R, Stinear TP, Seemann T, Coppel RL, McConville MJ, Crellin PK. The lipoprotein LpqW is essential for the mannosylation of periplasmic glycolipids in Corynebacteria. J Biol Chem 2012; 287:42726-38. [PMID: 23091062 DOI: 10.1074/jbc.m112.373415] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol mannosides (PIM), lipomannan (LM), and lipoarabinomannan (LAM) are essential components of the cell wall and plasma membrane of mycobacteria, including the human pathogen Mycobacterium tuberculosis, as well as the related Corynebacterineae. We have previously shown that the lipoprotein, LpqW, regulates PIM and LM/LAM biosynthesis in mycobacteria. Here, we provide direct evidence that LpqW regulates the activity of key mannosyltransferases in the periplasmic leaflet of the cell membrane. Inactivation of the Corynebacterium glutamicum lpqW ortholog, NCgl1054, resulted in a slow growth phenotype and a global defect in lipoglycan biosynthesis. The NCgl1054 mutant lacked LAMs and was defective in the elongation of the major PIM species, AcPIM2, as well as a second glycolipid, termed Gl-X (mannose-α1-4-glucuronic acid-α1-diacylglycerol), which function as membrane anchors for LM-A and LM-B, respectively. Elongation of AcPIM2 and Gl-X was found to be dependent on expression of polyprenol phosphomannose (ppMan) synthase. However, the ΔNCgl1054 mutant synthesized normal levels of ppMan, indicating that LpqW is not required for synthesis of this donor. A spontaneous suppressor strain was isolated in which lipoglycan synthesis in the ΔNCgl1054 mutant was partially restored. Genome-wide sequencing indicated that a single amino acid substitution within the ppMan-dependent mannosyltransferase MptB could bypass the need for LpqW. Further evidence of an interaction is provided by the observation that MptB activity in cell-free extracts was significantly reduced in the absence of LpqW. Collectively, our results suggest that LpqW may directly activate MptB, highlighting the role of lipoproteins in regulating key cell wall biosynthetic pathways in these bacteria.
Collapse
Affiliation(s)
- Arek K Rainczuk
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Victoria 3800, Australia
| | | | | | | | | | | | | | | |
Collapse
|
199
|
|
200
|
Driessen NN, Boshoff HI, Maaskant JJ, Gilissen SA, Vink S, van der Sar AM, Vandenbroucke-Grauls CM, Bewley CA, Appelmelk BJ, Geurtsen J. Cyanovirin-N inhibits mannose-dependent Mycobacterium-C-type lectin interactions but does not protect against murine tuberculosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:3585-92. [PMID: 22942435 PMCID: PMC3448799 DOI: 10.4049/jimmunol.1102408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cyanovirin-N (CV-N) is a mannose-binding lectin that inhibits HIV-1 infection by blocking mannose-dependent target cell entry via C-type lectins. Like HIV-1, Mycobacterium tuberculosis expresses mannosylated surface structures and exploits C-type lectins to gain cell access. In this study, we investigated whether CV-N, like HIV-1, can inhibit M. tuberculosis infection. We found that CV-N specifically interacted with mycobacteria by binding to the mannose-capped lipoglycan lipoarabinomannan. Furthermore, CV-N competed with the C-type lectins DC-SIGN and mannose receptor for ligand binding and inhibited the binding of M. tuberculosis to dendritic cells but, unexpectedly, not to macrophages. Subsequent in vivo infection experiments in a mouse model demonstrated that, despite its activity, CV-N did not inhibit or delay M. tuberculosis infection. This outcome argues against a critical role for mannose-dependent C-type lectin interactions during the initial stages of murine M. tuberculosis infection and suggests that, depending on the circumstances, M. tuberculosis can productively infect cells using different modes of entry.
Collapse
Affiliation(s)
- Nicole N. Driessen
- Department of Medical Microbiology and Infection Control, Free university medical center, 1081 BT Amsterdam, the Netherlands
| | - Helena I.M. Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Janneke J. Maaskant
- Department of Medical Microbiology and Infection Control, Free university medical center, 1081 BT Amsterdam, the Netherlands
| | - Sebastiaan A.C. Gilissen
- Department of Medical Microbiology and Infection Control, Free university medical center, 1081 BT Amsterdam, the Netherlands
| | - Simone Vink
- Department of Medical Microbiology and Infection Control, Free university medical center, 1081 BT Amsterdam, the Netherlands
| | - Astrid M. van der Sar
- Department of Medical Microbiology and Infection Control, Free university medical center, 1081 BT Amsterdam, the Netherlands
| | | | - Carole A. Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ben J. Appelmelk
- Department of Medical Microbiology and Infection Control, Free university medical center, 1081 BT Amsterdam, the Netherlands
| | - Jeroen Geurtsen
- Department of Medical Microbiology and Infection Control, Free university medical center, 1081 BT Amsterdam, the Netherlands
| |
Collapse
|