151
|
Zhou CX, Zhou DH, Elsheikha HM, Liu GX, Suo X, Zhu XQ. Global Metabolomic Profiling of Mice Brains following Experimental Infection with the Cyst-Forming Toxoplasma gondii. PLoS One 2015; 10:e0139635. [PMID: 26431205 PMCID: PMC4592003 DOI: 10.1371/journal.pone.0139635] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/14/2015] [Indexed: 11/18/2022] Open
Abstract
The interplay between the Apicomplexan parasite Toxoplasma gondii and its host has been largely studied. However, molecular changes at the metabolic level in the host central nervous system and pathogenesis-associated metabolites during brain infection are largely unexplored. We used a global metabolomics strategy to identify differentially regulated metabolites and affected metabolic pathways in BALB/c mice during infection with T. gondii Pru strain at 7, 14 and 21 days post-infection (DPI). The non-targeted Liquid Chromatography-Mass Spectrometry (LC-MS) metabolomics analysis detected approximately 2,755 retention time-exact mass pairs, of which more than 60 had significantly differential profiles at different stages of infection. These include amino acids, organic acids, carbohydrates, fatty acids, and vitamins. The biological significance of these metabolites is discussed. Principal Component Analysis and Orthogonal Partial Least Square-Discriminant Analysis showed the metabolites' profile to change over time with the most significant changes occurring at 14 DPI. Correlated metabolic pathway imbalances were observed in carbohydrate metabolism, lipid metabolism, energetic metabolism and fatty acid oxidation. Eight metabolites correlated with the physical recovery from infection-caused illness were identified. These findings indicate that global metabolomics adopted in this study is a sensitive approach for detecting metabolic alterations in T. gondii-infected mice and generated a comparative metabolic profile of brain tissue distinguishing infected from non-infected host.
Collapse
Affiliation(s)
- Chun-Xue Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Dong-Hui Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, United Kingdom
| | - Guang-Xue Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Xun Suo
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
- * E-mail: (XS); (XQZ)
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
- * E-mail: (XS); (XQZ)
| |
Collapse
|
152
|
Novel Approaches Reveal that Toxoplasma gondii Bradyzoites within Tissue Cysts Are Dynamic and Replicating Entities In Vivo. mBio 2015; 6:e01155-15. [PMID: 26350965 PMCID: PMC4600105 DOI: 10.1128/mbio.01155-15] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Despite their critical role in chronic toxoplasmosis, the biology of Toxoplasma gondii bradyzoites is poorly understood. In an attempt to address this gap, we optimized approaches to purify tissue cysts and analyzed the replicative potential of bradyzoites within these cysts. In order to quantify individual bradyzoites within tissue cysts, we have developed imaging software, BradyCount 1.0, that allows the rapid establishment of bradyzoite burdens within imaged optical sections of purified tissue cysts. While in general larger tissue cysts contain more bradyzoites, their relative “occupancy” was typically lower than that of smaller cysts, resulting in a lower packing density. The packing density permits a direct measure of how bradyzoites develop within cysts, allowing for comparisons across progression of the chronic phase. In order to capture bradyzoite endodyogeny, we exploited the differential intensity of TgIMC3, an inner membrane complex protein that intensely labels newly formed/forming daughters within bradyzoites and decays over time in the absence of further division. To our surprise, we were able to capture not only sporadic and asynchronous division but also synchronous replication of all bradyzoites within mature tissue cysts. Furthermore, the time-dependent decay of TgIMC3 intensity was exploited to gain insights into the temporal patterns of bradyzoite replication in vivo. Despite the fact that bradyzoites are considered replicatively dormant, we find evidence for cyclical, episodic bradyzoite growth within tissue cysts in vivo. These findings directly challenge the prevailing notion of bradyzoites as dormant nonreplicative entities in chronic toxoplasmosis and have implications on our understanding of this enigmatic and clinically important life cycle stage. The protozoan Toxoplasma gondii establishes a lifelong chronic infection mediated by the bradyzoite form of the parasite within tissue cysts. Technical challenges have limited even the most basic studies on bradyzoites and the tissue cysts in vivo. Bradyzoites, which are viewed as dormant, poorly replicating or nonreplicating entities, were found to be surprisingly active, exhibiting not only the capacity for growth but also previously unrecognized patterns of replication that point to their being considerably more dynamic than previously imagined. These newly revealed properties force us to reexamine the most basic questions regarding bradyzoite biology and the progression of the chronic phase of toxoplasmosis. By developing new tools and approaches to study the chronic phase at the level of bradyzoites, we expose new avenues to tackle both drug development and a better understanding of events that may lead to reactivated symptomatic disease.
Collapse
|
153
|
Guanabenz repurposed as an antiparasitic with activity against acute and latent toxoplasmosis. Antimicrob Agents Chemother 2015; 59:6939-45. [PMID: 26303803 DOI: 10.1128/aac.01683-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/20/2015] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is a protozoan parasite that persists as a chronic infection. Toxoplasma evades immunity by forming tissue cysts, which reactivate to cause life-threatening disease during immune suppression. There is an urgent need to identify drugs capable of targeting these latent tissue cysts, which tend to form in the brain. We previously showed that translational control is critical during infections with both replicative and latent forms of Toxoplasma. Here we report that guanabenz, an FDA-approved drug that interferes with translational control, has antiparasitic activity against replicative stages of Toxoplasma and the related apicomplexan parasite Plasmodium falciparum (a malaria agent). We also found that inhibition of translational control interfered with tissue cyst biology in vitro. Toxoplasma bradyzoites present in these abnormal cysts were diminished and misconfigured, surrounded by empty space not seen in normal cysts. These findings prompted analysis of the efficacy of guanabenz in vivo by using established mouse models of acute and chronic toxoplasmosis. In addition to protecting mice from lethal doses of Toxoplasma, guanabenz has a remarkable ability to reduce the number of brain cysts in chronically infected mice. Our findings suggest that guanabenz can be repurposed into an effective antiparasitic with a unique ability to reduce tissue cysts in the brain.
Collapse
|
154
|
Fochi MML, Baring S, Spegiorin LCJF, Vaz-Oliani DCM, Galão EA, Oliani AH, de Mattos LC, de Mattos CCB. Prematurity and Low Birth Weight did not Correlate with Anti-Toxoplasma gondii Maternal Serum Profiles--a Brazilian Report. PLoS One 2015; 10:e0132719. [PMID: 26192182 PMCID: PMC4508015 DOI: 10.1371/journal.pone.0132719] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 06/17/2015] [Indexed: 01/27/2023] Open
Abstract
Gestational Toxoplasma gondii infection is considered a major risk factor for miscarriage, prematurity and low birth weight in animals. However, studies focusing on this topic in humans are scarce. The objective of this study is to determine whether anti-Toxoplasma gondii maternal serum profiles correlate prematurity and low birth weight in humans. The study examined 213 pregnant women seen at the High-Risk Pregnancy Hospital de Base, São José do Rio Preto, São Paulo, Brazil. All serological profiles (IgM-/IgG+; IgM-/IgG-; IgM+/IgG+) were determined by ELISA commercial kits. Maternal age, gestational age and weight of the newborn at birth were collected and recorded in the Statement of Live Birth. Prematurity was defined as gestational age <37 weeks and low birth weight ≤ 2499 grams. The t-test was used to compare values (p < 0.05). The mean maternal age was 27.6±6.6 years. Overall, 56.3% (120/213) of the women studied were IgM-/IgG+, 36.2% (77/213) were IgM-/IgG- and 7.5% (16/213) were IgM+/IgG+. The average age of the women with serological profile IgM+/IgG+ (22.3±3.9 years) was different from women with the profile IgM-/IgG+ (27.9±6.7 years, p = 0.0011) and IgM-/IgG- (27.9±6.4 years, p = 0.0012). There was no statistically significant difference between the different serological profiles in relation to prematurity (p = 0.6742) and low birth weight (p = 0.7186). The results showed that prematurity and low birth weight did not correlate with anti-Toxoplasma gondii maternal serum profiles.
Collapse
Affiliation(s)
- Mariana Machado Lemos Fochi
- Immunogenetics Laboratory, Department of Molecular Biology, Faculdade de Medicina de São José do Rio Preto–FAMERP, São José do Rio Preto, São Paulo, Brazil
- FAMERP Toxoplasma Research Group, Faculdade de Medicina de São José do Rio Preto–FAMERP, São José do Rio Preto, São Paulo, Brazil
| | - Sabrina Baring
- Obstetrics and Gynecology Service, Hospital de Base, Fundação Faculdade Regional de Medicina de São José do Rio Preto–HB-FUNFARME, São José do Rio Preto, São Paulo, Brazil
| | - Lígia Cosentino Junqueira Franco Spegiorin
- Obstetrics and Gynecology Service, Hospital de Base, Fundação Faculdade Regional de Medicina de São José do Rio Preto–HB-FUNFARME, São José do Rio Preto, São Paulo, Brazil
- Department of Gynecology and Obstetrics, Faculdade de Medicina de São José do Rio Preto–FAMERP, São José do Rio Preto, São Paulo, Brazil
- Hospital da Criança e Maternidade de São José do Rio Preto–HCM, São José do Rio Preto, São Paulo, Brazil
- FAMERP Toxoplasma Research Group, Faculdade de Medicina de São José do Rio Preto–FAMERP, São José do Rio Preto, São Paulo, Brazil
| | - Denise Cristina Mós Vaz-Oliani
- Obstetrics and Gynecology Service, Hospital de Base, Fundação Faculdade Regional de Medicina de São José do Rio Preto–HB-FUNFARME, São José do Rio Preto, São Paulo, Brazil
- Department of Gynecology and Obstetrics, Faculdade de Medicina de São José do Rio Preto–FAMERP, São José do Rio Preto, São Paulo, Brazil
- Hospital da Criança e Maternidade de São José do Rio Preto–HCM, São José do Rio Preto, São Paulo, Brazil
| | - Eloisa Aparecida Galão
- Obstetrics and Gynecology Service, Hospital de Base, Fundação Faculdade Regional de Medicina de São José do Rio Preto–HB-FUNFARME, São José do Rio Preto, São Paulo, Brazil
- Department of Gynecology and Obstetrics, Faculdade de Medicina de São José do Rio Preto–FAMERP, São José do Rio Preto, São Paulo, Brazil
- Hospital da Criança e Maternidade de São José do Rio Preto–HCM, São José do Rio Preto, São Paulo, Brazil
| | - Antonio Hélio Oliani
- Department of Gynecology and Obstetrics, Faculdade de Medicina de São José do Rio Preto–FAMERP, São José do Rio Preto, São Paulo, Brazil
- Hospital da Criança e Maternidade de São José do Rio Preto–HCM, São José do Rio Preto, São Paulo, Brazil
| | - Luiz Carlos de Mattos
- Immunogenetics Laboratory, Department of Molecular Biology, Faculdade de Medicina de São José do Rio Preto–FAMERP, São José do Rio Preto, São Paulo, Brazil
- FAMERP Toxoplasma Research Group, Faculdade de Medicina de São José do Rio Preto–FAMERP, São José do Rio Preto, São Paulo, Brazil
| | - Cinara Cássia Brandão de Mattos
- Immunogenetics Laboratory, Department of Molecular Biology, Faculdade de Medicina de São José do Rio Preto–FAMERP, São José do Rio Preto, São Paulo, Brazil
- FAMERP Toxoplasma Research Group, Faculdade de Medicina de São José do Rio Preto–FAMERP, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
155
|
Beltrame A, Venturini S, Crichiutti G, Meroni V, Buonfrate D, Bassetti M. Recurrent seizures during acute acquired toxoplasmosis in an immunocompetent traveller returning from Africa. Infection 2015; 44:259-62. [PMID: 26168861 DOI: 10.1007/s15010-015-0821-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/30/2015] [Indexed: 11/29/2022]
Abstract
INTRODUCTION We report an unusual case of acute acquired toxoplasmosis (AAT) presenting as lymphadenopathy and recurrent seizures in an immunocompetent 15-year-old boy. MATERIALS AND METHODS The patient reported an 18-day vacation to Africa (Ethiopia), 39 days prior to the first seizure. Electroencephalogram (EEG) showed sporadic single-spike or sharp-wave paroxysms and the magnetic resonance imaging (RMI) of the brain was negative. The serology for T. gondii was compatible with an acute infection defined as positive for both toxoplasma-specific IgG and IgM and a low avidity (6 %), confirmed by a reference laboratory. The patient reported other two episodes of seizures, occurring 7 days apart. He was treated with pyrimethamine plus sulfadiazine and leucovorin for 4 weeks, with an improvement of lymphadenitis and normalization of EEG. After 5 months, new seizures were reported and a diagnosis of epilepsy was done. Toxoplasma polymerase chain reaction (PCR) of cerebrospinal fluid (CSF) and blood were negative. A treatment with valproic acid was started, obtaining control of the neurological disease. CONCLUSION Awareness of this neurologic manifestation by clinicians is required, also in immunocompetent patients. The relationship between toxoplasmosis and recurrent seizure needs to be investigated by new studies.
Collapse
Affiliation(s)
- Anna Beltrame
- Centre for Tropical Diseases, Sacro Cuore Hospital, via Sempreboni 5, 37024, Negrar, Italy. .,Clinic of Infectious Diseases, Azienda Ospedaliero-Universitaria di Udine, Udine, Italy.
| | - Sergio Venturini
- Clinic of Infectious Diseases, Azienda Ospedaliero-Universitaria di Udine, Udine, Italy
| | - Giovanni Crichiutti
- Department of Paediatrics, Azienda Ospedaliero-Universitaria di Udine, Udine, Italy
| | - Valeria Meroni
- Department of Internal Medicine and Therapeutics, Microbiology and Virology Department Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Dora Buonfrate
- Centre for Tropical Diseases, Sacro Cuore Hospital, via Sempreboni 5, 37024, Negrar, Italy
| | - Matteo Bassetti
- Clinic of Infectious Diseases, Azienda Ospedaliero-Universitaria di Udine, Udine, Italy
| |
Collapse
|
156
|
Evolution of cytokine profile during the treatment of cerebral toxoplasmosis in HIV-infected patients. J Immunol Methods 2015; 426:14-8. [PMID: 26177476 DOI: 10.1016/j.jim.2015.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/12/2015] [Accepted: 07/09/2015] [Indexed: 12/28/2022]
Abstract
This study was to follow IFN-γ, TNF-α and IL-10 modulation of peripheral blood mononuclear cells (PBMC) from HIV/cerebral toxoplasmosis patients (CT) during specific treatment. The results were compared with two other groups: HIV patients that had CT at least one year before (P/CT) and individuals with chronic toxoplasmosis (CHR). Blood samples (63) collected from three groups were analyzed. CT, 15 patients (3 blood samples collected one day before Toxoplasma gondii treatment; 7 and 15days during the treatment). P/CT, 5 patients (one blood sample collected at least, one year after the treatment). CHR, 13 individuals with chronic toxoplasmosis (one blood sample). Cytokine levels were assessed by ELISA after PBMC stimulation with T. gondii antigen. CT patients had low IFN-γ; discrete increase at 7th and 15th days; and the levels were recovered in cured patients (P/CT). CT patients had high TNF-α in the beginning of the treatment. TNF-α levels decrease during the treatment (7th and 15th) and in those patients who were treated (P/CT). IL-10 levels were almost similar in CT and P/CT groups but low when compared with CHR individuals. The evolution of the infection was correlated to restoration of IFN-γ response and a decrease of the inflammation. The evaluation of the immune response can provide valuable information and better monitoring of patients during specific treatment.
Collapse
|
157
|
Fabiani S, Pinto B, Bonuccelli U, Bruschi F. Neurobiological studies on the relationship between toxoplasmosis and neuropsychiatric diseases. J Neurol Sci 2015; 351:3-8. [DOI: 10.1016/j.jns.2015.02.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 01/21/2015] [Accepted: 02/16/2015] [Indexed: 02/02/2023]
|
158
|
Bouchut A, Chawla AR, Jeffers V, Hudmon A, Sullivan WJ. Proteome-wide lysine acetylation in cortical astrocytes and alterations that occur during infection with brain parasite Toxoplasma gondii. PLoS One 2015; 10:e0117966. [PMID: 25786129 PMCID: PMC4364782 DOI: 10.1371/journal.pone.0117966] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/20/2014] [Indexed: 01/22/2023] Open
Abstract
Lysine acetylation is a reversible post-translational modification (PTM) that has been detected on thousands of proteins in nearly all cellular compartments. The role of this widespread PTM has yet to be fully elucidated, but can impact protein localization, interactions, activity, and stability. Here we present the first proteome-wide survey of lysine acetylation in cortical astrocytes, a subtype of glia that is a component of the blood-brain barrier and a key regulator of neuronal function and plasticity. We identified 529 lysine acetylation sites across 304 proteins found in multiple cellular compartments that largely function in RNA processing/transcription, metabolism, chromatin biology, and translation. Two hundred and seventy-seven of the acetylated lysines we identified on 186 proteins have not been reported previously in any other cell type. We also mapped an acetylome of astrocytes infected with the brain parasite, Toxoplasma gondii. It has been shown that infection with T. gondii modulates host cell gene expression, including several lysine acetyltransferase (KAT) and deacetylase (KDAC) genes, suggesting that the host acetylome may also be altered during infection. In the T. gondii-infected astrocytes, we identified 34 proteins exhibiting a level of acetylation >2-fold and 24 with a level of acetylation <2-fold relative to uninfected astrocytes. Our study documents the first acetylome map for cortical astrocytes, uncovers novel lysine acetylation sites, and demonstrates that T. gondii infection produces an altered acetylome.
Collapse
Affiliation(s)
- Anne Bouchut
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - Aarti R. Chawla
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - Victoria Jeffers
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - Andy Hudmon
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - William J. Sullivan
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
- * E-mail:
| |
Collapse
|
159
|
Franco PS, da Silva NM, de Freitas Barbosa B, de Oliveira Gomes A, Ietta F, Shwab EK, Su C, Mineo JR, Ferro EAV. Calomys callosus chronically infected by Toxoplasma gondii clonal type II strain and reinfected by Brazilian strains is not able to prevent vertical transmission. Front Microbiol 2015; 6:181. [PMID: 25806028 PMCID: PMC4354403 DOI: 10.3389/fmicb.2015.00181] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/19/2015] [Indexed: 11/13/2022] Open
Abstract
Considering that Toxoplasma gondii has shown high genetic diversity in Brazil, the aim of this study was to determine whether Calomys callosus chronically infected by the ME-49 strain might be susceptible to reinfection by these Brazilian strains, including vertical transmission of the parasite. Survival curves were analyzed in non-pregnant females chronically infected with ME-49 and reinfected with the TgChBrUD1 or TgChBrUD2 strain, and vertical transmission was analyzed after reinfection of pregnant females with these same strains. On the 19th day of pregnancy (dop), placentas, uteri, fetuses, liver, spleen, and lung were processed for detection of the parasite. Blood samples were collected for humoral and cellular immune response analyses. All non-pregnant females survived after reinfection and no changes were observed in body weight and morbidity scores. In pregnant females, parasites were detected in the placentas of ME-49 chronically infected females and reinfected females, but were only detected in the fetuses of reinfected females. TgChBrUD2 reinfected females showed more impaired pregnancy outcomes, presenting higher numbers of animals with fetal loss and a higher resorption rate, in parallel with higher levels of pro-inflammatory cytokines and IgG2a subclass antibodies. Vertical transmission resulting from chronic infection of immunocompetent C. callosus is considered a rare event, being attributed instead to either reactivation or reinfection. That is, the pregnancy may be responsible for reactivation of the latent infection or the reinfection may promote T. gondii vertical transmission. Our results clearly demonstrate that, during pregnancy, protection against T. gondii can be breached after reinfection with parasites belonging to different genotypes, particularly when non-clonal strains are involved in this process and in this case the reinfection promoted vertical transmission of both type II and Brazilian T. gondii strains.
Collapse
Affiliation(s)
- Priscila S Franco
- Laboratory of Immunophysiology of Reproduction, Department of Histology and Embryology, Federal University of Uberlândia , Uberlândia, Brazil
| | - Neide M da Silva
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia , Uberlândia, Brazil
| | - Bellisa de Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Department of Histology and Embryology, Federal University of Uberlândia , Uberlândia, Brazil
| | - Angelica de Oliveira Gomes
- Laboratory of Immunophysiology of Reproduction, Department of Histology and Embryology, Federal University of Uberlândia , Uberlândia, Brazil
| | - Francesca Ietta
- Department of Life Sciences, University of Siena , Siena, Italy
| | - E K Shwab
- Department of Microbiology, The University of Tennessee , Knoxville, TN, USA
| | - Chunlei Su
- Department of Microbiology, The University of Tennessee , Knoxville, TN, USA
| | - José R Mineo
- Laboratory of Immunoparasitology, Department of Immunology, Microbiology and Parasitology, Federal University of Uberlândia , Uberlândia, Brazil
| | - Eloisa A V Ferro
- Laboratory of Immunophysiology of Reproduction, Department of Histology and Embryology, Federal University of Uberlândia , Uberlândia, Brazil
| |
Collapse
|
160
|
Assimakopoulos SF, Stamouli V, Dimitropoulou D, Spiliopoulou A, Panos G, Anastassiou ED, Marangos M, Spiliopoulou I. Toxoplasma gondii meningoencephalitis without cerebral MRI findings in a patient with ulcerative colitis under immunosuppressive treatment. Infection 2015; 43:589-93. [PMID: 25623638 DOI: 10.1007/s15010-015-0730-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/14/2015] [Indexed: 12/25/2022]
Abstract
Toxoplasmosis is the most common opportunistic infection of the central nervous system in immunosupressed patients. It is usually presented as a space-occupying lesion detected by cerebral computerized tomography or magnetic resonance imaging. The diffuse form of the disease (diffuse toxoplasmic meningoencephalitis) lacks the characteristic cerebral radiologic findings rendering pre-mortem diagnosis much more difficult. Herein, we describe a case of toxoplasmic menincoencephalitis, without evidence of cerebral space-occupying lesions, in a patient with ulcerative colitis under combined therapy with systemic glucocorticoids and azathioprine. Diagnosis was based on microscopic examination of cerebrospinal fluid (CSF) for the parasite, whereas, RT-PCR for Toxoplasma gondii was negative. Taking into consideration the limitations of molecular methods, investigation of the etiology of meningeal involvement in patients under immunosuppressive therapy presenting positive serology of previous T. gondii infection, should include microscopic examination of CSF for parasite presence.
Collapse
Affiliation(s)
- S F Assimakopoulos
- Division of Infectious Diseases, Department of Internal Medicine, University General Hospital of Patras, 26504, Patras, Greece
| | - V Stamouli
- Department of Microbiology, University General Hospital of Patras, 26504, Patras, Greece
| | - D Dimitropoulou
- Division of Infectious Diseases, Department of Internal Medicine, University General Hospital of Patras, 26504, Patras, Greece
| | - A Spiliopoulou
- Department of Microbiology, University General Hospital of Patras, 26504, Patras, Greece
| | - G Panos
- Division of Infectious Diseases, Department of Internal Medicine, University General Hospital of Patras, 26504, Patras, Greece
| | - E D Anastassiou
- Department of Microbiology, University General Hospital of Patras, 26504, Patras, Greece.,Department of Microbiology, School of Medicine, University of Patras, 26504, Patras, Greece
| | - M Marangos
- Division of Infectious Diseases, Department of Internal Medicine, University General Hospital of Patras, 26504, Patras, Greece
| | - I Spiliopoulou
- Department of Microbiology, University General Hospital of Patras, 26504, Patras, Greece. .,Department of Microbiology, School of Medicine, University of Patras, 26504, Patras, Greece.
| |
Collapse
|
161
|
Afifi MA, Al-Rabia MW. The immunomodulatory effects of rolipram abolish drug-resistant latent phase of Toxoplasma gondii infection in a murine model. J Microsc Ultrastruct 2015; 3:86-91. [PMID: 30023187 PMCID: PMC6014187 DOI: 10.1016/j.jmau.2014.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 12/30/2014] [Accepted: 12/30/2014] [Indexed: 01/10/2023] Open
Abstract
Background: Latent toxoplasmosis always has the risk of reactivation leading to significant sequelae. The available medications, for chronic toxoplasmosis, are awfully limited by resistance of Toxoplasma cysts. Therefore, there is a growing necessity for novel therapeutic approaches. Agents increasing cAMP levels and downregulating proinflammatory cytokine could inhibit Toxoplasma conversion to the bradyzoite stage. This study explores a potential immunomodulatory effect of rolipram, a PDE4 inhibitor, on the course of experimental toxoplasmosis and links this role to deterrence of the resistant chronic phase of the disease. Materials and methods: Mice infected with low pathogenic strain of Toxoplasma gondii were treated with rolipram for three weeks. The effect of rolipram was evaluated through tissue injury scoring, brain cyst count, specific IgG titers as well as TNF-α, IFN-γ and IL-12 assays. Results: Rolipram was partially able to prevent the progression to chronic toxoplasmosis. Toxoplasma brain cyst burden showed a 74% reduction while Toxoplasma-induced inflammatory foci per liver area and nucleated cells per inflammatory focus were significantly reduced: 57.14% and 61.3% respectively. Significant reduction of TNF-α (84.6%), IFN-γ (76.7%) and IL-12 (71%) levels was demonstrated along with significant inhibition of anti-Toxoplasma antibody response. Conclusion: Rolipram efficiently modulated the Toxoplasma-induced immunological changes with a consequent remission of chronic toxoplasmosis. This study is the first to report the utilization of PDE4 inhibitors as possible immune modulators of chronic phase of Toxoplasma infection.
Collapse
Affiliation(s)
- Mohammed A Afifi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Parasitology, Faculty of Medicine, Beni-Suef University, Egypt
| | - Mohammed W Al-Rabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
162
|
El-Zawawy LA, El-Said D, Mossallam SF, Ramadan HS, Younis SS. Preventive prospective of triclosan and triclosan-liposomal nanoparticles against experimental infection with a cystogenic ME49 strain of Toxoplasma gondii. Acta Trop 2015; 141:103-11. [PMID: 25305510 DOI: 10.1016/j.actatropica.2014.09.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/18/2014] [Accepted: 09/29/2014] [Indexed: 11/19/2022]
Abstract
The preventative effect of triclosan (TS) and TS liposomal nanoparticles was studied on the early establishment of chronic infection with Toxoplasma gondii (T. gondii). Swiss albino mice were orally infected with 10 cysts of avirulent ME49 strain of T. gondii, and 2 weeks later they were orally treated with dual daily doses of 200mg/kg and 120 mg/kg TS and TS liposomes for 30 days; respectively. Effect of TS and TS liposomes was parasitologically and ultrastructurally evaluated, versus infected non-treated control. Their safety was biochemically assessed. Parasitologically, both TS and TS liposomes induced significant reduction in mice mortality, brain parasite burden and infectivity of cysts obtained from the brains of treated mice. Ultrastructurally, scanning electron microscopy of cysts obtained from infected mice treated with either TS or TS liposomes showed surface irregularities, protrusions and depressions. Transmission electron microscopy revealed disintegration of the cyst wall and vacuolation of the bradyzoites with disintegration of plasma membranes of both cysts and bradyzoites whether treated with TS or TS liposomes. Biochemical study reflected the safety of the TS and TS liposomes. Therefore, TS proved an effective, promising and safe preventive drug against early establishment of chronic toxoplasmosis. Loading TS on liposomes marginally enhanced its efficacy against T. gondii cysts yet allowed its use in a lower dose.
Collapse
Affiliation(s)
- Lobna A El-Zawawy
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Egypt
| | - Doaa El-Said
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Egypt
| | - Shereen F Mossallam
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Egypt.
| | - Heba S Ramadan
- Medical Bio-Physics Department, Medical Research Institute, Alexandria University, Egypt
| | - Salwa S Younis
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Egypt
| |
Collapse
|
163
|
Systematic identification of the lysine succinylation in the protozoan parasite Toxoplasma gondii. J Proteome Res 2014; 13:6087-95. [PMID: 25377623 DOI: 10.1021/pr500992r] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Lysine succinylation is a new posttranslational modification identified in histone proteins of Toxoplasma gondii, an obligate intracellular parasite of the phylum Apicomplexa. However, very little is known about their scope and cellular distribution. Here, using LC-MS/MS to identify parasite peptides enriched by immunopurification with succinyl lysine antibody, we produced the first lysine succinylome in this parasite. Overall, a total of 425 lysine succinylation sites that occurred on 147 succinylated proteins were identified in extracellular Toxoplasma tachyzoites, which is a proliferative stage that results in acute toxoplasmosis. With the bioinformatics analysis, it is shown that these succinylated proteins are evolutionarily conserved and involved in a wide variety of cellular functions such as metabolism and epigenetic gene regulation and exhibit diverse subcellular localizations. Moreover, we defined five types of definitively conserved succinylation site motifs, and the results imply that lysine residue of a polypeptide with lysine on the +3 position and without lysine at the -1 to +2 position is a preferred substrate of lysine succinyltransferase. In conclusion, our findings suggest that lysine succinylation in Toxoplasma involves a diverse array of cellular functions, although the succinylation occurs at a low level.
Collapse
|
164
|
Sahu A, Kumar S, Sreenivasamurthy SK, Selvan LDN, Madugundu AK, Yelamanchi SD, Puttamallesh VN, Dey G, Anil AK, Srinivasan A, Mukherjee KK, Gowda H, Satishchandra P, Mahadevan A, Pandey A, Prasad TSK, Shankar SK. Host response profile of human brain proteome in toxoplasma encephalitis co-infected with HIV. Clin Proteomics 2014; 11:39. [PMID: 25404878 PMCID: PMC4232683 DOI: 10.1186/1559-0275-11-39] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 09/02/2014] [Indexed: 01/27/2023] Open
Abstract
Background Toxoplasma encephalitis is caused by the opportunistic protozoan parasite Toxoplasma gondii. Primary infection with T. gondii in immunocompetent individuals remains largely asymptomatic. In contrast, in immunocompromised individuals, reactivation of the parasite results in severe complications and mortality. Molecular changes at the protein level in the host central nervous system and proteins associated with pathogenesis of toxoplasma encephalitis are largely unexplored. We used a global quantitative proteomic strategy to identify differentially regulated proteins and affected molecular networks in the human host during T. gondii infection with HIV co-infection. Results We identified 3,496 proteins out of which 607 proteins were differentially expressed (≥1.5-fold) when frontal lobe of the brain from patients diagnosed with toxoplasma encephalitis was compared to control brain tissues. We validated differential expression of 3 proteins through immunohistochemistry, which was confirmed to be consistent with mass spectrometry analysis. Pathway analysis of differentially expressed proteins indicated deregulation of several pathways involved in antigen processing, immune response, neuronal growth, neurotransmitter transport and energy metabolism. Conclusions Global quantitative proteomic approach adopted in this study generated a comparative proteome profile of brain tissues from toxoplasma encephalitis patients co-infected with HIV. Differentially expressed proteins include previously reported and several new proteins in the context of T. gondii and HIV infection, which can be further investigated. Molecular pathways identified to be associated with the disease should enhance our understanding of pathogenesis in toxoplasma encephalitis. Electronic supplementary material The online version of this article (doi:10.1186/1559-0275-11-39) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Apeksha Sahu
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India ; Bioinformatics Centre, School of Life Sciences, Pondicherry University, Puducherry, 605014 India
| | - Satwant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India
| | - Sreelakshmi K Sreenivasamurthy
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India ; Manipal University, Madhav Nagar, Manipal, 576104 India
| | - Lakshmi Dhevi N Selvan
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India ; Amrita School of Biotechnology, Amrita University, Kollam, 690525 India
| | - Anil K Madugundu
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India ; Bioinformatics Centre, School of Life Sciences, Pondicherry University, Puducherry, 605014 India
| | - Soujanya D Yelamanchi
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India ; School of Biotechnology, KIIT University, Bhubaneswar, 751024 India
| | | | - Gourav Dey
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India ; Manipal University, Madhav Nagar, Manipal, 576104 India
| | | | - Anand Srinivasan
- Department of Pharmacology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012 India
| | - Kanchan K Mukherjee
- Department of Neurosurgery, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012 India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India
| | | | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India ; Human Brain Tissue Repository, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 1205 USA ; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ; The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Thottethodi Subrahmanya Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India ; Bioinformatics Centre, School of Life Sciences, Pondicherry University, Puducherry, 605014 India ; Manipal University, Madhav Nagar, Manipal, 576104 India ; Amrita School of Biotechnology, Amrita University, Kollam, 690525 India ; NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India
| | - Susarla Krishna Shankar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India ; Human Brain Tissue Repository, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India
| |
Collapse
|
165
|
Djokic V, Blaga R, Rinaldi L, Le Roux D, Ducry T, Maurelli MP, Perret C, Djurkovic Djakovic O, Cringoli G, Boireau P. Mini-FLOTAC for counting Toxoplasma gondii oocysts from cat feces--comparison with cell counting plates. Exp Parasitol 2014; 147:67-71. [PMID: 25448359 DOI: 10.1016/j.exppara.2014.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/06/2014] [Accepted: 10/16/2014] [Indexed: 11/29/2022]
Abstract
Oocysts of Toxoplasma gondii represent one of the most common environmental contaminants causing the zoonotic infection toxoplasmosis. The aim of the present study was to compare the Mini-FLOTAC device with traditional cell counting plates (Kova Slide) for the detection of T. gondii oocysts from feline feces. Two types of experiments were performed: (i) purified oocysts were counted in different dilutions and (ii) specific pathogen free T. gondii-negative cat feces was inoculated with numbers of purified oocysts and counting was performed directly from feces. Our analysis showed a thousand times higher sensitivity of Mini-FLOTAC (5 × 10(2) oocysts) compared to Kova Slide (5 × 10(5) oocysts). Also, when compared by McNemar's test, counting of the purified oocysts showed a higher sensitivity of Mini-FLOTAC compared to Kova Slide, for a dilution of 10(3) oocysts/ml (chi(2) = 6.1; P < 0.05). A better sensitivity was also found with Mini-FLOTAC in dilutions of 10(5) and 10(4) oocysts/ml, when counted from feces (chi(2) = 4.2 and 8.1, respectively, P < 0.05). Our results show that Mini-FLOTAC is more sensitive than traditional methods of T. gondii oocysts detection and quantification is more accurate. Furthermore, Mini-FLOTAC simplicity and cost effectiveness allow it to be used with light microscopes in any laboratory or field conditions. We therefore recommend its use for regular screening. Further studies are needed to validate Mini-FLOTAC for the detection of oocysts in soil and water samples in field conditions.
Collapse
Affiliation(s)
- Vitomir Djokic
- ANSES, Laboratoire de santé animale de Maisons-Alfort, UMR BIPAR, Université Paris-Est, Maisons-Alfort, France; National Reference Laboratory for Toxoplasmosis, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, P.O. Box 102, Belgrade 11129, Serbia.
| | - Radu Blaga
- Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Université Paris-Est, Maisons-Alfort, France
| | - Laura Rinaldi
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Delphine Le Roux
- Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Université Paris-Est, Maisons-Alfort, France
| | - Tamara Ducry
- ANSES, Laboratoire de santé animale de Maisons-Alfort, UMR BIPAR, Université Paris-Est, Maisons-Alfort, France
| | - Maria Paola Maurelli
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Catherine Perret
- ANSES, Laboratoire de santé animale de Maisons-Alfort, UMR BIPAR, Université Paris-Est, Maisons-Alfort, France
| | - Olgica Djurkovic Djakovic
- National Reference Laboratory for Toxoplasmosis, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, P.O. Box 102, Belgrade 11129, Serbia
| | - Giuseppe Cringoli
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Pascal Boireau
- ANSES, Laboratoire de santé animale de Maisons-Alfort, UMR BIPAR, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|
166
|
Meira CS, Pereira-Chioccola VL, Vidal JE, de Mattos CCB, Motoie G, Costa-Silva TA, Gava R, Frederico FB, de Mattos LC. Cerebral and ocular toxoplasmosis related with IFN-γ, TNF-α, and IL-10 levels. Front Microbiol 2014; 5:492. [PMID: 25352834 PMCID: PMC4195364 DOI: 10.3389/fmicb.2014.00492] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/26/2014] [Indexed: 11/13/2022] Open
Abstract
This study analyzed the synthesis of Interferon gamma (IFN-γ), Tumor Necrosis Factor alpha (TNF-α), and Interleukin 10 (IL-10) in chronically infected patients which developed the symptomatic disease as cerebral or ocular toxoplasmosis. Blood from 61 individuals were divided into four groups: Cerebral toxoplasmosis/AIDS patients (CT/AIDS group) (n = 15), ocular toxoplasmosis patients (OT group) (n = 23), chronic toxoplasmosis individuals (CHR group) (n = 13) and healthy individuals (HI group) (n = 10). OT, CHR, and HI groups were human immunodeficiency virus (HIV) seronegative. The diagnosis was made by laboratorial (PCR and ELISA) and clinical subjects. For cytokine determination, peripheral blood mononuclear cells (PBMC) of each patient were isolated and stimulated in vitro with T. gondii antigen. IFN-γ, TNF-α, and IL-10 activities were determined by ELISA. Patients from CT/AIDS and OT groups had low levels of IFN-γ when were compared with those from CHR group. These data suggest the low resistance to develop ocular lesions by the low ability to produce IFN-γ against the parasite. The same patients, which developed ocular or cerebral toxoplasmosis had higher TNF-α levels than CHR individuals. High TNF-α synthesis contribute to the inflammatory response and damage of the choroid and retina in OT patients and in AIDS patients caused a high inflammatory response as the TNF-α synthesis is not affected since monocytes are the major source this cytokine in response to soluble T. gondii antigens. IL-10 levels were almost similar in CT/AIDS and OT patients but low when compared with CHR individuals. The deviation to Th2 immune response including the production of anti-inflammatory cytokines, such as IL-10 may promote the parasite's survival causing the tissue immune destruction. IL-10 production in T. gondii-infected brains may support the persistence of parasites as down-regulating the intracerebral immune response. All these indicate that OT and CT/AIDS patients produced low levels of IL-10 (Th2 response) and IFN-γ (Th1 response). They produced high TNF-α suggesting a high inflammatory response triggered by the parasite.
Collapse
Affiliation(s)
- Cristina S Meira
- Centro de Parasitologia e Micologia do Instituto Adolfo Lutz São Paulo, SP, Brazil
| | | | - José E Vidal
- Departamento de Neurologia, Instituto de Infectologia Emílio Ribas São Paulo, SP, Brazil
| | - Cinara C Brandão de Mattos
- Laboratório de Imunogenética, Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto São José do Rio Preto, SP, Brazil
| | - Gabriela Motoie
- Centro de Parasitologia e Micologia do Instituto Adolfo Lutz São Paulo, SP, Brazil
| | - Thais A Costa-Silva
- Centro de Parasitologia e Micologia do Instituto Adolfo Lutz São Paulo, SP, Brazil
| | - Ricardo Gava
- Centro de Parasitologia e Micologia do Instituto Adolfo Lutz São Paulo, SP, Brazil
| | - Fábio B Frederico
- Ambulatório de Oftalmologia, Fundação Faculdade Regional de Medicina, Hospital de Base São José do Rio Preto, SP, Brazil
| | - Luiz C de Mattos
- Laboratório de Imunogenética, Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto São José do Rio Preto, SP, Brazil
| | | |
Collapse
|
167
|
Oliveira CBS, Meurer YSR, Oliveira MG, Medeiros WMTQ, Silva FON, Brito ACF, Pontes DDL, Andrade-Neto VF. Comparative study on the antioxidant and anti-Toxoplasma activities of vanillin and its resorcinarene derivative. Molecules 2014; 19:5898-912. [PMID: 24810805 PMCID: PMC6271522 DOI: 10.3390/molecules19055898] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/26/2014] [Accepted: 04/28/2014] [Indexed: 11/30/2022] Open
Abstract
A resorcinarene derivative of vanillin, resvan, was synthesized and characterized by spectroscopic techniques. We measured the cytotoxicity (in vivo and in vitro), antioxidant and anti-Toxoplasma activities of vanillin and the resorcinarene compound. Here we show that vanillin has a dose-dependent behavior with IC50 of 645 µg/mL through an in vitro cytotoxicity assay. However, we could not observe any cytotoxic response at higher concentrations of resvan (IC50 > 2,000 µg/mL). The in vivo acute toxicity assays of vanillin and resvan exhibited a significant safety margin indicated by a lack of systemic and behavioral toxicity up to 300 mg/kg during the first 30 min, 24 h or 14 days after administration. The obtained derivative showed greater antioxidative activity (84.9%) when comparing to vanillin (19.4%) at 1,000 μg/mL. In addition, vanillin presents anti-Toxoplasma activity, while resvan does not show that feature. Our findings suggest that this particular derivative has an efficient antioxidant activity and a negligible cytotoxic effect, making it a potential target for further biological investigations.
Collapse
Affiliation(s)
- Claudio B S Oliveira
- Laboratory of Malaria and Toxoplasmosis Biology/LABMAT, Department of Microbiology and Parasitology, Bioscience Center, Federal University of Rio Grande do Norte, Av. Salgado Filho, s/n, Lagoa Nova, Natal/RN, CEP 59000-000, Brazil
| | - Ywlliane S R Meurer
- Memory Studies Laboratory, Physiology Department, Bioscience Center, Federal University of Rio Grande do Norte, Av. Salgado Filho, s/n, Lagoa Nova, Natal/RN, CEP 59000-000, Brazil
| | - Marianne G Oliveira
- Laboratory of Malaria and Toxoplasmosis Biology/LABMAT, Department of Microbiology and Parasitology, Bioscience Center, Federal University of Rio Grande do Norte, Av. Salgado Filho, s/n, Lagoa Nova, Natal/RN, CEP 59000-000, Brazil
| | - Wendy M T Q Medeiros
- Laboratory of Coordination Chemistry and Polymers, Institute of Chemistry, Federal University of Rio Grande do Norte, Av. Salgado Filho, s/n, Lagoa Nova, Natal/RN, CEP 59000-000, Brazil
| | - Francisco O N Silva
- Laboratory of Coordination Chemistry and Polymers, Institute of Chemistry, Federal University of Rio Grande do Norte, Av. Salgado Filho, s/n, Lagoa Nova, Natal/RN, CEP 59000-000, Brazil
| | - Ana C F Brito
- Laboratory of Coordination Chemistry and Polymers, Institute of Chemistry, Federal University of Rio Grande do Norte, Av. Salgado Filho, s/n, Lagoa Nova, Natal/RN, CEP 59000-000, Brazil
| | - Daniel de L Pontes
- Laboratory of Coordination Chemistry and Polymers, Institute of Chemistry, Federal University of Rio Grande do Norte, Av. Salgado Filho, s/n, Lagoa Nova, Natal/RN, CEP 59000-000, Brazil
| | - Valter F Andrade-Neto
- Laboratory of Malaria and Toxoplasmosis Biology/LABMAT, Department of Microbiology and Parasitology, Bioscience Center, Federal University of Rio Grande do Norte, Av. Salgado Filho, s/n, Lagoa Nova, Natal/RN, CEP 59000-000, Brazil.
| |
Collapse
|
168
|
Hu Y, Li CY, Wang XM, Yang YH, Zhu HL. 1,3,4-Thiadiazole: synthesis, reactions, and applications in medicinal, agricultural, and materials chemistry. Chem Rev 2014; 114:5572-610. [PMID: 24716666 DOI: 10.1021/cr400131u] [Citation(s) in RCA: 337] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yang Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University , Nanjing 210093, People's Republic of China
| | | | | | | | | |
Collapse
|
169
|
Liu M, Miao J, Liu T, Sullivan WJ, Cui L, Chen X. Characterization of TgPuf1, a member of the Puf family RNA-binding proteins from Toxoplasma gondii. Parasit Vectors 2014; 7:141. [PMID: 24685055 PMCID: PMC3997814 DOI: 10.1186/1756-3305-7-141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 03/24/2014] [Indexed: 12/15/2022] Open
Abstract
Background Puf proteins act as translational regulators and affect many cellular processes in a wide range of eukaryotic organisms. Although Puf proteins have been well characterized in many model systems, little is known about the structural and functional characteristics of Puf proteins in the parasite Toxoplasma gondii. Methods Using a combination of conventional molecular approaches, we generated endogenous TgPuf1 tagged with hemagglutinin (HA) epitope and investigated the TgPuf1 expression levels and localization in the tachyzoites and bradyzoites. We used RNA Electrophoretic Mobility Shfit Assay (EMSA) to determine whether the recombination TgPuf1 has conserverd RNA binding activity and specificity. Results TgPuf1 was expressed at a significantly higher level in bradyzoites than in tachyzoites. TgPuf1 protein was predominantly localized within the cytoplasm and showed a much more granular cytoplasmic staining pattern in bradyzoites. The recombinant Puf domain of TgPuf1 showed strong binding affinity to two RNA fragments containing Puf-binding motifs from other organisms as artificial target sequences. However, two point mutations in the core Puf-binding motif resulted in a significant reduction in binding affinity, indicating that TgPuf1 also binds to conserved Puf-binding motif. Conclusions TgPuf1 appears to exhibit different expression levels in the tachyzoites and bradyzoites, suggesting that TgPuf1 may function in regulating the proliferation or/and differentiation that are important in providing parasites with the ability to respond rapidly to changes in environmental conditions. This study provides a starting point for elucidating the function of TgPuf1 during parasite development.
Collapse
Affiliation(s)
| | | | | | | | - Liwang Cui
- Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | | |
Collapse
|
170
|
White MW, Radke JR, Radke JB. Toxoplasmadevelopment - turn the switch on or off? Cell Microbiol 2014; 16:466-72. [DOI: 10.1111/cmi.12267] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Michael W. White
- Department of Global Health; University of South Florida; Tampa FL 33612 USA
| | - Jay R. Radke
- Department of Veterinary Molecular Biology; Montana State University; Bozeman MT USA
| | - Joshua B. Radke
- Department of Global Health; University of South Florida; Tampa FL 33612 USA
| |
Collapse
|
171
|
Hartmann A, Hellmund M, Lucius R, Voelker DR, Gupta N. Phosphatidylethanolamine synthesis in the parasite mitochondrion is required for efficient growth but dispensable for survival of Toxoplasma gondii. J Biol Chem 2014; 289:6809-6824. [PMID: 24429285 DOI: 10.1074/jbc.m113.509406] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Toxoplasma gondii is a highly prevalent obligate intracellular parasite of the phylum Apicomplexa, which also includes other parasites of clinical and/or veterinary importance, such as Plasmodium, Cryptosporidium, and Eimeria. Acute infection by Toxoplasma is hallmarked by rapid proliferation in its host cells and requires a significant synthesis of parasite membranes. Phosphatidylethanolamine (PtdEtn) is the second major phospholipid class in T. gondii. Here, we reveal that PtdEtn is produced in the parasite mitochondrion and parasitophorous vacuole by decarboxylation of phosphatidylserine (PtdSer) and in the endoplasmic reticulum by fusion of CDP-ethanolamine and diacylglycerol. PtdEtn in the mitochondrion is synthesized by a phosphatidylserine decarboxylase (TgPSD1mt) of the type I class. TgPSD1mt harbors a targeting peptide at its N terminus that is required for the mitochondrial localization but not for the catalytic activity. Ablation of TgPSD1mt expression caused up to 45% growth impairment in the parasite mutant. The PtdEtn content of the mutant was unaffected, however, suggesting the presence of compensatory mechanisms. Indeed, metabolic labeling revealed an increased usage of ethanolamine for PtdEtn synthesis by the mutant. Likewise, depletion of nutrients exacerbated the growth defect (∼56%), which was partially restored by ethanolamine. Besides, the survival and residual growth of the TgPSD1mt mutant in the nutrient-depleted medium also indicated additional routes of PtdEtn biogenesis, such as acquisition of host-derived lipid. Collectively, the work demonstrates a metabolic cooperativity between the parasite organelles, which ensures a sustained lipid synthesis, survival and growth of T. gondii in varying nutritional milieus.
Collapse
Affiliation(s)
- Anne Hartmann
- Department of Molecular Parasitology, Humboldt University, Philippstrasse 13, 10115 Berlin, Germany
| | - Maria Hellmund
- Department of Molecular Parasitology, Humboldt University, Philippstrasse 13, 10115 Berlin, Germany
| | - Richard Lucius
- Department of Molecular Parasitology, Humboldt University, Philippstrasse 13, 10115 Berlin, Germany
| | - Dennis R Voelker
- Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Nishith Gupta
- Department of Molecular Parasitology, Humboldt University, Philippstrasse 13, 10115 Berlin, Germany; Department of Parasitology, Max-Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
172
|
Smolarz B, Wilczyński J, Nowakowska D. DNA repair mechanisms and Toxoplasma gondii infection. Arch Microbiol 2014; 196:1-8. [PMID: 24337694 PMCID: PMC3890036 DOI: 10.1007/s00203-013-0944-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/15/2013] [Accepted: 11/23/2013] [Indexed: 01/22/2023]
Abstract
Lately, we can observe significant progress in understanding mechanism of DNA repair owing to fast methods of DNA sequence analysis from different organisms the revealing of structure and function of DNA repair proteins in prokaryota and eukaryota. The protozoan parasites survival depends on DNA repair systems. Better understanding of DNA repair systems can help in new antipathogen drug development. This review is aimed at updating our current knowledge of the various repair pathways by providing an overview of DNA repair genes regarding Toxoplasma gondii infections and the corresponding proteins, participating either directly in DNA repair, or in checkpoint control and signaling of DNA damage.
Collapse
Affiliation(s)
- Beata Smolarz
- Department of Fetal-Maternal Medicine and Gynecology, Polish Mother’s Memorial Hospital Research Institute, 281/289 Rzgowska Street, 93-338 Lodz, Poland
| | - Jan Wilczyński
- Department of Fetal-Maternal Medicine and Gynecology, Polish Mother’s Memorial Hospital Research Institute, 281/289 Rzgowska Street, 93-338 Lodz, Poland
| | - Dorota Nowakowska
- Department of Fetal-Maternal Medicine and Gynecology, Polish Mother’s Memorial Hospital Research Institute, 281/289 Rzgowska Street, 93-338 Lodz, Poland
| |
Collapse
|
173
|
Application of a phosphodiesterase-4 (PDE4) inhibitor to abort chronic toxoplasmosis and to mitigate consequential pathological changes. J Microsc Ultrastruct 2014. [DOI: 10.1016/j.jmau.2014.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
174
|
In astrocytes the accumulation of the immunity-related GTPases Irga6 and Irgb6 at the vacuole of Toxoplasma gondii is dependent on the parasite virulence. ScientificWorldJournal 2013; 2013:480231. [PMID: 24324375 PMCID: PMC3845628 DOI: 10.1155/2013/480231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/18/2013] [Indexed: 11/17/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite responsible for a common infection of the central nervous system. Interferon (IFN) γ is the key cytokine of host defence against T. gondii. However, T. gondii strains differ in virulence and T. gondii factors determining virulence are still poorly understood. In astrocytes IFN γ primarily induces immunity-related GTPases (IRGs), providing a cell-autonomous resistance system. Here, we demonstrate that astrocytes prestimulated with IFN γ inhibit the proliferation of various avirulent, but not virulent, T. gondii strains. The two analyzed immunity-related GTPases Irga6 and Irgb6 accumulate at the PV only of avirulent T. gondii strains, whereas in virulent strains this accumulation is only detectable at very low levels. Both IRG proteins could temporarily be found at the same PV, but did only partially colocalize. Coinfection of avirulent and virulent parasites confirmed that the accumulation of the two analyzed IRGs was a characteristic of the individual PV and not determined by the presence of other strains of T. gondii in the same host cell. Thus, in astrocytes the accumulation of Irga6 and Irgb6 significantly differs between avirulent and virulent T. gondii strains correlating with the toxoplasmacidal properties suggesting a role for this process in parasite virulence.
Collapse
|
175
|
Abdoli A, Dalimi A, Arbabi M, Ghaffarifar F. Neuropsychiatric manifestations of latent toxoplasmosis on mothers and their offspring. J Matern Fetal Neonatal Med 2013; 27:1368-74. [PMID: 24156764 DOI: 10.3109/14767058.2013.858685] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Toxoplasmosis is one of the most common parasitic diseases worldwide. It is estimated that approximately one-third of the world's population is latently infected. Infection generally occurs via oral the route and maternal transmission. Damage of the central nervous system is one of the most serious consequences of congenital toxoplasmosis. Moreover, recent investigations proposed that acute and sub-acute congenital toxoplasmosis as well as latent toxoplasmosis during pregnancy; play various roles in the etiology of different neuropsychiatric disorders in mothers and their offspring. This paper reviews new findings about the role of latent toxoplasmosis in the etiology of various neuropsychiatric disorders in mothers and their offspring.
Collapse
Affiliation(s)
- Amir Abdoli
- Department of Parasitology, Faculty of Medical Sciences, Kashan University of Medical Science , Kashan , Iran and
| | | | | | | |
Collapse
|
176
|
GCN2-like eIF2α kinase manages the amino acid starvation response in Toxoplasma gondii. Int J Parasitol 2013; 44:139-46. [PMID: 24126185 DOI: 10.1016/j.ijpara.2013.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/22/2013] [Accepted: 08/26/2013] [Indexed: 12/19/2022]
Abstract
The apicomplexan protozoan Toxoplasma gondii is a significant human and veterinary pathogen. As an obligate intracellular parasite, Toxoplasma depends on nutrients provided by the host cell and needs to adapt to limitations in available resources. In mammalian cells, translational regulation via GCN2 phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α) is a key mechanism for adapting to nutrient stress. Toxoplasma encodes two GCN2-like protein kinases, TgIF2K-C and TgIF2K-D. We previously showed that TgIF2K-D phosphorylates T. gondii eIF2α (TgIF2α) upon egress from the host cell, which enables the parasite to overcome exposure to the extracellular environment. However, the function of TgIF2K-C remained unresolved. To determine the functions of TgIF2K-C in the parasite, we cloned the cDNA encoding TgIF2K-C and generated knockout parasites of this TgIF2α kinase to study its function during the lytic cycle. The TgIF2K-C knockout did not exhibit a fitness defect compared with parental parasites. However, upon infection of human fibroblasts that were subsequently cultured in glutamine-free medium, the intracellular TgIF2K-C knockout parasites were impeded for induced phosphorylation of TgIF2α and showed a 50% reduction in the number of plaques formed compared with parental parasites. Furthermore, we found that this growth defect in glutamine-free media was phenocopied in parasites expressing only a non-phosphorylatable TgIF2α (TgIF2α-S71A), but not in a TgIF2K-D knockout. These studies suggest that Toxoplasma GCN2-like kinases TgIF2K-C and TgIF2K-D evolved to have distinct roles in adapting to changes in the parasite's environment.
Collapse
|
177
|
Zhang M, Zhao L, Song J, Li Y, Zhao Q, He S, Cong H. DNA vaccine encoding the Toxoplasma gondii bradyzoite-specific surface antigens SAG2CDX protect BALB/c mice against type II parasite infection. Vaccine 2013; 31:4536-40. [PMID: 23933373 DOI: 10.1016/j.vaccine.2013.07.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/21/2013] [Accepted: 07/25/2013] [Indexed: 02/07/2023]
Abstract
The surface antigens SAG2C, SAG2D, and SAG2X, which expressed specifically on bradyzoite stage of Toxoplasma gondii, have been demonstrated to be important for persistence of cyst in the brain. In this study, DNA vaccines expressing SAG2C, SAG2D, and SAG2X of T. gondii were constructed and their protective efficacy were evaluated in BALB/c mice. Mice vaccinated with pVAX1-SAG2C (pSAG2C), pVAX1-2D (pSAG2D) or pVAX1-2X (pSAG2C) showed higher levels of serum IgG antibodies and lymphocyte proliferation response compared to PBS and pVAX1 treated mice (p<0.05). The immune response was characterized by a strong Th1 response and increased cytokine production of IL-2 and IFN-γ. Vaccinated mice displayed significant protection against the challenge with the cyst of T. gondii genotype II strain of PRU (cyst-forming in mouse). A significant reduction in the brain cyst burden was detected in the mice immunized with pSAG2C (72%), pSAG2D (23%), pSAG2X (69%) alone and even more reduction rate, 77%, was achieved in the combination group compared to PBS treated mice. The results implied that immunization with DNA vaccines expressing SAG2C, SAG2D, and SAG2X, and, in particular, a combination of all three DNA plasmids, could effectively protect the mice against T. gondii chronic infection.
Collapse
Affiliation(s)
- Min Zhang
- Department of Human Parasitology, Shandong University School of Medicine, No. 44 Wenhuaxi Road, Jinan, Shandong 250012, PR China
| | | | | | | | | | | | | |
Collapse
|
178
|
Stilger KL, Sullivan WJ. Elongator protein 3 (Elp3) lysine acetyltransferase is a tail-anchored mitochondrial protein in Toxoplasma gondii. J Biol Chem 2013; 288:25318-25329. [PMID: 23878194 DOI: 10.1074/jbc.m113.491373] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Lysine acetylation has recently emerged as an important, widespread post-translational modification occurring on proteins that reside in multiple cellular compartments, including the mitochondria. However, no lysine acetyltransferase (KAT) has been definitively localized to this organelle to date. Here we describe the identification of an unusual homologue of Elp3 in early-branching protozoa in the phylum Apicomplexa. Elp3 is the catalytic subunit of the well-conserved transcription Elongator complex; however, Apicomplexa lack all other Elongator subunits, suggesting that the Elp3 in these organisms plays a role independent of transcription. Surprisingly, Elp3 in the parasites of this phylum, including Toxoplasma gondii (TgElp3), possesses a unique C-terminal transmembrane domain (TMD) that localizes the protein to the mitochondrion. As TgElp3 is devoid of known mitochondrial targeting signals, we used selective permeabilization studies to reveal that this KAT is oriented with its catalytic components facing the cytosol and its C-terminal TMD inserted into the outer mitochondrial membrane, consistent with a tail-anchored membrane protein. Elp3 trafficking to mitochondria is not exclusive to Toxoplasma as we also present evidence that a form of Elp3 localizes to these organelles in mammalian cells, supporting the idea that Elp3 performs novel functions across eukaryotes that are independent of transcriptional elongation. Importantly, we also present genetic studies that suggest TgElp3 is essential in Toxoplasma and must be positioned at the mitochondrial surface for parasite viability.
Collapse
Affiliation(s)
| | - William J Sullivan
- From the Departments of Pharmacology and Toxicology and; Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202.
| |
Collapse
|
179
|
Vanagas L, Jeffers V, Bogado SS, Dalmasso MC, Sullivan WJ, Angel SO. Toxoplasma histone acetylation remodelers as novel drug targets. Expert Rev Anti Infect Ther 2013. [PMID: 23199404 DOI: 10.1586/eri.12.100] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Toxoplasma gondii is a leading cause of neurological birth defects and a serious opportunistic pathogen. The authors and others have found that Toxoplasma uses a unique nucleosome composition supporting a fine gene regulation together with other factors. Post-translational modifications in histones facilitate the establishment of a global chromatin environment and orchestrate DNA-related biological processes. Histone acetylation is one of the most prominent post-translational modifications influencing gene expression. Histone acetyltransferases and histone deacetylases have been intensively studied as potential drug targets. In particular, histone deacetylase inhibitors have activity against apicomplexan parasites, underscoring their potential as a new class of antiparasitic compounds. In this review, we summarize what is known about Toxoplasma histone acetyltransferases and histone deacetylases, and discuss the inhibitors studied to date. Finally, the authors discuss the distinct possibility that the unique nucleosome composition of Toxoplasma, which harbors a nonconserved H2Bv variant histone, might be targeted in novel therapeutics directed against this parasite.
Collapse
Affiliation(s)
- Laura Vanagas
- Laboratorio de Parasitología Molecular, IIB-INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
180
|
The unfolded protein response in the protozoan parasite Toxoplasma gondii features translational and transcriptional control. EUKARYOTIC CELL 2013; 12:979-89. [PMID: 23666622 DOI: 10.1128/ec.00021-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The unfolded protein response (UPR) is an important regulatory network that responds to perturbations in protein homeostasis in the endoplasmic reticulum (ER). In mammalian cells, the UPR features translational and transcriptional mechanisms of gene expression aimed at restoring proteostatic control. A central feature of the UPR is phosphorylation of the α subunit of eukaryotic initiation factor-2 (eIF2) by PERK (EIF2AK3/PEK), which reduces the influx of nascent proteins into the ER by lowering global protein synthesis, coincident with preferential translation of key transcription activators of genes that function to expand the processing capacity of this secretory organelle. Upon ER stress, the apicomplexan parasite Toxoplasma gondii is known to induce phosphorylation of Toxoplasma eIF2α and lower translation initiation. To characterize the nature of the ensuing UPR in this parasite, we carried out microarray analyses to measure the changes in the transcriptome and in translational control during ER stress. We determined that a collection of transcripts linked with the secretory process are induced in response to ER stress, supporting the idea that a transcriptional induction phase of the UPR occurs in Toxoplasma. Furthermore, we determined that about 500 gene transcripts showed enhanced association with translating ribosomes during ER stress. Many of these target genes are suggested to be involved in gene expression, including JmjC5, which continues to be actively translated during ER stress. This study indicates that Toxoplasma triggers a UPR during ER stress that features both translational and transcriptional regulatory mechanisms, which is likely to be important for parasite invasion and development.
Collapse
|
181
|
Xue B, Jeffers V, Sullivan WJ, Uversky VN. Protein intrinsic disorder in the acetylome of intracellular and extracellular Toxoplasma gondii. MOLECULAR BIOSYSTEMS 2013; 9:645-57. [PMID: 23403842 PMCID: PMC3594623 DOI: 10.1039/c3mb25517d] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite of the phylum Apicomplexa, which includes a number of species of medical and veterinary importance. Inhibitors of lysine deacetylases (KDACs) exhibit potent antiparasitic activity, suggesting that interference with lysine acetylation pathways holds promise for future drug targeting. Using high resolution LC-MS/MS to identify parasite peptides enriched by immunopurification with acetyl-lysine antibody, we recently produced an acetylome of the proliferative intracellular stage of Toxoplasma. In this study, we used similar approaches to greatly expand the Toxoplasma acetylome by identifying acetylated proteins in non-replicating extracellular tachyzoites. The functional breakdown of acetylated proteins in extracellular parasites is similar to intracellular parasites, with an enrichment of proteins involved in metabolism, translation, and chromatin biology. Altogether, we have now detected over 700 acetylation sites on a wide variety of parasite proteins of diverse function in multiple subcellular compartments. We found 96 proteins uniquely acetylated in intracellular parasites, 216 uniquely acetylated in extracellular parasites, and 177 proteins acetylated in both states. Our findings suggest that dramatic changes occur at the proteomic level as tachyzoites transition from the intracellular to the extracellular environment, similar to reports documenting significant changes in gene expression during this transition. The expanded dataset also allowed a thorough analysis of the degree of protein intrinsic disorder surrounding lysine residues targeted for this post-translational modification. These analyses indicate that acetylated lysines in proteins from extracellular and intracellular tachyzoites are largely located within similar local environments, and that lysine acetylation preferentially occurs in intrinsically disordered or flexible regions.
Collapse
Affiliation(s)
- Bin Xue
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Victoria Jeffers
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - William J. Sullivan
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, PL 33612, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, RUSSIA
| |
Collapse
|
182
|
Hartmann A, Arroyo-Olarte RD, Imkeller K, Hegemann P, Lucius R, Gupta N. Optogenetic modulation of an adenylate cyclase in Toxoplasma gondii demonstrates a requirement of the parasite cAMP for host-cell invasion and stage differentiation. J Biol Chem 2013; 288:13705-17. [PMID: 23525100 DOI: 10.1074/jbc.m113.465583] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND cAMP research in intracellular parasites remains underappreciated, and it requires a specific method for cyclic nucleotide regulation. RESULTS Optogenetic induction of cAMP in T. gondii affects host-cell invasion, stage-specific expression, and parasite differentiation. The underlying method allows a versatile control of parasite cAMP. CONCLUSIONS Optogenetic parasite strains offer valuable tools for dissecting cAMP-mediated processes. SIGNIFICANCE The method is applicable to other gene-tractable intertwined systems. Successful infection and transmission of the obligate intracellular parasite Toxoplasma gondii depends on its ability to switch between fast-replicating tachyzoite (acute) and quiescent bradyzoite (chronic) stages. Induction of cAMP in the parasitized host cells has been proposed to influence parasite differentiation. It is not known whether the parasite or host cAMP is required to drive this phenomenon. Other putative roles of cAMP for the parasite biology also remain to be identified. Unequivocal research on cAMP-mediated signaling in such intertwined systems also requires a method for an efficient and spatial control of the cAMP pool in the pathogen or in the enclosing host cell. We have resolved these critical concerns by expressing a photoactivated adenylate cyclase that allows light-sensitive control of the parasite or host-cell cAMP. Using this method, we reveal multiple roles of the parasite-derived cAMP in host-cell invasion, stage-specific expression, and asexual differentiation. An optogenetic method provides many desired advantages such as: (i) rapid, transient, and efficient cAMP induction in extracellular/intracellular and acute/chronic stages; (ii) circumvention of the difficulties often faced in cultures, i.e. poor diffusion, premature degradation, steady activation, and/or pleiotropic effects of cAMP agonists and antagonists; (iii) genetically encoded enzyme expression, thus inheritable to the cell progeny; and (iv) conditional and spatiotemporal control of cAMP levels. Importantly, a successful optogenetic application in Toxoplasma also illustrates its wider utility to study cAMP-mediated signaling in other genetically amenable two-organism systems such as in symbiotic and pathogen-host models.
Collapse
Affiliation(s)
- Anne Hartmann
- Departments of Molecular Parasitology, Humboldt University, 10115 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
183
|
Inhibitors of eIF2α dephosphorylation slow replication and stabilize latency in Toxoplasma gondii. Antimicrob Agents Chemother 2013; 57:1815-22. [PMID: 23380722 DOI: 10.1128/aac.01899-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that permanently infects warm-blooded vertebrates through its ability to convert into a latent tissue cyst form. The latent form (bradyzoite) can reinitiate a life-threatening acute infection if host immunity wanes, most commonly in AIDS or organ transplant patients. We have previously shown that bradyzoite development is accompanied by phosphorylation of the parasite eukaryotic initiation factor 2 alpha subunit (eIF2α), which dampens global protein synthesis and reprograms gene expression. In this study, we analyzed the activities of two specific inhibitors of eIF2α dephosphorylation, salubrinal (SAL) and guanabenz (GA). We establish that these drugs are able to inhibit the dephosphorylation of Toxoplasma eIF2α. Our results show that SAL and GA reduce tachyzoite replication in vitro and in vivo. Furthermore, both drugs induce bradyzoite formation and inhibit the reactivation of latent bradyzoites in vitro. To address whether the antiparasitic activities of SAL and GA involve host eIF2α phosphorylation, we infected mutant mouse embryonic fibroblast (MEF) cells incapable of phosphorylating eIF2α, which had no impact on the efficacies of SAL and GA against Toxoplasma infection. Our findings suggest that SAL and GA may serve as potential new drugs for the treatment of acute and chronic toxoplasmosis.
Collapse
|
184
|
Abstract
The life cycles of apicomplexan parasites such as Plasmodium spp. and Toxoplasma gondii are complex, consisting of proliferative and latent stages within multiple hosts. Dramatic transformations take place during the cycles, and they demand precise control of gene expression at all levels, including translation. This review focuses on the mechanisms that regulate translational control in Plasmodium and Toxoplasma, with a particular emphasis on the phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α). Phosphorylation of eIF2α (eIF2α∼P) is a conserved mechanism that eukaryotic cells use to repress global protein synthesis while enhancing gene-specific translation of a subset of mRNAs. Elevated levels of eIF2α∼P have been observed during latent stages in both Toxoplasma and Plasmodium, indicating that translational control plays a role in maintaining dormancy. Parasite-specific eIF2α kinases and phosphatases are also required for proper developmental transitions and adaptation to cellular stresses encountered during the life cycle. Identification of small-molecule inhibitors of apicomplexan eIF2α kinases may selectively interfere with parasite translational control and lead to the development of new therapies to treat malaria and toxoplasmosis.
Collapse
|
185
|
Koini EN, Avlonitis N, Martins-Duarte ES, de Souza W, Vommaro RC, Calogeropoulou T. Divergent synthesis of 2,6-diaryl-substituted 5,7,8-trimethyl-1,4-benzoxazines via microwave-promoted palladium-catalyzed Suzuki–Miyaura cross coupling and biological evaluation. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
186
|
Meng M, He S, Zhao G, Bai Y, Zhou H, Cong H, Lu G, Zhao Q, Zhu XQ. Evaluation of protective immune responses induced by DNA vaccines encoding Toxoplasma gondii surface antigen 1 (SAG1) and 14-3-3 protein in BALB/c mice. Parasit Vectors 2012. [PMID: 23181694 PMCID: PMC3547689 DOI: 10.1186/1756-3305-5-273] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background Toxoplasmosis, caused by an obligate intracellular protozoan parasite Toxoplasma gondii, has been a serious clinical and veterinary problem. Effective DNA vaccines against T. gondii can prevent and control the spread of toxoplasmosis, which is important for both human health and the farming industry. The T. gondii 14-3-3 protein has been proved to be antigenic and immunogenic and was a potential vaccine candidate against toxoplasmosis. In this study, we evaluated the immune responses induced by recombinant plasmids encoding T. gondii surface antigen 1 (SAG1) and 14-3-3 protein by immunizing BALB/c mice intramuscularly. Methods In the present study, BALB/c mice were randomly divided into five groups, including three experimental groups (pSAG1, p14-3-3 and pSAG1/14-3-3) and two control groups (PBS and pBudCE4.1), and were immunized intramuscularly three times. The levels of IgG antibodies and cytokine production in mouse sera were determined by enzyme-linked immunosorbent assays (ELISA). Two weeks after the last immunization, all mice were challenged intraperitoneally (i.p.) with 1×104 tachyzoites of T. gondii and the survival time of mice was observed and recorded every day. Results Mice vaccinated with pSAG1, p14-3-3 or pSAG1/14-3-3 developed high levels of IgG2a and gamma interferon (IFN-γ) and low levels of interleukin-4 (IL-4) and interleukin-10 (IL-10) compared to control groups (PBS or pBudCE4.1), which suggested a modulated Th1 type immune response (P<0.05). After intraperitoneal challenge with 1×104 tachyzoites of T. gondii (RH strain), the survival time of mice in experimental groups was longer than control groups (P<0.05). Mouse immunized with pSAG1/14-3-3 induced a higher level of IgG antibody response and significantly prolonged the survival time when compared with pSAG1 or p14-3-3 (P<0.05). Conclusions The study suggested that T. gondii 14-3-3 protein can induce effective immune responses in BALB/c mice and was a novel DNA vaccine candidate against toxoplasmosis, and the immune protective efficacy elicited by SAG1 gene was also demonstrated. Our results also showed multi-gene vaccine significantly enhanced immune responses and protective efficacy and was superior to the single-gene vaccine.
Collapse
Affiliation(s)
- Min Meng
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province, Peoples Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Abstract
INTRODUCTION Toxoplasma gondii, the agent that causes toxoplasmosis, is an opportunistic parasite that infects many mammalian species. It is an obligate intracellular parasite that causes severe congenital neurological and ocular disease mostly in immunocompromised humans. The current regimen of therapy includes only a few medications that often lead to hypersensitivity and toxicity. In addition, there are no vaccines available to prevent the transmission of this agent. Therefore, safer and more effective medicines to treat toxoplasmosis are urgently needed. AREAS COVERED The author presents in silico and in vitro strategies that are currently used to screen for novel targets and unique chemotypes against T. gondii. Furthermore, this review highlights the screening technologies and characterization of some novel targets and new chemical entities that could be developed into highly efficacious treatments for toxoplasmosis. EXPERT OPINION A number of diverse methods are being used to design inhibitors against T. gondii. These include ligand-based methods, in which drugs that have been shown to be efficacious against other Apicomplexa parasites can be repurposed to identify lead molecules against T. gondii. In addition, structure-based methods use currently available repertoire of structural information in various databases to rationally design small-molecule inhibitors of T. gondii. Whereas the screening methods have their advantages and limitations, a combination of methods is ideally suited to design small-molecule inhibitors of complex parasites such as T. gondii.
Collapse
Affiliation(s)
- Sandhya Kortagere
- Drexel University College of Medicine, Institute for Molecular Medicine, Department of Microbiology and Immunology, 2900, Queen Lane, PA 19129, USA.
| |
Collapse
|
188
|
CD73-generated adenosine facilitates Toxoplasma gondii differentiation to long-lived tissue cysts in the central nervous system. Proc Natl Acad Sci U S A 2012; 109:16312-7. [PMID: 22988118 DOI: 10.1073/pnas.1205589109] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular protozoan pathogen that traffics to the central nervous system (CNS) following invasion of its host. In the CNS, T. gondii undergoes transformation from a rapidly dividing tachyzoite to a long-lived, slow-dividing bradyzoite contained within cysts. The role of extracellular adenosine in T. gondii pathogenesis has not been previously investigated. T. gondii uses host purines such as adenosine for its energy needs, as it is unable to make its own. Here, we show that CD73(-/-) mice, which lack the ability to generate extracellular adenosine, are protected from T. gondii chronic infection, with significantly fewer cysts and reduced susceptibility to reactivation of infection in the CNS independent of host effector function. Parasite dissemination to the brain was unimpaired in CD73(-/-) hosts, suggesting that the reduced cyst number is due to impaired parasite differentiation in the CNS. Confirming this, T. gondii tachyzoites formed fewer cysts following alkaline pH stress in astrocytes isolated from CD73(-/-) mice compared with wild type, and in fibroblasts treated with a CD73 inhibitor. Cyst formation was rescued in CD73(-/-) astrocytes supplemented with adenosine, but not with adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine. Furthermore, mice lacking adenosine receptors had no defect in cyst formation. Based on these findings, we conclude that CD73 expression promotes Toxoplasma bradyzoite differentiation and cyst formation by a mechanism dependent on the generation of adenosine, but independent of adenosine receptor signaling. Overall, these findings suggest that modulators of extracellular adenosine may be used to develop therapies aimed at defending against human toxoplasmosis.
Collapse
|