151
|
Guan P, Zhou J, Girel S, Zhu X, Schwab M, Zhang K, Wang-Müller Q, Bigler L, Nick P. Anti-microtubule activity of the traditional Chinese medicine herb Northern Ban Lan (Isatis tinctoria) leads to glucobrassicin. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:2058-2074. [PMID: 34636476 DOI: 10.1111/jipb.13177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Traditional Chinese medicine (TCM) belongs to the most elaborate and extensive systems of plant-based healing. The herb Northern Ban Lan (Isatis tinctoria) is famous for its antiviral and anti-inflammatory activity. Although numerous components isolated from I. tinctoria have been characterized so far, their modes of action have remained unclear. Here, we show that extracts from I. tinctoria exert anti-microtubular activity. Using time-lapse microscopy in living tobacco BY-2 (Nicotiana tabacum L. cv Bright Yellow 2) cells expressing green fluorescent protein-tubulin, we use activity-guided fractionation to screen out the biologically active compounds of I. tinctoria. Among 54 fractions obtained from either leaves or roots of I. tinctoria by methanol (MeOH/H2 O 8:2), or ethyl acetate extraction, one specific methanolic root fraction was selected, because it efficiently and rapidly eliminated microtubules. By combination of further purification with ultra-high-performance liquid chromatography and high-resolution tandem mass spectrometry most of the bioactivity could be assigned to the glucosinolate compound glucobrassicin. Glucobrassicin can also affect microtubules and induce apoptosis in HeLa cells. In the light of these findings, the antiviral activity of Northern Ban Lan is discussed in the context of microtubules being hijacked by many viral pathogens for cell-to-cell spread.
Collapse
Affiliation(s)
- Pingyin Guan
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Jianning Zhou
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Sergey Girel
- Department of Chemistry, University of Zürich, Winterthurerstr.190, CH-8057, Zürich, Switzerland
| | - Xin Zhu
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Marian Schwab
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Kunxi Zhang
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Qiyan Wang-Müller
- Research Institute of Organic Agriculture FiBL, Ackerstrasse 113, CH-5070, Frick, Switzerland
| | - Laurent Bigler
- Department of Chemistry, University of Zürich, Winterthurerstr.190, CH-8057, Zürich, Switzerland
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| |
Collapse
|
152
|
|
153
|
Cheng DH, Liu Y, Wang L. Antitumor Effects of Ethanol Extract from Ventilago leiocarpa Benth on Sarcoma 180 Tumor-Bearing Mice and Possible Immune Mechanism. Chin J Integr Med 2021; 27:905-911. [PMID: 33515397 DOI: 10.1007/s11655-021-3440-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To explore the antitumor effects of ethanol extract from Ventilago leiocarpa Benth (EEVLB) on sarcoma 180 (S180) tumor-bearing mice and the potential mechanism. METHODS Sixty mice were randomly assigned to 6 groups according to a random number table: normal group, model group, 5-fluorouracil (5-FU) group (0.02 g·kg-1), and high-, medium-, low-dose EEVLB groups (100, 84, and 56 g of raw material·kg-1 body weight, respectively), with 10 mice each group. All treatments were given once daily for 10 consecutive days. Effects of EEVLB on inhibiting tumor growth and immune function in mice were evaluated among all groups after the treatments by detecting tumor inhibition rate, organ index, serum levels of interleukin (IL)-2, -6, -10, CD3+CD4+ T lymphocytes, CD4+/CD8+ ratio, caspase-3 and Bcl-2. RESULTS EEVLB with different concentrations achieved inhibition of tumor growth in vivo, wherein the high-dose group showed the most significant reduction in tumor weight and increased apoptosis of tumor cells (P<0.05). In addition, both net weight gain and spleen index of mice showed uptrend in EEVLB treatment groups (P<0.05). Besides, serum levels of IL-2 and IL-6, percentages of CD3+CD4+ T lymphocytes and ratio of CD4+/CD8+ in peripheral blood were elevated in high- and medium-dose EEVLB groups compared with the model group (P<0.05). Also, upregulation of caspase-3 and downregulation of Bcl-2 were observed at protein levels in the high-dose EEVLB group (P<0.01). CONCLUSIONS EEVLB exhibits promising antitumor activity in vivo. This effect might be due to activation of apoptotic signaling pathway, increase of cytokine levels and enhancement of immune function in tumor-bearing mice.
Collapse
Affiliation(s)
- Dao-Hai Cheng
- Department of Pharmacy, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Ying Liu
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, China.
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Nanning, 530022, China.
| | - Li Wang
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, China
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Nanning, 530022, China
| |
Collapse
|
154
|
Rodrigues FC, Kumar NVA, Hari G, Pai KSR, Thakur G. The inhibitory potency of isoxazole-curcumin analogue for the management of breast cancer: A comparative in vitro and molecular modeling investigation. CHEMICAL PAPERS 2021; 75:5995-6008. [DOI: 10.1007/s11696-021-01775-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/04/2021] [Indexed: 12/22/2022]
Abstract
AbstractCurcumin, a potent phytochemical derived from the spice element turmeric, has been identified as a herbal remedy decades ago and has displayed promise in the field of medicinal chemistry. However, multiple traits associated with curcumin, such as poor bioavailability and instability, limit its effectiveness to be accepted as a lead drug-like entity. Different reactive sites in its chemical structure have been identified to incorporate modifications as attempts to improving its efficacy. The diketo group present in the center of the structural scaffold has been touted as the group responsible for the instability of curcumin, and substituting it with a heterocyclic ring contributes to improved stability. In this study, four heterocyclic curcumin analogues, representing some broad groups of heterocyclic curcuminoids (isoxazole-, pyrazole-, N-phenyl pyrazole- and N-amido-pyrazole-based), have been synthesized by a simple one-pot synthesis and have been characterized by FTIR, 1H-NMR, 13C-NMR, DSC and LC–MS. To predict its potential anticancer efficacy, the compounds have been analyzed by computational studies via molecular docking for their regulatory role against three key proteins, namely GSK-3β—of which abnormal regulation and expression is associated with cancer; Bcl-2—an apoptosis regulator; and PR which is a key nuclear receptor involved in breast cancer development. One of the compounds, isoxazole-curcumin, has consistently indicated a better docking score than the other tested compounds as well as curcumin. Apart from docking, the compounds have also been profiled for their ADME properties as well as free energy binding calculations. Further, the in vitro cytotoxic evaluation of the analogues was carried out by SRB assay in breast cancer cell line (MCF7), out of which isoxazole-curcumin (IC50–3.97 µM) has displayed a sevenfold superior activity than curcumin (IC50–21.89 µM). In the collation of results, it can be suggested that isoxazole-curcumin behaves as a potential lead owing to its ability to be involved in a regulatory role with multiple significant cancer proteins and hence deserves further investigations in the development of small molecule-based anti-breast cancer agents.
Graphic abstract
Collapse
|
155
|
Lahmadi G, Lahmar A, Znati M, Elaieb MT, Khouja ML, Ascrizzi R, Flamini G, Harrath AH, Chekir-Ghedira L, Jannet HB. Chemical Composition and Cytotoxic Activity of Eucalyptus torquata Luehm. and Eucalyptus salmonophloia F. Muell. Trunk Bark Essential Oils against Human SW620 and MDA-MB-231 Cancer Cell Lines. Chem Biodivers 2021; 18:e2100315. [PMID: 34705324 DOI: 10.1002/cbdv.202100315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/09/2021] [Indexed: 11/11/2022]
Abstract
In recent years, there has been a growing interest in the screening of natural active ingredients from Eucalyptus essential oils because of their evident importance in practical utility and their undeniable therapeutic properties. Based on this, the aim of the present study was to investigate the chemical profile of the essential oils of the trunk bark of Eucalyptus torquata Luehm. (ETEO), and E. salmonophloia F. Muell. (ESEO), growing in Tunisia. The in vitro cytotoxic properties of the extracted EOs were also evaluated against two human cancer cell lines: breast carcinoma cell lines MDA-MB-231 and colorectal cancer cell lines SW620. The analysis by gas chromatography coupled with mass spectrometry (GC/MS) led to the identification of 32 compounds from the ETEO, with the dominant constituents being the monoterpenes trans-myrtanol (73.4 %) and myrtenol (4.7 %), and the apocarotene (E)-β-ionone (3.9 %). In the case of ESEO, 29 compounds were identified with trans-myrtanol (25.0 %), decanoic acid (22.1 %), nonanoic acid (9.8 %), γ-elemene (6.5 %), γ-maaliene (5.5 %), and α-terpineol (5.3 %) as the main components. The cytotoxicity of EOs against the two chosen cell lines was tested using Crystal Violet Staining (CVS) assay and 5-fluorouracil as a reference drug. The two EOs exhibited a significant dose-dependent inhibition against the viability of the used cell lines. Their inhibitory effects were particularly observed towards SW620 colon carcinoma cells with IC50 values of 26.71±1.22 and 22.21±0.85 μg/mL, respectively, indicating that both oils were more cytotoxic for SW620 cells compared to MDA-MB-231 one.
Collapse
Affiliation(s)
- Ghofrane Lahmadi
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019, Monastir, Tunisia
| | - Aida Lahmar
- Research Unit Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne street, 5000, Monastir, Tunisia
| | - Mansour Znati
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019, Monastir, Tunisia
| | - Mohamed Tahar Elaieb
- National Research Institute of Rural Engineering, Water and Forestry (INRGREF), Laboratory of Management and Valorization of Forest Resources (LR161INRGREF01), University of Carthage, Tunis, Tunisia
| | - Mohamed Larbi Khouja
- National Research Institute of Rural Engineering, Water and Forestry (INRGREF), Laboratory of Management and Valorization of Forest Resources (LR161INRGREF01), University of Carthage, Tunis, Tunisia
| | - Roberta Ascrizzi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Guido Flamini
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126, Pisa, Italy.,Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute" Nutrafood, Via del Borghetto 80, 56124, Pisa, Italy
| | - Abdel Halim Harrath
- King Saud University, Department of Zoology, College of Science, Riyadh, Saudi Arabia
| | - Leila Chekir-Ghedira
- Research Unit Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne street, 5000, Monastir, Tunisia
| | - Hichem Ben Jannet
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019, Monastir, Tunisia
| |
Collapse
|
156
|
Gakuubi MM, Munusamy M, Liang ZX, Ng SB. Fungal Endophytes: A Promising Frontier for Discovery of Novel Bioactive Compounds. J Fungi (Basel) 2021; 7:786. [PMID: 34682208 PMCID: PMC8538612 DOI: 10.3390/jof7100786] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
For years, fungi have served as repositories of bioactive secondary metabolites that form the backbone of many existing drugs. With the global rise in infections associated with antimicrobial resistance, in addition to the growing burden of non-communicable disease, such as cancer, diabetes and cardiovascular ailments, the demand for new drugs that can provide an improved therapeutic outcome has become the utmost priority. The exploration of microbes from understudied and specialized niches is one of the promising ways of discovering promising lead molecules for drug discovery. In recent years, a special class of plant-associated fungi, namely, fungal endophytes, have emerged as an important source of bioactive compounds with unique chemistry and interesting biological activities. The present review focuses on endophytic fungi and their classification, rationale for selection and prioritization of host plants for fungal isolation and examples of strategies that have been adopted to induce the activation of cryptic biosynthetic gene clusters to enhance the biosynthetic potential of fungal endophytes.
Collapse
Affiliation(s)
- Martin Muthee Gakuubi
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore; (M.M.G.); (M.M.)
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore;
| | - Madhaiyan Munusamy
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore; (M.M.G.); (M.M.)
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore;
| | - Siew Bee Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore; (M.M.G.); (M.M.)
| |
Collapse
|
157
|
Vietnamese Medicinal Plants as Potential Resources to Explore New Anticancer and Anti-inflammation: Established Assays for Pharmacological Tests. Methods Mol Biol 2021. [PMID: 34473330 DOI: 10.1007/978-1-0716-1558-4_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cancer is one of the most serious health problems in the world, which annually increases in incidence and mortality rates. Among therapies for cancer, chemical treatments are widespread. However, the benefit of these compounds remains limited due to high cytotoxicity, resistances, and non-selectivity. In addition to cancer, inflammation is also a common symptom and usually relates to other diseases such as infection and cancer. Therefore, investigation of new agents for anticancer and anti-inflammation is of high interest. The tropical climate of Vietnam makes it one of the most biodiversity-rich countries in the world, with a wide availability of traditional medicines and herbs for primary healthcare. However, most of utilization of Vietnamese medicinal plants is not evidence-based as few systematic studies of these have been performed. In this chapter, we present established anticancer and anti-inflammation assays for natural extract and compounds from a Vietnamese medicinal plant. In addition, the procedures of extraction, separation, and isolation of this plant are described.
Collapse
|
158
|
Mishra S, Sahu PK, Agarwal V, Singh N. Exploiting endophytic microbes as micro-factories for plant secondary metabolite production. Appl Microbiol Biotechnol 2021; 105:6579-6596. [PMID: 34463800 DOI: 10.1007/s00253-021-11527-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 01/19/2023]
Abstract
Plant secondary metabolites have significant potential applications in a wide range of pharmaceutical, food, and cosmetic industries by providing new chemistries and compounds. However, direct isolation of such compounds from plants has resulted in over-harvesting and loss of biodiversity, currently threatening several medicinal plant species to extinction. With the breakthrough report of taxol production by an endophytic fungus of Taxus brevifolia, a new era in natural product research was established. Since then, the ability of endophytic microbes to produce metabolites similar to those produced by their host plants has been discovered. The plant "endosphere" represents a rich and unique biological niche inhabited by organisms capable of producing a range of desired compounds. In addition, plants growing in diverse habitats and adverse environmental conditions represent a valuable reservoir for obtaining rare microbes with potential applications. Despite being an attractive and sustainable approach for obtaining economically important metabolites, the industrial exploitation of microbial endophytes for the production and isolation of plant secondary metabolites remains in its infancy. The present review provides an updated overview of the prospects, challenges, and possible solutions for using microbial endophytes as micro-factories for obtaining commercially important plant metabolites.Key points• Some "plant" metabolites are rather synthesized by the associated endophytes.• Challenges: Attenuation, silencing of BGCs, unculturability, complex cross-talk.• Solutions: Simulation of in planta habitat, advanced characterization methods.
Collapse
Affiliation(s)
- Sushma Mishra
- Plant Biotechnology Laboratory, Dayalbagh Educational Institute (Deemed-to-be-University), Agra, Uttar Pradesh, 282005, India.
| | - Pramod Kumar Sahu
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Vishad Agarwal
- Plant Biotechnology Laboratory, Dayalbagh Educational Institute (Deemed-to-be-University), Agra, Uttar Pradesh, 282005, India
| | - Namrata Singh
- Plant Biotechnology Laboratory, Dayalbagh Educational Institute (Deemed-to-be-University), Agra, Uttar Pradesh, 282005, India
| |
Collapse
|
159
|
Kumavath R, Paul S, Pavithran H, Paul MK, Ghosh P, Barh D, Azevedo V. Emergence of Cardiac Glycosides as Potential Drugs: Current and Future Scope for Cancer Therapeutics. Biomolecules 2021; 11:1275. [PMID: 34572488 PMCID: PMC8465509 DOI: 10.3390/biom11091275] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/24/2022] Open
Abstract
Cardiac glycosides are natural sterols and constitute a group of secondary metabolites isolated from plants and animals. These cardiotonic agents are well recognized and accepted in the treatment of various cardiac diseases as they can increase the rate of cardiac contractions by acting on the cellular sodium potassium ATPase pump. However, a growing number of recent efforts were focused on exploring the antitumor and antiviral potential of these compounds. Several reports suggest their antitumor properties and hence, today cardiac glycosides (CG) represent the most diversified naturally derived compounds strongly recommended for the treatment of various cancers. Mutated or dysregulated transcription factors have also gained prominence as potential therapeutic targets that can be selectively targeted. Thus, we have explored the recent advances in CGs mediated cancer scope and have considered various signaling pathways, molecular aberration, transcription factors (TFs), and oncogenic genes to highlight potential therapeutic targets in cancer management.
Collapse
Affiliation(s)
- Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (P.O) Kasaragod, Kerala 671320, India;
| | - Sayan Paul
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu 627012, India;
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India
| | - Honey Pavithran
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (P.O) Kasaragod, Kerala 671320, India;
| | - Manash K. Paul
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA;
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Debmalya Barh
- Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, India;
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-001, Brazil;
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-001, Brazil;
| |
Collapse
|
160
|
Garlic constituents for cancer prevention and therapy: From phytochemistry to novel formulations. Pharmacol Res 2021; 175:105837. [PMID: 34450316 DOI: 10.1016/j.phrs.2021.105837] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
Garlic (Allium sativum L.) is one of the oldest plants cultivated for its dietary and medicinal values. This incredible plant is endowed with various pharmacological attributes, such as antimicrobial, antiarthritic, antithrombotic, antitumor, hypoglycemic, and hypolipidemic activities. Among the various beneficial pharmacological effects of garlic, the anticancer activity is presumably the most studied. The consumption of garlic provides strong protection against cancer risk. Taking into account the multi-targeted actions and absence of considerable toxicity, a few active metabolites of garlic are probably to play crucial roles in the killing of cancerous cells. Garlic contains several bioactive molecules with anticancer actions and these include diallyl trisulfide, allicin, diallyl disulfide, diallyl sulfide, and allyl mercaptan. The effects of various garlic-derived products, their phytoconstituents and nanoformulations have been evaluated against skin, prostate, ovarian, breast, gastric, colorectal, oral, liver, and pancreatic cancers. Garlic extract, its phytocompounds and their nanoformulations have been shown to inhibit the different stages of cancer, including initiation, promotion, and progression. Besides, these bioactive metabolites alter the peroxidation of lipid, activity of nitric oxide synthetase, nuclear factor-κB, epidermal growth factor receptor, and protein kinase C, cell cycle, and survival signaling. The current comprehensive review portrays the functions of garlic, its bioactive constituents and nanoformulations against several types of cancers and explores the possibility of developing these agents as anticancer pharmaceuticals.
Collapse
|
161
|
Anwar DM, El-Sayed M, Reda A, Fang JY, Khattab SN, Elzoghby AO. Recent advances in herbal combination nanomedicine for cancer: delivery technology and therapeutic outcomes. Expert Opin Drug Deliv 2021; 18:1609-1625. [PMID: 34254868 DOI: 10.1080/17425247.2021.1955853] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: The use of herbal compounds in cancer therapy has great potential to promote the efficacy of current cancer therapeutic strategies. Herbal compounds were successfully reported to enhance tumor cells sensitization to the action of chemo-, hormonal- and gene-therapeutic agents via different mechanisms. Herbal ingredients can affect different signaling pathways, reduce the toxic side effects or inhibit the efflux of anticancer drugs.Areas covered: This review will discuss the delivery of herbal compounds with other cancer treatments such as hormonal, small molecule inhibitors and inorganic hybrids to tumor cells. An overview of physicochemical properties of herbal components that require intelligent design of combo-nanomedicines for efficient co-delivery of those herbal-derived and other anticancer agents was discussed. Nanocarriers provide various benefits to overcome the shortcomings of the encapsulated herbal compounds including improved solubility, increased stability and enhanced tumor targeting. Different nanocarrier systems were the focus of this review.Expert opinion: Multifunctional nanocarrier systems encapsulating herbal and different anticancer drugs showed to be a wonderful approach in the treatment of cancer enabling the co-delivery of anticancer drugs with versatile modes of action in an accurate manner in an attempt to enhance the efficacy, benefit from the synergism between the drugs as well as to minimize the development of multi-drug resistance. The main challenge point is the early detection and management of any developed adverse effect.
Collapse
Affiliation(s)
- Doaa M Anwar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Arab Academy for Science Technology & Maritime Transport, Alexandria, Egypt.,Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mousa El-Sayed
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.,Department of Chemistry, School of Sciences and Engineering, American University in Cairo, New Cairo, Egypt
| | - Asmaa Reda
- Nanomedicine Division, Center for Materials Science, University of Science and Technology (UST), Zewail City of Science and Technology, Giza, Egypt.,Molecular and Cellular Biology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan.,Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of AnesthesiologyChang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Sherine N Khattab
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.,Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.,Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
162
|
El-Sayed AS, Khalaf SA, Azez HA, Hussein HA, EL-Moslamy SH, Sitohy B, El-Baz AF. Production, bioprocess optimization and anticancer activity of Camptothecin from Aspergillus terreus and Aspergillus flavus, endophytes of Ficus elastica. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
163
|
Xu Y, Yao Y, Wang L, Chen H, Tan N. Hyaluronic Acid Coated Liposomes Co-Delivery of Natural Cyclic Peptide RA-XII and Mitochondrial Targeted Photosensitizer for Highly Selective Precise Combined Treatment of Colon Cancer. Int J Nanomedicine 2021; 16:4929-4942. [PMID: 34326635 PMCID: PMC8314934 DOI: 10.2147/ijn.s311577] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/05/2021] [Indexed: 01/10/2023] Open
Abstract
Background Natural cyclopeptide RA-XII, isolated from Rubia yunnanensis, is a promising chemotherapeutic agent for colon cancer. The photosensitizer protoporphyrin-IX attached with triphenylphosphonium (TPP) could possess mitochondria targeting capacity and exert photodynamic therapy (PDT) by inducing oxidizing damage to the mitochondria and cell apoptosis eventually. In this work, pH-sensitive liposomes were constructed to simultaneously deliver RA-XII as a chemotherapeutic drug and modified porphyrin as a mitochondria-targeting photosensitizer to treat colon cancer, and verified its mechanism of action and antitumor therapeutic efficacy. Methods The colon cancer targeting liposome nanoparticle RA/TPPP-Lip was synthesized using thin film hydration. The therapeutic effect and targeting ability of RA/TPPP-Lip was investigated in vitro. And use HCT116 cell allogeneic subcutaneous transplantation tumor model to investigate the anti-tumor and targeting effects of RA/TPPP-Lip in vivo. Results RA/TPPP-Lip gained the targeting ability through surface-modified HA to increase the accumulation of RA-XII and TPPP in colon cancer cells. A series of in vitro experimental results showed that TPPP produced cytotoxic ROS under laser irradiation to directly damage cell mitochondria and played a combined role with RA-XII, making RA/TPPP-Lip the best colon cancer cell growth inhibitory effect. Furthermore, in vivo antitumor experiments showed that the RA/TPPP-Lip substantially accumulated at the tumor site and efficiently repressed tumor growth in nude mice. Conclusion We have successfully designed a new cancer-targeted nanomedicine platform (RA/TPPP-Lip) for the collaborative treatment of colon cancer, which can achieve the targeted continuous release of multiple therapeutic drugs. This work provides a new strategy for precise combination therapy, which may promote the further development of collaborative cancer treatment platforms.
Collapse
Affiliation(s)
- Yanqing Xu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yongrong Yao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Linxiao Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Huachao Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Ninghua Tan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| |
Collapse
|
164
|
Fahmy NM, Abdel-Tawab AM. Isolation and characterization of marine sponge-associated Streptomyces sp. NMF6 strain producing secondary metabolite(s) possessing antimicrobial, antioxidant, anticancer, and antiviral activities. J Genet Eng Biotechnol 2021; 19:102. [PMID: 34264405 PMCID: PMC8281025 DOI: 10.1186/s43141-021-00203-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/30/2021] [Indexed: 12/24/2022]
Abstract
Background Actinomycetes associated with marine sponge represent a promising source of bioactive compounds. Herein, we report the isolation, identification, and bioactivity evaluation of Streptomyces sp. NMF6 associated with the marine sponge Diacarnus ardoukobae. Results Results showed that the strain belonged to the genus Streptomyces, and it was designated as Streptomyces sp. NMF6 with the GenBank accession number MW015111. Ethyl acetate (EtOAc) extract of the strain NMF6 demonstrated a promising antimicrobial activity against Staphylococcus aureus, Enterococcus faecalis, Vibrio damsela, and Candida albicans and a strong antioxidant activity, which were confirmed by DPPH, ferric-reducing power, and phosphomolybdenum assays; results are expressed as ascorbic acid equivalents. NMF6 extract also demonstrated cytotoxicity against breast cancer cell line (MCF-7), hepatocellular carcinoma cell line (Hep-G2), and human colon carcinoma cell line (HCT-116); the selectivity index values were < 2. The extract showed promising antiviral activity against HSV-1, CoxB4, and hepatitis A viruses at concentrations that were nontoxic to the host cells, with the selectivity index values being 13.25, 9.42, and 8.25, respectively. GC-MS analysis of the extract showed the presence of 20 compounds, with bis(2-ethylhexyl) phthalate being the major component (48%). Conclusions Our study indicates that the marine sponge–associated Streptomyces sp. NMF6 strain is a potential source of bioactive compounds that could be developed into therapeutic agents.
Collapse
Affiliation(s)
- Nayer Mohamed Fahmy
- Marine Microbiology Laboratory, National Institute of Oceanography and Fisheries, Cairo, Egypt.
| | - Asmaa Mohamed Abdel-Tawab
- Marine Biotechnology and Natural Products Laboratory, National Institute of Oceanography and Fisheries, Cairo, Egypt
| |
Collapse
|
165
|
Beltzig L, Frumkina A, Schwarzenbach C, Kaina B. Cytotoxic, Genotoxic and Senolytic Potential of Native and Micellar Curcumin. Nutrients 2021; 13:nu13072385. [PMID: 34371895 PMCID: PMC8308652 DOI: 10.3390/nu13072385] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Curcumin, a natural polyphenol and the principal bioactive compound in Curcuma longa, was reported to have anti-inflammatory, anti-cancer, anti-diabetic and anti-rheumatic activity. Curcumin is not only considered for preventive, but also for therapeutic, purposes in cancer therapy, which requires a killing effect on cancer cells. A drawback, however, is the low bioavailability of curcumin due to its insolubility in water. To circumvent this limitation, curcumin was administered in different water-soluble formulations, including liposomes or embedded into nanoscaled micelles. The high uptake rate of micellar curcumin makes it attractive also for cancer therapeutic strategies. Native curcumin solubilised in organic solvent was previously shown to be cytotoxic and bears a genotoxic potential. Corresponding studies with micellar curcumin are lacking. METHODS We compared the cytotoxic and genotoxic activity of native curcumin solubilised in ethanol (Cur-E) with curcumin embedded in micells (Cur-M). We measured cell death by MTT assays, apoptosis, necrosis by flow cytometry, senolysis by MTT and C12FDG and genotoxicity by FPG-alkaline and neutral singe-cell gel electrophoresis (comet assay). RESULTS Using a variety of primary and established cell lines, we show that Cur-E and Cur-M reduce the viability in all cell types in the same dose range. Cur-E and Cur-M induced dose-dependently apoptosis, but did not exhibit senolytic activity. In the cytotoxic dose range, Cur-E and Cur-M were positive in the alkaline and the neutral comet assay. Genotoxic effects vanished upon removal of curcumin, indicating efficient and complete repair of DNA damage. For inducing cell death, which was measured 48 h after the onset of treatment, permanent exposure was required while 60 min pulse-treatment was ineffective. In all assays, Cur-E and Cur-M were equally active, and the concentration above which significant cytotoxic and genotoxic effects were observed was 10 µM. Micelles not containing curcumin were completely inactive. CONCLUSIONS The data show that micellar curcumin has the same cytotoxicity and genotoxicity profile as native curcumin. The effective concentration on different cell lines, including primary cells, was far above the curcumin concentration that can be achieved systemically in vivo, which leads us to conclude that native curcumin and curcumin administered as food supplement in a micellar formulation at the ADI level are not cytotoxic/genotoxic, indicating a wide margin of safety.
Collapse
|
166
|
Khorsandi K, Kianmehr Z, Ghelichkhani E. Combination effect of red light irradiation and Traychspermum ammi essential oil on colorectal cancer cells (SW480). Lasers Med Sci 2021; 37:1031-1040. [PMID: 34191208 DOI: 10.1007/s10103-021-03350-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 06/07/2021] [Indexed: 11/29/2022]
Abstract
Colon cancer is the third significant reason for death related to cancers in the world. There are various treatments for colon cancer, which have several side effects. Polyphenol agents are a type of antioxidant in plants that have diverse biological properties, such as anti-cancer effects. Here, we investigate the effect of Trachyspermum ammi essential oil (TEO) and red light irradiation on the colorectal cancer cell line (SW 480). The colorectal cancer cell lines were irradiated at 660 nm for 90 s and then the cells were incubated with different TEO concentrations. In another study, cells initially were treated with various TEO concentrations and then irradiation for 90 s. Effect of TEO and the red light irradiation on viability of the cell, ROS generation, and cell cycle was assessed by MTT and flow cytometry, respectively. The findings demonstrated that early incubation with TEO and then irradiation decreased the SW 480 cells survival more than the early irradiation at 660 nm and then essential oil. In addition, TEO treatment at IC50 concentration in combination with low-level laser irradiation induces ROS generation in SW 480 cells as compared to the dark group. In addition, TEO treatment at IC50 in combination with low-level laser irradiation induces G0/G1 arrest of the cell cycle in SW 480 cells in comparison to the dark group. This study revealed that the Trachyspermum ammi essential oil in combination with low-level laser results in more reduction in survival which leads to ROS generation and cell cycle arrest in SW 480 colorectal cancer cells.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran. .,Department of Biochemistry, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Zahra Kianmehr
- Department of Biochemistry, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Elmira Ghelichkhani
- Department of Biochemistry, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
167
|
Veerabhadrappa B, Subramanian S, S J S, Dyavaiah M. Evaluating the genetic basiss of anti-cancer property of Taxol in Saccharomyces cerevisiae model. FEMS Microbiol Lett 2021; 368:6307513. [PMID: 34156070 DOI: 10.1093/femsle/fnab077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/18/2021] [Indexed: 01/24/2023] Open
Abstract
Taxol has been regarded as one of the most successful anti-cancer drugs identified from natural sources to date. Although Taxol is known to sensitize cells by stabilizing microtubules, its ability to cause DNA damage in peripheral blood lymphocytes and to induce oxidative stress and apoptosis indicates that Taxol may have other modes of cytotoxic action. This study focuses on identifying the additional targets of Taxol that may contribute to its multifaceted cell killing property, using Saccharomyces cerevisiae. We show that yeast oxidative stress response mutants (sod1Δ, tsa1Δ and cta1Δ) and DNA damage response mutants (mre11∆, sgs1∆ and sub1∆) are highly sensitive to Taxol. Our results also show that Taxol increases the level of reactive oxygen species (ROS) in yeast oxidative stress response mutant strains. Further, 4',6-Diamidino-2'-phenylindole (DAPI) and acridine orange/ethidium bromide (AO/EB) staining show that Taxol induces apoptotic features such as nuclear fragmentation and chromatin condensation in DNA repair mutants. On the whole, our results suggest that Taxol's cytotoxic property is attributed to its multifaceted mechanism of action. Yeast S. cerevisiae anti-oxidant and DNA repair gene mutants are sensitive to Taxol compared to wild-type, suggesting yeast model can be used to identify the genetic targets of anti-cancer drugs.
Collapse
Affiliation(s)
- Bhavana Veerabhadrappa
- Department of Biochemistry and Molecular Biology Pondicherry University Pondicherry - 605014, India
| | - Subasri Subramanian
- Department of Biochemistry and Molecular Biology Pondicherry University Pondicherry - 605014, India
| | - Sudharshan S J
- Department of Biochemistry and Molecular Biology Pondicherry University Pondicherry - 605014, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology Pondicherry University Pondicherry - 605014, India
| |
Collapse
|
168
|
Khan A, Siddiqui S, Husain SA, Mazurek S, Iqbal MA. Phytocompounds Targeting Metabolic Reprogramming in Cancer: An Assessment of Role, Mechanisms, Pathways, and Therapeutic Relevance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6897-6928. [PMID: 34133161 DOI: 10.1021/acs.jafc.1c01173] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The metabolism of cancer is remarkably different from that of normal cells and confers a variety of benefits, including the promotion of other cancer hallmarks. As the rewired metabolism is a near-universal property of cancer cells, efforts are underway to exploit metabolic vulnerabilities for therapeutic benefits. In the continued search for safer and effective ways of cancer treatment, structurally diverse plant-based compounds have gained substantial attention. Here, we present an extensive assessment of the role of phytocompounds in modulating cancer metabolism and attempt to make a case for the use of plant-based compounds in targeting metabolic vulnerabilities of cancer. We discuss the pharmacological interactions of phytocompounds with major metabolic pathways and evaluate the role of phytocompounds in the regulation of growth signaling and transcriptional programs involved in the metabolic transformation of cancer. Lastly, we examine the potential of these compounds in the clinical management of cancer along with limitations and challenges.
Collapse
Affiliation(s)
- Asifa Khan
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Shumaila Siddiqui
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Syed Akhtar Husain
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Sybille Mazurek
- Institute of Veterinary-Physiology and Biochemistry, University of Giessen, Giessen 35392, Germany
| | - Mohammad Askandar Iqbal
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| |
Collapse
|
169
|
4,6'-Anhydrooxysporidinone from Fusarium lateritium SSF2 Induces Autophagic and Apoptosis Cell Death in MCF-7 Breast Cancer Cells. Biomolecules 2021; 11:biom11060869. [PMID: 34208033 PMCID: PMC8230712 DOI: 10.3390/biom11060869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 02/04/2023] Open
Abstract
Previous studies have reported that 4,6′-Anhydrooxysporidinone (SSF2-2), isolated from Fusarium lateritium SSF2, has neuroprotective effects on the HT-22 hippocampal neuronal cell line. However, the anti-cancer effect of SSF2-2 remains unclear. Here, we examined the viability of MCF-7 human breast cancer cells treated with SSF2-2 or left untreated using a cell viability assay kit. The underlying molecular mechanism was further investigated by Western blotting and immunocytochemistry studies. The results demonstrated that SSF2-2 inhibited the viability of MCF-7 cells. Treatment with SSF2-2 increased the levels of cleaved caspase-9, cleaved caspase-7, poly (ADP-ribose) polymerase (PARP), and LC3B. Additionally, SSF2-2 significantly increased the conversion of LC3-I to LC3II and LC3-positive puncta in MCF-7 cells.
Collapse
|
170
|
Shi W, Han H, Zou J, Zhang Y, Li H, Zhou H, Cui G. Identification of dihydrotanshinone I as an ERp57 inhibitor with anti-breast cancer properties via the UPR pathway. Biochem Pharmacol 2021; 190:114637. [PMID: 34062127 DOI: 10.1016/j.bcp.2021.114637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Salvia miltiorrhiza (Danshen) is a well-known traditional Chinese medicine for treating various diseases, such as breast cancer. However, knowledge regarding its mechanisms is scant. Herein, the active ingredient dihydrotanshinone I (DHT) in Salvia miltiorrhiza extract (SME), which binds ERp57 was identified and verified by an enzymatic solid-phase method combined with LC-MS/MS. DHT potentially inhibited ERp57 activity and suppressed ERp57 expression at both the RNA and protein levels. Molecular docking simulation indicated that DHT could form a hydrogen bond with catalytic site of ERp57. Moreover, ERp57 overexpression decreased DHT-induced cytotoxicity in MDA-MB-231 cells. Thereafter, the signaling pathway downstream of ERp57 was investigated by Western blot analysis. The mechanistic study revealed that DHT treatment resulted in activation of endoplasmic reticulum (ER) stress, the unfolded protein response (UPR), and cellular apoptosis. In conclusion, our data implied that DHT targeted ERp57 for inhibition and induced ER stress and UPR activation, which in turn triggered breast cancer cell apoptosis.
Collapse
Affiliation(s)
- Wei Shi
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Han Han
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Jia Zou
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Ying Zhang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Haitao Li
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Hefeng Zhou
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Guozhen Cui
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China.
| |
Collapse
|
171
|
Sharma J, Pandey A, Sharma S, Dixit A. Securinine Induces Differentiation of Human Promyelocytic Leukemic HL-60 Cells through JNK-Mediated Signaling Pathway. Nutr Cancer 2021; 74:1122-1137. [PMID: 33998358 DOI: 10.1080/01635581.2021.1925710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acute myeloid leukemia is characterized by abnormal differentiation of hematopoietic stem cells, leading to the accumulation of immature myeloid cells. Differentiation therapy has been a successful treatment option for acute promyelocytic leukemia but suffers from adverse effects. Therefore, search for novel differentiation-inducing agents with minimal side effects is desirable. Securinine, a naturally-occurring alkaloid, induces differentiation in various leukemic cells and apoptosis in other types of cancers. However, the underlying molecular mechanism(s) remain elusive. Our study aimed to elucidate the possible molecular mechanism(s) and signaling events involved in securinine-induced differentiation of HL-60 cells. Securinine inhibited proliferation in a time- and dose-dependent manner and triggered differentiation. A higher CD14+ population indicated maturation toward monocytic lineage. Securinine caused cell cycle arrest at the G0/G1 phase and enhanced ROS generation. Quantitative gene expression analysis showed significant down-regulation of C/EBP-α, C/EBP-ε, GAΤΑ, and c-myc and up-regulation of the PU.1 gene. The expression of distinct protein kinases Lyn, Chk-2, Yes, FAK, c-Jun, and JNK were enhanced. Use of specific inhibitors of crucial intracellular signaling proteins indicated that JNK and ERK blockade resulted in a significant decline in differentiation. These data thus confirm that securinine induces differentiation through the activation of the JNK-ERK signaling pathway in HL-60 cells.
Collapse
Affiliation(s)
- Jeetesh Sharma
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ankita Pandey
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sapna Sharma
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Aparna Dixit
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
172
|
Khan MA, Siddiqui S, Ahmad I, Singh R, Mishra DP, Srivastava AN, Ahmad R. Phytochemicals from Ajwa dates pulp extract induce apoptosis in human triple-negative breast cancer by inhibiting AKT/mTOR pathway and modulating Bcl-2 family proteins. Sci Rep 2021; 11:10322. [PMID: 33990623 PMCID: PMC8121835 DOI: 10.1038/s41598-021-89420-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/22/2021] [Indexed: 01/04/2023] Open
Abstract
Ajwa dates (Phoenix dactylifera L.) have been described in traditional and alternative medicine to provide several health benefits, but their mechanism of apoptosis induction against human triple-negative breast cancer MDA-MB-231 cells remains to be investigated. In this study, we analyzed the phytoconstituents in ethanolic Ajwa Dates Pulp Extract (ADPE) by liquid chromatography-mass spectrometry (LC-MS) and investigated anticancer effects against MDA-MB-231 cells. LC-MS analysis revealed that ADPE contained phytocomponents belonging to classes such as carbohydrates, phenolics, flavonoids and terpenoids. MTT assay demonstrated statistically significant dose- and time-dependent inhibition of MDA-MB-231 cells with IC50 values of 17.45 and 16.67 mg/mL at 24 and 48 h, respectively. Hoechst 33342 dye and DNA fragmentation data showed apoptotic cell death while AO/PI and Annexin V-FITC data revealed cells in late apoptosis at higher doses of ADPE. More importantly, ADPE prompted reactive oxygen species (ROS) induced alterations in mitochondrial membrane potential (MMP) in ADPE treated MDA-MB-231 cells. Cell cycle analysis demonstrated that ADPE induced cell arrest in S and G2/M checkpoints. ADPE upregulated the p53, Bax and cleaved caspase-3, thereby leading to the downregulation of Bcl-2 and AKT/mTOR pathway. ADPE did not show any significant toxicity on normal human peripheral blood mononuclear cells which suggests its safe application to biological systems under study. Thus, ADPE has the potential to be used as an adjunct to the mainline of treatment against breast cancer.
Collapse
Affiliation(s)
- Mohsin Ali Khan
- Chancellor, Era's Lucknow Medical College and Hospital, Era University, Lucknow, 226003, India
| | - Sahabjada Siddiqui
- Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, 226003, India.
| | - Imran Ahmad
- Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, India
| | - Romila Singh
- Cell Death Research Laboratory, LSS-106, Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Durga Prasad Mishra
- Cell Death Research Laboratory, LSS-106, Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Anand Narain Srivastava
- Department of Pathology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, 226003, India
| | - Rumana Ahmad
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, 226003, India
| |
Collapse
|
173
|
Shaligram S, Narwade NP, Kumbhare SV, Bordoloi M, Tamuli KJ, Nath S, Parimelazhagan T, Patil VS, Kapley A, Pawar SP, Dhotre DP, Muddeshwar MG, Purohit HJ, Shouche YS. Integrated Genomic and Functional Characterization of the Anti-diabetic Potential of Arthrobacter sp. SW1. Curr Microbiol 2021; 78:2577-2588. [PMID: 33983483 DOI: 10.1007/s00284-021-02523-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 04/28/2021] [Indexed: 11/29/2022]
Abstract
For decades, bacterial natural products have served as valuable resources for developing novel drugs to treat several human diseases. Recent advancements in the integrative approach of using genomic and functional tools have proved beneficial in obtaining a comprehensive understanding of these biomolecules. This study presents an in-depth characterization of the anti-diabetic activity exhibited by a bacterial isolate SW1, isolated from an effluent treatment plant. As a primary screening, we assessed the isolate for its potential to inhibit alpha-amylase and alpha-glucosidase enzymes. Upon confirmation, we further utilized LC-MS, ESI-MS/MS, and NMR spectroscopy to identify and characterize the biomolecule. These efforts were coupled with the genomic assessment of the biosynthetic gene cluster involved in the anti-diabetic compound production. Our investigation discovered that the isolate SW1 inhibited both α-amylase and α-glucosidase activity. The chemical analysis suggested the production of acarbose, an anti-diabetic biomolecule, which was further confirmed by the presence of biosynthetic gene cluster "acb" in the genome. Our in-depth chemical characterization and genome mining approach revealed the potential of bacteria from an unconventional niche, an effluent treatment plant. To the best of our knowledge, it is one of the first few reports of acarbose production from the genus Arthrobacter.
Collapse
Affiliation(s)
- Shraddha Shaligram
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Central Tower, Sai Trinity Complex, Pashan, Pune, 411021, India.
| | - Nitin P Narwade
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Central Tower, Sai Trinity Complex, Pashan, Pune, 411021, India
| | - Shreyas V Kumbhare
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Central Tower, Sai Trinity Complex, Pashan, Pune, 411021, India
| | - Manobjyoti Bordoloi
- Chemical Sciences and Technology Division, CSIR North East Institute of Science & Technology, Jorhat, Assam, 785006, India.
| | - Kashyap J Tamuli
- Chemical Sciences and Technology Division, CSIR North East Institute of Science & Technology, Jorhat, Assam, 785006, India
| | - Shyamalendu Nath
- Chemical Sciences and Technology Division, CSIR North East Institute of Science & Technology, Jorhat, Assam, 785006, India
| | - T Parimelazhagan
- Department of Botany, Bioprospecting Laboratory, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Vikas S Patil
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Central Tower, Sai Trinity Complex, Pashan, Pune, 411021, India
| | - Atya Kapley
- Environmental Biotechnology and Genomics Division, National Environmental Engineering Research Institute, CSIR-NEERI, Nehru Marg, Nagpur, 440020, India
| | - Shrikant P Pawar
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Central Tower, Sai Trinity Complex, Pashan, Pune, 411021, India
| | - Dhiraj P Dhotre
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Central Tower, Sai Trinity Complex, Pashan, Pune, 411021, India
| | - M G Muddeshwar
- Department of Biochemistry, Government Medical College, Nagpur, Maharashtra, 440009, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, National Environmental Engineering Research Institute, CSIR-NEERI, Nehru Marg, Nagpur, 440020, India
| | - Yogesh S Shouche
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Central Tower, Sai Trinity Complex, Pashan, Pune, 411021, India
| |
Collapse
|
174
|
Hermansyah D, Putra A, Munir D, Lelo A, Amalina ND, Alif I. Synergistic Effect of Curcuma longa Extract in Combination with Phyllanthus niruri Extract in Regulating Annexin A2, Epidermal Growth Factor Receptor, Matrix Metalloproteinases, and Pyruvate Kinase M1/2 Signaling Pathway on Breast Cancer Stem Cell. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.5941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM: This study aimed to investigate the synergistic effects of the combination between Curcuma longa extract (CL) and Phyllanthus niruri extract (PN) in inhibiting optimally the MDA-MB-231 breast cancer stem cells (BCSCs) growth and metastatic by exploring the target and molecular mechanism using integrative bioinformatics approaches and in vitro.
METHODS: CL and PN extracts were prepared by maceration method using ethanol 70%. The antiproliferative effect of CL and PN single and combination treatment was examined by 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide assay. The bioinformatic approach was performed to identify molecular targets, key proteins, and molecular mechanism of curcumin and phyllanthin as CL and PN secondary metabolite, respectively, targeted at stemness and migration pathway of BCSCs.
RESULTS: The in vitro study showed that CL and PN possess cytotoxic activity in time- and dose-dependent manner. The combination of CL and PN has a synergistic effect by modulating the sensitivity of cells. Using a bioinformatics approach, the annexin A2 (ANXA2), epidermal growth factor receptor (EGFR), matrix metalloproteinases (MMPs), and pyruvate kinase M1/2 (PKM) as potential targets of curcumin and phyllanthin correlated with metastatic inhibition of BC. In addition, molecular docking showed that curcumin and phyllanthin performed similar or better interaction to stemness differentiation regulator pathway particularly histone deacetylase 1, EGFR, Heat Shock Protein 90 Alpha Family Class B Member 1, Hypoxia Inducible Factor 1 Subunit Alpha, and MMP9.
CONCLUSION: Combination of CL and PN has potential for the treatment of metastatic BCSCs by targeting ANXA2, EGFR, MMPs, and PKM to resolve stemness and inhibit of BCSCs.
Collapse
|
175
|
Cytotoxic mechanisms of primin, a natural quinone isolated from Eugenia hiemalis, on hematological cancer cell lines. Anticancer Drugs 2021; 31:709-717. [PMID: 32639281 DOI: 10.1097/cad.0000000000000937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Considering the high morbidity and mortality rates associated with hematological malignancies and the frequent development of drug resistance by these diseases, the search for new cytotoxic agents is an urgent necessity. The new compounds should present higher efficiency and specificity in inducing tumor cell death, be easily administered and have little or negligible adverse effects. Quinones have been reported in the literature by their several pharmacological properties, including antitumor activity, thus, the aim of this study was to investigate the cytotoxic effect of primin, a natural quinone, on hematological malignancies cell lines. Primin was highly cytotoxic against the three cell lines included in this study (K562, Jurkat and MM.1S) in a concentration- and time-dependent manner, as demonstrated by the MTT method. The compound triggered an apoptotic-like cell death, as observed by ethidium bromide/acridine orange staining, DNA fragmentation and phosphatidylserine exposure after labeling with Annexin V. Both intrinsic and extrinsic apoptosis are involved in cell death induced by primin, as well as the modulation of cell proliferation marker KI-67. The activation of intrinsic apoptosis appears to be related to a decreased Bcl-2 expression and increased Bax expression. While the increase in FasR expression signals activate extrinsic apoptosis. The results suggest that primin is a promising natural molecule that could be used in hematological malignancies therapy or as prototypes for the development of new chemotherapics.
Collapse
|
176
|
Fattah A, Morovati A, Niknam Z, Mashouri L, Asadi A, Rizi ST, Abbasi M, Shakeri F, Abazari O. The Synergistic Combination of Cisplatin and Piperine Induces Apoptosis in MCF-7 Cell Line. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:1037-1047. [PMID: 34183962 PMCID: PMC8223570 DOI: 10.18502/ijph.v50i5.6121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background Piperine is a natural compound obtained from the Piper nigrum that exhibits anti-proliferative and anti-cancer activity in cancer cell lines. We analyzed the cytotoxic effect of piperine combined with cisplatin compound in the human MCF-7 breast cancer cell line and the underlying mechanism. Methods The present in vitro study was performed on MCF-7 cell line in Jahrom University of Medical Sciences between, Jahrom, Iran from 2016 to 2017. Cultured MCF-7 cells were seeded into four groups: a control group (untreated group), a group treated with cisplatin, a group treated with piperine and a group treated with cisplatin and piperine. Cell viability was analyzed using the MTT assay method. Flow c-ytometric analysis was investigated for apoptosis. The mRNA and protein expression of the apoptotic regulators p53, Bcl-2, Bax, caspase 3 and caspase 9 were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting analysis. Results Piperine (20 and 30 μM) in combination with cisplatin (5, 10 and 15 μM) for 24 h synergistically inhibited cell viability of MCF-7 breast cancer cells more than piperine and cisplatin used alone. Synergistic anti-breast cancer activities cisplatin (5 μM) and piperine (20 μM) were via inducing apoptosis. Piperine (20 μM) and cisplatin (5 μM) for 24 h induce apoptosis strongly through reduction of Bcl-2 and increase of caspase 3, p53, caspase 9, and Bax. Conclusion Piperine in combination with cisplatin could trigger p53-mediated apoptosis more effective than cisplatin alone in MCF-7 breast cancer cells, reducing the toxic dose of cisplatin used in cancer chemotherapy.
Collapse
Affiliation(s)
- Abolfazl Fattah
- Research Center for Health Sciences and Technologies, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Morovati
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Niknam
- Student Research Committee, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapor University of Medical Sciences, Ahvaz, Iran
| | - Ladan Mashouri
- Department of Genetics, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| | - Amirhooman Asadi
- Veterinary Medicine, Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Shirin Tvangar Rizi
- Department of Biology, Faculty of Basic Sciences, Lorestan University, Khorramabad, Iran
| | - Mojtaba Abbasi
- Veterinary Medicine, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.,Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Fatemeh Shakeri
- Nursing and Midwifery Department, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Omid Abazari
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| |
Collapse
|
177
|
Molina-Santiago C, de Vicente A, Romero D. Bacterial extracellular matrix as a natural source of biotechnologically multivalent materials. Comput Struct Biotechnol J 2021; 19:2796-2805. [PMID: 34093994 PMCID: PMC8138678 DOI: 10.1016/j.csbj.2021.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix (ECM) is an intricate megastructure made by bacterial cells to form architecturally complex biostructures called biofilms. Protection of cells, modulation of cell-to-cell signalling, cell differentiation and environmental sensing are functions of the ECM that reflect its diverse chemical composition. Proteins, polysaccharides and eDNA have specific functionalities while cooperatively interacting to sustain the architecture and biological relevance of the ECM. The accumulated evidence on the chemical heterogeneity and specific functionalities of ECM components has attracted attention because of their potential biotechnological applications, from agriculture to the water and food industries. This review compiles information on the most relevant bacterial ECM components, the biophysical and chemical features responsible for their biological roles, and their potential to be further translated into biotechnological applications.
Collapse
Affiliation(s)
- Carlos Molina-Santiago
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de teatinos), 29071 Málaga, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de teatinos), 29071 Málaga, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de teatinos), 29071 Málaga, Spain
| |
Collapse
|
178
|
Singh J, Hussain Y, Luqman S, Meena A. Purpurin: A natural anthraquinone with multifaceted pharmacological activities. Phytother Res 2021; 35:2418-2428. [PMID: 33254282 DOI: 10.1002/ptr.6965] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/09/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
Purpurin is a naturally occurring anthraquinone isolated from the roots of Rubia cordifolia. Historically, it has been used as a red dye. However, its photosensitizing property and biological effects have deciphered its novel application. Purpurin shows antigenotoxic, anticancer, neuromodulatory, and antimicrobial potential associated with antioxidant action in in vivo and in vitro experiments. A robust antioxidant nature of purpurin is responsible for the majority of its pharmacological effects. It produces anti-inflammatory activity by reducing oxidative stress, which is a fundamental property to target diseases involving endoplasmic reticulum and mitochondrial stress. It can cross the blood-brain barrier and produce neuroprotective effects, including antidepressant and anti-Alzheimer action. It shows antimutagenic property via inhibiting essential CYP-450 enzymes. Interestingly, it gets photosensitized by UV-light and produces target-specific ROS-dependent apoptosis in cancer cells. Therefore, it owns cell killing and cell survival potential subject to the influence of external conditions. Hitherto, limited research studies are performed with purpurin to understand its therapeutic potential. Hence, this review describes and discusses different in vivo, in vitro, and in silico studies performed using purpurin. It also covers physicochemical, pharmacokinetics, and toxicology aspects of purpurin. Moreover, in the end, the prospect of purpurin in the management of cancer has also been proposed.
Collapse
Affiliation(s)
- Jyoti Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- Jawaharlal Nehru University, New Delhi, India
| | - Yusuf Hussain
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
179
|
Hozzein WN, Mohany M, Alhawsawi SMM, Zaky MY, Al-Rejaie SS, Alkhalifah DHM. Flavonoids from Marine-Derived Actinobacteria as Anticancer Drugs. Curr Pharm Des 2021; 27:505-512. [PMID: 33327903 DOI: 10.2174/1381612826666201216160154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/05/2020] [Indexed: 12/24/2022]
Abstract
Flavonoids represent a large diverse group of natural products that are used as a traditional medicine against various infectious diseases. They possess many biological activities including antimicrobial, antioxidant, anti-inflammatory, anti-cancer and anti-diabetic activities. Commercially, flavonoids are mainly obtained from plants, however, several challenges are faced during their extraction. Microorganisms have been known as natural sources of a wide range of bioactive compounds including flavonoids. Actinobacteria are the most prolific group of microorganisms for the production of bioactive secondary metabolites, thus facilitating the production of flavonoids. The screening programs for bioactive compounds revealed the potential application of actinobacteria to produce flavonoids with interesting biological activities, especially anticancer activities. Since marine actinobacteria are recognized as a potential source of novel anticancer agents, they are highly expected to be potential producers of anticancer flavonoids with unusual structures and properties. In this review, we highlight the production of flavonoids by actinobacteria through classical fermentation, engineering of plant biosynthetic genes in a recombinant actinobacterium and the de novo biosynthesis approach. Through these approaches, we can control and improve the production of interesting flavonoids or their derivatives for the treatment of cancer.
Collapse
Affiliation(s)
- Wael N Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sana M M Alhawsawi
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Dalal H M Alkhalifah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
180
|
Rajendran G, Taylor JA, Woolbright BL. Natural products as a means of overcoming cisplatin chemoresistance in bladder cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:69-84. [PMID: 35582013 PMCID: PMC9019192 DOI: 10.20517/cdr.2020.69] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022]
Abstract
Cisplatin remains an integral part of the treatment for muscle invasive bladder cancer. A large number of patients do not respond to cisplatin-based chemotherapy and efficacious salvage regimens are limited. Immunotherapy has offered a second line of treatment; however, only approximately 20% of patients respond, and molecular subtyping of tumors indicates there may be significant overlap in those patients that respond to cisplatin and those patients that respond to immunotherapy. As such, restoring sensitivity to cisplatin remains a major hurdle to improving patient care. One potential source of compounds for enhancing cisplatin is naturally derived bioactive products such as phytochemicals, flavonoids and others. These compounds can activate a diverse array of different pathways, many of which can directly promote or inhibit cisplatin sensitivity. The purpose of this review is to understand current drug development in the area of natural products and to assess how these compounds may enhance cisplatin treatment in bladder cancer patients.
Collapse
Affiliation(s)
- Ganeshkumar Rajendran
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - John A Taylor
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Benjamin L Woolbright
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
181
|
Bioactive Potential of Several Actinobacteria Isolated from Microbiologically Barely Explored Desert Habitat, Saudi Arabia. BIOLOGY 2021; 10:biology10030235. [PMID: 33808594 PMCID: PMC8003550 DOI: 10.3390/biology10030235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 01/08/2023]
Abstract
Simple Summary Bioactive natural products have been regarded as promising tools for treatment of various ailments. Among natural sources, actinomycetes have been widely explored for their potential bioactivity. In this regard, the present study has focused on the phytochemical content and biological activities of several actinobacteria isolates, which were investigated for their phenolic and flavonoid content, as well as their antioxidant, antibacterial and antiprotozoal activities. The most active isolates were further investigated for their antileukemic activity, where such isolates were shown to exert cytotoxic activity against the tested cell lines, following a mechanism that might be due to the ability of the active isolate extracts to reduce cyclooxygenase and lipoxygenase activities. Overall, isolation and characterization of the active molecule from the potential actinomycetes strains will pave the way for the development of drugs against human diseases such as blood cancer. Abstract Biomolecules from natural sources, including microbes, have been the basis of treatment of human diseases since the ancient times. Therefore, this study aimed to investigate the potential bioactivity of several actinobacteria isolates form Al-Jouf Desert, Saudi Arabia. Twenty-one actinobacterial isolates were tested for their antioxidant (flavonoids, phenolics, tocopherols and carotenoids) content, and biological activities, namely FRAP, DPPH, ABTS, SOS and XO inhibition, anti-hemolytic and anti-lipid peroxidation as well as their antibacterial and antiprotozoal activities. Accordingly, five isolates (i.e., Act 2, 12, 15, 19 and 21) were selected and their 90% ethanolic extracts were used. The phylogenetic analysis of the 16S rRNA sequences indicated that the most active isolates belong to genus Streptomyces. The genus Streptomyces has been documented as a prolific producer of biologically active secondary metabolites against different cancer types. Thus, the anti-blood cancer activity and the possible molecular mechanisms by which several Streptomyces species extracts inhibited the growth of different leukemia cells, i.e., HL-60, K562 and THP-1, were investigated. In general, the five active isolates showed cytotoxic activity against the tested cell lines in a dose dependent manner. Among the potent isolates, isolate Act 12 significantly decreased the cell viability and showed maximum cytotoxic activities against both HL-60 and K562 cells, while isolate Act 15 exhibited maximum cytotoxic activity against THP-1 cells. Moreover, Act 2 and Act 12 reduced cyclooxygenase (COX-2) and lipoxygenase (LOX) activity, which is involved in the proliferation and differentiation of cancer cells and may represent a possible molecular mechanism underlying leukemia growth inhibition. The bioactive antioxidant extracts of the selected Streptomyces species inhibited leukemia cell growth by reducing the COX-2 and LOX activity. Overall, our study not only introduced a promising natural alternative source for anticancer agents, but it also sheds light on the mechanism underlying the anticancer activity of isolated actinomycetes.
Collapse
|
182
|
Li A, Wang X, Li D, Li X, Li R, Yang X, Li X. Deuteration enhances the anti-tumor effects and relative anti-inflammatory effects via affecting proliferation and apoptosis. Heliyon 2021; 7:e06391. [PMID: 33732929 PMCID: PMC7941159 DOI: 10.1016/j.heliyon.2021.e06391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/10/2021] [Accepted: 02/25/2021] [Indexed: 11/26/2022] Open
Abstract
Apigenin (AP) is a plant flavonoid with potential biomedical applications. To enhance the anti-tumour effect, AP was deuterated via hydrogen–deuterium exchange under hydrothermal conditions. The anti-tumor effects of deuterated AP (D-AP) were then tested on HCT116 cells and on a murine model of turpentine-induced inflammation. Cell cycle progression and cell proliferation were measured by flow cytometry, and in vivo immuno-inflammation was evaluated by quantitating glucose metabolism using 18F-fluorodeoxyglucose positron emission tomography. According to the mass spectral results, the efficiency of AP deuteration was 62.96%. For both the two groups of AP and D-AP at 24 h and 48 h, there were an obvious increase on perception of G2 phage. Apigenin showed the ability of blocking in G2 phage to inhibit cellular proliferation. Additionally, D-AP induced early apoptosis in more cells than did AP (12.1% vs. 10.4%). Moreover, D-AP induced a more severe process of anti-inflammation during the early period, resulting in a more effective anti-inflammatory response. Therefore, given the innate ability of D-AP to block cell proliferation and induce early apoptosis, we conclude that deuteration enhances the systemic anti-cancer effect of this flavonoid.
Collapse
Affiliation(s)
- Ao Li
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai 200433, China.,Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiaojiao Wang
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai 200433, China
| | - Danni Li
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai 200433, China
| | - Xiaohong Li
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai 200433, China
| | - Rou Li
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai 200433, China
| | - Xuejuan Yang
- Department of Cardiology, Yinchuan Second People's Hospital, Yinchuan 750004, China
| | - Xiao Li
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai 200433, China
| |
Collapse
|
183
|
Liang SY, Zhao TC, Zhou ZH, Ju WT, Liu Y, Tan YR, Zhu DW, Zhang ZY, Zhong LP. Anti-tumor effect of carrimycin on oral squamous cell carcinoma cells in vitro and in vivo. Transl Oncol 2021; 14:101074. [PMID: 33744726 PMCID: PMC7985557 DOI: 10.1016/j.tranon.2021.101074] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 11/22/2022] Open
Abstract
Our study is the first to explore and report the anti-tumor effect of carrimycin. Carrimycin inhibits the proliferation, colony formation and migration ability of oral squamous cell carcinoma cells in vitro, as well as arrests cell cycle in G0/G1 and promotes cell apoptosis. Carrimycin suppresses OSCC tumor growth in xenograft model. Carrimycin regulates the PI3K/AKT and MAPK pathways.
Purpose : Carrimycin is a newly synthesized macrolide antibiotic with good antibacterial effect. Exploratory experiments found its function in regulating cell physiology, proliferation and immunity, suggesting its potential anti-tumor capacity. The aim of this study is to investigate the anti-tumor effect of carrimycin against human oral squamous cell carcinoma cells in vitro and in vivo. Methods : Human oral squamous cell carcinoma cells (HN30/HN6/Cal27/HB96 cell lines) were treated with gradient concentration of carrimycin. Cell proliferation, colony formation and migration ability were analyzed. Cell cycle and apoptosis were assessed by flow cytometry. The effect of carrimycin on OSCC in vivo was investigated in tumor xenograft models. Immunohistochemistry, western blot assay and TUNEL assays of tissue samples from xenografts were performed. The key proteins in PI3K/AKT/mTOR pathway and MAPK pathway were examined by western blot. Results : As the concentration of carrimycin increased, the proliferation, colony formation and migration ability of OSCC cells were inhibited. After treating with carrimycin, cell cycle was arrested in G0/G1 phase and cell apoptosis was promoted. The tumor growth of xenografts was significantly suppressed. Furthermore, the expression of p-PI3K, p-AKT, p-mTOR, p-S6K, p-4EBP1, p-ERK and p-p38 were down-regulated in vitro and in vivo. Conclusions : Carrimycin can inhibit the biological activities of OSCC cells in vitro and in vivo, and regulate the PI3K/AKT/mTOR and MAPK pathways.
Collapse
Affiliation(s)
- Si-Yuan Liang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Tong-Chao Zhao
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Zhi-Hang Zhou
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Wu-Tong Ju
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Ying Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Yi-Ran Tan
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Dong-Wang Zhu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Zhi-Yuan Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Lai-Ping Zhong
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.
| |
Collapse
|
184
|
Cayetano-Salazar L, Olea-Flores M, Zuñiga-Eulogio MD, Weinstein-Oppenheimer C, Fernández-Tilapa G, Mendoza-Catalán MA, Zacapala-Gómez AE, Ortiz-Ortiz J, Ortuño-Pineda C, Navarro-Tito N. Natural isoflavonoids in invasive cancer therapy: From bench to bedside. Phytother Res 2021; 35:4092-4110. [PMID: 33720455 DOI: 10.1002/ptr.7072] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 01/23/2023]
Abstract
Cancer is a public health problem worldwide, and one of the crucial steps within tumor progression is the invasion and metastasis of cancer cells, which are directly related to cancer-associated deaths in patients. Recognizing the molecular markers involved in invasion and metastasis is essential to find targeted therapies in cancer. Interestingly, about 50% of the discovered drugs used in chemotherapy have been obtained from natural sources such as plants, including isoflavonoids. Until now, most drugs are used in chemotherapy targeting proliferation and apoptosis-related molecules. Here, we review recent studies about the effect of isoflavonoids on molecular targets and signaling pathways related to invasion and metastasis in cancer cell cultures, in vivo assays, and clinical trials. This review also reports that glycitein, daidzein, and genistein are the isoflavonoids most studied in preclinical and clinical trials and displayed the most anticancer activity targeting invasion-related proteins such as MMP-2 and MMP-9 and also EMT-associated proteins. Therefore, the diversity of isoflavonoids is promising molecules to be used as chemotherapeutic in invasive cancer. In the future, more clinical trials are needed to validate the effectiveness of the various natural isoflavonoids in the treatment of invasive cancer.
Collapse
Affiliation(s)
- Lorena Cayetano-Salazar
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Miriam D Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | | | - Gloria Fernández-Tilapa
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Miguel A Mendoza-Catalán
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Ana E Zacapala-Gómez
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Julio Ortiz-Ortiz
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Carlos Ortuño-Pineda
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| |
Collapse
|
185
|
Gamre S, Tyagi M, Chatterjee S, Patro BS, Chattopadhyay S, Goswami D. Synthesis of Bioactive Diarylheptanoids from Alpinia officinarum and Their Mechanism of Action for Anticancer Properties in Breast Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2021; 84:352-363. [PMID: 33587631 DOI: 10.1021/acs.jnatprod.0c01012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An efficient synthesis of the Alpinia officinarum-derived diarylheptanoids, viz., enantiomers of a β-hydroxyketone (1) and an α,β-unsaturated ketone (2) was developed starting from commercially available eugenol. Among these, compound 2 showed a superior antiproliferative effect against human breast adenocarcinoma MCF-7 cells. Besides reducing clonogenic cell survival, compound 2 dose-dependently increased the sub G1 cell population and arrested the G2-phase of the cell cycle, as revealed by flow cytometry. Mechanistically, compound 2 acts as an intracellular pro-oxidant by generating copious amounts of reactive oxygen species. Compound 2 also induced both loss of mitochondrial membrane potential (MMP) as well as lysosomal membrane permeabilization (LMP) in the MCF-7 cells. The impaired mitochondrial and lysosomal functions due to reactive oxygen species (ROS)-generation by compound 2 may contribute to its apoptotic property.
Collapse
Affiliation(s)
- Sunita Gamre
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India, 400085
| | - Mrityunjay Tyagi
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India, 400085
| | - Sucheta Chatterjee
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India, 400085
| | - Birija S Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India, 400085
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India, 400094
| | | | - Dibakar Goswami
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India, 400085
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India, 400094
| |
Collapse
|
186
|
Induction of Apoptosis and Regulation of MicroRNA Expression by (2 E,6 E)-2,6- bis-(4-hydroxy-3-methoxybenzylidene)-cyclohexanone (BHMC) Treatment on MCF-7 Breast Cancer Cells. Molecules 2021; 26:molecules26051277. [PMID: 33652854 PMCID: PMC7956517 DOI: 10.3390/molecules26051277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 01/19/2023] Open
Abstract
(2E,6E)-2,6-bis-(4-hydroxy-3-methoxybenzylidene)-cyclohexanone (BHMC) is a synthetic curcumin analogue, which has been reported to possess anti-tumor, anti-metastatic, and anti-invasion properties on estrogen receptor (ER) negative breast cancer cells in vitro and in vivo. However, the cytotoxic effects of BHMC on ER positive breast cancer cells were not widely reported. This study was aimed to investigate the cytotoxic potential of BHMC on MCF-7 cells using cell viability, cell cycle, and apoptotic assays. Besides, microarray and quantitative polymerase chain reaction (qPCR) were performed to identify the list of miRNAs and genes, which could be dysregulated following BHMC treatment. The current study discovered that BHMC exhibits selective cytotoxic effects on ER positive MCF-7 cells as compared to ER negative MDA-MB-231 cells and normal breast cells, MCF-10A. BHMC was shown to promote G2/M cell cycle arrest and apoptosis in MCF-7 cells. Microarray and qPCR analysis demonstrated that BHMC treatment would upregulate several miRNAs like miR-3195 and miR-30a-3p and downregulate miRNAs such as miR-6813-5p and miR-6132 in MCF-7 cells. Besides, BHMC administration was also found to downregulate few tumor-promoting genes like VEGF and SNAIL in MCF-7. In conclusion, BHMC induced apoptosis in the MCF-7 cells by altering the expressions of apoptotic-regulating miRNAs and associated genes.
Collapse
|
187
|
Kong CK, Low LE, Siew WS, Yap WH, Khaw KY, Ming LC, Mocan A, Goh BH, Goh PH. Biological Activities of Snowdrop (Galanthus spp., Family Amaryllidaceae). Front Pharmacol 2021; 11:552453. [PMID: 33679383 PMCID: PMC7933568 DOI: 10.3389/fphar.2020.552453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/17/2020] [Indexed: 11/23/2022] Open
Abstract
Snowdrop is an iconic early spring flowering plant of the genus Galanthus (Amaryllidaceae). Galanthus species (Galanthus spp.) are economically important plants as ornaments. Galanthus spp has gained significance scientific and commercial interest due to the discovery of Galanthamine as symptomatic treatment drug for Alzhiermer disease. This review aims to discuss the bioactivities of Galanthus spp including anticholinesterase, antimicrobial, antioxidant and anticancer potential of the extracts and chemical constituents of Galanthus spp. This review highlights that Galanthus spp. as the exciting sources for drug discovery and nutraceutical development.
Collapse
Affiliation(s)
- Chee Kei Kong
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia.,Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Liang Ee Low
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Wei Sheng Siew
- School of Biosciences, Taylor's University, Subang Jaya, Malaysia
| | - Wei-Hsum Yap
- School of Biosciences, Taylor's University, Subang Jaya, Malaysia
| | - Kooi-Yeong Khaw
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | - Long Chiau Ming
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Science and Veterinary Medicine, Cluj-Napoca, Romania
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Subang Jaya, Malaysia
| | - Poh Hui Goh
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
| |
Collapse
|
188
|
Synthesis and application of Au NPs-chitosan nanocomposite in the treatment of acute myeloid leukemia in vitro and in vivo. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.102929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
189
|
Griñan-Lison C, Blaya-Cánovas JL, López-Tejada A, Ávalos-Moreno M, Navarro-Ocón A, Cara FE, González-González A, Lorente JA, Marchal JA, Granados-Principal S. Antioxidants for the Treatment of Breast Cancer: Are We There Yet? Antioxidants (Basel) 2021; 10:205. [PMID: 33572626 PMCID: PMC7911462 DOI: 10.3390/antiox10020205] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most frequent cancer and the leading cause of cancer death in women. Oxidative stress and the generation of reactive oxygen species (ROS) have been related to cancer progression. Compared to their normal counterparts, tumor cells show higher ROS levels and tight regulation of REDOX homeostasis to maintain a low degree of oxidative stress. Traditionally antioxidants have been extensively investigated to counteract breast carcinogenesis and tumor progression as chemopreventive agents; however, there is growing evidence indicating their potential as adjuvants for the treatment of breast cancer. Aimed to elucidate whether antioxidants could be a reality in the management of breast cancer patients, this review focuses on the latest investigations regarding the ambivalent role of antioxidants in the development of breast cancer, with special attention to the results derived from clinical trials, as well as their potential use as plausible agents in combination therapy and their power to ameliorate the side effects attributed to standard therapeutics. Data retrieved herein suggest that antioxidants play an important role in breast cancer prevention and the improvement of therapeutic efficacy; nevertheless, appropriate patient stratification based on "redoxidomics" or tumor subtype is mandatory in order to define the dosage for future standardized and personalized treatments of patients.
Collapse
Affiliation(s)
- Carmen Griñan-Lison
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18100 Granada, Spain; (C.G.-L.); (J.A.M.)
- Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Jose L. Blaya-Cánovas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Araceli López-Tejada
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Marta Ávalos-Moreno
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Alba Navarro-Ocón
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Francisca E. Cara
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Adrián González-González
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Jose A. Lorente
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
- Department of Legal Medicine, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Juan A. Marchal
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18100 Granada, Spain; (C.G.-L.); (J.A.M.)
- Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Sergio Granados-Principal
- Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18011 Granada, Spain
| |
Collapse
|
190
|
Uysal S, Zengin G, Sinan KI, Ak G, Ceylan R, Mahomoodally MF, Uysal A, Sadeer NB, Jekő J, Cziáky Z, Rodrigues MJ, Yıldıztugay E, Elbasan F, Custodio L. Chemical characterization, cytotoxic, antioxidant, antimicrobial, and enzyme inhibitory effects of different extracts from one sage ( Salvia ceratophylla L.) from Turkey: open a new window on industrial purposes. RSC Adv 2021; 11:5295-5310. [PMID: 35423082 PMCID: PMC8694645 DOI: 10.1039/d0ra10044g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/19/2021] [Indexed: 11/27/2022] Open
Abstract
In the present study, the methanolic, hydro-methanolic, dichloromethane, hexane and aqueous extracts of Salvia ceratophylla L. (Family: Lamiaceae), a lemon-scented herb, were tested for total phenolic (TPC) and flavonoid content (TFC) and antioxidant activities were evaluated using a battery of assays (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), cupric reducing antioxidant capacity, total antioxidant capacity (TAC) (phosphomolybdenum) and metal chelating). Enzyme inhibitory effects were investigated using acetyl- (AChE), butyryl-cholinesterase (BChE), tyrosinase, α-amylase and α-glucosidase as target enzymes. Regarding the cytotoxic abilities, HepG2, B164A5 and S17 cell lines were used. The phytochemical profile was conducted using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Our data showed that the methanolic aerial extracts possessed the highest phenolic (72.50 ± 0.63 mg gallic acid equivalent per g) and flavonoid (43.77 ± 1.09 mg rutin equivalent per g) contents. The hydro-methanolic aerial extract showed significant DPPH radical scavenging activity (193.40 ± 0.27 mg TE per g) and the highest reducing potential against CUPRAC (377.93 ± 2.38 mg TE per g). The best tyrosinase activity was observed with dichloromethane root extract (125.45 ± 1.41 mg kojic acid equivalent per g). Among the tested extracts, hexane root extract exerted the highest antimicrobial potential with a minimum inhibitory concentration value of 0.048 mg mL−1. Methanolic root extract showed the lowest cytotoxicity (28%) against HepG2 cells. Phytochemical analysis revealed the presence of important polyphenolic compounds including luteolin, gallic acid, rosmarinic acid, to name a few. This research can be used as one methodological starting point for further investigations on this lemon-scented herb. Our findings suggested that Salvia ceratophylla could be one potential raw material in industrial applications.![]()
Collapse
Affiliation(s)
- Sengul Uysal
- Erciyes University Halil Bayraktar Health Services Vocational College Kayseri Turkey .,Drug Application and Research Center, Erciyes University Kayseri Turkey
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University Campus Konya Turkey
| | - Kouadio Ibrahime Sinan
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University Campus Konya Turkey
| | - Gunes Ak
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University Campus Konya Turkey
| | - Ramazan Ceylan
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University Campus Konya Turkey
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius Réduit Mauritius
| | - Ahmet Uysal
- Department of Medicinal Laboratory, Vocational School of Health Services, Selcuk University Konya Turkey
| | - Nabeelah Bibi Sadeer
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius Réduit Mauritius
| | - József Jekő
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza Nyíregyháza Hungary
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza Nyíregyháza Hungary
| | - Maria João Rodrigues
- Centre of Marine Sciences, University of Algarve, Faculty of Sciences and Technology Ed. 7, Campus of Gambelas 8005-139 Faro Portugal
| | - Evren Yıldıztugay
- Department of Biotechnology, Science Faculty, Selcuk University Campus Konya Turkey
| | - Fevzi Elbasan
- Department of Biotechnology, Science Faculty, Selcuk University Campus Konya Turkey
| | - Luisa Custodio
- Centre of Marine Sciences, University of Algarve, Faculty of Sciences and Technology Ed. 7, Campus of Gambelas 8005-139 Faro Portugal
| |
Collapse
|
191
|
Natural Compounds of Marine Origin as Inducers of Immunogenic Cell Death (ICD): Potential Role for Cancer Interception and Therapy. Cells 2021; 10:cells10020231. [PMID: 33504012 PMCID: PMC7912082 DOI: 10.3390/cells10020231] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/22/2022] Open
Abstract
Regulated cell death (RCD) has always been considered a tolerogenic event. Immunogenic cell death (ICD) occurs as a consequence of tumour cell death accompanied by the release of damage-associated molecular patterns (DAMPs), triggering an immune response. ICD plays a major role in stimulating the function of the immune system in cancer during chemotherapy and radiotherapy. ICD can therefore represent one of the routes to boost anticancer immune responses. According to the recommendations of the Nomenclature Committee on Cell Death (2018), apoptosis (type I cell death) and necrosis (type II cell death) represent are not the only types of RCD, which also includes necroptosis, pyroptosis, ferroptosis and others. Specific downstream signalling molecules and death-inducing stimuli can regulate distinct forms of ICD, which develop and promote the immune cell response. Dying cells deliver different potential immunogenic signals, such as DAMPs, which are able to stimulate the immune system. The acute exposure of DAMPs can prime antitumour immunity by inducing activation of antigen-presenting cells (APC), such as dendritic cells (DC), leading to the downstream response by cytotoxic T cells and natural killer cells (NK). As ICD represents an important target to direct and develop new pharmacological interventions, the identification of bioactive natural products, which are endowed with low side effects, higher tolerability and preferentially inducing immunogenic programmed cell death, represents a priority in biomedical research. The ability of ICD to drive the immune response depends on two major factors, neither of which is intrinsic to cell death: ‘Antigenicity and adjuvanticity’. Indeed, the use of natural ICD-triggering molecules, alone or in combination with different (immuno)therapies, can result in higher efficacy and tolerability. Here, we focused on natural (marine) compounds, particularly on marine microalgae derived molecules such as exopolysaccharides, sulphated polysaccharides, glycopeptides, glycolipids, phospholipids, that are endowed with ICD-inducing properties and sulfavants. Here, we discuss novel and repurposed small-molecule ICD triggers, as well as their ability to target important molecular pathways including the IL-6, TNF-α and interferons (IFNs), leading to immune stimulation, which could be used alone or in combinatorial immunotherapeutic strategies in cancer prevention and therapies.
Collapse
|
192
|
AbouAitah K, Lojkowski W. Delivery of Natural Agents by Means of Mesoporous Silica Nanospheres as a Promising Anticancer Strategy. Pharmaceutics 2021; 13:143. [PMID: 33499150 PMCID: PMC7912645 DOI: 10.3390/pharmaceutics13020143] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Natural prodrugs derived from different natural origins (e.g., medicinal plants, microbes, animals) have a long history in traditional medicine. They exhibit a broad range of pharmacological activities, including anticancer effects in vitro and in vivo. They have potential as safe, cost-effective treatments with few side effects, but are lacking in solubility, bioavailability, specific targeting and have short half-lives. These are barriers to clinical application. Nanomedicine has the potential to offer solutions to circumvent these limitations and allow the use of natural pro-drugs in cancer therapy. Mesoporous silica nanoparticles (MSNs) of various morphology have attracted considerable attention in the search for targeted drug delivery systems. MSNs are characterized by chemical stability, easy synthesis and functionalization, large surface area, tunable pore sizes and volumes, good biocompatibility, controlled drug release under different conditions, and high drug-loading capacity, enabling multifunctional purposes. In vivo pre-clinical evaluations, a significant majority of results indicate the safety profile of MSNs if they are synthesized in an optimized way. Here, we present an overview of synthesis methods, possible surface functionalization, cellular uptake, biodistribution, toxicity, loading strategies, delivery designs with controlled release, and cancer targeting and discuss the future of anticancer nanotechnology-based natural prodrug delivery systems.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), 33 El-Behouth St., Dokki 12622, Giza, Egypt
| | - Witold Lojkowski
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| |
Collapse
|
193
|
Soumya T, Lakshmipriya T, Klika KD, Jayasree PR, Manish Kumar PR. Anticancer potential of rhizome extract and a labdane diterpenoid from Curcuma mutabilis plant endemic to Western Ghats of India. Sci Rep 2021; 11:552. [PMID: 33436696 PMCID: PMC7803788 DOI: 10.1038/s41598-020-79414-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/13/2020] [Indexed: 11/09/2022] Open
Abstract
Zingiberaceae plants are well known for their use in ethnomedicine. Curcuma mutabilis Škorničk., M. Sabu & Prasanthk., is an endemic Zingiberaceae species from Western Ghats of Kerala, India. Here, we report for the first time, the anticancer potential of petroleum ether extract from C. mutabilis rhizome (CMRP) and a novel labdane diterpenoid, (E)-14, 15-epoxylabda-8(17), 12-dien-16-al (Cm epoxide) isolated from it. CMRP was found to be a mixture of potent bioactive compounds including Cm epoxide. Both the extract and the compound displayed superior antiproliferative activity against several human cancer cell lines, without any display of cytotoxicity towards normal human cells such as peripheral blood derived lymphocytes and erythrocytes. CMRP treatment resulted in phosphatidylserine externalization, increase in the levels of intracellular ROS, Ca2+, loss of mitochondrial membrane potential as well as fragmentation of genomic DNA. Analyses of transcript profiling and immunostained western blots of extract-treated cancer cells confirmed induction of apoptosis by both intrinsic and extrinsic pathways. The purified compound, Cm epoxide, was also found to induce apoptosis in many human cancer cell types tested. Both CMRP and the Cm epoxide were found to be pharmacologically safe in terms of acute toxicity assessment using Swiss albino mice model. Further, molecular docking interactions of Cm epoxide with selected proteins involved in cell survival and death were also indicative of its druggability. Overall, our findings reveal that the endemic C. mutabilis rhizome extract and the compound Cm epoxide isolated from it are potential candidates for development of future cancer chemotherapeutics.
Collapse
Affiliation(s)
- T Soumya
- Department of Biotechnology, University of Calicut, Malappuram, 673635, Kerala, India
| | - T Lakshmipriya
- Department of Biotechnology, University of Calicut, Malappuram, 673635, Kerala, India
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - P R Jayasree
- School of Health Sciences, University of Calicut, Malappuram, 673635, Kerala, India
| | - P R Manish Kumar
- Department of Biotechnology, University of Calicut, Malappuram, 673635, Kerala, India.
| |
Collapse
|
194
|
Al-Romaiyan A, Huang GC, Jones P, Persaud S. Commiphora myrrha stimulates insulin secretion from mouse and human islets of Langerhans. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113075. [PMID: 32829055 DOI: 10.1016/j.jep.2020.113075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditionally plant-based remedies such as Commiphora myrrha (CM) have been used as an ayurvedic medicine to treat diabetes mellitus in some region of Arabia and Africa. Previous reports have shown that CM reduced blood glucose levels and increased insulin concentrations in animal models of diabetes in vivo. However, the exact mechanisms by which CM improved glycemic control in these animals are not fully understood. We hypothesized that CM may have a direct insulinotropic activity on β-cells to increase insulin secretion. AIM OF THE STUDY The direct effects of CM were investigated using MIN6 β-cells and isolated mouse and human islets in static and perifusion insulin secretion experiments. Isolated mouse and human islets were used to investigate the rate and pattern of CM-induced insulin secretion. MATERIALS AND METHODS The effect of CM on insulin secretion was assessed by static and perifusion experiments using MIN6 cells, a mouse-derived β-cell line, and primary mouse and human islets. The effects of CM on cell viability and membrane integrity of MIN6 cells and mouse islets were assessed using an ATP viability assay and a trypan blue exclusion test. The mRNA expression profiles of preproinsulin and Pdx1, a major β-cell transcription factor, were determined by quantitative RT-PCR following chronic exposure to CM. RESULTS Exposing MIN6 cells to a CM resin solution (0.5-10 mg/ml) caused a concentration-dependent increase in insulin secretion in a static setting. Similarly, incubating mouse islets to CM (0.1-10 mg/ml) resulted in stimulation of insulin secretion in a concentration-dependent manner. CM concentrations at ≤ 2 mg/ml were not associated with reduction in cell viability nor with reduction in cell membrane integrity. However, higher concentrations of CM were accompanied with marked uptake of trypan blue dye and cell death. In a perifusion setting, CM (2 mg/ml) caused rapid and reversible increases in insulin secretion from both mouse and human islets at both sub-stimulatory and stimulatory glucose levels. The stimulatory effect of CM on insulin secretion did not change the total insulin content of β-cells nor the mRNA expression of preproinsulin and Pdx1. CONCLUSIONS These data indicate that aqueous CM resin solution has a direct stimulatory effect on β-cells without compromising plasma membrane integrity. CM stimulates insulin secretion from MIN6 cells, a mouse-derived β-cell line, and isolated primary mouse and human islets in vitro at both sub-stimulatory and stimulatory glucose concentrations. The mechanism by which CM may induce insulin secretion is most likely due to a stimulation of insulin granules release rather than insulin synthesis.
Collapse
Affiliation(s)
- Altaf Al-Romaiyan
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait.
| | - Guo-Cai Huang
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, UK.
| | - Peter Jones
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, UK.
| | - Shanta Persaud
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, UK.
| |
Collapse
|
195
|
Packiam K, Dhakshinamoorthy M. Camptothecin: An anticancer drug from Pestalotiopsis microspora Mh458929 – An endophytic fungus isolated from an ethnopharmacologically important medicinal plant Cordia dichotoma G. forst. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_417_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
196
|
Zhu YY, Jin Q, Chen SS, Jin DN, Wang ZJ, He YJ, Chen HC, Zhao YL, Zhao LX, Dai Z, Luo XD. Neothalfine, a potent natural anti-tumor agent against metastatic colorectal cancer and its primary mechanism. Bioorg Med Chem 2021; 29:115849. [PMID: 33221063 DOI: 10.1016/j.bmc.2020.115849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/19/2020] [Accepted: 11/01/2020] [Indexed: 02/07/2023]
Abstract
Neothalfine is a natural bisbenzylisoquinoline alkaloid with the abundant resource in medicinal plants and has not been reported its anti-tumor efficacy. In the present study, the anti-tumor efficacy was investigated and it showed broad-spectrum activity against several cancer cell lines, especially metastatic colorectal cancer (HCT116, SW620, T84) with the IC50 values of 7.2, 5.9, 8.2 nM, respectively, roughly equal to well-known anti-tumor agent docetaxel (4.0, 4.7, 2.7 nM) and nearly 1000 folds than CPT-11 (4.4, 5.1, 6.9 μM). Furthermore, neothalfine inhibited colorectal cell proliferation by resulting in cell cycle arrest at the G2/M phase and induced apoptosis through the dysfunction of mitochondria to trigger intrinsic apoptotic pathway by untargeted metabolomic method, mitochondrial membrane potential, and caspase-3/7 activity assay. Moreover, neothalfine damaged colorectal cancer clonal spheres expansion significantly at the concentration of 3.5 nM with nearly 1000 folds efficacy than CPT-11 (3.0 µM). The results supported that neothalfine might be an anti-tumor lead for further investigation.
Collapse
Affiliation(s)
- Yan-Yan Zhu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Qiong Jin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
| | - Shan-Shan Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Dan-Ni Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Zhao-Jie Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Ying-Jie He
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Hui-Cheng Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Yun-Li Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Li-Xing Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Zhi Dai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China.
| | - Xiao-Dong Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China.
| |
Collapse
|
197
|
Liu YQ, Wang XL, He DH, Cheng YX. Protection against chemotherapy- and radiotherapy-induced side effects: A review based on the mechanisms and therapeutic opportunities of phytochemicals. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153402. [PMID: 33203590 DOI: 10.1016/j.phymed.2020.153402] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/29/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Although great achievements have been made in the field of cancer therapy, chemotherapy and radiotherapy remain the mainstay cancer therapeutic modalities. However, they are associated with various side effects, including cardiocytotoxicity, nephrotoxicity, myelosuppression, neurotoxicity, hepatotoxicity, gastrointestinal toxicity, mucositis, and alopecia, which severely affect the quality of life of cancer patients. Plants harbor a great chemical diversity and flexible biological properties that are well-compatible with their use as adjuvant therapy in reducing the side effects of cancer therapy. PURPOSE This review aimed to comprehensively summarize the molecular mechanisms by which phytochemicals ameliorate the side effects of cancer therapies and their potential clinical applications. METHODS We obtained information from PubMed, Science Direct, Web of Science, and Google scholar, and introduced the molecular mechanisms by which chemotherapeutic drugs and irradiation induce toxic side effects. Accordingly, we summarized the underlying mechanisms of representative phytochemicals in reducing these side effects. RESULTS Representative phytochemicals exhibit a great potential in reducing the side effects of chemotherapy and radiotherapy due to their broad range of biological activities, including antioxidation, antimutagenesis, anti-inflammation, myeloprotection, and immunomodulation. However, since a majority of the phytochemicals have only been subjected to preclinical studies, clinical trials are imperative to comprehensively evaluate their therapeutic values. CONCLUSION This review highlights that phytochemicals have interesting properties in relieving the side effects of chemotherapy and radiotherapy. Future studies are required to explore the clinical benefits of these phytochemicals for exploitation in chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Yong-Qiang Liu
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Research Center of Chinese Herbal Resources Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Xiao-Lu Wang
- Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, China
| | - Dan-Hua He
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Research Center of Chinese Herbal Resources Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yong-Xian Cheng
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China.
| |
Collapse
|
198
|
Therapeutic applications and biological activities of bacterial bioactive extracts. Arch Microbiol 2021; 203:4755-4776. [PMID: 34370077 PMCID: PMC8349711 DOI: 10.1007/s00203-021-02505-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023]
Abstract
Bacteria are rich in a wide variety of secondary metabolites, such as pigments, alkaloids, antibiotics, and others. These bioactive microbial products serve a great application in human and animal health. Their molecular diversity allows these natural products to possess several therapeutic attributes and biological functions. That's why the current natural drug industry focuses on uncovering all the possible ailments and diseases that could be combated by bacterial extracts and their secondary metabolites. In this paper, we review the major utilizations of bacterial natural products for the treatment of cancer, inflammatory diseases, allergies, autoimmune diseases, infections and other diseases that threaten public health. We also elaborate on the identified biological activities of bacterial secondary metabolites including antibacterial, antifungal, antiviral and antioxidant activities all of which are essential nowadays with the emergence of drug-resistant microbial pathogens. Throughout this review, we discuss the possible mechanisms of actions in which bacterial-derived biologically active molecular entities could possess healing properties to inspire the development of new therapeutic agents in academia and industry.
Collapse
|
199
|
Yang YH, Mao JW, Tan XL. Research progress on the source, production, and anti-cancer mechanisms of paclitaxel. Chin J Nat Med 2020; 18:890-897. [PMID: 33357719 DOI: 10.1016/s1875-5364(20)60032-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Indexed: 01/10/2023]
Abstract
Paclitaxel, a tetracyclic diterpenoid compounds, was firstly isolated from the bark of the Pacific yew trees. Currently, as a low toxicity, high efficiency, and broad-spectrum natural anti-cancer drug, paclitaxel has been widely used against ovarian cancer, breast cancer, uterine cancer, and other cancers. As the matter of fact, natural paclitaxel from Taxus species has been proved to be environmentally unsustainable and economically unfeasible. For this reason, researchers from all over the world are devoted to searching for new ways of obtaining paclitaxel. At present, other methods, including artificial cultivation of Taxus plants, microbial fermentation, chemical synthesis, tissue and cell culture have been sought and developed subsequently. Meanwhile, the biosynthesis of paclitaxel is also an extremely attractive method. Unlike other anti-cancer drugs, paclitaxel has its unique anti-cancer mechanisms. Here, the source, production, and anti-cancer mechanisms of paclitaxel were summarized and reviewed, which can provide theoretical basis and reference for further research on the production, anti-cancer mechanisms and utilization of paclitaxel.
Collapse
Affiliation(s)
- Yan-Hua Yang
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Jia-Wang Mao
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xiao-Li Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
200
|
Osteoprotective Effects of Loganic Acid on Osteoblastic and Osteoclastic Cells and Osteoporosis-Induced Mice. Int J Mol Sci 2020; 22:ijms22010233. [PMID: 33379387 PMCID: PMC7795511 DOI: 10.3390/ijms22010233] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 02/08/2023] Open
Abstract
Osteoporosis is a common disease caused by an imbalance of processes between bone resorption by osteoclasts and bone formation by osteoblasts in postmenopausal women. The roots of Gentiana lutea L. (GL) are reported to have beneficial effects on various human diseases related to liver functions and gastrointestinal motility, as well as on arthritis. Here, we fractionated and isolated bioactive constituent(s) responsible for anti-osteoporotic effects of GL root extract. A single phytochemical compound, loganic acid, was identified as a candidate osteoprotective agent. Its anti-osteoporotic effects were examined in vitro and in vivo. Treatment with loganic acid significantly increased osteoblastic differentiation in preosteoblast MC3T3-E1 cells by promoting alkaline phosphatase activity and increasing mRNA expression levels of bone metabolic markers such as Alpl, Bglap, and Sp7. However, loganic acid inhibited osteoclast differentiation of primary-cultured monocytes derived from mouse bone marrow. For in vivo experiments, the effect of loganic acid on ovariectomized (OVX) mice was examined for 12 weeks. Loganic acid prevented OVX-induced bone mineral density loss and improved bone structural properties in osteoporotic model mice. These results suggest that loganic acid may be a potential therapeutic candidate for treatment of osteoporosis.
Collapse
|