151
|
González-Ittig RE, Carletto-Körber FPM, Vera NS, Jiménez MG, Cornejo LS. Population genetic structure and demographic history ofStreptococcus mutans(Bacteria: Streptococcaceae). Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Raúl E. González-Ittig
- Instituto de Diversidad y Ecología Animal (IDEA); CONICET-UNC and Facultad de Ciencias Exactas Físicas y Naturales; Físicas y Naturales; Universidad Nacional de Córdoba; Av. Vélez Sarsfield 299 5000 Córdoba Argentina
| | - Fabiana P. M. Carletto-Körber
- Cátedra de Integral Niños y Adolescentes; Área Odontopediatría ‘A’; Facultad de Odontología; Universidad Nacional de Córdoba; Haya de La Torre s/n; Ciudad Universitaria; 5000 Córdoba Argentina
| | - Noelia S. Vera
- Instituto de Diversidad y Ecología Animal (IDEA); CONICET-UNC and Facultad de Ciencias Exactas Físicas y Naturales; Físicas y Naturales; Universidad Nacional de Córdoba; Av. Vélez Sarsfield 299 5000 Córdoba Argentina
| | - María G. Jiménez
- Hospital Universitario de Maternidad y Neonatología; Universidad Nacional de Córdoba; Rodríguez Peña 285 5000 Córdoba Argentina
| | - Lila S. Cornejo
- Cátedra de Biología Celular; Facultad de Odontología; Universidad Nacional de Córdoba; Haya de La Torre s/n; Ciudad Universitaria; 5000 Córdoba Argentina
| |
Collapse
|
152
|
Burbrink FT, Chan YL, Myers EA, Ruane S, Smith BT, Hickerson MJ. Asynchronous demographic responses to Pleistocene climate change in Eastern Nearctic vertebrates. Ecol Lett 2016; 19:1457-1467. [DOI: 10.1111/ele.12695] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/27/2016] [Accepted: 09/15/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Frank T. Burbrink
- Department of Herpetology The American Museum of Natural History Central Park West and 79th Street New York NY10024 USA
| | - Yvonne L. Chan
- iDepartment ’Iolani School 563 Kamoku Street Honolulu HI96826 USA
| | - Edward A. Myers
- Department of Biology 6S‐143 College of Staten Island 2800 Victory Boulevard Staten Island NY10314 USA
- Department of Biology The Graduate School and University Center The City University of New York 365 Fifth Ave. NY10016 USA
| | - Sara Ruane
- Museum of Natural Science Louisiana State University 119 Foster Hall Baton Rouge LA70803 USA
| | - Brian Tilston Smith
- Department of Ornithology The American Museum of Natural History Central Park West and 79th Street New York NY10024 USA
| | - Michael J. Hickerson
- Department of Biology The Graduate School and University Center The City University of New York 365 Fifth Ave. NY10016 USA
- Biology Department City College of New York New York NY10016 USA
- Division of Invertebrate Zoology The American Museum of Natural History Central Park West and 79th Street New York NY10024 USA
| |
Collapse
|
153
|
Chang D, Shapiro B. Using ancient DNA and coalescent-based methods to infer extinction. Biol Lett 2016; 12:20150822. [PMID: 26864783 DOI: 10.1098/rsbl.2015.0822] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA sequences extracted from preserved remains can add considerable resolution to inference of past population dynamics. For example, coalescent-based methods have been used to correlate declines in some arctic megafauna populations with habitat fragmentation during the last ice age. These methods, however, often fail to detect population declines preceding extinction, most likely owing to a combination of sparse sampling, uninformative genetic markers, and models that cannot account for the increasingly structured nature of populations as habitats decline. As ancient DNA research expands to include full-genome analyses, these data will provide greater resolution of the genomic consequences of environmental change and the genetic signatures of extinction.
Collapse
Affiliation(s)
- Dan Chang
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
154
|
Lewallen EA, Bohonak AJ, Bonin CA, van Wijnen AJ, Pitman RL, Lovejoy NR. Population Genetic Structure of the Tropical Two-Wing Flyingfish (Exocoetus volitans). PLoS One 2016; 11:e0163198. [PMID: 27736863 PMCID: PMC5063402 DOI: 10.1371/journal.pone.0163198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/06/2016] [Indexed: 11/18/2022] Open
Abstract
Delineating populations of pantropical marine fish is a difficult process, due to widespread geographic ranges and complex life history traits in most species. Exocoetus volitans, a species of two-winged flyingfish, is a good model for understanding large-scale patterns of epipelagic fish population structure because it has a circumtropical geographic range and completes its entire life cycle in the epipelagic zone. Buoyant pelagic eggs should dictate high local dispersal capacity in this species, although a brief larval phase, small body size, and short lifespan may limit the dispersal of individuals over large spatial scales. Based on these biological features, we hypothesized that E. volitans would exhibit statistically and biologically significant population structure defined by recognized oceanographic barriers. We tested this hypothesis by analyzing cytochrome b mtDNA sequence data (1106 bps) from specimens collected in the Pacific, Atlantic and Indian oceans (n = 266). AMOVA, Bayesian, and coalescent analytical approaches were used to assess and interpret population-level genetic variability. A parsimony-based haplotype network did not reveal population subdivision among ocean basins, but AMOVA revealed limited, statistically significant population structure between the Pacific and Atlantic Oceans (ΦST = 0.035, p<0.001). A spatially-unbiased Bayesian approach identified two circumtropical population clusters north and south of the Equator (ΦST = 0.026, p<0.001), a previously unknown dispersal barrier for an epipelagic fish. Bayesian demographic modeling suggested the effective population size of this species increased by at least an order of magnitude ~150,000 years ago, to more than 1 billion individuals currently. Thus, high levels of genetic similarity observed in E. volitans can be explained by high rates of gene flow, a dramatic and recent population expansion, as well as extensive and consistent dispersal throughout the geographic range of the species.
Collapse
Affiliation(s)
- Eric A. Lewallen
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Departments of Biochemistry & Molecular Biology and Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Andrew J. Bohonak
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Carolina A. Bonin
- University of St. Thomas, St. Paul, Minnesota, United States of America
| | - Andre J. van Wijnen
- Departments of Biochemistry & Molecular Biology and Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Robert L. Pitman
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, California, United States of America
| | - Nathan R. Lovejoy
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
155
|
Fourdrilis S, Mardulyn P, Hardy OJ, Jordaens K, de Frias Martins AM, Backeljau T. Mitochondrial DNA hyperdiversity and its potential causes in the marine periwinkle Melarhaphe neritoides (Mollusca: Gastropoda). PeerJ 2016; 4:e2549. [PMID: 27761337 PMCID: PMC5068447 DOI: 10.7717/peerj.2549] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/12/2016] [Indexed: 12/18/2022] Open
Abstract
We report the presence of mitochondrial DNA (mtDNA) hyperdiversity in the marine periwinkle Melarhaphe neritoides (Linnaeus, 1758), the first such case among marine gastropods. Our dataset consisted of concatenated 16S-COI-Cytb gene fragments. We used Bayesian analyses to investigate three putative causes underlying genetic variation, and estimated the mtDNA mutation rate, possible signatures of selection and the effective population size of the species in the Azores archipelago. The mtDNA hyperdiversity in M. neritoides is characterized by extremely high haplotype diversity (Hd = 0.999 ± 0.001), high nucleotide diversity (π = 0.013 ± 0.001), and neutral nucleotide diversity above the threshold of 5% (πsyn = 0.0677). Haplotype richness is very high even at spatial scales as small as 100m2. Yet, mtDNA hyperdiversity does not affect the ability of DNA barcoding to identify M. neritoides. The mtDNA hyperdiversity in M. neritoides is best explained by the remarkably high mutation rate at the COI locus (μ = 5.82 × 10−5 per site per year or μ = 1.99 × 10−4 mutations per nucleotide site per generation), whereas the effective population size of this planktonic-dispersing species is surprisingly small (Ne = 5, 256; CI = 1,312–3,7495) probably due to the putative influence of selection. Comparison with COI nucleotide diversity values in other organisms suggests that mtDNA hyperdiversity may be more frequently linked to high μ values and that mtDNA hyperdiversity may be more common across other phyla than currently appreciated.
Collapse
Affiliation(s)
- Séverine Fourdrilis
- Directorate Taxonomy and Phylogeny & JEMU, Royal Belgian Institute of Natural Sciences , Brussels , Belgium
| | - Patrick Mardulyn
- Evolutionary Biology and Ecology, Université Libre de Bruxelles , Brussels , Belgium
| | - Olivier J Hardy
- Evolutionary Biology and Ecology, Université Libre de Bruxelles , Brussels , Belgium
| | - Kurt Jordaens
- Department of Biology, Invertebrate Section, Royal Museum for Central Africa , Tervuren , Belgium
| | - António Manuel de Frias Martins
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Departamento de Biologia da Universidade dos Açores, University of the Azores , Ponta Delgada , Portugal
| | - Thierry Backeljau
- Directorate Taxonomy and Phylogeny & JEMU, Royal Belgian Institute of Natural Sciences, Brussels, Belgium; Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
156
|
Attard CRM, Möller LM, Sasaki M, Hammer MP, Bice CM, Brauer CJ, Carvalho DC, Harris JO, Beheregaray LB. A novel holistic framework for genetic-based captive-breeding and reintroduction programs. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2016; 30:1060-1069. [PMID: 26892747 DOI: 10.1111/cobi.12699] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
Research in reintroduction biology has provided a greater understanding of the often limited success of species reintroductions and highlighted the need for scientifically rigorous approaches in reintroduction programs. We examined the recent genetic-based captive-breeding and reintroduction literature to showcase the underuse of the genetic data gathered. We devised a framework that takes full advantage of the genetic data through assessment of the genetic makeup of populations before (past component of the framework), during (present component), and after (future component) captive-breeding and reintroduction events to understand their conservation potential and maximize their success. We empirically applied our framework to two small fishes: Yarra pygmy perch (Nannoperca obscura) and southern pygmy perch (Nannoperca australis). Each of these species has a locally adapted and geographically isolated lineage that is endemic to the highly threatened lower Murray-Darling Basin in Australia. These two populations were rescued during Australia's recent decade-long Millennium Drought, when their persistence became entirely dependent on captive-breeding and subsequent reintroduction efforts. Using historical demographic analyses, we found differences and similarities between the species in the genetic impacts of past natural and anthropogenic events that occurred in situ, such as European settlement (past component). Subsequently, successful maintenance of genetic diversity in captivity-despite skewed brooder contribution to offspring-was achieved through carefully managed genetic-based breeding (present component). Finally, genetic monitoring revealed the survival and recruitment of released captive-bred offspring in the wild (future component). Our holistic framework often requires no additional data collection to that typically gathered in genetic-based breeding programs, is applicable to a wide range of species, advances the genetic considerations of reintroduction programs, and is expected to improve with the use of next-generation sequencing technology.
Collapse
Affiliation(s)
- C R M Attard
- School of Biological Sciences, Flinders University, Adelaide, SA, 5042, Australia
| | - L M Möller
- School of Biological Sciences, Flinders University, Adelaide, SA, 5042, Australia
| | - M Sasaki
- School of Biological Sciences, Flinders University, Adelaide, SA, 5042, Australia
| | - M P Hammer
- Museum and Art Gallery of the Northern Territory, P.O. Box 4646, Darwin, NT, 0801, Australia
| | - C M Bice
- Inland Waters and Catchment Ecology Program, SARDI Aquatic Sciences, P.O. Box 120, Henley Beach, SA, 5022, Australia
| | - C J Brauer
- School of Biological Sciences, Flinders University, Adelaide, SA, 5042, Australia
| | - D C Carvalho
- School of Biological Sciences, Flinders University, Adelaide, SA, 5042, Australia
- Pontificia Universidade Catolica de Minas Gerais, Belo Horizonte, MG, 30535-610, Brazil
| | - J O Harris
- School of Biological Sciences, Flinders University, Adelaide, SA, 5042, Australia
| | - L B Beheregaray
- School of Biological Sciences, Flinders University, Adelaide, SA, 5042, Australia.
| |
Collapse
|
157
|
Franzo G, Tucciarone CM, Blanco A, Nofrarías M, Biarnés M, Cortey M, Majó N, Catelli E, Cecchinato M. Effect of different vaccination strategies on IBV QX population dynamics and clinical outbreaks. Vaccine 2016; 34:5670-5676. [PMID: 27670071 PMCID: PMC7173296 DOI: 10.1016/j.vaccine.2016.09.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/05/2016] [Accepted: 09/09/2016] [Indexed: 12/16/2022]
Abstract
Two large scale molecular epidemiology studies performed in Italy and Spain. The population dynamics trends differed between the two countries. Relevant association between changes in vaccination strategies and viral population. Strong association between viral population dynamics and outbreak frequency. Hill’s criteria for causation were accomplished.
The extreme variability and rapid evolution of Infectious bronchitis virus (IBV) has always represented the key challenge for its control because of the limited cross-protection among different strains. Several experimental trials have proven a broadening of the protection spectrum when animals are vaccinated with multiple genotypes. Nevertheless, the conditions of vaccine administration in field are so different that the generalization of experimental results is, at least, questionable. In the present study a large scale epidemiological-phylodynamic approach was used to reconstruct the demographic history of the major field genotype (i.e. the QX one) circulating in Italy and Spain. These two countries were selected because, even if they share a comparable epidemiological scenario, the implemented vaccination protocols did not vary in Spain while changed dramatically in Italy over the time period considered. One hundred and ninety-five Italian and 98 Spanish non-recombinant sequences of the hyper-variable region of the S1 gene obtained between 2012 and 2016 were analyzed using a serial coalescent-based approach to reconstruct viral population history over time. While the IBV QX population dynamics remained constant in Spain, a much more complex pattern was evidenced in Italy; both in terms of viral population size and clinical outbreak frequency. Remarkably, a strong association with changes in vaccination strategies was recognized. This allowed demonstrating, by accomplishing all Hill’s criteria for causation, the cause-effect relationship between the vaccine administration/withdrawal and the variation in viral population dynamics and, above all, IBV related outbreaks. Thus, a robust confirmation about the efficacy of IBV vaccination in field conditions was provided. Additionally, the history herein reported testifies the primary importance of rigorously planning not only the intervention strategies but also their monitoring and evaluation.
Collapse
Affiliation(s)
- Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, 35020 Legnaro (PD), Italy.
| | - Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Angela Blanco
- CESAC-Centre de Sanitat Avícola de Catalunya i Aragó, Ctra. Castellvell, s/n, 43206 Reus, Spain
| | - Miquel Nofrarías
- Centre de Recerca en Sanitat Animal, CReSA, UAB-IRTA, Campus de la UAB, edifici CReSA, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Mar Biarnés
- CESAC-Centre de Sanitat Avícola de Catalunya i Aragó, Ctra. Castellvell, s/n, 43206 Reus, Spain
| | - Marti Cortey
- Centre de Recerca en Sanitat Animal, CReSA, UAB-IRTA, Campus de la UAB, edifici CReSA, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Natàlia Majó
- Centre de Recerca en Sanitat Animal, CReSA, UAB-IRTA, Campus de la UAB, edifici CReSA, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain; Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Elena Catelli
- Dipartimento di Scienze Mediche Veterinarie, Alma Mater Studiorum - Università di Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell'Emilia (BO), Italy
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| |
Collapse
|
158
|
Population expansion, current and past gene flow in Gould’s petrel: implications for conservation. CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0886-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
159
|
Inferring Past Effective Population Size from Distributions of Coalescent Times. Genetics 2016; 204:1191-1206. [PMID: 27638421 PMCID: PMC5105851 DOI: 10.1534/genetics.115.185058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 07/20/2016] [Indexed: 01/19/2023] Open
Abstract
Inferring and understanding changes in effective population size over time is a major challenge for population genetics. Here we investigate some theoretical properties of random-mating populations with varying size over time. In particular, we present an exact solution to compute the population size as a function of time, [Formula: see text], based on distributions of coalescent times of samples of any size. This result reduces the problem of population size inference to a problem of estimating coalescent time distributions. To illustrate the analytic results, we design a heuristic method using a tree-inference algorithm and investigate simulated and empirical population-genetic data. We investigate the effects of a range of conditions associated with empirical data, for instance number of loci, sample size, mutation rate, and cryptic recombination. We show that our approach performs well with genomic data (≥ 10,000 loci) and that increasing the sample size from 2 to 10 greatly improves the inference of [Formula: see text] whereas further increase in sample size results in modest improvements, even under a scenario of exponential growth. We also investigate the impact of recombination and characterize the potential biases in inference of [Formula: see text] The approach can handle large sample sizes and the computations are fast. We apply our method to human genomes from four populations and reconstruct population size profiles that are coherent with previous finds, including the Out-of-Africa bottleneck. Additionally, we uncover a potential difference in population size between African and non-African populations as early as 400 KYA. In summary, we provide an analytic relationship between distributions of coalescent times and [Formula: see text], which can be incorporated into powerful approaches for inferring past population sizes from population-genomic data.
Collapse
|
160
|
Pulido-Santacruz P, Bornschein MR, Belmonte-Lopes R, Bonatto SL. Multiple evolutionary units and demographic stability during the last glacial maximum in the Scytalopus speluncae complex (Aves: Rhinocryptidae). Mol Phylogenet Evol 2016; 102:86-96. [DOI: 10.1016/j.ympev.2016.05.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 03/14/2016] [Accepted: 05/21/2016] [Indexed: 12/20/2022]
|
161
|
Zhang D, Ye Z, Yamada K, Zhen Y, Zheng C, Bu W. Pleistocene sea level fluctuation and host plant habitat requirement influenced the historical phylogeography of the invasive species Amphiareus obscuriceps (Hemiptera: Anthocoridae) in its native range. BMC Evol Biol 2016; 16:174. [PMID: 27582259 PMCID: PMC5007872 DOI: 10.1186/s12862-016-0748-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/18/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND On account of repeated exposure and submergence of the East China Sea (ECS) land bridge, sea level fluctuation played an important role in shaping the population structure of many temperate species across the ECS during the glacial period. The flower bug Amphiareus obscuriceps (Poppius, 1909) (Hemiptera: Anthocoridae) is an invasive species native to the Sino-Japanese Region (SJR) of East Asia. We tested the hypothesis of the ECS land bridge acting as a dispersal corridor or filter for A. obscuriceps during the glacial period. Specifically, we tested whether and the extent to which dispersal ability and host plant habitat requirement influenced the genetic structure of A. obscuriceps during the exposure of the ECS land bridge. RESULTS Phylogenetic and network analyses indicated that A. obscuriceps is composed of two major lineages, i.e., China and Japan. Divergence time on both sides of the ECS was estimated to be approximately 1.07 (0.79-1.32) Ma, which was about the same period that the sea level increased. No significant Isolation by Distance (IBD) relationship was found between Фst and Euclidean distances in the Mantel tests, which is consistent with the hypothesis that this species has a good dispersal ability. Our Last Glacial Maximum (LGM) niche modeling of plants that constitute preferred habitats for A. obscuriceps exhibited a similar habitat gap on the exposed ECS continental shelf between China and Japan, but showed a continuous distribution across the Taiwan Strait. CONCLUSION Our results suggest that ecological properties (habitat requirement and dispersal ability), together with sea level fluctuation during the Pleistocene across the ECS, have shaped the genetic structure and demographic history of A. obscuriceps in its native area. The host plant habitat requirement could also be a key to the colonization of the A. obscuriceps species during the exposure of the ECS land bridge. Our findings will shed light on the potential role of habitat requirement in the process of biological invasion in future studies.
Collapse
Affiliation(s)
- Danli Zhang
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071 China
| | - Zhen Ye
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071 China
| | - Kazutaka Yamada
- Tokushima Prefectural Museum, Bunka-no-Mori Park, Hachiman-chô, Tokushima 770-8070 Japan
| | - Yahui Zhen
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071 China
| | - Chenguang Zheng
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071 China
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071 China
| |
Collapse
|
162
|
Abstract
ABSTRACT
With the advent of next-generation sequencing technology, the genotyping of clinical
Mycobacterium tuberculosis
strains went through a major breakup that dramatically improved the field of molecular epidemiology but also revolutionized our deep understanding of the
M. tuberculosis
complex evolutionary history. The intricate paths of the pathogen and its human host are reflected by a common geographical origin in Africa and strong biogeographical associations that largely reflect the past migration waves out of Africa. This long coevolutionary history is cardinal for our understanding of the host-pathogen dynamic, including past and ongoing demographic components, strains’ genetic background, as well as the immune system genetic architecture of the host. Coalescent- and Bayesian-based analyses allowed us to reconstruct population size changes of
M. tuberculosis
through time, to date the most recent common ancestor and the several phylogenetic lineages. This information will ultimately help us to understand the spread of the Beijing lineage, the rise of multidrug-resistant sublineages, or the fall of others in the light of socioeconomic events, antibiotic programs, or host population densities. If we leave the present and go through the looking glass, thanks to our ability to handle small degraded molecules combined with targeted capture, paleomicrobiology covering the Pleistocene era will possibly unravel lineage replacements, dig out extinct ones, and eventually ask for major revisions of the current model.
Collapse
|
163
|
Faye A, Deblauwe V, Mariac C, Richard D, Sonké B, Vigouroux Y, Couvreur TLP. Phylogeography of the genus Podococcus (Palmae/Arecaceae) in Central African rain forests: Climate stability predicts unique genetic diversity. Mol Phylogenet Evol 2016; 105:126-138. [PMID: 27521478 DOI: 10.1016/j.ympev.2016.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 11/16/2022]
Abstract
The tropical rain forests of Central Africa contain high levels of species diversity. Paleovegetation or biodiversity patterns suggested successive contraction/expansion phases on this rain forest cover during the last glacial maximum (LGM). Consequently, the hypothesis of the existence of refugia e.g. habitat stability that harbored populations during adverse climatic periods has been proposed. Understory species are tightly associated to forest cover and consequently are ideal markers of forest dynamics. Here, we used two central African rain forest understory species of the palm genus, Podococcus, to assess the role of past climate variation on their distribution and genetic diversity. Species distribution modeling in the present and at the LGM was used to estimate areas of climatic stability. Genetic diversity and phylogeography were estimated by sequencing near complete plastomes for over 120 individuals. Areas of climatic stability were mainly located in mountainous areas like the Monts de Cristal and Monts Doudou in Gabon, but also lowland coastal forests in southeast Cameroon and northeast Gabon. Genetic diversity analyses shows a clear North-South structure of genetic diversity within one species. This divide was estimated to have originated some 500,000years ago. We show that, in Central Africa, high and unique genetic diversity is strongly correlated with inferred areas of climatic stability since the LGM. Our results further highlight the importance of coastal lowland rain forests in Central Africa as harboring not only high species diversity but also important high levels of unique genetic diversity. In the context of strong human pressure on coastal land use and destruction, such unique diversity hotspots need to be considered in future conservation planning.
Collapse
Affiliation(s)
- A Faye
- Institut de Recherche pour le Développement, UMR-DIADE, BP 64501, F-34394 Montpellier cedex 5, France; Université de Yaoundé I, Ecole Normale Supérieure, Département des Sciences Biologiques, Laboratoire de Botanique systématique et d'Ecologie, B.P. 047, Yaoundé, Cameroon.
| | - V Deblauwe
- Institut de Recherche pour le Développement, UMR-DIADE, BP 64501, F-34394 Montpellier cedex 5, France; Université de Yaoundé I, Ecole Normale Supérieure, Département des Sciences Biologiques, Laboratoire de Botanique systématique et d'Ecologie, B.P. 047, Yaoundé, Cameroon
| | - C Mariac
- Institut de Recherche pour le Développement, UMR-DIADE, BP 64501, F-34394 Montpellier cedex 5, France
| | - D Richard
- Institut de Recherche pour le Développement, UMR-DIADE, BP 64501, F-34394 Montpellier cedex 5, France
| | - B Sonké
- Université de Yaoundé I, Ecole Normale Supérieure, Département des Sciences Biologiques, Laboratoire de Botanique systématique et d'Ecologie, B.P. 047, Yaoundé, Cameroon
| | - Y Vigouroux
- Institut de Recherche pour le Développement, UMR-DIADE, BP 64501, F-34394 Montpellier cedex 5, France
| | - T L P Couvreur
- Institut de Recherche pour le Développement, UMR-DIADE, BP 64501, F-34394 Montpellier cedex 5, France; Université de Yaoundé I, Ecole Normale Supérieure, Département des Sciences Biologiques, Laboratoire de Botanique systématique et d'Ecologie, B.P. 047, Yaoundé, Cameroon; Naturalis Biodiversity Centre, Botany Section, Darwinweg 2, 2333 CR Leiden, The Netherlands
| |
Collapse
|
164
|
Payen T, Murat C, Martin F. Reconstructing the evolutionary history of gypsy retrotransposons in the Périgord black truffle (Tuber melanosporum Vittad.). MYCORRHIZA 2016; 26:553-563. [PMID: 27025914 DOI: 10.1007/s00572-016-0692-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
Truffles are ascomycete fungi belonging to genus Tuber, and they form ectomycorrhizal associations with trees and shrubs. Transposable elements constitute more than 50 % of the black Périgord truffle (Tuber melanosporum) genome, which are mainly class 1 gypsy retrotransposons, but their impact on its genome is unknown. The aims of this study are to investigate the diversity of gypsy retrotransposons in this species and their evolutionary history by analysing the reference genome and six resequenced genomes of different geographic accessions. Using the reverse transcriptase sequences, six different gypsy retrotransposon clades were identified. Tmt1 and Tmt6 are the most abundant transposable elements, representing 14 and 13 % of the T. melanosporum genome, respectively. Tmt6 showed a major burst of proliferation between 1 and 4 million years ago, but evidence of more recent transposition was observed. Except for Tmt2, the other clades tend to aggregate, and their mode of transposition excluded the master copy model. This suggests that each new copy has the same probability of transposing as other copies. This study provides a better view of the diversity and dynamic nature of gypsy retrotransposons in T. melanosporum. Even if the major gypsy retrotransposon bursts are old, some elements seem to have transposed recently, suggesting that they may continue to model the truffle genomes.
Collapse
Affiliation(s)
- Thibaut Payen
- UMR1136, "Interactions Arbres/Micro-organismes", INRA, Université de Lorraine, Laboratoire d'Excellence ARBRE, F-54280, Champenoux, France
| | - Claude Murat
- UMR1136, "Interactions Arbres/Micro-organismes", INRA, Université de Lorraine, Laboratoire d'Excellence ARBRE, F-54280, Champenoux, France.
| | - Francis Martin
- UMR1136, "Interactions Arbres/Micro-organismes", INRA, Université de Lorraine, Laboratoire d'Excellence ARBRE, F-54280, Champenoux, France
| |
Collapse
|
165
|
Roterman CN, Copley JT, Linse KT, Tyler PA, Rogers AD. Connectivity in the cold: the comparative population genetics of vent-endemic fauna in the Scotia Sea, Southern Ocean. Mol Ecol 2016; 25:1073-88. [PMID: 26919308 DOI: 10.1111/mec.13541] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 12/19/2015] [Accepted: 12/24/2015] [Indexed: 01/18/2023]
Abstract
We report the first comparative population genetics study for vent fauna in the Southern Ocean using cytochrome C oxidase I and microsatellite markers. Three species are examined: the kiwaid squat lobster, Kiwa tyleri, the peltospirid gastropod, Gigantopelta chessoia, and a lepetodrilid limpet, Lepetodrilus sp., collected from vent fields 440 km apart on the East Scotia Ridge (ESR) and from the Kemp Caldera on the South Sandwich Island Arc, ~95 km eastwards. We report no differentiation for all species across the ESR, consistent with panmixia or recent range expansions. A lack of differentiation is notable for Kiwa tyleri, which exhibits extremely abbreviated lecithotrophic larval development, suggestive of a very limited dispersal range. Larval lifespans may, however, be extended by low temperature-induced metabolic rate reduction in the Southern Ocean, muting the impact of dispersal strategy on patterns of population structure. COI diversity patterns suggest all species experienced demographic bottlenecks or selective sweeps in the past million years and possibly at different times. ESR and Kemp limpets are divergent, although with evidence of very recent ESR-Kemp immigration. Their divergence, possibility indicative of incipient speciation, along with the absence of the other two species at Kemp, may be the consequence of differing dispersal capabilities across a ~1000 m depth range and/or different selective regimes between the two areas. Estimates of historic and recent limpet gene flow between the ESR and Kemp are consistent with predominantly easterly currents and potentially therefore, cross-axis currents on the ESR, with biogeographic implications for the region.
Collapse
Affiliation(s)
- C N Roterman
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - J T Copley
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, SO14 3ZH, UK
| | - K T Linse
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - P A Tyler
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, SO14 3ZH, UK
| | - A D Rogers
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
166
|
Berthier K, Garba M, Leblois R, Navascués M, Tatard C, Gauthier P, Gagaré S, Piry S, Brouat C, Dalecky A, Loiseau A, Dobigny G. Black rat invasion of inland Sahel: insights from interviews and population genetics in south-western Niger. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12836] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Madougou Garba
- Université Abdou Moumouni; Faculté des Sciences; BP10662 Niamey Niger
| | - Raphael Leblois
- Institut de Biologie Computationnelle; Montpellier France
- INRA; Centre de Biologie pour la Gestion des Populations (UMR IRD-INRA-Cirad-Montpellier SupAgro); Campus International de Baillarguet; CS30016 34988 Montferrier-sur-Lez France
| | - Miguel Navascués
- Institut de Biologie Computationnelle; Montpellier France
- INRA; Centre de Biologie pour la Gestion des Populations (UMR IRD-INRA-Cirad-Montpellier SupAgro); Campus International de Baillarguet; CS30016 34988 Montferrier-sur-Lez France
| | - Caroline Tatard
- INRA; Centre de Biologie pour la Gestion des Populations (UMR IRD-INRA-Cirad-Montpellier SupAgro); Campus International de Baillarguet; CS30016 34988 Montferrier-sur-Lez France
| | - Philippe Gauthier
- IRD; CBGP (UMR IRD-INRA-Cirad-SupAgro); Campus International de Baillarguet; CS30016 34988 Montferrier-sur-Lez France
| | - Sama Gagaré
- Centre Régional Agrhymet; BP11011 Niamey Niger
| | - Sylvain Piry
- INRA; Centre de Biologie pour la Gestion des Populations (UMR IRD-INRA-Cirad-Montpellier SupAgro); Campus International de Baillarguet; CS30016 34988 Montferrier-sur-Lez France
| | - Carine Brouat
- IRD; CBGP (UMR IRD-INRA-Cirad-SupAgro); Campus International de Baillarguet; CS30016 34988 Montferrier-sur-Lez France
| | - Ambroise Dalecky
- IRD; Laboratoire Population Environnement Développement (UMR AMU-IRD); Aix-Marseille Université; Centre Saint Charles; CS80249 13331 Marseille Cedex 03 France
| | - Anne Loiseau
- INRA; Centre de Biologie pour la Gestion des Populations (UMR IRD-INRA-Cirad-Montpellier SupAgro); Campus International de Baillarguet; CS30016 34988 Montferrier-sur-Lez France
| | - Gauthier Dobigny
- IRD; CBGP (UMR IRD-INRA-Cirad-SupAgro); Campus International de Baillarguet; CS30016 34988 Montferrier-sur-Lez France
| |
Collapse
|
167
|
Gill MS, Lemey P, Bennett SN, Biek R, Suchard MA. Understanding Past Population Dynamics: Bayesian Coalescent-Based Modeling with Covariates. Syst Biol 2016; 65:1041-1056. [PMID: 27368344 DOI: 10.1093/sysbio/syw050] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 05/16/2016] [Accepted: 05/23/2016] [Indexed: 12/12/2022] Open
Abstract
Effective population size characterizes the genetic variability in a population and is a parameter of paramount importance in population genetics and evolutionary biology. Kingman's coalescent process enables inference of past population dynamics directly from molecular sequence data, and researchers have developed a number of flexible coalescent-based models for Bayesian nonparametric estimation of the effective population size as a function of time. Major goals of demographic reconstruction include identifying driving factors of effective population size, and understanding the association between the effective population size and such factors. Building upon Bayesian nonparametric coalescent-based approaches, we introduce a flexible framework that incorporates time-varying covariates that exploit Gaussian Markov random fields to achieve temporal smoothing of effective population size trajectories. To approximate the posterior distribution, we adapt efficient Markov chain Monte Carlo algorithms designed for highly structured Gaussian models. Incorporating covariates into the demographic inference framework enables the modeling of associations between the effective population size and covariates while accounting for uncertainty in population histories. Furthermore, it can lead to more precise estimates of population dynamics. We apply our model to four examples. We reconstruct the demographic history of raccoon rabies in North America and find a significant association with the spatiotemporal spread of the outbreak. Next, we examine the effective population size trajectory of the DENV-4 virus in Puerto Rico along with viral isolate count data and find similar cyclic patterns. We compare the population history of the HIV-1 CRF02_AG clade in Cameroon with HIV incidence and prevalence data and find that the effective population size is more reflective of incidence rate. Finally, we explore the hypothesis that the population dynamics of musk ox during the Late Quaternary period were related to climate change. [Coalescent; effective population size; Gaussian Markov random fields; phylodynamics; phylogenetics; population genetics.
Collapse
Affiliation(s)
- Mandev S Gill
- Department of Statistics, Columbia University, New York, NY 10027, USA
| | - Philippe Lemey
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Minderbroederstaat 10, 3000 Leuven, Belgium
| | - Shannon N Bennett
- Department of Microbiology, California Academy of Sciences, San Francisco, CA 94118, USA
| | - Roman Biek
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Marc A Suchard
- Department of Biomathematics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA.,Department of Human Genetics, David Geffen School of Medicine at UCLA, Universtiy of California, Los Angeles, CA 90095, USA.,Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
168
|
Abstract
Genetic polymorphism varies among species and within genomes, and has important implications for the evolution and conservation of species. The determinants of this variation have been poorly understood, but population genomic data from a wide range of organisms now make it possible to delineate the underlying evolutionary processes, notably how variation in the effective population size (Ne) governs genetic diversity. Comparative population genomics is on its way to providing a solution to 'Lewontin's paradox' - the discrepancy between the many orders of magnitude of variation in population size and the much narrower distribution of diversity levels. It seems that linked selection plays an important part both in the overall genetic diversity of a species and in the variation in diversity within the genome. Genetic diversity also seems to be predictable from the life history of a species.
Collapse
|
169
|
Teixeira MDM, Patané JSL, Taylor ML, Gómez BL, Theodoro RC, de Hoog S, Engelthaler DM, Zancopé-Oliveira RM, Felipe MSS, Barker BM. Worldwide Phylogenetic Distributions and Population Dynamics of the Genus Histoplasma. PLoS Negl Trop Dis 2016; 10:e0004732. [PMID: 27248851 PMCID: PMC4889077 DOI: 10.1371/journal.pntd.0004732] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/03/2016] [Indexed: 12/11/2022] Open
Abstract
Background Histoplasma capsulatum comprises a worldwide complex of saprobiotic fungi mainly found in nitrogen/phosphate (often bird guano) enriched soils. The microconidia of Histoplasma species may be inhaled by mammalian hosts, and is followed by a rapid conversion to yeast that can persist in host tissues causing histoplasmosis, a deep pulmonary/systemic mycosis. Histoplasma capsulatum sensu lato is a complex of at least eight clades geographically distributed as follows: Australia, Netherlands, Eurasia, North American classes 1 and 2 (NAm 1 and NAm 2), Latin American groups A and B (LAm A and LAm B) and Africa. With the exception of the Eurasian cluster, those clades are considered phylogenetic species. Methodology/Principal Findings Increased Histoplasma sampling (n = 234) resulted in the revision of the phylogenetic distribution and population structure using 1,563 aligned nucleotides from four protein-coding regions. The LAm B clade appears to be divided into at least two highly supported clades, which are geographically restricted to either Colombia/Argentina or Brazil respectively. Moreover, a complex population genetic structure was identified within LAm A clade supporting multiple monophylogenetic species, which could be driven by rapid host or environmental adaptation (~0.5 MYA). We found two divergent clades, which include Latin American isolates (newly named as LAm A1 and LAm A2), harboring a cryptic cluster in association with bats. Conclusions/Significance At least six new phylogenetic species are proposed in the Histoplasma species complex supported by different phylogenetic and population genetics methods, comprising LAm A1, LAm A2, LAm B1, LAm B2, RJ and BAC-1 phylogenetic species. The genetic isolation of Histoplasma could be a result of differential dispersion potential of naturally infected bats and other mammals. In addition, the present study guides isolate selection for future population genomics and genome wide association studies in this important pathogen complex. Histoplasmosis is a potentially severe fungal disease of mammals caused by Histoplasma capsulatum. The highest incidence of the disease is reported on the American continent, and approximately 30% of HIV and histoplasmosis co-infections are fatal. Previous studies have suggested at least 7 phylogenetic species within H. capsulatum, however by increasing taxon sampling and using different phylogenetic and population genetic methods, we detect at least 5 additional phylogenetic species within Latin America (LAm A1, LAm A2, LAm B1, LAm B2, RJ and BAC-1). These phylogenetic species are nested in the former LAm A clade. We found evidence that bats may be a cause of speciation in Histoplasma, as well-supported monophyletic clades were found in association with different species of bats. The radiation of the Latin American H. capsulatum species took a place around 5 million years ago, which is consistent with the radiation and diversification of bat species. Previous phylogenetic distribution of Histoplasma is upheld and strong support is indicated for the species delineation and evolution of this important pathogen.
Collapse
Affiliation(s)
- Marcus de M. Teixeira
- Division of Pathogen Genomics, Translational Genomics Research Institute-North, Flagstaff, Arizona, United States of America
- Department of Cell Biology, University of Brasília, Brasilia, Brazil
| | - José S. L. Patané
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Maria L. Taylor
- Department of Microbiology and Parasitology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Beatriz L. Gómez
- Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia
| | - Raquel C. Theodoro
- Department of Cell Biology and Genetics/ Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Sybren de Hoog
- CBS-KNAW Fungal Biodiversity Centre, Utrecht, Netherlands
| | - David M. Engelthaler
- Division of Pathogen Genomics, Translational Genomics Research Institute-North, Flagstaff, Arizona, United States of America
| | - Rosely M. Zancopé-Oliveira
- Mycology Laboratory, National Institute of Infectology Evandro Chagas, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Bridget M. Barker
- Division of Pathogen Genomics, Translational Genomics Research Institute-North, Flagstaff, Arizona, United States of America
- * E-mail:
| |
Collapse
|
170
|
Duchêne S, Duchêne DA, Di Giallonardo F, Eden JS, Geoghegan JL, Holt KE, Ho SYW, Holmes EC. Cross-validation to select Bayesian hierarchical models in phylogenetics. BMC Evol Biol 2016; 16:115. [PMID: 27230264 PMCID: PMC4880944 DOI: 10.1186/s12862-016-0688-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/19/2016] [Indexed: 01/12/2023] Open
Abstract
Background Recent developments in Bayesian phylogenetic models have increased the range of inferences that can be drawn from molecular sequence data. Accordingly, model selection has become an important component of phylogenetic analysis. Methods of model selection generally consider the likelihood of the data under the model in question. In the context of Bayesian phylogenetics, the most common approach involves estimating the marginal likelihood, which is typically done by integrating the likelihood across model parameters, weighted by the prior. Although this method is accurate, it is sensitive to the presence of improper priors. We explored an alternative approach based on cross-validation that is widely used in evolutionary analysis. This involves comparing models according to their predictive performance. Results We analysed simulated data and a range of viral and bacterial data sets using a cross-validation approach to compare a variety of molecular clock and demographic models. Our results show that cross-validation can be effective in distinguishing between strict- and relaxed-clock models and in identifying demographic models that allow growth in population size over time. In most of our empirical data analyses, the model selected using cross-validation was able to match that selected using marginal-likelihood estimation. The accuracy of cross-validation appears to improve with longer sequence data, particularly when distinguishing between relaxed-clock models. Conclusions Cross-validation is a useful method for Bayesian phylogenetic model selection. This method can be readily implemented even when considering complex models where selecting an appropriate prior for all parameters may be difficult. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0688-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sebastián Duchêne
- Marie Bashir Institute of Infectious Diseases and Biosecurity, Charles Perkins Centre, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia. .,School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| | - David A Duchêne
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Francesca Di Giallonardo
- Marie Bashir Institute of Infectious Diseases and Biosecurity, Charles Perkins Centre, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - John-Sebastian Eden
- Marie Bashir Institute of Infectious Diseases and Biosecurity, Charles Perkins Centre, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Jemma L Geoghegan
- Marie Bashir Institute of Infectious Diseases and Biosecurity, Charles Perkins Centre, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Centre for Systems Genomics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Edward C Holmes
- Marie Bashir Institute of Infectious Diseases and Biosecurity, Charles Perkins Centre, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
171
|
|
172
|
Dampier W, Nonnemacher MR, Mell J, Earl J, Ehrlich GD, Pirrone V, Aiamkitsumrit B, Zhong W, Kercher K, Passic S, Williams JW, Jacobson JM, Wigdahl B. HIV-1 Genetic Variation Resulting in the Development of New Quasispecies Continues to Be Encountered in the Peripheral Blood of Well-Suppressed Patients. PLoS One 2016; 11:e0155382. [PMID: 27195985 PMCID: PMC4873138 DOI: 10.1371/journal.pone.0155382] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/27/2016] [Indexed: 12/04/2022] Open
Abstract
As a result of antiretroviral therapeutic strategies, human immunodeficiency virus type 1 (HIV-1) infection has become a long-term clinically manageable chronic disease for many infected individuals. However, despite this progress in therapeutic control, including undetectable viral loads and CD4+ T-cell counts in the normal range, viral mutations continue to accumulate in the peripheral blood compartment over time, indicating either low level reactivation and/or replication. Using patients from the Drexel Medicine CNS AIDS Research and Eradication Study (CARES) Cohort, whom have been sampled longitudinally for more than 7 years, genetic change was modeled against to the dominant integrated proviral quasispecies with respect to selection pressures such as therapeutic interventions, AIDS defining illnesses, and other factors. Phylogenetic methods based on the sequences of the LTR and tat exon 1 of the HIV-1 proviral DNA quasispecies were used to obtain an estimate of an average mutation rate of 5.3 nucleotides (nt)/kilobasepair (kb)/year (yr) prior to initiation of antiretroviral therapy (ART). Following ART the baseline mutation rate was reduced to an average of 1.02 nt/kb/yr. The post-ART baseline rate of genetic change, however, appears to be unique for each patient. These studies represent our initial steps in quantifying rates of genetic change among HIV-1 quasispecies using longitudinally sampled sequences from patients at different stages of disease both before and after initiation of combination ART. Notably, while long-term ART reduced the estimated mutation rates in the vast majority of patients studied, there was still measurable HIV-1 mutation even in patients with no detectable virus by standard quantitative assays. Determining the factors that affect HIV-1 mutation rates in the peripheral blood may lead to elucidation of the mechanisms associated with changes in HIV-1 disease severity.
Collapse
Affiliation(s)
- Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joshua Mell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joshua Earl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Garth D. Ehrlich
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Benjamas Aiamkitsumrit
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Wen Zhong
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Katherine Kercher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Shendra Passic
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jean W. Williams
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jeffrey M. Jacobson
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Clinical and Translational Medicine, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| |
Collapse
|
173
|
Rieux A, Balloux F. Inferences from tip-calibrated phylogenies: a review and a practical guide. Mol Ecol 2016; 25:1911-24. [PMID: 26880113 PMCID: PMC4949988 DOI: 10.1111/mec.13586] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 12/25/2022]
Abstract
Molecular dating of phylogenetic trees is a growing discipline using sequence data to co‐estimate the timing of evolutionary events and rates of molecular evolution. All molecular‐dating methods require converting genetic divergence between sequences into absolute time. Historically, this could only be achieved by associating externally derived dates obtained from fossil or biogeographical evidence to internal nodes of the tree. In some cases, notably for fast‐evolving genomes such as viruses and some bacteria, the time span over which samples were collected may cover a significant proportion of the time since they last shared a common ancestor. This situation allows phylogenetic trees to be calibrated by associating sampling dates directly to the sequences representing the tips (terminal nodes) of the tree. The increasing availability of genomic data from ancient DNA extends the applicability of such tip‐based calibration to a variety of taxa including humans, extinct megafauna and various microorganisms which typically have a scarce fossil record. The development of statistical models accounting for heterogeneity in different aspects of the evolutionary process while accommodating very large data sets (e.g. whole genomes) has allowed using tip‐dating methods to reach inferences on divergence times, substitution rates, past demography or the age of specific mutations on a variety of spatiotemporal scales. In this review, we summarize the current state of the art of tip dating, discuss some recent applications, highlight common pitfalls and provide a ‘how to’ guide to thoroughly perform such analyses.
Collapse
Affiliation(s)
- Adrien Rieux
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - François Balloux
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
174
|
Global Genomic Epidemiology of Salmonella enterica Serovar Typhimurium DT104. Appl Environ Microbiol 2016; 82:2516-26. [PMID: 26944846 PMCID: PMC4959494 DOI: 10.1128/aem.03821-15] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/09/2016] [Indexed: 11/20/2022] Open
Abstract
It has been 30 years since the initial emergence and subsequent rapid global spread of multidrug-resistant Salmonella enterica serovar Typhimurium DT104 (MDR DT104). Nonetheless, its origin and transmission route have never been revealed. We used whole-genome sequencing (WGS) and temporally structured sequence analysis within a Bayesian framework to reconstruct temporal and spatial phylogenetic trees and estimate the rates of mutation and divergence times of 315 S. Typhimurium DT104 isolates sampled from 1969 to 2012 from 21 countries on six continents. DT104 was estimated to have emerged initially as antimicrobial susceptible in ∼1948 (95% credible interval [CI], 1934 to 1962) and later became MDR DT104 in ∼1972 (95% CI, 1972 to 1988) through horizontal transfer of the 13-kb Salmonella genomic island 1 (SGI1) MDR region into susceptible strains already containing SGI1. This was followed by multiple transmission events, initially from central Europe and later between several European countries. An independent transmission to the United States and another to Japan occurred, and from there MDR DT104 was probably transmitted to Taiwan and Canada. An independent acquisition of resistance genes took place in Thailand in ∼1975 (95% CI, 1975 to 1990). In Denmark, WGS analysis provided evidence for transmission of the organism between herds of animals. Interestingly, the demographic history of Danish MDR DT104 provided evidence for the success of the program to eradicate Salmonella from pig herds in Denmark from 1996 to 2000. The results from this study refute several hypotheses on the evolution of DT104 and suggest that WGS may be useful in monitoring emerging clones and devising strategies for prevention of Salmonella infections.
Collapse
|
175
|
Younger JL, van den Hoff J, Wienecke B, Hindell M, Miller KJ. Contrasting responses to a climate regime change by sympatric, ice-dependent predators. BMC Evol Biol 2016; 16:61. [PMID: 26975876 PMCID: PMC5477764 DOI: 10.1186/s12862-016-0630-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/01/2016] [Indexed: 02/02/2023] Open
Abstract
Background Models that predict changes in the abundance and distribution of fauna under future climate change scenarios often assume that ecological niche and habitat availability are the major determinants of species’ responses to climate change. However, individual species may have very different capacities to adapt to environmental change, as determined by intrinsic factors such as their dispersal ability, genetic diversity, generation time and rate of evolution. These intrinsic factors are usually excluded from forecasts of species’ abundance and distribution changes. We aimed to determine the importance of these factors by comparing the impact of the most recent climate regime change, the late Pleistocene glacial-interglacial transition, on two sympatric, ice-dependent meso-predators, the emperor penguin (Aptenodytes forsteri) and Weddell seal (Leptonychotes weddellii). Methods We reconstructed the population trend of emperor penguins and Weddell seals in East Antarctica over the past 75,000 years using mitochondrial DNA sequences and an extended Bayesian skyline plot method. We also assessed patterns of contemporary population structure and genetic diversity. Results Despite their overlapping distributions and shared dependence on sea ice, our genetic data revealed very different responses to climate warming between these species. The emperor penguin population grew rapidly following the glacial-interglacial transition, but the size of the Weddell seal population did not change. The expansion of emperor penguin numbers during the warm Holocene may have been facilitated by their higher dispersal ability and gene flow among colonies, and fine-scale differences in preferred foraging locations. Conclusions The vastly different climate change responses of two sympatric ice-dependent predators suggests that differing adaptive capacities and/or fine-scale niche differences can play a major role in species’ climate change responses, and that adaptive capacity should be considered alongside niche and distribution in future species forecasts. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0630-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jane L Younger
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, 7001, Tasmania, Australia.
| | - John van den Hoff
- Australian Antarctic Division, 203 Channel Highway, Kingston, 7050, Tasmania, Australia
| | - Barbara Wienecke
- Australian Antarctic Division, 203 Channel Highway, Kingston, 7050, Tasmania, Australia
| | - Mark Hindell
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, 7001, Tasmania, Australia
| | - Karen J Miller
- Australian Institute of Marine Science, The UWA Oceans Institute, 35 Stirling Highway, Crawley, WA, 6009, Australia.,School of Biological Sciences, Private Bag 5, University of Tasmania, Hobart, 7001, Tasmania, Australia
| |
Collapse
|
176
|
Boitard S, Rodríguez W, Jay F, Mona S, Austerlitz F. Inferring Population Size History from Large Samples of Genome-Wide Molecular Data - An Approximate Bayesian Computation Approach. PLoS Genet 2016; 12:e1005877. [PMID: 26943927 PMCID: PMC4778914 DOI: 10.1371/journal.pgen.1005877] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 01/27/2016] [Indexed: 12/02/2022] Open
Abstract
Inferring the ancestral dynamics of effective population size is a long-standing question in population genetics, which can now be tackled much more accurately thanks to the massive genomic data available in many species. Several promising methods that take advantage of whole-genome sequences have been recently developed in this context. However, they can only be applied to rather small samples, which limits their ability to estimate recent population size history. Besides, they can be very sensitive to sequencing or phasing errors. Here we introduce a new approximate Bayesian computation approach named PopSizeABC that allows estimating the evolution of the effective population size through time, using a large sample of complete genomes. This sample is summarized using the folded allele frequency spectrum and the average zygotic linkage disequilibrium at different bins of physical distance, two classes of statistics that are widely used in population genetics and can be easily computed from unphased and unpolarized SNP data. Our approach provides accurate estimations of past population sizes, from the very first generations before present back to the expected time to the most recent common ancestor of the sample, as shown by simulations under a wide range of demographic scenarios. When applied to samples of 15 or 25 complete genomes in four cattle breeds (Angus, Fleckvieh, Holstein and Jersey), PopSizeABC revealed a series of population declines, related to historical events such as domestication or modern breed creation. We further highlight that our approach is robust to sequencing errors, provided summary statistics are computed from SNPs with common alleles. Molecular data sampled from extant individuals contains considerable information about their demographic history. In particular, one classical question in population genetics is to reconstruct past population size changes from such data. Relating these changes to various climatic, geological or anthropogenic events allows characterizing the main factors driving genetic diversity and can have major outcomes for conservation. Until recently, mostly very simple histories, including one or two population size changes, could be estimated from genetic data. This has changed with the sequencing of entire genomes in many species, and several methods allow now inferring complex histories consisting of several tens of population size changes. However, analyzing entire genomes, while accounting for recombination, remains a statistical and numerical challenge. These methods, therefore, can only be applied to small samples with a few diploid genomes. We overcome this limitation by using an approximate estimation approach, where observed genomes are summarized using a small number of statistics related to allele frequencies and linkage disequilibrium. In contrast to previous approaches, we show that our method allows us to reconstruct also the most recent part (the last 100 generations) of the population size history. As an illustration, we apply it to large samples of whole-genome sequences in four cattle breeds.
Collapse
Affiliation(s)
- Simon Boitard
- Institut de Systématique, Évolution, Biodiversité ISYEB - UMR 7205 - CNRS & MNHN & UPMC & EPHE, Ecole Pratique des Hautes Etudes, Sorbonne Universités, Paris, France
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- * E-mail:
| | - Willy Rodríguez
- UMR CNRS 5219, Institut de Mathématiques de Toulouse, Université de Toulouse, Toulouse, France
| | - Flora Jay
- UMR 7206 Eco-anthropologie et Ethnobiologie, Muséum National d’Histoire Naturelle, CNRS, Université Paris Diderot, Paris, France
- LRI, Paris-Sud University, CNRS UMR 8623, Orsay, France
| | - Stefano Mona
- Institut de Systématique, Évolution, Biodiversité ISYEB - UMR 7205 - CNRS & MNHN & UPMC & EPHE, Ecole Pratique des Hautes Etudes, Sorbonne Universités, Paris, France
| | - Frédéric Austerlitz
- UMR 7206 Eco-anthropologie et Ethnobiologie, Muséum National d’Histoire Naturelle, CNRS, Université Paris Diderot, Paris, France
| |
Collapse
|
177
|
Quantifying and Mitigating the Effect of Preferential Sampling on Phylodynamic Inference. PLoS Comput Biol 2016; 12:e1004789. [PMID: 26938243 PMCID: PMC4777449 DOI: 10.1371/journal.pcbi.1004789] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 02/02/2016] [Indexed: 12/16/2022] Open
Abstract
Phylodynamics seeks to estimate effective population size fluctuations from molecular sequences of individuals sampled from a population of interest. One way to accomplish this task formulates an observed sequence data likelihood exploiting a coalescent model for the sampled individuals’ genealogy and then integrating over all possible genealogies via Monte Carlo or, less efficiently, by conditioning on one genealogy estimated from the sequence data. However, when analyzing sequences sampled serially through time, current methods implicitly assume either that sampling times are fixed deterministically by the data collection protocol or that their distribution does not depend on the size of the population. Through simulation, we first show that, when sampling times do probabilistically depend on effective population size, estimation methods may be systematically biased. To correct for this deficiency, we propose a new model that explicitly accounts for preferential sampling by modeling the sampling times as an inhomogeneous Poisson process dependent on effective population size. We demonstrate that in the presence of preferential sampling our new model not only reduces bias, but also improves estimation precision. Finally, we compare the performance of the currently used phylodynamic methods with our proposed model through clinically-relevant, seasonal human influenza examples. Phylodynamics seeks to estimate changes in population size from genetic data sampled from individuals across a particular population. One approach to accomplish this task uses a model called the coalescent, which relates the shape of the individuals’ shared ancestral tree to genetic diversity, which is in turn related to population size. However, when analyzing genetic data sampled at different times, current techniques assume that sampling times are fixed ahead of time or are distributed randomly without any relation to the size of the population. Through simulation, we show that when sampling times are related to population size, a situation referred to as preferential sampling, those estimation methods may be systematically biased. To fix this problem, we propose a new model that explicitly accounts for and models the preferential sampling. We show that in the presence of preferential sampling our new technique not only fixes the bias, but also has improved precision in its population size estimates. We also compare the performance of the old and new techniques on several real-world seasonal human influenza examples.
Collapse
|
178
|
Nadachowska-Brzyska K, Burri R, Smeds L, Ellegren H. PSMC analysis of effective population sizes in molecular ecology and its application to black-and-white Ficedula flycatchers. Mol Ecol 2016; 25:1058-72. [PMID: 26797914 PMCID: PMC4793928 DOI: 10.1111/mec.13540] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 12/15/2015] [Accepted: 01/07/2016] [Indexed: 12/12/2022]
Abstract
Climatic fluctuations during the Quaternary period governed the demography of species and contributed to population differentiation and ultimately speciation. Studies of these past processes have previously been hindered by a lack of means and genetic data to model changes in effective population size (Ne ) through time. However, based on diploid genome sequences of high quality, the recently developed pairwise sequentially Markovian coalescent (PSMC) can estimate trajectories of changes in Ne over considerable time periods. We applied this approach to resequencing data from nearly 200 genomes of four species and several populations of the Ficedula species complex of black-and-white flycatchers. Ne curves of Atlas, collared, pied and semicollared flycatcher converged 1-2 million years ago (Ma) at an Ne of ≈ 200 000, likely reflecting the time when all four species last shared a common ancestor. Subsequent separate Ne trajectories are consistent with lineage splitting and speciation. All species showed evidence of population growth up until 100-200 thousand years ago (kya), followed by decline and then start of a new phase of population expansion. However, timing and amplitude of changes in Ne differed among species, and for pied flycatcher, the temporal dynamics of Ne differed between Spanish birds and central/northern European populations. This cautions against extrapolation of demographic inference between lineages and calls for adequate sampling to provide representative pictures of the coalescence process in different species or populations. We also empirically evaluate criteria for proper inference of demographic histories using PSMC and arrive at recommendations of using sequencing data with a mean genome coverage of ≥18X, a per-site filter of ≥10 reads and no more than 25% of missing data.
Collapse
Affiliation(s)
- Krystyna Nadachowska-Brzyska
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Reto Burri
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Linnéa Smeds
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| |
Collapse
|
179
|
Lapierre M, Blin C, Lambert A, Achaz G, Rocha EPC. The Impact of Selection, Gene Conversion, and Biased Sampling on the Assessment of Microbial Demography. Mol Biol Evol 2016; 33:1711-25. [PMID: 26931140 PMCID: PMC4915353 DOI: 10.1093/molbev/msw048] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recent studies have linked demographic changes and epidemiological patterns in bacterial populations using coalescent-based approaches. We identified 26 studies using skyline plots and found that 21 inferred overall population expansion. This surprising result led us to analyze the impact of natural selection, recombination (gene conversion), and sampling biases on demographic inference using skyline plots and site frequency spectra (SFS). Forward simulations based on biologically relevant parameters from Escherichia coli populations showed that theoretical arguments on the detrimental impact of recombination and especially natural selection on the reconstructed genealogies cannot be ignored in practice. In fact, both processes systematically lead to spurious interpretations of population expansion in skyline plots (and in SFS for selection). Weak purifying selection, and especially positive selection, had important effects on skyline plots, showing patterns akin to those of population expansions. State-of-the-art techniques to remove recombination further amplified these biases. We simulated three common sampling biases in microbiological research: uniform, clustered, and mixed sampling. Alone, or together with recombination and selection, they further mislead demographic inferences producing almost any possible skyline shape or SFS. Interestingly, sampling sub-populations also affected skyline plots and SFS, because the coalescent rates of populations and their sub-populations had different distributions. This study suggests that extreme caution is needed to infer demographic changes solely based on reconstructed genealogies. We suggest that the development of novel sampling strategies and the joint analyzes of diverse population genetic methods are strictly necessary to estimate demographic changes in populations where selection, recombination, and biased sampling are present.
Collapse
Affiliation(s)
- Marguerite Lapierre
- Atelier de Bioinformatique, UMR7205 ISYEB, MNHN-UPMC-CNRS-EPHE, Muséum National d'Histoire Naturelle, Paris, France Collège de France, Center for Interdisciplinary Research in Biology (CIRB), CNRS UMR 7241, Paris, France
| | - Camille Blin
- Sorbonne Universités, UPMC Univ Paris06, IFD, 4 Place Jussieu, Paris Cedex05, France Institut Pasteur, Microbial Evolutionary Genomics, Paris, France CNRS, UMR3525, Paris, France
| | - Amaury Lambert
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB), CNRS UMR 7241, Paris, France UPMC Univ Paris 06, Laboratoire de Probabilités et Modèles Aléatoires (LPMA), CNRS UMR 7599, Paris, France
| | - Guillaume Achaz
- Atelier de Bioinformatique, UMR7205 ISYEB, MNHN-UPMC-CNRS-EPHE, Muséum National d'Histoire Naturelle, Paris, France Collège de France, Center for Interdisciplinary Research in Biology (CIRB), CNRS UMR 7241, Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Microbial Evolutionary Genomics, Paris, France CNRS, UMR3525, Paris, France
| |
Collapse
|
180
|
Papkou A, Gokhale CS, Traulsen A, Schulenburg H. Host-parasite coevolution: why changing population size matters. ZOOLOGY 2016; 119:330-8. [PMID: 27161157 DOI: 10.1016/j.zool.2016.02.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/30/2016] [Accepted: 02/10/2016] [Indexed: 01/08/2023]
Abstract
Host-parasite coevolution is widely assumed to have a major influence on biological evolution, especially as these interactions impose high selective pressure on the reciprocally interacting antagonists. The exact nature of the underlying dynamics is yet under debate and may be determined by recurrent selective sweeps (i.e., arms race dynamics), negative frequency-dependent selection (i.e., Red Queen dynamics), or a combination thereof. These interactions are often associated with reciprocally induced changes in population size, which, in turn, should have a strong impact on co-adaptation processes, yet are neglected in most current work on the topic. Here, we discuss potential consequences of temporal variations in population size on host-parasite coevolution. The limited empirical data available and the current theoretical literature in this field highlight that the consideration of such interaction-dependent population size changes is likely key for the full understanding of the coevolutionary dynamics, and, thus, a more realistic view on the complex nature of species interactions.
Collapse
Affiliation(s)
- Andrei Papkou
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-University of Kiel, 24098, Kiel, Germany
| | - Chaitanya S Gokhale
- New Zealand Institute for Advanced Study, Massey University, Private Bag 102904, Auckland 0745, New Zealand
| | - Arne Traulsen
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-University of Kiel, 24098, Kiel, Germany.
| |
Collapse
|
181
|
Inferring the Dynamics of Effective Population Size Using Autosomal Genomes. Sci Rep 2016; 6:20079. [PMID: 26832887 PMCID: PMC4735516 DOI: 10.1038/srep20079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 08/20/2015] [Indexed: 01/25/2023] Open
Abstract
Next-generation sequencing technology has provided a great opportunity for inferring human demographic history by investigating changes in the effective population size (Ne). In this report, we introduce a strategy for estimating Ne dynamics, allowing the exploration of large multi-locus SNP datasets. We applied this strategy to the Phase 1 Han Chinese samples from the 1000 Genomes Project. The Han Chinese population has undergone a continuous expansion since 25,000 years ago, at first slowly from about 7,300 to 9,800 (at the end of the last glacial maximum about 15,000 YBP), then more quickly to about 46,000 (at the beginning of the Neolithic about 8,000 YBP), and then even more quickly to reach a population size of about 140,000 (recently).
Collapse
|
182
|
Ornelas JF, González C, Hernández-Baños BE, García-Moreno J. Molecular and iridescent feather reflectance data reveal recent genetic diversification and phenotypic differentiation in a cloud forest hummingbird. Ecol Evol 2016; 6:1104-27. [PMID: 26811749 PMCID: PMC4722824 DOI: 10.1002/ece3.1950] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 01/31/2023] Open
Abstract
The present day distribution and spatial genetic diversity of Mesoamerican biota reflects a long history of responses to habitat change. The hummingbird Lampornis amethystinus is distributed in northern Mesoamerica, with geographically disjunct populations. Based on sampling across the species range using mitochondrial DNA (mtDNA) sequences and nuclear microsatellites jointly analysed with phenotypic and climatic data, we (1) test whether the fragmented distribution is correlated with main evolutionary lineages, (2) assess body size and plumage color differentiation of populations in geographic isolation, and (3) evaluate a set of divergence scenarios and demographic patterns of the hummingbird populations. Analysis of genetic variation revealed four main groups: blue‐throated populations (Sierra Madre del Sur); two groups of amethyst‐throated populations (Trans‐Mexican Volcanic Belt and Sierra Madre Oriental); and populations east of the Isthmus of Tehuantepec (IT) with males showing an amethyst throat. The most basal split is estimated to have originated in the Pleistocene, 2.39–0.57 million years ago (MYA), and corresponded to groups of populations separated by the IT. However, the estimated recent divergence time between blue‐ and amethyst‐throated populations does not correspond to the 2‐MY needed to be in isolation for substantial plumage divergence, likely because structurally iridescent colors are more malleable than others. Results of species distribution modeling and Approximate Bayesian Computation analysis fit a model of lineage divergence west of the Isthmus after the Last Glacial Maximum (LGM), and that the species’ suitable habitat was disjunct during past and current conditions. These results challenge the generality of the contraction/expansion glacial model to cloud forest‐interior species and urges management of cloud forest, a highly vulnerable ecosystem to climate change and currently facing destruction, to prevent further loss of genetic diversity or extinction.
Collapse
Affiliation(s)
- Juan Francisco Ornelas
- Departamento de Biología Evolutiva Instituto de Ecología AC (INECOL) Xalapa Veracruz 91070 Mexico
| | - Clementina González
- Departamento de Biología Evolutiva Instituto de Ecología AC (INECOL) Xalapa Veracruz 91070 Mexico; Instituto de Investigaciones sobre los Recursos Naturales Universidad Michoacana de San Nicolás de Hidalgo Morelia Michoacán Mexico
| | - Blanca E Hernández-Baños
- Museo de Zoología Departamento de Biología Evolutiva Facultad de Ciencias Universidad Nacional Autónoma de México México DF 04510 Mexico
| | | |
Collapse
|
183
|
Kozma R, Melsted P, Magnússon KP, Höglund J. Looking into the past - the reaction of three grouse species to climate change over the last million years using whole genome sequences. Mol Ecol 2016; 25:570-80. [PMID: 26607571 DOI: 10.1111/mec.13496] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 01/08/2023]
Abstract
Tracking past population fluctuations can give insight into current levels of genetic variation present within species. Analysing population dynamics over larger timescales can be aligned to known climatic changes to determine the response of species to varying environments. Here, we applied the Pairwise Sequentially Markovian Coalescent (psmc) model to infer past population dynamics of three widespread grouse species; black grouse, willow grouse and rock ptarmigan. This allowed the tracking of the effective population size (Ne ) of all three species beyond 1 Mya, revealing that (i) early Pleistocene cooling (~2.5 Mya) caused an increase in the willow grouse and rock ptarmigan populations, (ii) the mid-Brunhes event (~430 kya) and following climatic oscillations decreased the Ne of willow grouse and rock ptarmigan, but increased the Ne of black grouse and (iii) all three species reacted differently to the last glacial maximum (LGM) - black grouse increased prior to it, rock ptarmigan experienced a severe bottleneck and willow grouse was maintained at large population size. We postulate that the varying psmc signal throughout the LGM depicts only the local history of the species. Nevertheless, the large population fluctuations in willow grouse and rock ptarmigan indicate that both species are opportunistic breeders while black grouse tracks the climatic changes more slowly and is maintained at lower Ne . Our results highlight the usefulness of the psmc approach in investigating species' reaction to climate change in the deep past, but also that caution should be taken in drawing general conclusions about the recent past.
Collapse
Affiliation(s)
- Radoslav Kozma
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, Uppsala, SE-75236, Sweden
| | - Páll Melsted
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, Reykjavik, 107, Iceland.,deCODE Genetics/Amgen, Reykjavik, Iceland
| | - Kristinn P Magnússon
- The Icelandic Institute of Natural History, Borgir v. Nordurslod, Akureyri, 600, Iceland.,Department of Natural Resource Sciences, University of Akureyri, Borgir vid Nordurslod, Akureyri, 600, Iceland.,Biomedical Center, University of Iceland, Vatnsmýrarvegur 16, Reykjavik, 101, Iceland
| | - Jacob Höglund
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, Uppsala, SE-75236, Sweden
| |
Collapse
|
184
|
Batalha‐Filho H, Miyaki CY. Late Pleistocene divergence and postglacial expansion in the Brazilian Atlantic Forest: multilocus phylogeography of
Rhopias gularis
(Aves: Passeriformes). J ZOOL SYST EVOL RES 2016. [DOI: 10.1111/jzs.12118] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Henrique Batalha‐Filho
- Departamento de Genética e Biologia Evolutiva Instituto de Biociências Universidade de São Paulo São Paulo Brazil
- Departamento de Zoologia Instituto de Biologia Universidade Federal da Bahia Salvador Brazil
| | - Cristina Y. Miyaki
- Departamento de Genética e Biologia Evolutiva Instituto de Biociências Universidade de São Paulo São Paulo Brazil
| |
Collapse
|
185
|
Ellingson RA, Krug PJ. Reduced genetic diversity and increased reproductive isolation follow population-level loss of larval dispersal in a marine gastropod. Evolution 2015; 70:18-37. [PMID: 26635309 DOI: 10.1111/evo.12830] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 11/17/2015] [Indexed: 01/01/2023]
Abstract
Population-level consequences of dispersal ability remain poorly understood, especially for marine animals in which dispersal is typically considered a species-level trait governed by oceanographic transport of microscopic larvae. Transitions from dispersive (planktotrophic) to nondispersive, aplanktonic larvae are predicted to reduce connectivity, genetic diversity within populations, and the spatial scale at which reproductive isolation evolves. However, larval dimorphism within a species is rare, precluding population-level tests. We show the sea slug Costasiella ocellifera expresses both larval morphs in Florida and the Caribbean, regions with divergent mitochondrial lineages. Planktotrophy predominated at 11 sites, 10 of which formed a highly connected and genetically diverse Caribbean metapopulation. Four populations expressed mainly aplanktonic development and had markedly reduced connectivity, and lower genetic diversity at one mitochondrial and six nuclear loci. Aplanktonic dams showed partial postzygotic isolation in most interpopulation crosses, regardless of genetic or geographic distance to the sire's source, suggesting that outbreeding depression affects fragmented populations. Dams from genetically isolated and neighboring populations also exhibited premating isolation, consistent with reinforcement contingent on historical interaction. By increasing self-recruitment and genetic drift, the loss of dispersal may thus initiate a feedback loop resulting in the evolution of reproductive isolation over small spatial scales in the sea.
Collapse
Affiliation(s)
- Ryan A Ellingson
- Department of Biological Sciences, California State University, 5151 State University Dr., Los Angeles, California, 90032-8201
| | - Patrick J Krug
- Department of Biological Sciences, California State University, 5151 State University Dr., Los Angeles, California, 90032-8201.
| |
Collapse
|
186
|
Hoareau TB. Late Glacial Demographic Expansion Motivates a Clock Overhaul for Population Genetics. Syst Biol 2015; 65:449-64. [PMID: 26683588 DOI: 10.1093/sysbio/syv120] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 12/10/2015] [Indexed: 12/18/2022] Open
Abstract
The molecular clock hypothesis is fundamental in evolutionary biology as by assuming constancy of the molecular rate it provides a timeframe for evolution. However, increasing evidence shows time dependence of inferred molecular rates with inflated values obtained using recent calibrations. As recent demographic calibrations are virtually non-existent in most species, older phylogenetic calibration points (>1 Ma) are commonly used, which overestimate demographic parameters. To obtain more reliable rates of molecular evolution for population studies, I propose the calibration of demographic transition (CDT) method, which uses the timing of climatic changes over the late glacial warming period to calibrate expansions in various species. Simulation approaches and empirical data sets from a diversity of species (from mollusk to humans) confirm that, when compared with other genealogy-based calibration methods, the CDT provides a robust and broadly applicable clock for population genetics. The resulting CDT rates of molecular evolution also confirm rate heterogeneity over time and among taxa. Comparisons of expansion dates with ecological evidence confirm the inaccuracy of phylogenetically derived divergence rates when dating population-level events. The CDT method opens opportunities for addressing issues such as demographic responses to past climate change and the origin of rate heterogeneity related to taxa, genes, time, and genetic information content.
Collapse
Affiliation(s)
- Thierry B Hoareau
- Molecular Ecology and Evolution Programme, Department of Genetics, University of Pretoria, Private bag X20, Hatfield, Pretoria 0028, South Africa
| |
Collapse
|
187
|
Vargas SM, Jensen MP, Ho SYW, Mobaraki A, Broderick D, Mortimer JA, Whiting SD, Miller J, Prince RIT, Bell IP, Hoenner X, Limpus CJ, Santos FR, FitzSimmons NN. Phylogeography, Genetic Diversity, and Management Units of Hawksbill Turtles in the Indo-Pacific. J Hered 2015; 107:199-213. [PMID: 26615184 DOI: 10.1093/jhered/esv091] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/06/2015] [Indexed: 12/24/2022] Open
Abstract
Hawksbill turtle (Eretmochelys imbricata) populations have experienced global decline because of a history of intense commercial exploitation for shell and stuffed taxidermied whole animals, and harvest for eggs and meat. Improved understanding of genetic diversity and phylogeography is needed to aid conservation. In this study, we analyzed the most geographically comprehensive sample of hawksbill turtles from the Indo-Pacific Ocean, sequencing 766 bp of the mitochondrial control region from 13 locations (plus Aldabra, n = 4) spanning over 13500 km. Our analysis of 492 samples revealed 52 haplotypes distributed in 5 divergent clades. Diversification times differed between the Indo-Pacific and Atlantic lineages and appear to be related to the sea-level changes that occurred during the Last Glacial Maximum. We found signals of demographic expansion only for turtles from the Persian Gulf region, which can be tied to a more recent colonization event. Our analyses revealed evidence of transoceanic migration, including connections between feeding grounds from the Atlantic Ocean and Indo-Pacific rookeries. Hawksbill turtles appear to have a complex pattern of phylogeography, showing a weak isolation by distance and evidence of multiple colonization events. Our novel dataset will allow mixed-stock analyses of hawksbill turtle feeding grounds in the Indo-Pacific by providing baseline data needed for conservation efforts in the region. Eight management units are proposed in our study for the Indo-Pacific region that can be incorporated in conservation plans of this critically endangered species.
Collapse
Affiliation(s)
- Sarah M Vargas
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES 29043-900, Brazil (Vargas); School of Biological Sciences, University of Sydney, Sydney, Australia (Vargas and Ho); National Research Council under contract to Marine Mammal & Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA (Jensen); Natural History Museum and Genetic Resources Bureau, Department of the Environment Pardisan Eco-Park, Hemmat Highway, Tehran, Iran (Mobaraki); Department of Zoology, The University of Queensland, St Lucia, Australia (Broderick); Department of Biology, University of Florida, Gainesville, FL (Mortimer); Department of Land Resource Management, Palmerston, Australia (Whiting); Biological Research and Education Consultants, Missoula, MT (Miller); Marine Science Program, Department of Parks and Wildlife, Kensington, Australia (Prince); Marine Turtle Conservation Threatened Species Unit, Department of Environment and Heritage Protection, Queensland, Australia (Bell); Integrated Marine Observing System (IMOS), University of Tasmania, Private Bag 110, Hobart, TAS 7001, Australia (Hoenner); Department of Environment and Heritage Protection, Brisbane, Australia (Limpus); Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil (Santos); and Natural Environments Program, Queensland Museum, South Brisbane, Australia (FitzSimmons). Damien Broderick is now at 247 Anne St, Brisbane, QLD 4000, Australia. Jeanne A. Mortimer is now at PO Box 1443, Victoria, Mahé, Seychelles. Scott Whiting is now at Marine Science Program, Department of Parks and Wildlife, 17 Dick Perry Ave, Kensington, WA 6151, Australia.
| | - Michael P Jensen
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES 29043-900, Brazil (Vargas); School of Biological Sciences, University of Sydney, Sydney, Australia (Vargas and Ho); National Research Council under contract to Marine Mammal & Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA (Jensen); Natural History Museum and Genetic Resources Bureau, Department of the Environment Pardisan Eco-Park, Hemmat Highway, Tehran, Iran (Mobaraki); Department of Zoology, The University of Queensland, St Lucia, Australia (Broderick); Department of Biology, University of Florida, Gainesville, FL (Mortimer); Department of Land Resource Management, Palmerston, Australia (Whiting); Biological Research and Education Consultants, Missoula, MT (Miller); Marine Science Program, Department of Parks and Wildlife, Kensington, Australia (Prince); Marine Turtle Conservation Threatened Species Unit, Department of Environment and Heritage Protection, Queensland, Australia (Bell); Integrated Marine Observing System (IMOS), University of Tasmania, Private Bag 110, Hobart, TAS 7001, Australia (Hoenner); Department of Environment and Heritage Protection, Brisbane, Australia (Limpus); Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil (Santos); and Natural Environments Program, Queensland Museum, South Brisbane, Australia (FitzSimmons). Damien Broderick is now at 247 Anne St, Brisbane, QLD 4000, Australia. Jeanne A. Mortimer is now at PO Box 1443, Victoria, Mahé, Seychelles. Scott Whiting is now at Marine Science Program, Department of Parks and Wildlife, 17 Dick Perry Ave, Kensington, WA 6151, Australia
| | - Simon Y W Ho
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES 29043-900, Brazil (Vargas); School of Biological Sciences, University of Sydney, Sydney, Australia (Vargas and Ho); National Research Council under contract to Marine Mammal & Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA (Jensen); Natural History Museum and Genetic Resources Bureau, Department of the Environment Pardisan Eco-Park, Hemmat Highway, Tehran, Iran (Mobaraki); Department of Zoology, The University of Queensland, St Lucia, Australia (Broderick); Department of Biology, University of Florida, Gainesville, FL (Mortimer); Department of Land Resource Management, Palmerston, Australia (Whiting); Biological Research and Education Consultants, Missoula, MT (Miller); Marine Science Program, Department of Parks and Wildlife, Kensington, Australia (Prince); Marine Turtle Conservation Threatened Species Unit, Department of Environment and Heritage Protection, Queensland, Australia (Bell); Integrated Marine Observing System (IMOS), University of Tasmania, Private Bag 110, Hobart, TAS 7001, Australia (Hoenner); Department of Environment and Heritage Protection, Brisbane, Australia (Limpus); Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil (Santos); and Natural Environments Program, Queensland Museum, South Brisbane, Australia (FitzSimmons). Damien Broderick is now at 247 Anne St, Brisbane, QLD 4000, Australia. Jeanne A. Mortimer is now at PO Box 1443, Victoria, Mahé, Seychelles. Scott Whiting is now at Marine Science Program, Department of Parks and Wildlife, 17 Dick Perry Ave, Kensington, WA 6151, Australia
| | - Asghar Mobaraki
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES 29043-900, Brazil (Vargas); School of Biological Sciences, University of Sydney, Sydney, Australia (Vargas and Ho); National Research Council under contract to Marine Mammal & Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA (Jensen); Natural History Museum and Genetic Resources Bureau, Department of the Environment Pardisan Eco-Park, Hemmat Highway, Tehran, Iran (Mobaraki); Department of Zoology, The University of Queensland, St Lucia, Australia (Broderick); Department of Biology, University of Florida, Gainesville, FL (Mortimer); Department of Land Resource Management, Palmerston, Australia (Whiting); Biological Research and Education Consultants, Missoula, MT (Miller); Marine Science Program, Department of Parks and Wildlife, Kensington, Australia (Prince); Marine Turtle Conservation Threatened Species Unit, Department of Environment and Heritage Protection, Queensland, Australia (Bell); Integrated Marine Observing System (IMOS), University of Tasmania, Private Bag 110, Hobart, TAS 7001, Australia (Hoenner); Department of Environment and Heritage Protection, Brisbane, Australia (Limpus); Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil (Santos); and Natural Environments Program, Queensland Museum, South Brisbane, Australia (FitzSimmons). Damien Broderick is now at 247 Anne St, Brisbane, QLD 4000, Australia. Jeanne A. Mortimer is now at PO Box 1443, Victoria, Mahé, Seychelles. Scott Whiting is now at Marine Science Program, Department of Parks and Wildlife, 17 Dick Perry Ave, Kensington, WA 6151, Australia
| | - Damien Broderick
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES 29043-900, Brazil (Vargas); School of Biological Sciences, University of Sydney, Sydney, Australia (Vargas and Ho); National Research Council under contract to Marine Mammal & Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA (Jensen); Natural History Museum and Genetic Resources Bureau, Department of the Environment Pardisan Eco-Park, Hemmat Highway, Tehran, Iran (Mobaraki); Department of Zoology, The University of Queensland, St Lucia, Australia (Broderick); Department of Biology, University of Florida, Gainesville, FL (Mortimer); Department of Land Resource Management, Palmerston, Australia (Whiting); Biological Research and Education Consultants, Missoula, MT (Miller); Marine Science Program, Department of Parks and Wildlife, Kensington, Australia (Prince); Marine Turtle Conservation Threatened Species Unit, Department of Environment and Heritage Protection, Queensland, Australia (Bell); Integrated Marine Observing System (IMOS), University of Tasmania, Private Bag 110, Hobart, TAS 7001, Australia (Hoenner); Department of Environment and Heritage Protection, Brisbane, Australia (Limpus); Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil (Santos); and Natural Environments Program, Queensland Museum, South Brisbane, Australia (FitzSimmons). Damien Broderick is now at 247 Anne St, Brisbane, QLD 4000, Australia. Jeanne A. Mortimer is now at PO Box 1443, Victoria, Mahé, Seychelles. Scott Whiting is now at Marine Science Program, Department of Parks and Wildlife, 17 Dick Perry Ave, Kensington, WA 6151, Australia
| | - Jeanne A Mortimer
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES 29043-900, Brazil (Vargas); School of Biological Sciences, University of Sydney, Sydney, Australia (Vargas and Ho); National Research Council under contract to Marine Mammal & Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA (Jensen); Natural History Museum and Genetic Resources Bureau, Department of the Environment Pardisan Eco-Park, Hemmat Highway, Tehran, Iran (Mobaraki); Department of Zoology, The University of Queensland, St Lucia, Australia (Broderick); Department of Biology, University of Florida, Gainesville, FL (Mortimer); Department of Land Resource Management, Palmerston, Australia (Whiting); Biological Research and Education Consultants, Missoula, MT (Miller); Marine Science Program, Department of Parks and Wildlife, Kensington, Australia (Prince); Marine Turtle Conservation Threatened Species Unit, Department of Environment and Heritage Protection, Queensland, Australia (Bell); Integrated Marine Observing System (IMOS), University of Tasmania, Private Bag 110, Hobart, TAS 7001, Australia (Hoenner); Department of Environment and Heritage Protection, Brisbane, Australia (Limpus); Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil (Santos); and Natural Environments Program, Queensland Museum, South Brisbane, Australia (FitzSimmons). Damien Broderick is now at 247 Anne St, Brisbane, QLD 4000, Australia. Jeanne A. Mortimer is now at PO Box 1443, Victoria, Mahé, Seychelles. Scott Whiting is now at Marine Science Program, Department of Parks and Wildlife, 17 Dick Perry Ave, Kensington, WA 6151, Australia
| | - Scott D Whiting
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES 29043-900, Brazil (Vargas); School of Biological Sciences, University of Sydney, Sydney, Australia (Vargas and Ho); National Research Council under contract to Marine Mammal & Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA (Jensen); Natural History Museum and Genetic Resources Bureau, Department of the Environment Pardisan Eco-Park, Hemmat Highway, Tehran, Iran (Mobaraki); Department of Zoology, The University of Queensland, St Lucia, Australia (Broderick); Department of Biology, University of Florida, Gainesville, FL (Mortimer); Department of Land Resource Management, Palmerston, Australia (Whiting); Biological Research and Education Consultants, Missoula, MT (Miller); Marine Science Program, Department of Parks and Wildlife, Kensington, Australia (Prince); Marine Turtle Conservation Threatened Species Unit, Department of Environment and Heritage Protection, Queensland, Australia (Bell); Integrated Marine Observing System (IMOS), University of Tasmania, Private Bag 110, Hobart, TAS 7001, Australia (Hoenner); Department of Environment and Heritage Protection, Brisbane, Australia (Limpus); Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil (Santos); and Natural Environments Program, Queensland Museum, South Brisbane, Australia (FitzSimmons). Damien Broderick is now at 247 Anne St, Brisbane, QLD 4000, Australia. Jeanne A. Mortimer is now at PO Box 1443, Victoria, Mahé, Seychelles. Scott Whiting is now at Marine Science Program, Department of Parks and Wildlife, 17 Dick Perry Ave, Kensington, WA 6151, Australia
| | - Jeff Miller
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES 29043-900, Brazil (Vargas); School of Biological Sciences, University of Sydney, Sydney, Australia (Vargas and Ho); National Research Council under contract to Marine Mammal & Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA (Jensen); Natural History Museum and Genetic Resources Bureau, Department of the Environment Pardisan Eco-Park, Hemmat Highway, Tehran, Iran (Mobaraki); Department of Zoology, The University of Queensland, St Lucia, Australia (Broderick); Department of Biology, University of Florida, Gainesville, FL (Mortimer); Department of Land Resource Management, Palmerston, Australia (Whiting); Biological Research and Education Consultants, Missoula, MT (Miller); Marine Science Program, Department of Parks and Wildlife, Kensington, Australia (Prince); Marine Turtle Conservation Threatened Species Unit, Department of Environment and Heritage Protection, Queensland, Australia (Bell); Integrated Marine Observing System (IMOS), University of Tasmania, Private Bag 110, Hobart, TAS 7001, Australia (Hoenner); Department of Environment and Heritage Protection, Brisbane, Australia (Limpus); Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil (Santos); and Natural Environments Program, Queensland Museum, South Brisbane, Australia (FitzSimmons). Damien Broderick is now at 247 Anne St, Brisbane, QLD 4000, Australia. Jeanne A. Mortimer is now at PO Box 1443, Victoria, Mahé, Seychelles. Scott Whiting is now at Marine Science Program, Department of Parks and Wildlife, 17 Dick Perry Ave, Kensington, WA 6151, Australia
| | - Robert I T Prince
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES 29043-900, Brazil (Vargas); School of Biological Sciences, University of Sydney, Sydney, Australia (Vargas and Ho); National Research Council under contract to Marine Mammal & Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA (Jensen); Natural History Museum and Genetic Resources Bureau, Department of the Environment Pardisan Eco-Park, Hemmat Highway, Tehran, Iran (Mobaraki); Department of Zoology, The University of Queensland, St Lucia, Australia (Broderick); Department of Biology, University of Florida, Gainesville, FL (Mortimer); Department of Land Resource Management, Palmerston, Australia (Whiting); Biological Research and Education Consultants, Missoula, MT (Miller); Marine Science Program, Department of Parks and Wildlife, Kensington, Australia (Prince); Marine Turtle Conservation Threatened Species Unit, Department of Environment and Heritage Protection, Queensland, Australia (Bell); Integrated Marine Observing System (IMOS), University of Tasmania, Private Bag 110, Hobart, TAS 7001, Australia (Hoenner); Department of Environment and Heritage Protection, Brisbane, Australia (Limpus); Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil (Santos); and Natural Environments Program, Queensland Museum, South Brisbane, Australia (FitzSimmons). Damien Broderick is now at 247 Anne St, Brisbane, QLD 4000, Australia. Jeanne A. Mortimer is now at PO Box 1443, Victoria, Mahé, Seychelles. Scott Whiting is now at Marine Science Program, Department of Parks and Wildlife, 17 Dick Perry Ave, Kensington, WA 6151, Australia
| | - Ian P Bell
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES 29043-900, Brazil (Vargas); School of Biological Sciences, University of Sydney, Sydney, Australia (Vargas and Ho); National Research Council under contract to Marine Mammal & Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA (Jensen); Natural History Museum and Genetic Resources Bureau, Department of the Environment Pardisan Eco-Park, Hemmat Highway, Tehran, Iran (Mobaraki); Department of Zoology, The University of Queensland, St Lucia, Australia (Broderick); Department of Biology, University of Florida, Gainesville, FL (Mortimer); Department of Land Resource Management, Palmerston, Australia (Whiting); Biological Research and Education Consultants, Missoula, MT (Miller); Marine Science Program, Department of Parks and Wildlife, Kensington, Australia (Prince); Marine Turtle Conservation Threatened Species Unit, Department of Environment and Heritage Protection, Queensland, Australia (Bell); Integrated Marine Observing System (IMOS), University of Tasmania, Private Bag 110, Hobart, TAS 7001, Australia (Hoenner); Department of Environment and Heritage Protection, Brisbane, Australia (Limpus); Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil (Santos); and Natural Environments Program, Queensland Museum, South Brisbane, Australia (FitzSimmons). Damien Broderick is now at 247 Anne St, Brisbane, QLD 4000, Australia. Jeanne A. Mortimer is now at PO Box 1443, Victoria, Mahé, Seychelles. Scott Whiting is now at Marine Science Program, Department of Parks and Wildlife, 17 Dick Perry Ave, Kensington, WA 6151, Australia
| | - Xavier Hoenner
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES 29043-900, Brazil (Vargas); School of Biological Sciences, University of Sydney, Sydney, Australia (Vargas and Ho); National Research Council under contract to Marine Mammal & Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA (Jensen); Natural History Museum and Genetic Resources Bureau, Department of the Environment Pardisan Eco-Park, Hemmat Highway, Tehran, Iran (Mobaraki); Department of Zoology, The University of Queensland, St Lucia, Australia (Broderick); Department of Biology, University of Florida, Gainesville, FL (Mortimer); Department of Land Resource Management, Palmerston, Australia (Whiting); Biological Research and Education Consultants, Missoula, MT (Miller); Marine Science Program, Department of Parks and Wildlife, Kensington, Australia (Prince); Marine Turtle Conservation Threatened Species Unit, Department of Environment and Heritage Protection, Queensland, Australia (Bell); Integrated Marine Observing System (IMOS), University of Tasmania, Private Bag 110, Hobart, TAS 7001, Australia (Hoenner); Department of Environment and Heritage Protection, Brisbane, Australia (Limpus); Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil (Santos); and Natural Environments Program, Queensland Museum, South Brisbane, Australia (FitzSimmons). Damien Broderick is now at 247 Anne St, Brisbane, QLD 4000, Australia. Jeanne A. Mortimer is now at PO Box 1443, Victoria, Mahé, Seychelles. Scott Whiting is now at Marine Science Program, Department of Parks and Wildlife, 17 Dick Perry Ave, Kensington, WA 6151, Australia
| | - Colin J Limpus
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES 29043-900, Brazil (Vargas); School of Biological Sciences, University of Sydney, Sydney, Australia (Vargas and Ho); National Research Council under contract to Marine Mammal & Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA (Jensen); Natural History Museum and Genetic Resources Bureau, Department of the Environment Pardisan Eco-Park, Hemmat Highway, Tehran, Iran (Mobaraki); Department of Zoology, The University of Queensland, St Lucia, Australia (Broderick); Department of Biology, University of Florida, Gainesville, FL (Mortimer); Department of Land Resource Management, Palmerston, Australia (Whiting); Biological Research and Education Consultants, Missoula, MT (Miller); Marine Science Program, Department of Parks and Wildlife, Kensington, Australia (Prince); Marine Turtle Conservation Threatened Species Unit, Department of Environment and Heritage Protection, Queensland, Australia (Bell); Integrated Marine Observing System (IMOS), University of Tasmania, Private Bag 110, Hobart, TAS 7001, Australia (Hoenner); Department of Environment and Heritage Protection, Brisbane, Australia (Limpus); Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil (Santos); and Natural Environments Program, Queensland Museum, South Brisbane, Australia (FitzSimmons). Damien Broderick is now at 247 Anne St, Brisbane, QLD 4000, Australia. Jeanne A. Mortimer is now at PO Box 1443, Victoria, Mahé, Seychelles. Scott Whiting is now at Marine Science Program, Department of Parks and Wildlife, 17 Dick Perry Ave, Kensington, WA 6151, Australia
| | - Fabrício R Santos
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES 29043-900, Brazil (Vargas); School of Biological Sciences, University of Sydney, Sydney, Australia (Vargas and Ho); National Research Council under contract to Marine Mammal & Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA (Jensen); Natural History Museum and Genetic Resources Bureau, Department of the Environment Pardisan Eco-Park, Hemmat Highway, Tehran, Iran (Mobaraki); Department of Zoology, The University of Queensland, St Lucia, Australia (Broderick); Department of Biology, University of Florida, Gainesville, FL (Mortimer); Department of Land Resource Management, Palmerston, Australia (Whiting); Biological Research and Education Consultants, Missoula, MT (Miller); Marine Science Program, Department of Parks and Wildlife, Kensington, Australia (Prince); Marine Turtle Conservation Threatened Species Unit, Department of Environment and Heritage Protection, Queensland, Australia (Bell); Integrated Marine Observing System (IMOS), University of Tasmania, Private Bag 110, Hobart, TAS 7001, Australia (Hoenner); Department of Environment and Heritage Protection, Brisbane, Australia (Limpus); Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil (Santos); and Natural Environments Program, Queensland Museum, South Brisbane, Australia (FitzSimmons). Damien Broderick is now at 247 Anne St, Brisbane, QLD 4000, Australia. Jeanne A. Mortimer is now at PO Box 1443, Victoria, Mahé, Seychelles. Scott Whiting is now at Marine Science Program, Department of Parks and Wildlife, 17 Dick Perry Ave, Kensington, WA 6151, Australia
| | - Nancy N FitzSimmons
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES 29043-900, Brazil (Vargas); School of Biological Sciences, University of Sydney, Sydney, Australia (Vargas and Ho); National Research Council under contract to Marine Mammal & Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA (Jensen); Natural History Museum and Genetic Resources Bureau, Department of the Environment Pardisan Eco-Park, Hemmat Highway, Tehran, Iran (Mobaraki); Department of Zoology, The University of Queensland, St Lucia, Australia (Broderick); Department of Biology, University of Florida, Gainesville, FL (Mortimer); Department of Land Resource Management, Palmerston, Australia (Whiting); Biological Research and Education Consultants, Missoula, MT (Miller); Marine Science Program, Department of Parks and Wildlife, Kensington, Australia (Prince); Marine Turtle Conservation Threatened Species Unit, Department of Environment and Heritage Protection, Queensland, Australia (Bell); Integrated Marine Observing System (IMOS), University of Tasmania, Private Bag 110, Hobart, TAS 7001, Australia (Hoenner); Department of Environment and Heritage Protection, Brisbane, Australia (Limpus); Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil (Santos); and Natural Environments Program, Queensland Museum, South Brisbane, Australia (FitzSimmons). Damien Broderick is now at 247 Anne St, Brisbane, QLD 4000, Australia. Jeanne A. Mortimer is now at PO Box 1443, Victoria, Mahé, Seychelles. Scott Whiting is now at Marine Science Program, Department of Parks and Wildlife, 17 Dick Perry Ave, Kensington, WA 6151, Australia
| |
Collapse
|
188
|
Pacioni C, Hunt H, Allentoft ME, Vaughan TG, Wayne AF, Baynes A, Haouchar D, Dortch J, Bunce M. Genetic diversity loss in a biodiversity hotspot: ancient
DNA
quantifies genetic decline and former connectivity in a critically endangered marsupial. Mol Ecol 2015; 24:5813-28. [DOI: 10.1111/mec.13430] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 10/07/2015] [Accepted: 10/13/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Carlo Pacioni
- Ancient DNA Laboratory School of Veterinary and Life Sciences Murdoch University Murdoch WA 6150 Australia
| | - Helen Hunt
- Ancient DNA Laboratory School of Veterinary and Life Sciences Murdoch University Murdoch WA 6150 Australia
| | - Morten E. Allentoft
- Ancient DNA Laboratory School of Veterinary and Life Sciences Murdoch University Murdoch WA 6150 Australia
- Centre for GeoGenetics Natural History Museum University of Copenhagen Øster Voldgade 5‐7 1350 Copenhagen K Denmark
| | - Timothy G. Vaughan
- Department of Computer Science University of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | | | - Alexander Baynes
- Western Australian Museum Locked Bag 49 Welshpool DC WA 6986 Australia
| | - Dalal Haouchar
- Ancient DNA Laboratory School of Veterinary and Life Sciences Murdoch University Murdoch WA 6150 Australia
| | - Joe Dortch
- Archaeology M257 The University of Western Australia 35 Stirling Highway Nedlands WA 6009 Australia
| | - Michael Bunce
- Ancient DNA Laboratory School of Veterinary and Life Sciences Murdoch University Murdoch WA 6150 Australia
- Department of Environment and Agriculture Trace and Environmental DNA Laboratory Kent Street, Bentley Perth WA 6845 Australia
| |
Collapse
|
189
|
Vázquez-Miranda H, Barr KR, Farquhar CC, Zink RM. Fluctuating fire regimes and their historical effects on genetic variation in an endangered shrubland specialist. Ecol Evol 2015; 5:5487-98. [PMID: 27069600 PMCID: PMC4813106 DOI: 10.1002/ece3.1811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/03/2015] [Accepted: 10/05/2015] [Indexed: 11/15/2022] Open
Abstract
The Pleistocene was characterized by worldwide shifts in community compositions. Some of these shifts were a result of changes in fire regimes, which influenced the distribution of species belonging to fire‐dependent communities. We studied an endangered juniper–oak shrubland specialist, the black‐capped vireo (Vireo atricapilla). This species was locally extirpated in parts of Texas and Oklahoma by the end of the 1980s as a result of habitat change and loss, predation, brood parasitism, and anthropogenic fire suppression. We sequenced multiple nuclear loci and used coalescence methods to obtain a deeper understanding of historical population trends than that typically available from microsatellites or mtDNA. We compared our estimated population history, a long‐term history of the fire regime and ecological niche models representing the mid‐Holocene, last glacial maximum, and last interglacial. Our Bayesian skyline plots showed a pattern of historical population fluctuation that was consistent with changing fire regimes. Genetic data suggest that the species is genetically unstructured, and that the current population should be orders of magnitude larger than it is at present. We suggest that fire suppression and habitat loss are primary factors contributing to the recent decline of the BCVI, although the role of climate change since the last glacial maximum is unclear at present.
Collapse
Affiliation(s)
- Hernán Vázquez-Miranda
- Bell Museum and Department of Ecology, Evolution, and Behavior University of Minnesota St. Paul Minnesota 55108 USA
| | - Kelly R Barr
- Hopkins Marine Station Stanford University Pacific Grove California 93950 USA
| | - C Craig Farquhar
- Wildlife Division Texas Parks and Wildlife Department Austin Texas 78744 USA
| | - Robert M Zink
- Bell Museum and Department of Ecology, Evolution, and Behavior University of Minnesota St. Paul Minnesota 55108 USA
| |
Collapse
|
190
|
Afreen N, Naqvi IH, Broor S, Ahmed A, Parveen S. Phylogenetic and Molecular Clock Analysis of Dengue Serotype 1 and 3 from New Delhi, India. PLoS One 2015; 10:e0141628. [PMID: 26536458 PMCID: PMC4633233 DOI: 10.1371/journal.pone.0141628] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 10/01/2015] [Indexed: 11/21/2022] Open
Abstract
Dengue fever is the most prevalent arboviral disease in the tropical and sub-tropical regions of the world. The present report describes molecular detection and serotyping of dengue viruses in acute phase blood samples collected from New Delhi, India. Phylogenetic and molecular clock analysis of dengue virus serotype 1 and 3 strains were also investigated. Dengue virus infection was detected in 68.87% out of 604 samples tested by RT-PCR between 2011 & 2014. Dengue serotype 1 was detected in 25.48% samples, dengue serotype 2 in 79.56% samples and dengue serotype 3 in 11.29% samples. Dengue serotype 4 was not detected. Co-infection by more than one dengue serotype was detected in 18.26% samples. Envelope gene of 29 DENV-1 and 14 DENV-3 strains were sequenced in the study. All the DENV-1 strains grouped with the American African genotype. All DENV-3 strains were found to belong to Genotype III. Nucleotide substitution rates of dengue 1 and 3 viruses were determined in the study. Time to the most recent common ancestor (TMRCA) of dengue 1 viruses was determined to be 132 years. TMRCA of DENV-3 viruses was estimated to be 149 years. Bayesian skyline plots were constructed for Indian DENV-1 and 3 strains which showed a decrease in population size since 2005 in case of DENV- 1 strains while no change was observed in recent years in case of DENV-3 strains. The study also revealed a change in the dominating serotype in Delhi, India in recent years. The study will be helpful in formulating control strategies for the outbreaks. In addition, it will also assist in tracking the movement and evolution of this emerging virus.
Collapse
Affiliation(s)
- Nazia Afreen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Irshad H. Naqvi
- Dr. M.A. Ansari Health Centre, Jamia Millia Islamia, New Delhi, India
| | - Shobha Broor
- Department of Microbiology, Faculty of Medicine and Health Science, Shree Guru Gobind Singh Tricentenary University, Gurgaon, Haryana, India
| | - Anwar Ahmed
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
191
|
Kašparová E, Van de Putte AP, Marshall C, Janko K. Lifestyle and Ice: The Relationship between Ecological Specialization and Response to Pleistocene Climate Change. PLoS One 2015; 10:e0138766. [PMID: 26535569 PMCID: PMC4636791 DOI: 10.1371/journal.pone.0138766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 09/03/2015] [Indexed: 11/19/2022] Open
Abstract
Major climatic changes in the Pleistocene had significant effects on marine organisms and the environments in which they lived. The presence of divergent patterns of demographic history even among phylogenetically closely-related species sharing climatic changes raises questions as to the respective influence of species-specific traits on population structure. In this work we tested whether the lifestyle of Antarctic notothenioid benthic and pelagic fish species from the Southern Ocean influenced the concerted population response to Pleistocene climatic fluctuations. This was done by a comparative analysis of sequence variation at the cyt b and S7 loci in nine newly sequenced and four re-analysed species. We found that all species underwent more or less intensive changes in population size but we also found consistent differences between demographic histories of pelagic and benthic species. Contemporary pelagic populations are significantly more genetically diverse and bear traces of older demographic expansions than less diverse benthic species that show evidence of more recent population expansions. Our findings suggest that the lifestyles of different species have strong influences on their responses to the same environmental events. Our data, in conjunction with previous studies showing a constant diversification tempo of these species during the Pleistocene, support the hypothesis that Pleistocene glaciations had a smaller effect on pelagic species than on benthic species whose survival may have relied upon ephemeral refugia in shallow shelf waters. These findings suggest that the interaction between lifestyle and environmental changes should be considered in genetic analyses.
Collapse
Affiliation(s)
- Eva Kašparová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 27721 Libechov, Czech Republic
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Kvetna 8, 603 65, Brno, Czech Republic
- * E-mail: (EK); (KJ)
| | - Anton P. Van de Putte
- Laboratory of Biodiversity and Evolutionary Genomics, Katholieke Universiteit Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Craig Marshall
- Department of Biochemistry, and Genetics Otago, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Karel Janko
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 27721 Libechov, Czech Republic
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Kvetna 8, 603 65, Brno, Czech Republic
- Centre for Polar Ecology, University of South Bohemia in Ceské Budejovice, Na Zlate stoce 3, 370 05, Ceske Budejovice, Czech Republic
- Life Science Research Centre, Department of Biology and Ecology, Faculty of Natural Sciences, University of Ostrava, Chittussiho 10, 710 00 Silesian Ostrava, Czech Republic
- * E-mail: (EK); (KJ)
| |
Collapse
|
192
|
Liu R, Zheng XM, Zhou L, Zhou HF, Ge S. Population genetic structure of Oryza rufipogon and Oryza nivara: implications for the origin of O. nivara. Mol Ecol 2015; 24:5211-28. [PMID: 26340227 DOI: 10.1111/mec.13375] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 08/30/2015] [Accepted: 09/01/2015] [Indexed: 12/25/2022]
Abstract
Ecological speciation plays a primary role in driving species divergence and adaptation. Oryza rufipogon and Oryza nivara are two incipient species at the early stage of speciation with distinct differences in morphology, life history traits and habitat preference, and therefore provide a unique model for the study of ecological speciation. However, the population genetic structure of the ancestral O. rufipogon has been controversial despite substantial study, and the origin of the derivative O. nivara remains unclear. Here, based on sequences of 10 nuclear and two chloroplast loci from 26 wild populations across the entire geographic ranges of the two species, we conducted comprehensive analyses using population genetics, phylogeography and species distribution modelling (SDM) approaches. In addition to supporting the two previously reported major subdivisions, we detected four genetically distinct groups within O. rufipogon and found no correlation between the genetic groups and either species identity or geographical regions. The SDM clearly showed substantial change in the distribution range of O. rufipogon in history, demonstrating that the repeated extinction and colonization of local populations due to multiple glacial-interglacial cycles during the Quaternary was most likely the main factor shaping the confounding population genetic structure of O. rufipogon. Moreover, we found significant differences between the two species in climate preferences, suggestive of an important role for climatic factors in the adaptation, persistence and expansion of O. nivara. Finally, based on the genetic pattern and dynamics of the O. nivara populations, we hypothesize that O. nivara might have independently originated multiple times from different O. rufipogon populations.
Collapse
Affiliation(s)
- Rong Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Ming Zheng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Lian Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hai-Fei Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
193
|
Calvo M, Alda F, Oliverio M, Templado J, Machordom A. Surviving the Messinian Salinity Crisis? Divergence patterns in the genus Dendropoma (Gastropoda: Vermetidae) in the Mediterranean Sea. Mol Phylogenet Evol 2015; 91:17-26. [DOI: 10.1016/j.ympev.2015.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 03/03/2015] [Accepted: 05/07/2015] [Indexed: 11/16/2022]
|
194
|
Lv FH, Peng WF, Yang J, Zhao YX, Li WR, Liu MJ, Ma YH, Zhao QJ, Yang GL, Wang F, Li JQ, Liu YG, Shen ZQ, Zhao SG, Hehua E, Gorkhali NA, Farhad Vahidi SM, Muladno M, Naqvi AN, Tabell J, Iso-Touru T, Bruford MW, Kantanen J, Han JL, Li MH. Mitogenomic Meta-Analysis Identifies Two Phases of Migration in the History of Eastern Eurasian Sheep. Mol Biol Evol 2015; 32:2515-33. [PMID: 26085518 PMCID: PMC4576706 DOI: 10.1093/molbev/msv139] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Despite much attention, history of sheep (Ovis aries) evolution, including its dating, demographic trajectory and geographic spread, remains controversial. To address these questions, we generated 45 complete and 875 partial mitogenomic sequences, and performed a meta-analysis of these and published ovine mitochondrial DNA sequences (n = 3,229) across Eurasia. We inferred that O. orientalis and O. musimon share the most recent female ancestor with O. aries at approximately 0.790 Ma (95% CI: 0.637-0.934 Ma) during the Middle Pleistocene, substantially predating the domestication event (∼8-11 ka). By reconstructing historical variations in effective population size, we found evidence of a rapid population increase approximately 20-60 ka, immediately before the Last Glacial Maximum. Analyses of lineage expansions showed two sheep migratory waves at approximately 4.5-6.8 ka (lineages A and B: ∼6.4-6.8 ka; C: ∼4.5 ka) across eastern Eurasia, which could have been influenced by prehistoric West-East commercial trade and deliberate mating of domestic and wild sheep, respectively. A continent-scale examination of lineage diversity and approximate Bayesian computation analyses indicated that the Mongolian Plateau region was a secondary center of dispersal, acting as a "transportation hub" in eastern Eurasia: Sheep from the Middle Eastern domestication center were inferred to have migrated through the Caucasus and Central Asia, and arrived in North and Southwest China (lineages A, B, and C) and the Indian subcontinent (lineages B and C) through this region. Our results provide new insights into sheep domestication, particularly with respect to origins and migrations to and from eastern Eurasia.
Collapse
Affiliation(s)
- Feng-Hua Lv
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Wei-Feng Peng
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Ji Yang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yong-Xin Zhao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Wen-Rong Li
- Animal Biotechnology Research Institute, Xinjiang Academy of Animal Science, Urumqi, China
| | - Ming-Jun Liu
- Animal Biotechnology Research Institute, Xinjiang Academy of Animal Science, Urumqi, China
| | - Yue-Hui Ma
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Qian-Jun Zhao
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Guang-Li Yang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China College of Life Sciences, Shangqiu Normal University, Shangqiu, China
| | - Feng Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Jin-Quan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yong-Gang Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Zhi-Qiang Shen
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou, China
| | - Sheng-Guo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Eer Hehua
- Grass-Feeding Livestock Engineering Technology Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Neena A Gorkhali
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China Animal Breeding Division, National Animal Science Institute, Nepal Agriculture Research Council, Kathmandu, Nepal
| | - S M Farhad Vahidi
- Agricultural Biotechnology Research Institute of Iran-North Branch (ABRII), Rasht, Iran
| | - Muhammad Muladno
- Department of Animal Technology and Production Science, Bogor Agricultural University, Darmaga Campus, Bogor, Indonesia
| | - Arifa N Naqvi
- Faculty of Life Sciences, Karakoram International University, Gilgit, Baltistan, Pakistan
| | - Jonna Tabell
- Green Technology, Natural Resources Institute Finland (LUKE), Jokioinen, Finland
| | - Terhi Iso-Touru
- Green Technology, Natural Resources Institute Finland (LUKE), Jokioinen, Finland
| | - Michael W Bruford
- School of Biosciences and Sustainable Places Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Juha Kantanen
- Green Technology, Natural Resources Institute Finland (LUKE), Jokioinen, Finland Department of Biology, University of Eastern Finland, Kuopio, Finland
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Meng-Hua Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
195
|
Hope AG, Waltari E, Malaney JL, Payer DC, Cook JA, Talbot SL. Arctic biodiversity: increasing richness accompanies shrinking refugia for a cold-associated tundra fauna. Ecosphere 2015. [DOI: 10.1890/es15-00104.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
196
|
Ho SYW, Tong KJ, Foster CSP, Ritchie AM, Lo N, Crisp MD. Biogeographic calibrations for the molecular clock. Biol Lett 2015; 11:20150194. [PMID: 26333662 PMCID: PMC4614420 DOI: 10.1098/rsbl.2015.0194] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/22/2015] [Indexed: 11/12/2022] Open
Abstract
Molecular estimates of evolutionary timescales have an important role in a range of biological studies. Such estimates can be made using methods based on molecular clocks, including models that are able to account for rate variation across lineages. All clock models share a dependence on calibrations, which enable estimates to be given in absolute time units. There are many available methods for incorporating fossil calibrations, but geological and climatic data can also provide useful calibrations for molecular clocks. However, a number of strong assumptions need to be made when using these biogeographic calibrations, leading to wide variation in their reliability and precision. In this review, we describe the nature of biogeographic calibrations and the assumptions that they involve. We present an overview of the different geological and climatic events that can provide informative calibrations, and explain how such temporal information can be incorporated into dating analyses.
Collapse
Affiliation(s)
- Simon Y W Ho
- School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - K Jun Tong
- School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Charles S P Foster
- School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew M Ritchie
- School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Nathan Lo
- School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Michael D Crisp
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
197
|
Ait Kaci Azzou S, Larribe F, Froda S. A new method for estimating the demographic history from DNA sequences: an importance sampling approach. Front Genet 2015; 6:259. [PMID: 26300910 PMCID: PMC4528260 DOI: 10.3389/fgene.2015.00259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/20/2015] [Indexed: 11/13/2022] Open
Abstract
The effective population size over time (demographic history) can be retraced from a sample of contemporary DNA sequences. In this paper, we propose a novel methodology based on importance sampling (IS) for exploring such demographic histories. Our starting point is the generalized skyline plot with the main difference being that our procedure, skywis plot, uses a large number of genealogies. The information provided by these genealogies is combined according to the IS weights. Thus, we compute a weighted average of the effective population sizes on specific time intervals (epochs), where the genealogies that agree more with the data are given more weight. We illustrate by a simulation study that the skywis plot correctly reconstructs the recent demographic history under the scenarios most commonly considered in the literature. In particular, our method can capture a change point in the effective population size, and its overall performance is comparable with the one of the bayesian skyline plot. We also introduce the case of serially sampled sequences and illustrate that it is possible to improve the performance of the skywis plot in the case of an exponential expansion of the effective population size.
Collapse
Affiliation(s)
- Sadoune Ait Kaci Azzou
- Département de Mathématiques, Équipe de Modélisation Stochastique Appliquée (EMOSTA), Université du Québec à Montréal Montréal, QC, Canada
| | - Fabrice Larribe
- Département de Mathématiques, Équipe de Modélisation Stochastique Appliquée (EMOSTA), Université du Québec à Montréal Montréal, QC, Canada
| | - Sorana Froda
- Département de Mathématiques, Équipe de Modélisation Stochastique Appliquée (EMOSTA), Université du Québec à Montréal Montréal, QC, Canada
| |
Collapse
|
198
|
Demographic History of Indigenous Populations in Mesoamerica Based on mtDNA Sequence Data. PLoS One 2015; 10:e0131791. [PMID: 26292226 PMCID: PMC4546282 DOI: 10.1371/journal.pone.0131791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/08/2015] [Indexed: 11/19/2022] Open
Abstract
The genetic characterization of Native American groups provides insights into their history and demographic events. We sequenced the mitochondrial D-loop region (control region) of 520 samples from eight Mexican indigenous groups. In addition to an analysis of the genetic diversity, structure and genetic relationship between 28 Native American populations, we applied Bayesian skyline methodology for a deeper insight into the history of Mesoamerica. AMOVA tests applying cultural, linguistic and geographic criteria were performed. MDS plots showed a central cluster of Oaxaca and Maya populations, whereas those from the North and West were located on the periphery. Demographic reconstruction indicates higher values of the effective number of breeding females (Nef) in Central Mesoamerica during the Preclassic period, whereas this pattern moves toward the Classic period for groups in the North and West. Conversely, Nef minimum values are distributed either in the Lithic period (i.e. founder effects) or in recent periods (i.e. population declines). The Mesomerican regions showed differences in population fluctuation as indicated by the maximum Inter-Generational Rate (IGRmax): i) Center-South from the lithic period until the Preclassic; ii) West from the beginning of the Preclassic period until early Classic; iii) North characterized by a wide range of temporal variation from the Lithic to the Preclassic. Our findings are consistent with the genetic variations observed between central, South and Southeast Mesoamerica and the North-West region that are related to differences in genetic drift, structure, and temporal survival strategies (agriculture versus hunter-gathering, respectively). Interestingly, although the European contact had a major negative demographic impact, we detect a previous decline in Mesoamerica that had begun a few hundred years before.
Collapse
|
199
|
Brunes TO, Thomé MTC, Alexandrino J, Haddad CFB, Sequeira F. Ancient divergence and recent population expansion in a leaf frog endemic to the southern Brazilian Atlantic forest. ORG DIVERS EVOL 2015. [DOI: 10.1007/s13127-015-0228-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
200
|
Moseley MA, Cox CL, Streicher JW, Roelke CE, Chippindale PT. Phylogeography and lineage-specific patterns of genetic diversity and molecular evolution in a group of North American skinks. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Matthew A. Moseley
- Department of Biology; The University of Texas at Arlington; Arlington TX 76010 USA
| | - Christian L. Cox
- Department of Biology; The University of Texas at Arlington; Arlington TX 76010 USA
- Department of Biology; The University of Virginia; Charlottesville VA 22903 USA
- Department of Biology; Georgia Southern University; Statesboro GA USA
| | - Jeffrey W. Streicher
- Department of Biology; The University of Texas at Arlington; Arlington TX 76010 USA
- Department of Life Sciences; The Natural History Museum; London SW7 5BD UK
| | - Corey E. Roelke
- Department of Biology; The University of Texas at Arlington; Arlington TX 76010 USA
| | - Paul T. Chippindale
- Department of Biology; The University of Texas at Arlington; Arlington TX 76010 USA
| |
Collapse
|