151
|
Krolevets TS, Livzan MA, Mozgovoy SI. The Role of the Microbiome and Intestinal Mucosal Barrier in the Development and Progression of Non-Alcoholic Fatty Liver Disease. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2020; 30:42-48. [DOI: 10.22416/1382-4376-2020-30-5-42-48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Aim. To review available data on the role of the microbiome and intestinal mucosal barrier in the development and progression of non-alcoholic fatty liver disease (NAFLD).Key points. The role of the human microbiome in the development and progression of NAFLD is associated with its effects on the risk factors (obesity, insulin resistance, type 2 diabetes), permeability of the intestinal barrier and absorption of such substances as short-chain fatty acids, bile acids, choline and endogenous ethanol. Liver fibrosis constitutes the leading factor determining the prognosis of patients in NAFLD, including cases associated with cardiovascular complications. Changes in the microbiome composition were demonstrated for various degrees of fibrosis in NAFLD.Conclusion. The results of modern studies confirm the formation of a new concept in the pathophysiology of NAFLD, which encourages the development of new therapeutic strategies.
Collapse
|
152
|
Woldemeskel BA, Kwaa AK, Garliss CC, Laeyendecker O, Ray SC, Blankson JN. Healthy donor T cell responses to common cold coronaviruses and SARS-CoV-2. J Clin Invest 2020; 130:6631-6638. [PMID: 32966269 PMCID: PMC7685719 DOI: 10.1172/jci143120] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUNDT cell responses to the common cold coronaviruses have not been well characterized. Preexisting T cell immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been reported, and a recent study suggested that this immunity was due to cross-recognition of the novel coronavirus by T cells specific for the common cold coronaviruses.METHODSWe used the enzyme-linked immunospot (ELISPOT) assay to characterize the T cell responses against peptide pools derived from the spike protein of 3 common cold coronaviruses (HCoV-229E, HCoV-NL63, and HCoV-OC43) and SARS-CoV-2 in 21 healthy donors (HDs) who were seronegative for SARS-CoV-2 and had no known exposure to the virus. An in vitro expansion culture assay was also used to analyze memory T cell responses.RESULTSWe found responses to the spike protein of the 3 common cold coronaviruses in many of the donors. We then focused on HCoV-NL63 and detected broad T cell responses to the spike protein and identified 22 targeted peptides. Interestingly, only 1 study participant had a significant response to SARS-CoV-2 spike or nucleocapsid protein in the ELISPOT assay. In vitro expansion studies suggested that T cells specific for the HCoV-NL63 spike protein in this individual could also recognize SARS-CoV-2 spike protein peptide pools.CONCLUSIONHDs have circulating T cells specific for the spike proteins of HCoV-NL63, HCoV-229E, and HCoV-OC43. T cell responses to SARS-CoV-2 spike and nucleocapsid proteins were present in only 1 participant and were potentially the result of cross-recognition by T cells specific for the common cold coronaviruses. Further studies are needed to determine whether this cross-recognition influences coronavirus disease 2019 (COVID-19) outcomes.
Collapse
Affiliation(s)
- Bezawit A. Woldemeskel
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Abena K. Kwaa
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Caroline C. Garliss
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Oliver Laeyendecker
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Baltimore, Maryland, USA
| | - Stuart C. Ray
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Joel N. Blankson
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
153
|
Jia X, Pang X, Yuan Y, Gao Q, Lu M, Zhang G, Dai F, Zhao T. Unpredictable recombination of PB transposon in Silkworm: a potential risk. Mol Genet Genomics 2020; 296:271-277. [PMID: 33201294 DOI: 10.1007/s00438-020-01743-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/27/2020] [Indexed: 12/26/2022]
Abstract
The piggyBac (PB) transposon is the most widely used vector for generating transgenic silkworms. The stability of the PB transposon in the receptor is a serious concern that requires attention because of biosafety concerns. In this study, we found that the transgene silkworm developed loss of reporter gene traits. To further investigate the regularity, we traced the genes and traits of this silkworm. After successful alteration of the silkworm genome with the MASP1 gene (named red-eyed silkworm; RES), silkworm individuals with lost reporter genes were found after long-term transgenerational breeding and were designated as the white-eyed silkworm (WES). PCR amplification indicated that exogenous genes had been lost in the WES. Testing was conducted on the PB transposons, and the left arm (L arm) did not exist; however, the right arm (R arm) was preserved. Amino acid analysis showed that the amino acid content of the WES changed versus the common silkworm and RES. These results indicate that the migration of PB transposons in Bombyx mori does occur and is unpredictable. This is because the silkworm genome contains multiple PB-like sequences that might influence the genetic stability of transgenic lines. When using PB transposons as a transgene vector, it is necessary to fully evaluate and take necessary measures to prevent its re-migration in the recipient organism. Further experiments are needed if we want to clarify the regularity of the retransposition phenomenon and the direct and clear association with similar sequences of transposons.
Collapse
Affiliation(s)
- Xuehua Jia
- State Key Laboratory of Silkworm Genome Biology, College of Textile and Garment, Southwest University, No. 2 Tiansheng Street, Beibei, Chongqing, 400715, China.,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Xiaoyu Pang
- State Key Laboratory of Silkworm Genome Biology, College of Textile and Garment, Southwest University, No. 2 Tiansheng Street, Beibei, Chongqing, 400715, China.,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Yajie Yuan
- State Key Laboratory of Silkworm Genome Biology, College of Textile and Garment, Southwest University, No. 2 Tiansheng Street, Beibei, Chongqing, 400715, China
| | - Qiang Gao
- State Key Laboratory of Silkworm Genome Biology, College of Textile and Garment, Southwest University, No. 2 Tiansheng Street, Beibei, Chongqing, 400715, China
| | - Ming Lu
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Guangxian Zhang
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - FangYing Dai
- State Key Laboratory of Silkworm Genome Biology, College of Textile and Garment, Southwest University, No. 2 Tiansheng Street, Beibei, Chongqing, 400715, China.,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China.,Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Tianfu Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Textile and Garment, Southwest University, No. 2 Tiansheng Street, Beibei, Chongqing, 400715, China. .,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China.
| |
Collapse
|
154
|
Wickham SFJ, Auer A, Min J, Ponnuswamy N, Woehrstein JB, Schueder F, Strauss MT, Schnitzbauer J, Nathwani B, Zhao Z, Perrault SD, Hahn J, Lee S, Bastings MM, Helmig SW, Kodal AL, Yin P, Jungmann R, Shih WM. Complex multicomponent patterns rendered on a 3D DNA-barrel pegboard. Nat Commun 2020; 11:5768. [PMID: 33188187 PMCID: PMC7666213 DOI: 10.1038/s41467-020-18910-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022] Open
Abstract
DNA origami, in which a long scaffold strand is assembled with a many short staple strands into parallel arrays of double helices, has proven a powerful method for custom nanofabrication. However, currently the design and optimization of custom 3D DNA-origami shapes is a barrier to rapid application to new areas. Here we introduce a modular barrel architecture, and demonstrate hierarchical assembly of a 100 megadalton DNA-origami barrel of ~90 nm diameter and ~250 nm height, that provides a rhombic-lattice canvas of a thousand pixels each, with pitch of ~8 nm, on its inner and outer surfaces. Complex patterns rendered on these surfaces were resolved using up to twelve rounds of Exchange-PAINT super-resolution microscopy. We envision these structures as versatile nanoscale pegboards for applications requiring complex 3D arrangements of matter, which will serve to promote rapid uptake of this technology in diverse fields beyond specialist groups working in DNA nanotechnology. The design and optimisation of 3D DNA-origami can be a barrier to rapid application. Here the authors design barrel structure of stacked 2D double helical rings with complex surface patterns.
Collapse
Affiliation(s)
- Shelley F J Wickham
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, 02138, USA.,School of Chemistry, The University of Sydney, Sydney, NSW, Australia.,School of Physics, The University of Sydney, Sydney, NSW, Australia.,University of Sydney Nanoscience Institute, Sydney, NSW, Australia
| | - Alexander Auer
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jianghong Min
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, 02138, USA
| | - Nandhini Ponnuswamy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, 02138, USA
| | - Johannes B Woehrstein
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Florian Schueder
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maximilian T Strauss
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jörg Schnitzbauer
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Bhavik Nathwani
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, 02138, USA
| | - Zhao Zhao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, 02138, USA
| | - Steven D Perrault
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, 02138, USA
| | - Jaeseung Hahn
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, 02138, USA
| | - Seungwoo Lee
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, 02138, USA
| | - Maartje M Bastings
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, 02138, USA
| | - Sarah W Helmig
- Danish National Research Foundation: Centre for DNA Nanotechnology at Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, DK-8000, Aarhus, Denmark
| | - Anne Louise Kodal
- Danish National Research Foundation: Centre for DNA Nanotechnology at Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, DK-8000, Aarhus, Denmark
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, 02138, USA.,Department of Systems Biology, Harvard University, Boston, MA, 02115, USA
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany. .,Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - William M Shih
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA. .,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA. .,Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, 02138, USA.
| |
Collapse
|
155
|
Kricheldorff C. [Health care and care for the elderly in the future : Insights from the corona pandemic]. Z Gerontol Geriatr 2020; 53:742-748. [PMID: 33185722 PMCID: PMC7662728 DOI: 10.1007/s00391-020-01809-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/13/2020] [Indexed: 12/28/2022]
Abstract
Gesundheitsversorgung und die Pflege alter Menschen sind durch die Corona-Pandemie massiv unter Druck geraten. Dabei zeigen sich strukturelle Defizite und Schwachstellen, die nicht wirklich neu sind, durch Covid-19 aber wieder ins Blickfeld rücken und an Aktualität gewinnen. Im Versorgungssystem stellen sich angesichts der aktuellen Herausforderungen neue Fragen und in der Sicherung der Pflege alter Menschen werden Lücken und Herausforderungen sichtbar – teilweise spezifisch auf einen Bereich bezogen, zum größeren Teil aber sektorenübergreifend. Auf der Basis nationaler und internationaler einschlägiger Studien und Veröffentlichungen und explizit aus der Perspektive der Sozialen Gerontologie wird in diesem Beitrag schwerpunktmäßig auf die aktuelle Situation in der Pflege in Deutschland in Zeiten des SARS-CoV-2-Virus fokussiert. Aus dieser Situationsanalyse werden mögliche Denkanstöße abgeleitet und es wird skizziert, wie eine Neuorientierung mit Blick in die Zukunft aussehen und welcher mögliche Erkenntnisgewinn aus der Corona-Pandemie gezogen werden kann.
Collapse
|
156
|
Bidirectional, non-necrotizing glomerular crescents are the critical pathology in X-linked Alport syndrome mouse model harboring nonsense mutation of human COL4A5. Sci Rep 2020; 10:18891. [PMID: 33144651 PMCID: PMC7642296 DOI: 10.1038/s41598-020-76068-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
X-linked Alport syndrome (XLAS) is a progressive kidney disease caused by genetic abnormalities of COL4A5. Lack of collagen IV α5 chain staining and “basket-weave” by electron microscopy (EM) in glomerular basement membrane (GBM) are its typical pathology. However, the causal relationship between GBM defects and progressive nephropathy is unknown. We analyzed sequential pathology in a mouse model of XLAS harboring a human nonsense mutation of COL4A5. In mutant mice, nephropathy commenced from focal GBM irregularity by EM at 6 weeks of age, prior to exclusive crescents at 13 weeks of age. Low-vacuum scanning EM demonstrated substantial ragged features in GBM, and crescents were closely associated with fibrinoid exudate, despite lack of GBM break and podocyte depletion at 13 weeks of age. Crescents were derived from two sites by different cellular components. One was CD44 + cells, often with fibrinoid exudate in the urinary space, and the other was accumulation of α-SMA + cells in the thickened Bowman’s capsule. These changes finally coalesced, leading to global obliteration. In conclusion, vulnerability of glomerular and capsular barriers to the structural defect in collagen IV may cause non-necrotizing crescents via activation of PECs and migration of interstitial fibroblasts, promoting kidney disease in this model.
Collapse
|
157
|
Kumar A, Faiq MA, Pareek V, Raza K, Narayan RK, Prasoon P, Kumar P, Kulandhasamy M, Kumari C, Kant K, Singh HN, Qadri R, Pandey SN, Kumar S. Relevance of SARS-CoV-2 related factors ACE2 and TMPRSS2 expressions in gastrointestinal tissue with pathogenesis of digestive symptoms, diabetes-associated mortality, and disease recurrence in COVID-19 patients. Med Hypotheses 2020; 144:110271. [PMID: 33254575 PMCID: PMC7487155 DOI: 10.1016/j.mehy.2020.110271] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/21/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023]
Abstract
COVID-19 is caused by a new strain of coronavirus called SARS-coronavirus-2 (SARS-CoV-2), which is a positive sense single strand RNA virus. In humans, it binds to angiotensin converting enzyme 2 (ACE2) with the help a structural protein on its surface called the S-spike. Further, cleavage of the viral spike protein (S) by the proteases like transmembrane serine protease 2 (TMPRSS2) or Cathepsin L (CTSL) is essential to effectuate host cell membrane fusion and virus infectivity. COVID-19 poses intriguing issues with imperative relevance to clinicians. The pathogenesis of GI symptoms, diabetes-associated mortality, and disease recurrence in COVID-19 are of particular relevance because they cannot be sufficiently explained from the existing knowledge of the viral diseases. Tissue specific variations of SARS-CoV-2 cell entry related receptors expression in healthy individuals can help in understanding the pathophysiological basis the aforementioned collection of symptoms. ACE2 mediated dysregulation of sodium dependent glucose transporter (SGLT1 or SLC5A1) in the intestinal epithelium also links it to the pathogenesis of diabetes mellitus which can be a possible reason for the associated mortality in COVID-19 patients with diabetes. High expression of ACE2 in mucosal cells of the intestine and GB make these organs potential sites for the virus entry and replication. Continued replication of the virus at these ACE2 enriched sites may be a basis for the disease recurrence reported in some, thought to be cured, patients. Based on the human tissue specific distribution of SARS-CoV-2 cell entry factors ACE2 and TMPRSS2 and other supportive evidence from the literature, we hypothesize that SARS-CoV-2 host cell entry receptor-ACE2 based mechanism in GI tissue may be involved in COVID-19 (i) in the pathogenesis of digestive symptoms, (ii) in increased diabetic complications, (iii) in disease recurrence.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Patna, India.
| | - Muneeb A Faiq
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; New York University (NYU) Langone Health Center, NYU Robert I Grossman School of Medicine, New York, NY, USA
| | - Vikas Pareek
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; National Brain Research Center, Manesar, Haryana, India
| | - Khursheed Raza
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Department of Anatomy, All India Institute of Medical Sciences, Deoghar, India
| | - Ravi K Narayan
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Patna, India
| | - Pranav Prasoon
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Pittsburgh Center for Pain Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pavan Kumar
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Department of Pediatrics, Medical University of South Carolina, Charleston, USA
| | - Maheswari Kulandhasamy
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Department of Biochemistry, Maulana Azad Medical College (MAMC), New Delhi, India
| | - Chiman Kumari
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Department of Anatomy, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Kamla Kant
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Bathinda, India
| | - Himanshu N Singh
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; TAGC-INSERM, U1090, Aix Marseille University, Marseille, France
| | - Rizwana Qadri
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Neuro-oncology Laboratory, Rockefeller University, New York, NY, USA
| | - Sada N Pandey
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Department of Zoology, Banaras Hindu University (BHU), Varanasi, India
| | - Santosh Kumar
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India; Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
158
|
Zheng HC, Wang YA, Liu ZR, Li YL, Kong JW, Ge DY, Peng GY. Consumption of Lamb Meat or Basa Fish Shapes the Gut Microbiota and Aggravates Pulmonary Inflammation in Asthmatic Mice. J Asthma Allergy 2020; 13:509-520. [PMID: 33116659 PMCID: PMC7585944 DOI: 10.2147/jaa.s266584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
Objective In China, lamb and fish are well-known triggers for an asthma attack. Our investigation aims at assessing whether the long-term intake of lamb meat or Basa fish would aggravate pulmonary inflammation as well as exploring changes in the intestinal microbiota and immune cells in asthmatic mice. Materials and Methods The murine asthmatic model was established by intraperitoneal injection of ovalbumin (OVA) plus aluminum on day 0 and 14 and nebulization of OVA from day 21 to 27. Lamb meat or fish was administered to asthmatic mice by oral gavage from day 0 to 27. Results Our results showed that long-term consumption of lamb meat or Basa fish in asthmatic mice increased the number of inflammatory cells in bronchoalveolar lavage fluid (BALF), enhanced levels of IL-5, IL-13 in BALF and total IgE in serum, aggravated pulmonary inflammatory cell infiltration and mucus secretion. Long-term oral lamb enhanced the proportion of type 2 innate lymphoid cells (ILC2) from small intestine while it inhibited that of Treg from lung in asthmatic mice. Oral fish showed no remarkable effect on that of ILC2 from lung and small intestine but inhibited that of intestinal Treg in asthmatic mice. What’s more, the chao-1 and observed species richness as well as PD whole tree diversity increased in asthmatic mice while these increments were inhibited after lamb treatment. PCA analysis indicated that there were significant differences in the bacterial community composition after lamb or fish treatment in asthmatic mice. Both lamb and fish treatment enhanced the abundance of colonic Alistipes in asthmatic mice. Conclusion Collectively, long-term intake of lamb or fish shapes colonic bacterial communities and aggravates pulmonary inflammation in asthmatic mice, which provides reasonable food guidance for asthmatic patients.
Collapse
Affiliation(s)
- Hao-Cheng Zheng
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Yong-An Wang
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Zi-Rui Liu
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Ya-Lan Li
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Jing-Wei Kong
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Dong-Yu Ge
- Experimental Teaching Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Gui-Ying Peng
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| |
Collapse
|
159
|
Kaur A, Taneja M, Tyagi S, Sharma A, Singh K, Upadhyay SK. Genome-wide characterization and expression analysis suggested diverse functions of the mechanosensitive channel of small conductance-like (MSL) genes in cereal crops. Sci Rep 2020; 10:16583. [PMID: 33024170 PMCID: PMC7538590 DOI: 10.1038/s41598-020-73627-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/21/2020] [Indexed: 11/23/2022] Open
Abstract
Mechanosensitive ion channels are pore-forming transmembrane proteins that allow ions to move down their electrochemical gradient in response to mechanical stimuli. They participate in many plant developmental processes including the maintenance of plastid shape, pollen tube growth, etc. Herein, a total of 11, 10, 6, 30, 9, and 8 MSL genes were identified in Aegilops tauschii, Hordeum vulgare, Sorghum bicolor, Triticum aestivum, Triticum urartu, and Zea mays, respectively. These genes were located on various chromosomes of their respective cereal, while MSLs of T. urartu were found on scaffolds. The phylogenetic analysis, subcellular localization, and sequence homology suggested clustering of MSLs into two classes. These genes consisted of cis-regulatory elements related to growth and development, responsive to light, hormone, and stress. Differential expression of various MSL genes in tissue developmental stages and stress conditions revealed their precise role in development and stress responses. Altered expression during CaCl2 stress suggested their role in Ca2+ homeostasis and signaling. The co-expression analysis suggested their interactions with other genes involved in growth, defense responses etc. A comparative expression profiling of paralogous genes revealed either retention of function or pseudo-functionalization. The present study unfolded various characteristics of MSLs in cereals, which will facilitate their in-depth functional characterization in future studies.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Mehak Taneja
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Shivi Tyagi
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Alok Sharma
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | | |
Collapse
|
160
|
Brioschi S, d'Errico P, Amann LS, Janova H, Wojcik SM, Meyer-Luehmann M, Rajendran L, Wieghofer P, Paolicelli RC, Biber K. Detection of Synaptic Proteins in Microglia by Flow Cytometry. Front Mol Neurosci 2020; 13:149. [PMID: 33132837 PMCID: PMC7550663 DOI: 10.3389/fnmol.2020.00149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
A growing body of evidence indicates that microglia actively remove synapses in vivo, thereby playing a key role in synaptic refinement and modulation of brain connectivity. This phenomenon was mainly investigated in immunofluorescence staining and confocal microscopy. However, a quantification of synaptic material in microglia using these techniques is extremely time-consuming and labor-intensive. To address this issue, we aimed to quantify synaptic proteins in microglia using flow cytometry. With this approach, we first showed that microglia from the healthy adult mouse brain contain a detectable level of VGLUT1 protein. Next, we found more than two-fold increased VGLUT1 immunoreactivity in microglia from the developing brain (P15) as compared to adult microglia. These data indicate that microglia-mediated synaptic pruning mostly occurs during the brain developmental period. We then quantified the VGLUT1 staining in microglia in two transgenic models characterized by pathological microglia-mediated synaptic pruning. In the 5xFAD mouse model of Alzheimer's disease (AD) microglia exhibited a significant increase in VGLUT1 immunoreactivity before the onset of amyloid pathology. Moreover, conditional deletion of TDP-43 in microglia, which causes a hyper-phagocytic phenotype associated with synaptic loss, also resulted in increased VGLUT1 immunoreactivity within microglia. This work provides a quantitative assessment of synaptic proteins in microglia, under homeostasis, and in mouse models of disease.
Collapse
Affiliation(s)
- Simone Brioschi
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Department of Psychiatry, University of Freiburg Medical Center, Freiburg, Germany
| | - Paolo d'Errico
- Department of Neurology, University of Freiburg Medical Center, Freiburg, Germany
| | - Lukas S Amann
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Institute of Neuropathology, University of Freiburg Medical Center, Freiburg, Germany
| | - Hana Janova
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Sonja M Wojcik
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | - Lawrence Rajendran
- Institute for Regenerative Medicine, University of Zürich, Zürich, Switzerland
| | | | - Rosa C Paolicelli
- Institute for Regenerative Medicine, University of Zürich, Zürich, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Knut Biber
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
161
|
Yuan P, Hu X, Zhou Q. The nanomaterial-induced bystander effects reprogrammed macrophage immune function and metabolic profile. Nanotoxicology 2020; 14:1137-1155. [PMID: 32916084 DOI: 10.1080/17435390.2020.1817598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bystander effects in biological systems are the responses shown by nontargeted neighboring cells, and critical to the bio-nano interface interactions. In addition to direct effects, bystander effects also determine the design, applications and safety of nanomaterials, although the related information of nanomaterial-induced bystander effects remain largely unknown. A coculture system of A549 and THP-1 was established to mimic the lung microenvironment to study the bystander effects of WS2 nanosheets (representative transition-metal dichalcogenide nanosheets) on microenvironment macrophages during the inhalation exposure or the nanomaterial biomedical application in the lung. Lung cells exposed to WS2 nanosheet resulted in an increase in reactive oxygen species and the depolarization of mitochondrial membrane potential in neighboring macrophages. Bystander exposure also induced macrophage polarization toward the anti-inflammatory M2 phenotype, which is adverse to disease therapy. Metabolomics showed that WS2 nanosheets disturbed the energy metabolism and amino acid metabolism of macrophages, consistent with the metabolic characteristics of M2 macrophages. Nitric oxide-transforming growth factor-β1 played an important mediator in the bystander effects. Importantly, WS2 nanosheet bystander exposure affected macrophage phagocytosis and migration and altered the macrophage immune response to endotoxin. This study improves the current understanding of bio-nano interactions and highlights the importance of neighboring cell responses, allowing us to use the maximum benefits of nanomaterials while limiting their adverse bystander effects.
Collapse
Affiliation(s)
- Peng Yuan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, China.,School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
162
|
Mamenko T, Kots S. Lipid peroxidation of cell membranes in the formation and regulation of plant protective reactions. UKRAINIAN BOTANICAL JOURNAL 2020. [DOI: 10.15407/ukrbotj77.04.331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
163
|
Kim KS, Jin IS, Park SH, Lim SJ, Jung JW. Methylammonium Iodide-Mediated Controlled Crystal Growth of CsPbI 2Br Films for Efficient and Stable All-Inorganic Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36228-36236. [PMID: 32692148 DOI: 10.1021/acsami.0c11047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A high-quality perovskite film is a key aspect contributing to high photovoltaic performance of all-inorganic perovskite solar cells. We herein demonstrate that the addition of methylammonium iodide (MAI) influences effectively both the tailored film morphology and precise crystal growth to construct high-quality CsPbI2Br films. It is found that an MAI additive retards the crystallization kinetics to control the inorganic perovskite films to form a highly crystalline α-CsPbI2Br structure consisting of microsized grains with reduced defect density. The optimal MAI additive (10 wt %) achieves a power conversion efficiency (PCE) of 10.40% for the CsPbI2Br-based all-inorganic perovskite solar cells, which is >30% enhancement from 6.95% of the pristine one. The solar cells employing the MAI additive possess high operational and thermal stability, retaining >70% of the original PCE after aging for 1500 h in ambient atmosphere and under continuous heating at 85 °C for 30 h, respectively. The photovoltaic performance with an indoor light source was also examined using a white light-emitting diode (6500 K, 1000 lux), showing promising PCEs of 23.51% with a stabilized power output of 21.15%.
Collapse
Affiliation(s)
- Kyeong Su Kim
- Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - In Su Jin
- Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - Sang Hyun Park
- Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - Seung Ju Lim
- Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - Jae Woong Jung
- Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| |
Collapse
|
164
|
Schirinzi T, Canevelli M, Suppa A, Bologna M, Marsili L. The continuum between neurodegeneration, brain plasticity, and movement: a critical appraisal. Rev Neurosci 2020; 31:723-742. [DOI: 10.1515/revneuro-2020-0011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/08/2020] [Indexed: 01/09/2023]
Abstract
Abstract
While the “physiological” aging process is associated with declines in motor and cognitive features, these changes do not significantly impair functions and activities of daily living. Differently, motor and cognitive impairment constitute the most common phenotypic expressions of neurodegeneration. Both manifestations frequently coexist in the same disease, thus making difficult to detect “pure” motor or cognitive conditions. Movement disorders are often characterized by cognitive disturbances, and neurodegenerative dementias often exhibit the occurrence of movement disorders. Such a phenotypic overlap suggests approaching these conditions by highlighting the commonalities of entities traditionally considered distinct. In the present review, we critically reappraised the common clinical and pathophysiological aspects of neurodegeneration in both animal models and patients, looking at motricity as a trait d’union over the spectrum of neurodegeneration and focusing on synaptopathy and oscillopathy as the common pathogenic background. Finally, we discussed the possible role of movement as neuroprotective intervention in neurodegenerative conditions, regardless of the etiology. The identification of commonalities is critical to drive future research and develop novel possible disease-modifying interventions.
Collapse
Affiliation(s)
- Tommaso Schirinzi
- Department of Systems Medicine , University of Rome Tor Vergata , Rome , Italy
| | - Marco Canevelli
- Department of Human Neurosciences , Sapienza University of Rome , Rome , Italy
- National Center for Disease Prevention and Health Promotion, National Institute of Health , Rome , Italy
| | - Antonio Suppa
- Department of Human Neurosciences , Sapienza University of Rome , Rome , Italy
- IRCCS Neuromed , Pozzilli , IS , Italy
| | - Matteo Bologna
- Department of Human Neurosciences , Sapienza University of Rome , Rome , Italy
- IRCCS Neuromed , Pozzilli , IS , Italy
| | - Luca Marsili
- Department of Neurology, Gardner Family Center for Parkinson’s Disease and Movement Disorders , University of Cincinnati , 260 Stetson Street , Cincinnati , 45219, OH , USA
| |
Collapse
|
165
|
Aschemann-Witzel J, Gantriis RF, Fraga P, Perez-Cueto FJA. Plant-based food and protein trend from a business perspective: markets, consumers, and the challenges and opportunities in the future. Crit Rev Food Sci Nutr 2020; 61:3119-3128. [PMID: 32654499 DOI: 10.1080/10408398.2020.1793730] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The food sector is increasingly turning toward sustainability issues. A sustainable food system should provide sufficient, nutritious food for all within limited natural resources. Plant-based food and proteins are a recent, growing trend setting out to contribute to this challenge. However, food industry stakeholders need to be aware of the challenges and opportunities. This paper reviews the trend from a business perspective. It outlines the global drivers, market trends, market data observations, and consumer behavior factors of relevance, and pinpoints the strengths, weaknesses, opportunities and threats (SWOT) for food sector companies. Findings suggest that the policy and market context is favorable in the near future, but that consumer beliefs, perception and understanding has to change further for the business opportunity to grow on a larger scale. More innovations are needed, in particular in the direction of meat-replacements that are healthy as well as clean label.
Collapse
Affiliation(s)
| | | | - Paola Fraga
- Department of Management, MAPP Centre, Aarhus University, Aarhus, Denmark
| | - Federico J A Perez-Cueto
- Det Natur- og Biovidenskabelige Fakultet, Food Science, Kobenhavns Universitet, Frederiksberg C, Denmark
| |
Collapse
|
166
|
Ngiam JN, Tham SM, Vasoo S, Poh KK. COVID-19: local lessons from a global pandemic. Singapore Med J 2020; 61:341-342. [PMID: 32588583 DOI: 10.11622/smedj.2020097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Sai Meng Tham
- Department of Infectious Diseases, National University Health System, Singapore
| | - Shawn Vasoo
- National Centre for Infectious Diseases, Singapore.,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Kian Keong Poh
- Department of Cardiology, National University Heart Centre Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
167
|
Nasonov EL. IMMUNOPATHOLOGY AND IMMUNOPHARMACOTHERAPY OF CORONAVIRUS DISEASE 2019 (COVID-19): FOCUS ON INTERLEUKIN 6. RHEUMATOLOGY SCIENCE AND PRACTICE 2020. [DOI: 10.14412/1995-4484-2020-245-261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has drawn closer attention than ever before to the problems of the immunopathology of human diseases, many of which have been reflected when studying immune-mediated inflammatory rheumatic diseases (IIRDs). The hyperimmune response called a cytokine storm, the pathogenetic subtypes of which include hemophagocytic lymphohistiocytosis, macrophage activation syndrome, and cytokine release syndrome, is among the most serious complications of IIRDs or treatment for malignant neoplasms and may be a stage of COVID-19 progression. A premium is placed to interleukin-6 (IL-6) in the spectrum of cytokines involved in the pathogenesis of the cytokine storm syndrome. The clinical introduction of monoclonal antibodies (mAbs) that inhibit the activity of this cytokine (tocilizumab, sarilumab, etc.) is one of the major advances in the treatment of IIRDs and critical conditions within the cytokine storm syndrome in COVID-19. The review discusses data on the clinical and prognostic value of IL-6 and the effectiveness of anti-IL-6 receptor and anti-IL-6 mAbs, as well as prospects for personalized therapy of the cytokine storm syndrome in COVID-19.
Collapse
Affiliation(s)
- E. L. Nasonov
- V.A. Nasonova Research Institute of Rheumatology; I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
| |
Collapse
|
168
|
El Baz S, Imziln B. Can Aerosols and Wastewater be Considered as Potential Transmissional Sources of COVID-19 to Humans? ACTA ACUST UNITED AC 2020. [DOI: 10.29333/ejeph/8324] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
169
|
Li Z, Wang Y, Liu Z, Xie C, Peng D, Yuan Z. Selective Solid-Phase Extraction of Sulfonamides from Edible Swine Tissues Using High-Performance Imprinted Polymers. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01751-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
170
|
Hrbáčková M, Dvořák P, Takáč T, Tichá M, Luptovčiak I, Šamajová O, Ovečka M, Šamaj J. Biotechnological Perspectives of Omics and Genetic Engineering Methods in Alfalfa. FRONTIERS IN PLANT SCIENCE 2020; 11:592. [PMID: 32508859 PMCID: PMC7253590 DOI: 10.3389/fpls.2020.00592] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/20/2020] [Indexed: 05/07/2023]
Abstract
For several decades, researchers are working to develop improved major crops with better adaptability and tolerance to environmental stresses. Forage legumes have been widely spread in the world due to their great ecological and economic values. Abiotic and biotic stresses are main factors limiting legume production, however, alfalfa (Medicago sativa L.) shows relatively high level of tolerance to drought and salt stress. Efforts focused on alfalfa improvements have led to the release of cultivars with new traits of agronomic importance such as high yield, better stress tolerance or forage quality. Alfalfa has very high nutritional value due to its efficient symbiotic association with nitrogen-fixing bacteria, while deep root system can help to prevent soil water loss in dry lands. The use of modern biotechnology tools is challenging in alfalfa since full genome, unlike to its close relative barrel medic (Medicago truncatula Gaertn.), was not released yet. Identification, isolation, and improvement of genes involved in abiotic or biotic stress response significantly contributed to the progress of our understanding how crop plants cope with these environmental challenges. In this review, we provide an overview of the progress that has been made in high-throughput sequencing, characterization of genes for abiotic or biotic stress tolerance, gene editing, as well as proteomic and metabolomics techniques bearing biotechnological potential for alfalfa improvement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
171
|
Chundawat NS, Pande N, Sargazi G, Gholipourmalekabadi M, Chauhan NPS. Structure-properties relationship for energy storage redox polymers: a review. JOURNAL OF POLYMER ENGINEERING 2020. [DOI: 10.1515/polyeng-2019-0395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
Redox-active polymers among the energy storage materials (ESMs) are very attractive due to their exceptional advantages such as high stability and processability as well as their simple manufacturing. Their applications are found to useful in electric vehicle, ultraright computers, intelligent electric gadgets, mobile sensor systems, and portable intelligent clothing. They are found to be more efficient and advantageous in terms of superior processing capacity, quick loading unloading, stronger security, lengthy life cycle, versatility, adjustment to various scales, excellent fabrication process capabilities, light weight, flexible, most significantly cost efficiency, and non-toxicity in order to satisfy the requirement for the usage of these potential applications. The redox-active polymers are produced through organic synthesis, which allows the design and free modification of chemical constructions, which allow for the structure of organic compounds. The redox-active polymers can be finely tuned for the desired ESMs applications with their chemical structures and electrochemical properties. The redox-active polymers synthesis also offers the benefits of high-scale, relatively low reaction, and a low demand for energy. In this review we discussed the relationship between structural properties of different polymers for solar energy and their energy storage applications.
Collapse
Affiliation(s)
- Narendra Singh Chundawat
- Department of Chemistry , Faculty of Science , Bhupal Nobles' University , Udaipur , Rajasthan , India
| | - Nishigandh Pande
- School of Mechatronics Engineering , Symbiosis Skills & Professional University , Kiwale , Pune , Maharashtra , India
| | - Ghasem Sargazi
- Environment and Nanochemistry Department , Research Institute of Environmental Science , International Center for Science , High Technology & Environmental Science , Kerman , Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre , Iran University of Medical Sciences , Tehran , Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine , Iran University of Medical Sciences , Tehran , Iran
| | | |
Collapse
|
172
|
Nie LB, Liang QL, Du R, Elsheikha HM, Han NJ, Li FC, Zhu XQ. Global Proteomic Analysis of Lysine Malonylation in Toxoplasma gondii. Front Microbiol 2020; 11:776. [PMID: 32411114 PMCID: PMC7198775 DOI: 10.3389/fmicb.2020.00776] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/31/2020] [Indexed: 11/17/2022] Open
Abstract
Lysine malonylation (Kmal) is a new post-translational modification (PTM), which has been reported in several prokaryotic and eukaryotic species. Although Kmal can regulate many and diverse biological processes in various organisms, knowledge about this important PTM in the apicomplexan parasite Toxoplasma gondii is limited. In this study, we performed the first global profiling of malonylated proteins in T. gondii tachyzoites using affinity enrichment and Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Three experiments performed in tandem revealed 294, 345, 352 Kmal sites on 203, 236, 230 malonylated proteins, respectively. Computational analysis showed the identified malonylated proteins to be localized in various subcellular compartments and involved in many cellular functions, particularly mitochondrial function. Additionally, one conserved Kmal motif with a strong bias for cysteine was detected. Taken together, these findings provide the first report of Kmal profile in T. gondii and should be an important resource for studying the physiological roles of Kmal in this parasite.
Collapse
Affiliation(s)
- Lan-Bi Nie
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qin-Li Liang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Rui Du
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Nai-Jian Han
- Jingjie PTM Biolabs (Hangzhou) Co. Ltd., Hangzhou, China
| | - Fa-Cai Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
173
|
Sáinz M, Martínez JL, Meneses J. Gendered patterns of coping responses with academic sexism in a group of Spanish secondary students (Diferencias de género en las respuestas de afrontamiento del sexismo académico en un grupo de estudiantes españoles de secundaria). INTERNATIONAL JOURNAL OF SOCIAL PSYCHOLOGY 2020. [DOI: 10.1080/02134748.2020.1721049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Milagros Sáinz
- Internet Interdisciplinary Institute, Universitat Oberta de Catalunya
| | | | - Julio Meneses
- Internet Interdisciplinary Institute, Universitat Oberta de Catalunya
| |
Collapse
|
174
|
Li C, Liu C, Li M, Xu X, Li S, Qi W, Su R, Yu J. Structures and Antifouling Properties of Self-Assembled Zwitterionic Peptide Monolayers: Effects of Peptide Charge Distributions and Divalent Cations. Biomacromolecules 2020; 21:2087-2095. [DOI: 10.1021/acs.biomac.0c00062] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chuanxi Li
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Chunjiang Liu
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Minglun Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xin Xu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
175
|
Rocha DG, de Barros Ferraz KMPM, Gonçalves L, Tan CKW, Lemos FG, Ortiz C, Peres CA, Negrões N, Antunes AP, Rohe F, Abrahams M, Zapata-Rios G, Teles D, Oliveira T, von Mühlen EM, Venticinque E, Gräbin DM, Mosquera B. D, Blake J, Lima MGM, Sampaio R, Percequillo AR, Peters F, Payán E, Borges LHM, Calouro AM, Endo W, Pitman RL, Haugaasen T, Silva DA, de Melo FR, de Moura ALB, Costa HCM, Lugarini C, de Sousa IG, Nienow S, Santos F, Mendes-Oliveiras AC, Del Toro-Orozco W, D'Amico AR, Albernaz AL, Ravetta A, do Carmo ECO, Ramalho E, Valsecchi J, Giordano AJ, Wallace R, Macdonald DW, Sollmann R. Wild dogs at stake: deforestation threatens the only Amazon endemic canid, the short-eared dog ( Atelocynus microtis). ROYAL SOCIETY OPEN SCIENCE 2020; 7:190717. [PMID: 32431857 PMCID: PMC7211836 DOI: 10.1098/rsos.190717] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
The persistent high deforestation rate and fragmentation of the Amazon forests are the main threats to their biodiversity. To anticipate and mitigate these threats, it is important to understand and predict how species respond to the rapidly changing landscape. The short-eared dog Atelocynus microtis is the only Amazon-endemic canid and one of the most understudied wild dogs worldwide. We investigated short-eared dog habitat associations on two spatial scales. First, we used the largest record database ever compiled for short-eared dogs in combination with species distribution models to map species habitat suitability, estimate its distribution range and predict shifts in species distribution in response to predicted deforestation across the entire Amazon (regional scale). Second, we used systematic camera trap surveys and occupancy models to investigate how forest cover and forest fragmentation affect the space use of this species in the Southern Brazilian Amazon (local scale). Species distribution models suggested that the short-eared dog potentially occurs over an extensive and continuous area, through most of the Amazon region south of the Amazon River. However, approximately 30% of the short-eared dog's current distribution is expected to be lost or suffer sharp declines in habitat suitability by 2027 (within three generations) due to forest loss. This proportion might reach 40% of the species distribution in unprotected areas and exceed 60% in some interfluves (i.e. portions of land separated by large rivers) of the Amazon basin. Our local-scale analysis indicated that the presence of forest positively affected short-eared dog space use, while the density of forest edges had a negative effect. Beyond shedding light on the ecology of the short-eared dog and refining its distribution range, our results stress that forest loss poses a serious threat to the conservation of the species in a short time frame. Hence, we propose a re-assessment of the short-eared dog's current IUCN Red List status (Near Threatened) based on findings presented here. Our study exemplifies how data can be integrated across sources and modelling procedures to improve our knowledge of relatively understudied species.
Collapse
Affiliation(s)
- Daniel G. Rocha
- Department of Wildlife, Fish, and Conservation Biology, University of California – Davis, Davis, CA, USA
- Grupo de Pesquisa em Ecologia e Conservação de Felinos na Amazônia, Instituto de Desenvolvimento Sustentável Mamirauá, Tefé, AM, Brazil
| | - Katia Maria Paschoaletto Micchi de Barros Ferraz
- Laboratório de Ecologia, Manejo e Conservação de Fauna (LEMaC), Departamento de Ciências Florestais, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Lucas Gonçalves
- Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
- University of Brasilia, Brasilia, DF, Brazil
| | - Cedric Kai Wei Tan
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Tubney, Oxon, England
| | - Frederico G. Lemos
- Departamento de Ciências Biológicas, Unidade Acadêmica Especial de Biotecnologia, Universidade Federal de Catalão, GO, Brazil
- Programa de Conservação Mamíferos do Cerrado/PCMC, Araguari, GO, Brazil
| | - Carolina Ortiz
- Laboratório de Ecologia, Manejo e Conservação de Fauna (LEMaC), Departamento de Ciências Florestais, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Carlos A. Peres
- School Environmental Sciences, University of East Anglia, Norwich, UK
| | - Nuno Negrões
- Bolivian Association for Research and Conservation of the Andean-Amazon Ecosystems-ACEAA, Bolivia
| | - André Pinassi Antunes
- RedeFauna – Rede de Pesquisa em Diversidade, Conservação e Uso da Fauna da Amazônia, Brazil
- Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| | - Fabio Rohe
- Programa de Pós-graduação em Genética, Conservação e Biologia Evolutiva –GCBEv. Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, Brazil
| | - Mark Abrahams
- Field Conservation and Science Department, Bristol Zoological Society, Bristol, UK
| | | | - Davi Teles
- School Environmental Sciences, University of East Anglia, Norwich, UK
| | - Tadeu Oliveira
- Departamento de Biologia, Universidade Estadual do Maranhão, São Luís, MA, Brazil
| | - Eduardo M. von Mühlen
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Eduardo Venticinque
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Diogo M. Gräbin
- Grupo de Pesquisa em Ecologia e Conservação de Felinos na Amazônia, Instituto de Desenvolvimento Sustentável Mamirauá, Tefé, AM, Brazil
- Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - Diego Mosquera B.
- Estación de Biodiversidad Tiputini, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - John Blake
- Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Marcela Guimarães Moreira Lima
- Laboratório de Biogeografia da Conservação e Macroecologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Ricardo Sampaio
- Centro Nacional de Pesquisa e Conservação de Mamíferos Carnívoros (CENAP/ICMBio), Atibaia, SP, Brazil
| | - Alexandre Reis Percequillo
- Departamento de Ciências Biológicas, Escola Superior de Agricultura ‘Luiz de Queiroz’, Universidade de São Paulo, Piracicaba, SP, Brazil
| | | | | | - Luiz Henrique Medeiros Borges
- Programa de Pós-Graduação em Ecologia, Instituto de Ciência Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Armando Muniz Calouro
- Laboratório de Ecologia de Mamíferos, Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, AC, Brazil
| | - Whaldener Endo
- Centro de Estudos da Biodiversidade, Universidade Federal de Roraima, Boa Vista, RR, Brazil
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | | | - Torbjørn Haugaasen
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Norway
| | - Diego Afonso Silva
- Laboratório de Biodoversidade Animal, Universidade Federal de Jataí, Jataí, GO, Brazil
| | - Fabiano R. de Melo
- Engenharia Florestal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | - Hugo C. M. Costa
- Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - Camile Lugarini
- Instituto Chico Mendes de Conservação da Biodiversidade, Brasília, DF, Brazil
| | | | - Samuel Nienow
- Instituto Chico Mendes de Conservação da Biodiversidade, Brasília, DF, Brazil
| | - Fernanda Santos
- Programa de Pós-Graduação em Ecologia, Instituto de Ciência Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
- Department of Mastozoology – Museu Paraense Emílio Goeldi, Belém, PA, Brazil
| | - Ana Cristina Mendes-Oliveiras
- Laboratório de Ecologia e Zoologia de Vertebrados, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Wezddy Del Toro-Orozco
- Grupo de Pesquisa em Ecologia e Conservação de Felinos na Amazônia, Instituto de Desenvolvimento Sustentável Mamirauá, Tefé, AM, Brazil
| | - Ana Rafaela D'Amico
- Instituto Chico Mendes de Conservação da Biodiversidade, Brasília, DF, Brazil
| | - Ana Luisa Albernaz
- Earth Sciences and Ecology Department, Museu Paraense Emilio Goeldi, Belém, PA, Brazil
| | - André Ravetta
- Serviço da Estação Científica Ferreira Penna, Coordenação de Pesquisa e Pós-Graduação, Museu Paraense Emílio Goeldi, Belém, PA, Brazil
| | | | - Emiliano Ramalho
- Grupo de Pesquisa em Ecologia e Conservação de Felinos na Amazônia, Instituto de Desenvolvimento Sustentável Mamirauá, Tefé, AM, Brazil
- Instituto Pró-Carnívoros, Atibaia, SP, Brazil
| | - João Valsecchi
- Grupo de Pesquisa em Ecologia de Vertebrados Terrestres (ECOVERT), Instituto de Desenvolvimento Sustentável Mamirauá, Tefé, AM, Brazil
- Comunidad de Manejo de Fauna Silvestre en la Amazonía y en Latinoamérica (ComFauna), Iquitos, Peru
| | - Anthony J. Giordano
- S.P.E.C.I.E.S. – The Society for the Preservation of Endangered Carnivores and their International Ecological Study, Ventura, CA, USA
- Center for Tropical Research, Institute of the Environment & Sustainability, University of California – Los Angeles, CA, USA
| | - Robert Wallace
- Wildlife Conservation Society, Global Conservation Program, Bronx, NY, USA
| | - David W. Macdonald
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Tubney, Oxon, England
| | - Rahel Sollmann
- Department of Wildlife, Fish, and Conservation Biology, University of California – Davis, Davis, CA, USA
| |
Collapse
|
176
|
Bergquist R, Rinaldi L. Covid-19: Pandemonium in our time. GEOSPATIAL HEALTH 2020; 15. [PMID: 32238978 DOI: 10.4081/gh.2020.880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
While pandemonium has come to mean wild and noisy disorder, the reference here is to John Milton's epic poem Paradise Lost and the upheaval following Lucifer's banishment from Heaven and his construction of Pandæmonium as his hub. Today's avalanche of conflicting news on how to deal with the coronavirus disease 2019 (Covid-19) brings to mind the Trinity nuclear bomb test with Enrico Fermi estimating its strength by releasing small pieces of paper into the air and measuring their displacement by the shock wave. Fermi's result, in fact not far from the true value, emphasised his ability to make good approximations with few or no actual data. The current wave of Covid-19 presents just this kind of situation as it engulfs the world from ground zero in Wuhan, China. Much information is indeed missing, but datasets that might lead to useful ideas on how to handle this pandemic are steadily accumulating.
Collapse
|
177
|
Wang C, Wang G, Gao Y, Lu G, Habben JE, Mao G, Chen G, Wang J, Yang F, Zhao X, Zhang J, Mo H, Qu P, Liu J, Greene TW. A cytokinin-activation enzyme-like gene improves grain yield under various field conditions in rice. PLANT MOLECULAR BIOLOGY 2020; 102:373-388. [PMID: 31872309 DOI: 10.1007/s11103-019-00952-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/18/2019] [Indexed: 05/11/2023]
Abstract
CRISPR-edited variants at the 3'-end of OsLOGL5's coding sequence (CDS), significantly increased rice grain yield under well-watered, drought, normal nitrogen, and low nitrogen field conditions at multiple geographical locations. Cytokinins impact numerous aspects of plant growth and development. This study reports that constitutive ectopic overexpression of a rice cytokinin-activation enzyme-like gene, OsLOGL5, significantly reduced primary root growth, tiller number, and yield. Conversely, mutations at the 3'-end of OsLOGL5 CDS resulted in normal rice plant morphology but with increased grain yield under well-watered, drought, normal nitrogen, and low nitrogen field conditions at multiple geographical locations. Six gene edited variants (Edit A to F) were created and tested in the field. Edit-B and Edit-F plants increased, but Edit-D and Edit-E plants decreased, the panicle number per plant. All OsLOGL5-edited plants significantly increased seed setting rate, total grain numbers, full-filled grain numbers per panicle, and thousand seed weight under drought conditions, suggesting that OsLOGL5 is likely involved in the regulation of both seed development and grain filling processes. Our results indicate that the C-terminal end of OsLOGL5 protein plays an important role in regulating rice yield improvement under different abiotic stress conditions, and OsLOGL5 is important for rice yield enhancement and stability.
Collapse
Affiliation(s)
- Changgui Wang
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Guokui Wang
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Yang Gao
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Guihua Lu
- Corteva Agriscience, Johnston, IA, USA.
| | | | - Guanfan Mao
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Guangwu Chen
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Jiantao Wang
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Fan Yang
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Xiaoqiang Zhao
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Jing Zhang
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Hua Mo
- Corteva Agriscience, Johnston, IA, USA
| | - Pingping Qu
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Junhua Liu
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China.
| | | |
Collapse
|
178
|
Dutta A, Lev-Ari T, Barzilay O, Mairon R, Wolf A, Ben-Shahar O, Gutfreund Y. Self-motion trajectories can facilitate orientation-based figure-ground segregation. J Neurophysiol 2020; 123:912-926. [PMID: 31967932 DOI: 10.1152/jn.00439.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Segregation of objects from the background is a basic and essential property of the visual system. We studied the neural detection of objects defined by orientation difference from background in barn owls (Tyto alba). We presented wide-field displays of densely packed stripes with a dominant orientation. Visual objects were created by orienting a circular patch differently from the background. In head-fixed conditions, neurons in both tecto- and thalamofugal visual pathways (optic tectum and visual Wulst) were weakly responsive to these objects in their receptive fields. However, notably, in freely viewing conditions, barn owls occasionally perform peculiar side-to-side head motions (peering) when scanning the environment. In the second part of the study we thus recorded the neural response from head-fixed owls while the visual displays replicated the peering conditions; i.e., the displays (objects and backgrounds) were shifted along trajectories that induced a retinal motion identical to sampled peering motions during viewing of a static object. These conditions induced dramatic neural responses to the objects, in the very same neurons that where unresponsive to the objects in static displays. By reverting to circular motions of the display, we show that the pattern of the neural response is mostly shaped by the orientation of the background relative to motion and not the orientation of the object. Thus our findings provide evidence that peering and/or other self-motions can facilitate orientation-based figure-ground segregation through interaction with inhibition from the surround.NEW & NOTEWORTHY Animals frequently move their sensory organs and thereby create motion cues that can enhance object segregation from background. We address a special example of such active sensing, in barn owls. When scanning the environment, barn owls occasionally perform small-amplitude side-to-side head movements called peering. We show that the visual outcome of such peering movements elicit neural detection of objects that are rotated from the dominant orientation of the background scene and which are otherwise mostly undetected. These results suggest a novel role for self-motions in sensing objects that break the regular orientation of elements in the scene.
Collapse
Affiliation(s)
- Arkadeb Dutta
- The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, The Technion, Haifa, Israel
| | - Tidhar Lev-Ari
- The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, The Technion, Haifa, Israel
| | - Ouriel Barzilay
- Faculty of Mechanical Engineering, The Technion, Haifa, Israel
| | - Rotem Mairon
- Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Wolf
- Faculty of Mechanical Engineering, The Technion, Haifa, Israel
| | - Ohad Ben-Shahar
- Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The Zlotowski Center for Neuroscience Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yoram Gutfreund
- The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, The Technion, Haifa, Israel
| |
Collapse
|
179
|
Mafi AM, Hofer LN, Russ MG, Young JW, Mellott JG. The Density of Perineuronal Nets Increases With Age in the Inferior Colliculus in the Fischer Brown Norway Rat. Front Aging Neurosci 2020; 12:27. [PMID: 32116654 PMCID: PMC7026493 DOI: 10.3389/fnagi.2020.00027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/24/2020] [Indexed: 12/20/2022] Open
Abstract
Age-related hearing loss, one of the most frequently diagnosed disabilities in industrialized countries, may result from declining levels of GABA in the aging inferior colliculus (IC). However, the mechanisms of aging and subsequent disruptions of temporal processing in elderly hearing abilities are still being investigated. Perineuronal nets (PNs) are a specialized form of the extracellular matrix and have been linked to GABAergic neurotransmission and to the regulation of structural and synaptic plasticity. We sought to determine whether the density of PNs in the IC changes with age. We combined Wisteria floribunda agglutinin (WFA) staining with immunohistochemistry to glutamic acid decarboxylase in three age groups of Fischer Brown Norway (FBN) rats. The density of PNs on GABAergic and non-GABAergic cells in the three major subdivisions of the IC was quantified. Results first demonstrate that the density of PNs in the FBN IC increase with age. The greatest increases of PN density from young to old age occurred in the central IC (67% increase) and dorsal IC (117% increase). Second, in the young IC, PNs surround non-GABAergic and GABAergic cells with the majority of PNs surrounding the former. The increase of PNs with age in the IC occurred on both non-GABAergic and GABAergic populations. The average density of PN-surrounded non-GABAergic cells increased from 84.9 PNs/mm2 in the young to 134.2 PNs/mm2 in the old. While the density of PN-surrounded GABAergic cells increased from 26 PNs/mm2 in the young to 40.6 PNs/mm2 in the old. The causality is unclear, but increases in PN density in old age may play a role in altered auditory processing in the elderly, or may lead to further changes in IC plasticity.
Collapse
Affiliation(s)
- Amir M Mafi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Lindsay N Hofer
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Matthew G Russ
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Jesse W Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Jeffrey G Mellott
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
180
|
Expression and purification of the 5'-nucleotidase YitU from Bacillus species: its enzymatic properties and possible applications in biotechnology. Appl Microbiol Biotechnol 2020; 104:2957-2972. [PMID: 32040605 PMCID: PMC7062661 DOI: 10.1007/s00253-020-10428-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/17/2020] [Accepted: 02/03/2020] [Indexed: 11/05/2022]
Abstract
5’-Nucleotidases (EC 3.1.3.5) are enzymes that catalyze the hydrolytic dephosphorylation of 5′-ribonucleotides and 5′-deoxyribonucleotides to their corresponding nucleosides plus phosphate. In the present study, to search for new genes encoding 5′-nucleotidases specific for purine nucleotides in industrially important Bacillus species, “shotgun” cloning and the direct selection of recombinant clones grown in purine nucleosides at inhibitory concentrations were performed in the Escherichia coli GS72 strain, which is sensitive to these compounds. As a result, orthologous yitU genes from Bacillus subtilis and Bacillus amyloliquefaciens, whose products belong to the ubiquitous haloacid dehalogenase superfamily (HADSF), were selected and found to have a high sequence similarity of 87%. B. subtilis YitU was produced in E. coli as an N-terminal hexahistidine-tagged protein, purified and biochemically characterized as a soluble 5′-nucleotidase with broad substrate specificity with respect to various deoxyribo- and ribonucleoside monophosphates: dAMP, GMP, dGMP, CMP, AMP, XMP, IMP and 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranosyl 5′-monophosphate (AICAR-P). However, the preferred substrate for recombinant YitU was shown to be flavin mononucleotide (FMN). B. subtilis and B. amyloliquefaciens yitU overexpression increased riboflavin (RF) and 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) accumulation and can be applied to breed highly performing RF- and AICAR-producing strains.
Collapse
|
181
|
Yang D, Peng S, Wang F. Response of Photosynthesis to High Growth Temperature Was Not Related to Leaf Anatomy Plasticity in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2020; 11:26. [PMID: 32117372 PMCID: PMC7018767 DOI: 10.3389/fpls.2020.00026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/13/2020] [Indexed: 05/20/2023]
Abstract
Photosynthesis is highly sensitive to high temperature stress, and with the rising global temperature, it is meaningful to investigate the response of photosynthesis to growth temperature and its relationship with leaf anatomy plasticity. We planted 21 cultivars including eight indica cultivars, eight japonica cultivars, and five javanica cultivars in pot experiments under high growth temperature (HT, 38/28°C, day/night) and control treatment (CK, 30/28°C, day/night). Photosynthetic rate (A), stomatal conductance (gs ), transpiration rate (E), stomatal density (SD), vein density (VD), minor vein area (SVA), and major vein area (LVA) were measured after 30 treatment days. Results showed HT significantly increased A, gs , and E, while significantly decreased SD and LVA. There was no significant difference in A among the three subspecies both under CK and HT, while the javanica subspecies had higher gs , E, SVA, and LVA under HT, and the indica cultivars had higher VD and SD both under CK and HT. The javanica subspecies had higher relative value (HT/CK) of A, gs , and E, while difference was not observed in the relative value of SD, VD, and LVA among the three subspecies. The relative value of A was positively related to that of gs , while the latter was not correlated with the relative value of SD, VD, SVA, and LVA. Overall, the results suggested the increase of A and gs at HT was not attributed to leaf anatomy plasticity in respect of stomata and vein under HT.
Collapse
Affiliation(s)
- Desheng Yang
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shaobing Peng
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Fei Wang
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
| |
Collapse
|
182
|
Waldmann P, Pfeiffer C, Mészáros G. Sparse Convolutional Neural Networks for Genome-Wide Prediction. Front Genet 2020; 11:25. [PMID: 32117441 PMCID: PMC7029737 DOI: 10.3389/fgene.2020.00025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/08/2020] [Indexed: 12/03/2022] Open
Abstract
Genome-wide prediction (GWP) has become the state-of-the art method in artificial selection. Data sets often comprise number of genomic markers and individuals in ranges from a few thousands to millions. Hence, computational efficiency is important and various machine learning methods have successfully been used in GWP. Neural networks (NN) and deep learning (DL) are very flexible methods that usually show outstanding prediction properties on complex structured data, but their use in GWP is nevertheless rare and debated. This study describes a powerful NN method for genomic marker data that can easily be extended. It is shown that a one-dimensional convolutional neural network (CNN) can be used to incorporate the ordinal information between markers and, together with pooling and ℓ1-norm regularization, provides a sparse and computationally efficient approach for GWP. The method, denoted CNNGWP, is implemented in the deep learning software Keras, and hyper-parameters of the NN are tuned with Bayesian optimization. Model averaged ensemble predictions further reduce prediction error. Evaluations show that CNNGWP improves prediction error by more than 25% on simulated data and around 3% on real pig data compared with results obtained with GBLUP and the LASSO. In conclusion, the CNNGWP provides a promising approach for GWP, but the magnitude of improvement depends on the genetic architecture and the heritability.
Collapse
Affiliation(s)
- Patrik Waldmann
- Department of Animal Breeding and Genetics, The Swedish University of Agriculutural Sciences, Uppsala, Sweden
| | - Christina Pfeiffer
- Division of Livestock Science, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Gábor Mészáros
- Division of Livestock Science, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| |
Collapse
|
183
|
Schaefer CEGR, Campos PV, Candido HG, Corrêa GR, Faria RM, Vale Jr JFD. Serras e pantanais arenosos: solos e geoambientes em unidade de conservação da Amazônia, Brasil. NEOTROPICAL BIOLOGY AND CONSERVATION 2020. [DOI: 10.3897/neotropical.15.e49221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Unidades de conservação representam a principal estratégia para a preservação e recuperação de recursos naturais brasileiros. Para nortear o seu planejamento e gestão, informações relativas aos geoambientes constituem um referencial integrado indispensável. O objetivo deste estudo foi descrever os aspectos pedológicos associados à identificação, caracterização e mapeamento de geoambientes do Parque Nacional Serra da Mocidade, Roraima, norte do Brasil, de forma a subsidiar o manejo ecológico da unidade. Para a estratificação geoambiental foram avaliados os aspectos pedológicos, geomorfológicos e vegetação. Foram descritos e coletados 19 perfis de solos. A caracterização da vegetação foi realizada in loco. Foram descritos quatro pedoambientes, com destaque para os seguintes solos: Espodossolo Humilúvico, Espodossolo Ferri-Humilúvico, Espodossolo Ferrilúvico, Neossolo Quartzarênico, Neossolo Regolítico, Neossolo Flúvico, Plintossolo Háplico, Plintossolo Argilúvico, Gleissolo Melânico e Cambissolo Háplico. Foram identificadas 12 unidades geoambientais. No Parque, destaca-se um contraste entre serras e morrarias da zona florestada e os grandes espaços inundáveis e baixios do pediplano Rio Branco-Rio Negro. Além disso, essa área de conservação possui o mais antigo e, provavelmente, o mais importante conjunto montanhoso granítico-gnáissico do norte amazônico, de grande extensão e topografia complexa. Este estudo evidencia a singularidade de cada geoambiente, subsidiando na definição mais precisa e adequada das formas de manejo do Parque.
Collapse
|
184
|
Cosacak MI, Bhattarai P, Kizil C. Alzheimer's disease, neural stem cells and neurogenesis: cellular phase at single-cell level. Neural Regen Res 2020; 15:824-827. [PMID: 31719242 PMCID: PMC6990771 DOI: 10.4103/1673-5374.268896] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Alzheimer’s disease cannot be cured as of yet. Our current understanding on the causes of Alzheimer’s disease is limited. To develop treatments, experimental models that represent a particular cellular phase of the disease and more rigorous scrutiny of the cellular pathological mechanisms are crucial. In recent years, Alzheimer’s disease research underwent a paradigm shift. According to this tendency, Alzheimer’s disease is increasingly being conceived of a disease where not only neurons but also multiple cell types synchronously partake to manifest the pathology. Knowledge on every cell type adds an alternative approach and hope for the efforts towards the treatment. Neural stem cells and their neurogenic ability are making an appearance as a new aspect of the disease manifestation based on the recent findings that neurogenesis reduces dramatically in Alzheimer’s disease patients compared to healthy individuals. Therefore, understanding how neural stem cells can form new neurons in Alzheimer’s disease brains holds an immense potential for clinics. However, this provocative idea requires further evidence and tools for investigation. Recently, single cell sequencing appeared as a revolutionary tool to understand cellular programs in unprecedented resolution and it will undoubtedly facilitate comprehensive investigation of different cell types in Alzheimer’s disease. In this mini-review, we will touch upon recent studies that use single cell sequencing for investigating cellular response in Alzheimer’s disease and some consideration pertaining to the utilization of neural regeneration for Alzheimer’s disease research.
Collapse
Affiliation(s)
- Mehmet Ilyas Cosacak
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Dresden, Germany
| | - Prabesh Bhattarai
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Dresden, Germany
| | - Caghan Kizil
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association; Center for Molecular and Cellular Bioengineering (CMCB), CRTD, TU Dresden, Dresden, Germany
| |
Collapse
|
185
|
Mishra R, Joshi RK, Zhao K. Base editing in crops: current advances, limitations and future implications. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:20-31. [PMID: 31365173 PMCID: PMC6920333 DOI: 10.1111/pbi.13225] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/23/2019] [Accepted: 07/29/2019] [Indexed: 05/19/2023]
Abstract
Targeted mutagenesis via genome-editing technologies holds great promise in developing improved crop varieties to meet future demands. Point mutations or single nucleotide polymorphisms often determine important agronomic traits of crops. Genome-editing-based single-base changes could generate elite trait variants in crop plants which help in accelerating crop improvement. Among the genome-editing technologies, base editing has emerged as a novel and efficient genome-editing approach which enables direct and irreversible conversion of one target base into another in a programmable manner. A base editor is a fusion of catalytically inactive CRISPR-Cas9 domain (Cas9 variants) and cytosine or adenosine deaminase domain that introduces desired point mutations in the target region enabling precise editing of genomes. In the present review, we have summarized the development of different base-editing platforms. Then, we have focussed on the current advances and the potential applications of this precise technology in crop improvement. The review also sheds light on the limitations associated with this technology. Finally, the future perspectives of this emerging technology towards crop improvement have been highlighted.
Collapse
Affiliation(s)
- Rukmini Mishra
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop ScienceChinese Academy of Agriculture Sciences (CAAS)BeijingChina
| | - Raj Kumar Joshi
- Department of BiotechnologyRama Devi Women's UniversityBhubaneswarOdishaIndia
| | - Kaijun Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop ScienceChinese Academy of Agriculture Sciences (CAAS)BeijingChina
| |
Collapse
|
186
|
Jamil M, Kountche BA, Wang JY, Haider I, Jia KP, Takahashi I, Ota T, Asami T, Al-Babili S. A New Series of Carlactonoic Acid Based Strigolactone Analogs for Fundamental and Applied Research. FRONTIERS IN PLANT SCIENCE 2020; 11:434. [PMID: 32373143 PMCID: PMC7179673 DOI: 10.3389/fpls.2020.00434] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/24/2020] [Indexed: 05/02/2023]
Abstract
Strigolactones (SLs) are a group of carotenoid derived plant hormones that play a key role in establishing plant architecture and adapting it to environmental changes, and are involved in plants response to biotic and abiotic stress. SLs are also released into the soil to serve as a chemical signal attracting beneficial mycorrhizal fungi. However, this signal also induces seed germination in root parasitic weeds that represent a major global threat for agriculture. This wide spectrum of biological functions has made SL research one of the most important current topics in fundamental and applied plant science. The availability of SLs is crucial for investigating SL biology as well as for agricultural application. However, natural SLs are produced in very low amounts, and their organic synthesis is quite difficult, which creates a need for efficient and easy-to-synthesize analogs and mimics. Recently, we have generated a set of SL analogs, Methyl Phenlactonoates (MPs), which resemble the non-canonical SL carlactonoic acid. In this paper, we describe the development and characterization of a new series of easy-to-synthesize MPs. The new analogs were assessed with respect to regulation of shoot branching, impact on leaf senescence, and induction of seed germination in different root parasitic plants species. Some of the new analogs showed higher efficiency in inhibiting shoot branching as well as in triggering parasitic seed germination, compared to the commonly used GR24. MP16 was the most outstanding analog showing high activity in different SL biological functions. In summary, our new analogs series contains very promising candidates for different applications, which include the usage in studies for understanding different aspects of SL biology as well as large scale field application for combating root parasitic weeds, such as Striga hermonthica that devastates cereal yields in sub-Saharan Africa.
Collapse
Affiliation(s)
- Muhammad Jamil
- The BioActives Lab, Center for Desert Agriculture, Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Boubacar A. Kountche
- The BioActives Lab, Center for Desert Agriculture, Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jian You Wang
- The BioActives Lab, Center for Desert Agriculture, Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Imran Haider
- The BioActives Lab, Center for Desert Agriculture, Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kun-Peng Jia
- The BioActives Lab, Center for Desert Agriculture, Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ikuo Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Ota
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture, Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- *Correspondence: Salim Al-Babili,
| |
Collapse
|
187
|
Characterization of the ferret TRB locus guided by V, D, J, and C gene expression analysis. Immunogenetics 2019; 72:101-108. [PMID: 31797007 PMCID: PMC6971162 DOI: 10.1007/s00251-019-01142-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 10/29/2022]
Abstract
The domestic ferret, Mustela putorius furo, is an important mammalian animal model to study human respiratory infection. However, insufficient genomic annotation hampers detailed studies of ferret T cell responses. In this study, we analyzed the published T cell receptor beta (TRB) locus and performed high-throughput sequencing (HTS) of peripheral blood of four healthy adult ferrets to identify expressed V, D, J, and C genes. The HTS data is used as a guide to manually curate the expressed V, D, J, and C genes. The ferret locus appears to be most similar to that of the dog. Like other mammalian TRB loci, the ferret TRB locus contains a library of variable genes located upstream of two D-J-C gene clusters, followed by a (in the ferret non-functional) V gene with an inverted transcriptional orientation. All TRB genes (expressed or not) reported here have been approved by the IMGT/WHO-IUIS nomenclature committee.
Collapse
|
188
|
Content of Free Fetal DNA in Maternal Blood and Expression of DNA Recognition Receptors ZBP-1 in Placental Tissue in Preeclampsia and Preterm Labor. Bull Exp Biol Med 2019; 168:145-149. [PMID: 31768779 DOI: 10.1007/s10517-019-04665-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Indexed: 10/25/2022]
Abstract
We evaluated the content of cell-free fetal DNA in maternal blood and expression of ZBP-1 receptors in the placental tissue of women with uncomplicated pregnancy, preeclampsia, and preterm labor. The study included 16 women with preeclampsia (early and late-onset preeclampsia, 8 cases each), 16 women with preterm labor, and 21 women with uncomplicated pregnancy. The concentration of cell-free fetal DNA was measured by PCR by detecting hypermethylated region of the RASSF1A gene. Immunohistochemistry was performed on paraffin-embedded sections of the placenta samples using primary polyclonal antibodies to ZBP-1. Significant increase in the level of cell-free fetal DNA was found in women with preeclampsia (both early and late-onset form) in comparison with uncomplicated pregnancy. The concentration of cell-free fetal DNA in preterm labor group did not differ from the control group; however, it was significantly lower than in early-onset preeclampsia, but not late preeclampsia. Immunohistochemical study showed higher expression of ZBP-1 in the villus syncytiotrophoblast in early-onset preeclampsia in comparison with that in preterm labor group (p=0.006). Fragments of damaged placental cells, predominantly trophoblast, enter maternal circulation and are the source of cell-free fetal DNA and a potential ligand for ZBP-1, which leads to further cell damage and the formation of a vicious circle. The increase in the content of cell-free fetal DNA in maternal blood and ZBP-1 expression in the syncytiotrophoblast in preeclampsia are interrelated processes reflecting impaired morphofunctional state of the placenta.
Collapse
|
189
|
Xie X, Hu W, Fan X, Chen H, Tang M. Interactions Between Phosphorus, Zinc, and Iron Homeostasis in Nonmycorrhizal and Mycorrhizal Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:1172. [PMID: 31616454 PMCID: PMC6775243 DOI: 10.3389/fpls.2019.01172] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 08/27/2019] [Indexed: 05/16/2023]
Abstract
Phosphorus (P), zinc (Zn), and iron (Fe) are three essential elements for plant survival, and severe deficiencies in these nutrients lead to growth retardation and crop yield reduction. This review synthesizes recent progress on how plants coordinate the acquisition and signaling of Pi, Zn, and Fe from surrounding environments and which genes are involved in these Pi-Zn-Fe interactions with the aim of better understanding of the cross-talk between these macronutrient and micronutrient homeostasis in plants. In addition, identification of genes important for interactions between Pi, Zn, and/or Fe transport and signaling is a useful target for breeders for improvement in plant nutrient acquisition. Furthermore, to understand these processes in arbuscular mycorrhizal plants, the preliminary examination of interactions between Pi, Zn, and Fe homeostasis in some relevant crop species has been performed at the physiological level and is summarized in this article. In conclusion, the development of integrative study of cross-talks between Pi, Zn, and Fe signaling pathway in mycorrhizal plants will be essential for sustainable agriculture all around the world.
Collapse
Affiliation(s)
- Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources (South China Agricultural University), Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources (South China Agricultural University), Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xiaoning Fan
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources (South China Agricultural University), Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources (South China Agricultural University), Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
190
|
Photonic Crystal Cavity-Based Intensity Modulation for Integrated Optical Frequency Comb Generation. CRYSTALS 2019. [DOI: 10.3390/cryst9100493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A simple scheme to generate an integrated, nanoscale optical frequency comb (OFC) is numerically studied. In this study, all optical intensity modulators based on photonic crystal (PhC) cavities are cascaded both in series and parallel. By adjusting the modulation parameters, such as the repetition rate, phase, and coupling efficiency of the modulating wave, it is possible to produce combs with a variety of different characteristics. Unique to PhC intensity modulators, in comparison with standard lithium niobate modulators, is the ability to control the amplitude of the light via a cavity rather than controlling the phase through one arm of a Mach–Zehnder interferometer. This opens up modulation-based OFC generation to new possibilities in both nanoscale operation and cavity-based schemes.
Collapse
|
191
|
Acid Mine Drainage as Habitats for Distinct Microbiomes: Current Knowledge in the Era of Molecular and Omic Technologies. Curr Microbiol 2019; 77:657-674. [DOI: 10.1007/s00284-019-01771-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/09/2019] [Indexed: 11/27/2022]
|
192
|
Abstract
The Antarctic Centennial Oscillation (ACO) is a paleoclimate temperature cycle that originates in the Southern Hemisphere, is the presumptive evolutionary precursor of the contemporary Antarctic Oscillation (AAO), and teleconnects to the Northern Hemisphere to influence global temperature. In this study we investigate the internal climate dynamics of the ACO over the last 21 millennia using stable water isotopes frozen in ice cores from 11 Antarctic drill sites as temperature proxies. Spectral and time series analyses reveal that ACOs occurred at all 11 sites over all time periods evaluated, suggesting that the ACO encompasses all of Antarctica. From the Last Glacial Maximum through the Last Glacial Termination (LGT), ACO cycles propagated on a multicentennial time scale from the East Antarctic coastline clockwise around Antarctica in the streamline of the Antarctic Circumpolar Current (ACC). The velocity of teleconnection (VT) is correlated with the geophysical characteristics of drill sites, including distance from the ocean and temperature. During the LGT, the VT to coastal sites doubled while the VT to inland sites decreased fourfold, correlated with increasing solar insolation at 65°N. These results implicate two interdependent mechanisms of teleconnection, oceanic and atmospheric, and suggest possible physical mechanisms for each. During the warmer Holocene, ACOs arrived synchronously at all drill sites examined, suggesting that the VT increased with temperature. Backward extrapolation of ACO propagation direction and velocity places its estimated geographic origin in the Southern Ocean east of Antarctica, in the region of the strongest sustained surface wind stress over any body of ocean water on Earth. ACO period is correlated with all major cycle parameters except cycle symmetry, consistent with a forced, undamped oscillation in which the driving energy affects all major cycle metrics. Cycle period and symmetry are not discernibly different for the ACO and AAO over the same time periods, suggesting that they are the same climate cycle. We postulate that the ACO/AAO is generated by relaxation oscillation of Westerly Wind velocity forced by the equator-to-pole temperature gradient and propagated regionally by identified air-sea-ice interactions.
Collapse
|
193
|
Wu L, Tan JL, Chen ZY, Huang G. Cardioprotection of post-ischemic moderate ROS against ischemia/reperfusion via STAT3-induced the inhibition of MCU opening. Basic Res Cardiol 2019; 114:39. [DOI: 10.1007/s00395-019-0747-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022]
|
194
|
Costé de Bagneaux P, Campiglio M, Benedetti B, Tuluc P, Flucher BE. Role of putative voltage-sensor countercharge D4 in regulating gating properties of Ca V1.2 and Ca V1.3 calcium channels. Channels (Austin) 2019; 12:249-261. [PMID: 30001160 PMCID: PMC6161609 DOI: 10.1080/19336950.2018.1482183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Voltage-dependent calcium channels (CaV) activate over a wide range of membrane potentials, and the voltage-dependence of activation of specific channel isoforms is exquisitely tuned to their diverse functions in excitable cells. Alternative splicing further adds to the stunning diversity of gating properties. For example, developmentally regulated insertion of an alternatively spliced exon 29 in the fourth voltage-sensing domain (VSD IV) of CaV1.1 right-shifts voltage-dependence of activation by 30 mV and decreases the current amplitude several-fold. Previously we demonstrated that this regulation of gating properties depends on interactions between positive gating charges (R1, R2) and a negative countercharge (D4) in VSD IV of CaV1.1. Here we investigated whether this molecular mechanism plays a similar role in the VSD IV of CaV1.3 and in VSDs II and IV of CaV1.2 by introducing charge-neutralizing mutations (D4N or E4Q) in the corresponding positions of CaV1.3 and in two splice variants of CaV1.2. In both channels the D4N (VSD IV) mutation resulted in a ̴5 mV right-shift of the voltage-dependence of activation and in a reduction of current density to about half of that in controls. However in CaV1.2 the effects were independent of alternative splicing, indicating that the two modulatory processes operate by distinct mechanisms. Together with our previous findings these results suggest that molecular interactions engaging D4 in VSD IV contribute to voltage-sensing in all examined CaV1 channels, however its striking role in regulating the gating properties by alternative splicing appears to be a unique property of the skeletal muscle CaV1.1 channel.
Collapse
Affiliation(s)
- Pierre Costé de Bagneaux
- a Department of Physiology and Medical Physics , Medical University of Innsbruck , Innsbruck , Austria
| | - Marta Campiglio
- a Department of Physiology and Medical Physics , Medical University of Innsbruck , Innsbruck , Austria
| | - Bruno Benedetti
- b Institute of Experimental Neuroregeneration Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS) , Paracelsus Medical University , Salzburg , Austria
| | - Petronel Tuluc
- c Department of Pharmacology and Toxicology , University of Innsbruck , Innsbruck , Austria
| | - Bernhard E Flucher
- a Department of Physiology and Medical Physics , Medical University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
195
|
Abstract
Developmental processes are inherently dynamic and understanding them requires quantitative measurements of gene and protein expression levels in space and time. While live imaging is a powerful approach for obtaining such data, it is still a challenge to apply it over long periods of time to large tissues, such as the embryonic spinal cord in mouse and chick. Nevertheless, dynamics of gene expression and signaling activity patterns in this organ can be studied by collecting tissue sections at different developmental stages. In combination with immunohistochemistry, this allows for measuring the levels of multiple developmental regulators in a quantitative manner with high spatiotemporal resolution. The mean protein expression levels over time, as well as embryo-to-embryo variability can be analyzed. A key aspect of the approach is the ability to compare protein levels across different samples. This requires a number of considerations in sample preparation, imaging and data analysis. Here we present a protocol for obtaining time course data of dorsoventral expression patterns from mouse and chick neural tube in the first 3 days of neural tube development. The described workflow starts from embryo dissection and ends with a processed dataset. Software scripts for data analysis are included. The protocol is adaptable and instructions that allow the user to modify different steps are provided. Thus, the procedure can be altered for analysis of time-lapse images and applied to systems other than the neural tube.
Collapse
|
196
|
Abstract
PURPOSE OF REVIEW The influence of environmental factors on type 2 diabetes (T2D) risk is now well recognized and highlights the contribution of epigenetic mechanisms. This review will focus on the role of epigenetic factors in the risk and pathogenesis of T2D. RECENT FINDINGS Epigenetic dysregulation has emerged as a key mechanism underpinning the pathogenesis of T2D and its complications. Environmental variations, including alterations in lifestyle, nutrition, and metabolic demands during prenatal and postnatal life can induce epigenetic changes that may impact glucose homeostasis and the function of different metabolic organs. Accumulating data continues to uncover the specific pathways that are epigenetically dysregulated in T2D, providing an opportunity for therapeutic targeting. Environmental changes can disrupt specific epigenetic mechanisms underlying metabolic homeostasis, thus contributing to T2D pathogenesis. Such epigenetic changes can be transmitted to the next generation, contributing to the inheritance of T2D risk. Recent advances in epigenome-wide association studies and epigenetic editing tools present the attractive possibility of identifying epimutations associated with T2D, correcting specific epigenetic alterations, and designing novel epigenetic biomarkers and interventions for T2D.
Collapse
Affiliation(s)
- Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
197
|
Abstract
PURPOSE OF REVIEW To combine evolutionary principles of competition and co-operation with limits to growth models, generating six principles for a new sub-discipline, called "planetary epidemiology." Suggestions are made for how to quantify four principles. RECENT FINDINGS Climate change is one of a suite of threats increasingly being re-discovered by health workers as a major threat to civilization. Although "planetary health" is now in vogue, neither it nor its allied sub-disciplines have, as yet, had significant impact on epidemiology. Few if any theorists have sought to develop principles for Earth system human epidemiology, in its ecological, social, and technological milieu. The principles of planetary epidemiology described here can be used to stimulate applied, quantitative work to explore past, contemporary, and future population health, at scales from local to planetary, in order to promote enduring health. It is also proposed that global well-being will decline this century, without radical reform.
Collapse
Affiliation(s)
- Colin D Butler
- Health Research Institute, University of Canberra, Canberra, Australia. .,Campus Visitor, National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australia. .,Principal Research Fellow, College of Arts, Humanities & Social Sciences, Flinders University, Adelaide, Australia.
| |
Collapse
|
198
|
Jagadeesan B, Gerner-Smidt P, Allard MW, Leuillet S, Winkler A, Xiao Y, Chaffron S, Van Der Vossen J, Tang S, Katase M, McClure P, Kimura B, Ching Chai L, Chapman J, Grant K. The use of next generation sequencing for improving food safety: Translation into practice. Food Microbiol 2019; 79:96-115. [PMID: 30621881 PMCID: PMC6492263 DOI: 10.1016/j.fm.2018.11.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/27/2018] [Accepted: 11/13/2018] [Indexed: 01/06/2023]
Abstract
Next Generation Sequencing (NGS) combined with powerful bioinformatic approaches are revolutionising food microbiology. Whole genome sequencing (WGS) of single isolates allows the most detailed comparison possible hitherto of individual strains. The two principle approaches for strain discrimination, single nucleotide polymorphism (SNP) analysis and genomic multi-locus sequence typing (MLST) are showing concordant results for phylogenetic clustering and are complementary to each other. Metabarcoding and metagenomics, applied to total DNA isolated from either food materials or the production environment, allows the identification of complete microbial populations. Metagenomics identifies the entire gene content and when coupled to transcriptomics or proteomics, allows the identification of functional capacity and biochemical activity of microbial populations. The focus of this review is on the recent use and future potential of NGS in food microbiology and on current challenges. Guidance is provided for new users, such as public health departments and the food industry, on the implementation of NGS and how to critically interpret results and place them in a broader context. The review aims to promote the broader application of NGS technologies within the food industry as well as highlight knowledge gaps and novel applications of NGS with the aim of driving future research and increasing food safety outputs from its wider use.
Collapse
Affiliation(s)
- Balamurugan Jagadeesan
- Nestlé Research, Nestec Ltd, Route du Jorat 57, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland.
| | - Peter Gerner-Smidt
- Centers for Disease Control and Prevention, MS-CO-3, 1600 Clifton Road, 30329-4027, Atlanta, USA
| | - Marc W Allard
- US Food and Drug Administration, 5001 Campus Drive, College Park, MD, 02740, USA
| | - Sébastien Leuillet
- Institut Mérieux, Mérieux NutriSciences, 3 route de la Chatterie, 44800, Saint Herblain, France
| | - Anett Winkler
- Cargill Deutschland GmbH, Cerestarstr. 2, 47809, Krefeld, Germany
| | - Yinghua Xiao
- Arla Innovation Center, Agro Food Park 19, 8200, Aarhus, Denmark
| | - Samuel Chaffron
- Laboratoire des Sciences du Numérique de Nantes (LS2N), CNRS UMR 6004 - Université de Nantes, 2 rue de la Houssinière, 44322, Nantes, France
| | - Jos Van Der Vossen
- The Netherlands Organisation for Applied Scientific Research, TNO, Utrechtseweg 48, 3704 HE, Zeist, NL, the Netherlands
| | - Silin Tang
- Mars Global Food Safety Center, Yanqi Economic Development Zone, 101407, Beijing, China
| | - Mitsuru Katase
- Fuji Oil Co., Ltd., Sumiyoshi-cho 1, Izumisano Osaka, 598-8540, Japan
| | - Peter McClure
- Mondelēz International, Linden 3, Bournville Lane, B30 2LU, Birmingham, United Kingdom
| | - Bon Kimura
- Tokyo University of Marine Science & Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Lay Ching Chai
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - John Chapman
- Unilever Research & Development, Postbus, 114, 3130 AC, Vlaardingen, the Netherlands
| | - Kathie Grant
- Gastrointestinal Bacteria Reference Unit, National Infection Service, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, United Kingdom.
| |
Collapse
|
199
|
Shi Z, Yin L, Dong J, Ma X, Li B. Effect of Probability Information on Bayesian Reasoning: A Study of Event-Related Potentials. Front Psychol 2019; 10:1106. [PMID: 31139127 PMCID: PMC6527761 DOI: 10.3389/fpsyg.2019.01106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/29/2019] [Indexed: 11/13/2022] Open
Abstract
People often confront Bayesian reasoning problems and make decisions under uncertainty in daily life. However, the time course of Bayesian reasoning remains unclear. In particular, whether and how probabilistic information is involved in Bayesian reasoning is controversial, and its neural mechanisms have rarely been explored. In the current study, event-related potentials (ERP) were recorded from 18 undergraduates who completed four kinds of Bayesian reasoning tasks. It was found that compared with the high hit rate task, the low hit rate task elicited more significant N1 (100∼200 ms) and N300 (250∼350 ms) components, suggesting that N1 might be associated with the attention to stimulus materials, and N300 might be associated with the anchor to hit rate. In contrast to the low base rate task, the high base rate task elicited more significant late positive components (LPC, 350∼700 ms), indicating that LPC might reflect the adjustment of probability estimation based on the base rate. These results demonstrate that both the base rate and hit rate play significant roles in Bayesian reasoning, and to some extent, these findings verify that people may follow the "anchoring-adjustment" heuristic in Bayesian reasoning. The current findings provide further proof for the information processing mechanism of Bayesian reasoning.
Collapse
Affiliation(s)
- Zifu Shi
- Cognition and Human Behavior Key Laboratory of Hunan Province, School of Educational Science, Hunan Normal University, Changsha, China
| | | | | | | | | |
Collapse
|
200
|
Hidalgo-García A, Torres MJ, Salas A, Bedmar EJ, Girard L, Delgado MJ. Rhizobium etli Produces Nitrous Oxide by Coupling the Assimilatory and Denitrification Pathways. Front Microbiol 2019; 10:980. [PMID: 31134023 PMCID: PMC6514139 DOI: 10.3389/fmicb.2019.00980] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
More than two-thirds of the powerful greenhouse gas nitrous oxide (N2O) emissions from soils can be attributed to microbial denitrification and nitrification processes. Bacterial denitrification reactions are catalyzed by the periplasmic (Nap) or membrane-bound (Nar) nitrate reductases, nitrite reductases (NirK/cd 1Nir), nitric oxide reductases (cNor, qNor/ CuANor), and nitrous oxide reductase (Nos) encoded by nap/nar, nir, nor and nos genes, respectively. Rhizobium etli CFN42, the microsymbiont of common bean, is unable to respire nitrate under anoxic conditions and to perform a complete denitrification pathway. This bacterium lacks the nap, nar and nos genes but contains genes encoding NirK and cNor. In this work, we demonstrated that R. etli is able to grow with nitrate as the sole nitrogen source under aerobic and microoxic conditions. Genetic and functional characterization of a gene located in the R. etli chromosome and annotated as narB demonstrated that growth under aerobic or microoxic conditions with nitrate as nitrogen source as well as nitrate reductase activity requires NarB. In addition to be involved in nitrate assimilation, NarB is also required for NO and N2O production by NirK and cNor, respectively, in cells grown microoxically with nitrate as the only N source. Furthermore, β-glucuronidase activity from nirK::uidA and norC::uidA fusions, as well as NorC expression and Nir and Nor activities revealed that expression of nor genes under microoxic conditions also depends on nitrate reduction by NarB. Our results suggest that nitrite produced by NarB from assimilatory nitrate reduction is detoxified by NirK and cNor denitrifying enzymes that convert nitrite into NO which in turn is reduced to N2O, respectively.
Collapse
Affiliation(s)
- Alba Hidalgo-García
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - María J Torres
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Ana Salas
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Eulogio J Bedmar
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Lourdes Girard
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - María J Delgado
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|