151
|
Paladino A, Vitagliano L, Graziano G. The Action of Chemical Denaturants: From Globular to Intrinsically Disordered Proteins. BIOLOGY 2023; 12:biology12050754. [PMID: 37237566 DOI: 10.3390/biology12050754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Proteins perform their many functions by adopting either a minimal number of strictly similar conformations, the native state, or a vast ensemble of highly flexible conformations. In both cases, their structural features are highly influenced by the chemical environment. Even though a plethora of experimental studies have demonstrated the impact of chemical denaturants on protein structure, the molecular mechanism underlying their action is still debated. In the present review, after a brief recapitulation of the main experimental data on protein denaturants, we survey both classical and more recent interpretations of the molecular basis of their action. In particular, we highlight the differences and similarities of the impact that denaturants have on different structural classes of proteins, i.e., globular, intrinsically disordered (IDP), and amyloid-like assemblies. Particular attention has been given to the IDPs, as recent studies are unraveling their fundamental importance in many physiological processes. The role that computation techniques are expected to play in the near future is illustrated.
Collapse
Affiliation(s)
- Antonella Paladino
- Institute of Biostructures and Bioimaging, CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giuseppe Graziano
- Department of Science and Technology, University of Sannio, via Francesco de Sanctis snc, 82100 Benevento, Italy
| |
Collapse
|
152
|
Fracaroli AM, Grover G, Ohtsu H, Kawano M, Gándara F, de Rossi RH, Weiss RG, Tashiro K. 1D Supramolecular Assemblies That Crystallize and Form Gels in Response to the Shape-Complementarity of Alcohols. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7353-7360. [PMID: 37196166 DOI: 10.1021/acs.langmuir.3c00435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
N-9-Fluorenylmethyloxycarbonyl (Fmoc)- and C-tertiary butyl (t-Bu)-protected glutamate (L-2), bearing a phenanthroline moiety at the side residue, forms 1D supramolecular assemblies via H-bonding as well as undergoing π-stacking interactions to afford crystals or gels that depend on the shape-complementarity of coexisting alcohols, as demonstrated by structural analyses on these assemblies by means of single-crystal X-ray diffractometry and supplemented with small- and wide-angle X-ray scattering data. Moreover, the rheological measurements on the gels help to define a model for when gels and crystals are expected and found. These observations and conclusions highlight an important, but not very appreciated, aspect of solute-solvent interactions within supramolecular assemblies that can allow the constituent-aggregating molecules in some systems to exhibit high selectivity toward the structures of their solvents. The consequences of this selectivity, as demonstrated here by single-crystal and powder X-ray diffraction data, can lead to self-assembled structures which alter completely the bulk phase properties and morphology of the materials. In that regard, rheological measurements have helped to develop a model to explain when gels and phase-separated mixtures of crystals and solvents are expected.
Collapse
Affiliation(s)
- Alejandro M Fracaroli
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC-CONICET), and Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Girishma Grover
- Department of Chemistry and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, District of Columbia 20057-1227, United States
| | - Hiroyoshi Ohtsu
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Masaki Kawano
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Felipe Gándara
- Departamento de Nuevas Arquitecturas en Química de Materiales, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Rita H de Rossi
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC-CONICET), and Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Richard G Weiss
- Department of Chemistry and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, District of Columbia 20057-1227, United States
| | - Kentaro Tashiro
- Research Center for Macromolecules & Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
153
|
Zhu C, Li T, Wang Z, Li Z, Wei J, Han H, Yuan D, Cai M, Shi J. MC1R Peptide Agonist Self-Assembles into a Hydrogel That Promotes Skin Pigmentation for Treating Vitiligo. ACS NANO 2023; 17:8723-8733. [PMID: 37115703 DOI: 10.1021/acsnano.3c01960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Vitiligo, a common skin disease that seriously affects 0.5-2.0% of the worldwide population, lacks approved therapeutics due to a wide range of adverse side effects. As a key regulator of skin pigmentation, MC1R may be an effective therapeutic target for vitiligo. Herein, we report an MC1R peptide agonist that directly self-assembles into nanofibrils that form a hydrogel matrix under normal physiological conditions. This hydrogel exhibits higher stability than free peptides, sustained release, rapid recovery from shear-thinning, and resistance to enzymatic proteolysis. Furthermore, this peptidal MC1R agonist upregulates tyrosinase, tyrosinase-related protein-1 (TYRP-1), and tyrosinase-related protein-2 (TYRP-2) to stimulate melanin synthesis. More importantly, MC1R agonist hydrogel promotes skin pigmentation in mice more potently than free MC1R agonist. This study supports the development of this MC1R agonist hydrogel as a promising pharmacological intervention for vitiligo.
Collapse
Affiliation(s)
- Ci Zhu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Tingting Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Zhuole Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Zenghui Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Jiaying Wei
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Hong Han
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Dan Yuan
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, China
| | - Minying Cai
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Junfeng Shi
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, China
| |
Collapse
|
154
|
Kong J, Hu J, Li J, Zhang J, Shen Y, Yue T, Shen X, Wang Y, Li Z, Xia Y. Rethreading Design of Ratiometric roGFP2 Mimetic Peptide for Hydrogen Peroxide Sensing. Anal Chem 2023; 95:8284-8290. [PMID: 37161261 DOI: 10.1021/acs.analchem.3c00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Reconstruction of the miniaturized peptide to mimic the tailored functions of protein has been attractive but challenging. Herein, initialized from the crystal structure of redox-sensitive green fluorescent protein-2 (roGFP2), we propose a practical approach to construct the roGFP2 mimetic peptide by rethreading the aromatic residues adjacent to the chromophore fragment. By fine-tuning the residues of peptides, a mini tetrapeptide (Cys-Phe-Phe-His) was designed, which can act as a hydrogen peroxide sensor using its ratiometric fluorescence. The roGFP2 mimetic tetrapeptide is biocompatible and photostable and has competitive fluorescent properties with roGFP2 by the virtue of its assembly induced emissions. We expand the ratiometric tetrapeptide for sensing hydrogen peroxide in acidic chambers. The results provide a promising approach for the artificial design of miniaturized peptides with the desired function.
Collapse
Affiliation(s)
- Jia Kong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Jinyao Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Jia Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Jiaxing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yuhe Shen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest University, Xian, Shaanxi 710069, P. R. China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Zhonghong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Yinqiang Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| |
Collapse
|
155
|
Divanach P, Fanouraki E, Mitraki A, Harmandaris V, Rissanou AN. Self-Assembly of Phenylalanine-Leucine, Leucine-Phenylalanine, and Cyclo(-leucine-phenylalanine) Dipeptides through Simulations and Experiments. J Phys Chem B 2023; 127:4208-4219. [PMID: 37148280 DOI: 10.1021/acs.jpcb.2c08576] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
For over two decades, peptide self-assembly has been the focus of attention and a great source of inspiration for biomedical and nanotechnological applications. The resulting peptide nanostructures and their properties are closely related to the information encoded within each peptide building block, their sequence, and their modes of self-organization. In this work. we assess the behavior and differences between the self-association of the aromatic-aliphatic Phe-Leu dipeptide compared to its retro-sequence Leu-Phe and cyclic Cyclo(-Leu-Phe) counterparts, using a combination of simulation and experimental methods. Detailed all-atom molecular dynamics (MD) simulations offer a quantitative prediction at the molecular level of the conformational, dynamical and structural properties of the peptides' self-assembly, while field emission scanning electron microscopy (FESEM) experiments allow microscopic observation of the self-assembled end-structures. The complementarity and qualitative agreement between the two methods not only highlights the differences between the self-assembly propensity of cyclic and linear retro-sequence peptides but also sheds light on underlying mechanisms of self-organization. The self-assembling propensity was found to follow the order: Cyclo(-Leu-Phe) > Leu-Phe > Phe-Leu.
Collapse
Affiliation(s)
- Peter Divanach
- Department of Materials Science and Technology, University of Crete, GR-70013 Voutes Campus, Greece
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, (FORTH), Nikolaou Plastira 100, Vassilika Vouton, GR-71110 Heraklion, Crete, Greece
| | - Eirini Fanouraki
- Department of Materials Science and Technology, University of Crete, GR-70013 Voutes Campus, Greece
| | - Anna Mitraki
- Department of Materials Science and Technology, University of Crete, GR-70013 Voutes Campus, Greece
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, (FORTH), Nikolaou Plastira 100, Vassilika Vouton, GR-71110 Heraklion, Crete, Greece
| | - Vagelis Harmandaris
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas, (FORTH), IACM/FORTH, GR-71110 Heraklion, Crete, Greece
- Department of Mathematics and Applied Mathematics, University of Crete, GR-71409 Heraklion, Crete, Greece
- Computation-based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Anastassia N Rissanou
- Computation-based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
- National Hellenic Research Foundation, Theoretical & Physical Chemistry Institute, 48 Vassileos Constantinou Avenue, GR-11635 Athens, Greece
| |
Collapse
|
156
|
Ibukun OJ, Gumtya M, Singh S, Shit A, Haldar D. Effect of the spacer on the structure and self-assembly of FF peptide mimetics. SOFT MATTER 2023; 19:3215-3221. [PMID: 37074778 DOI: 10.1039/d3sm00339f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We have designed and synthesized a series of FF peptide mimetics with conformationally rigid and flexible spacers to study the effect of spacers on their structure and self-assembly. The results help in understanding biomolecular aggregation and provide a strategy to obtain fractal pattern materials. From X-ray single crystal analysis, the m-diaminobenzene appended FF peptide mimetic adopts a duplex structure stabilized by multiple intermolecular hydrogen bonds. There is also a water molecule bridging between two strands of the duplex. Moreover, the duplex is stabilized by three face-to-face, face-to-edge and edge-to-edge π-π interactions. The duplex formation is also supported by mass spectrometry. In higher order packing, the dimeric subunits further self-assembled to form a complex sheet-like structure stabilized by multiple intermolecular hydrogen bonding and π-π stacking interactions. Moreover, the 1,4-butadiene and m-xylylenediamine appended FF peptide mimetics form stimuli-responsive organogels in a wide range of solvents including methanol. The rheology data of FF peptide mimetic gels as a function of angular frequency and oscillatory strain also supported the formation of strong physically crosslinked gels. The FE-SEM images of the xerogels obtained from different organic solvents show that the network morphology of FF peptide mimetics varies depending on the nature of the solvents.
Collapse
Affiliation(s)
- Olamilekan Joseph Ibukun
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India.
| | - Milan Gumtya
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India.
| | - Surajit Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India.
| | - Ananda Shit
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India.
| | - Debasish Haldar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India.
| |
Collapse
|
157
|
Wang Y, Geng Q, Zhang Y, Adler-Abramovich L, Fan X, Mei D, Gazit E, Tao K. Fmoc-diphenylalanine gelating nanoarchitectonics: A simplistic peptide self-assembly to meet complex applications. J Colloid Interface Sci 2023; 636:113-133. [PMID: 36623365 DOI: 10.1016/j.jcis.2022.12.166] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
9-fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF), has been has been extensively explored due to its ultrafast self-assembly kinetics, inherent biocompatibility, tunable physicochemical properties, and especially, the capability of forming self-sustained gels under physiological conditions. Consequently, various methodologies to develop Fmoc-FF gels and their corresponding applications in biomedical and industrial fields have been extensively studied. Herein, we systemically summarize the mechanisms underlying Fmoc-FF self-assembly, discuss the preparation methodologies of Fmoc-FF hydrogels, and then deliberate the properties as well as the diverse applications of Fmoc-FF self-assemblies. Finally, the contemporary shortcomings which limit the development of Fmoc-FF self-assembly are raised and the alternative solutions are proposed, along with future research perspectives.
Collapse
Affiliation(s)
- Yunxiao Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China
| | - Qiang Geng
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Yan Zhang
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China.
| | - Xinyuan Fan
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman, Tel Aviv University, 6997801 Tel Aviv, Israel; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China.
| | - Kai Tao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China; Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China.
| |
Collapse
|
158
|
Li H, Shen S, Yu K, Wang H, Fu J. Construction of porous structure-based carboxymethyl chitosan/ sodium alginate/ tea polyphenols for wound dressing. Int J Biol Macromol 2023; 233:123404. [PMID: 36706879 DOI: 10.1016/j.ijbiomac.2023.123404] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/01/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Polysaccharide-based materials with porous structure were selected as the basic skeleton to prepare a flexible and biodegradable wound dressing. The carboxymethyl chitosan/sodium alginate/tea polyphenols (CC/SA/TP) with a two-layer porous structure exhibits a variety of performances. The specific combined structure with ordered and lamellar porous structure was constructed by high-speed homogenized foaming, Ca2+ crosslinking and two-step freeze-drying methods. Moreover, the CC/SA/TP porous structure owns better shape retention and recovery because of the 3D network with an "egg-box" structure formed by impregnation. Tea polyphenols are efficiently encapsulated into a porous structure and released in a sustained pattern. After storing for 60 days, the CC/SA/TP porous structure still exhibits great suitable water vapor transmittance, efficient antibacterial activity and ultrarapid antioxidant activity. Meanwhile, the relatively low differential blood clotting index (BCI) and cytotoxicity of the CC/SA/TP porous structure indicate that it possesses the possibility of adjusting and controlling wound bleeding. The test results reveal that the CC/SA/TP porous structure might be expected to play a great potential role in biomedical applications of wound dressing.
Collapse
Affiliation(s)
- Huimin Li
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China; China National Textile and Apparel Council Key Laboratory of Natural Dyes, Soochow University, Suzhou 215123, China
| | - Shen Shen
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China; China National Textile and Apparel Council Key Laboratory of Natural Dyes, Soochow University, Suzhou 215123, China
| | - Kejing Yu
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China
| | - Hongbo Wang
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China.
| | - Jiajia Fu
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China; China National Textile and Apparel Council Key Laboratory of Natural Dyes, Soochow University, Suzhou 215123, China.
| |
Collapse
|
159
|
Zhang X, Ding H, Yang S, Yang H, Yang X, Li B, Xing X, Sun Y, Gu G, Chen X, Gao J, Pan M, Chi L, Guo Q. Kinetic Controlled Chirality Transfer and Induction in 2D Hydrogen-Bonding Assemblies of Glycylglycine on Au(111). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207111. [PMID: 36599616 DOI: 10.1002/smll.202207111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Chirality transfer is of vital importance that dominates the structure and functionality of biological systems and living matters. External physical stimulations, e.g. polarized light and mechanical forces, can trigger the chirality symmetry breaking, leading to the appearance of the enantiomeric entities created from a chiral self-assembly of achiral molecule. Here, several 2D assemblies with different chirality, synthesized on Au(111) surface by using achiral building blocks - glycylglycine (digly), the simplest polypeptide are reported. By delicately tuning the kinetic factors, i.e., one-step slow/rapid deposition, or stepwise slow deposition with mild annealing, achiral square hydrogen-bond organic frameworks (HOF), homochiral rhombic HOF and racemic rectangular assembly are achieved, respectively. Chirality induction and related symmetry broken in assemblies are introduced by the handedness (H-bond configurations in principle) of the assembled motifs and then amplified to the entire assemblies via the interaction between motifs. The results show that the chirality transfer and induction of biological assemblies can be tuned by altering the kinetic factors instead of applying external forces, which may offer an in-depth understanding and practical approach to peptide chiral assembly on the surfaces and can further facilitate the design of desired complex biomolecular superstructures.
Collapse
Affiliation(s)
- Xin Zhang
- School of Physics, Northwest University, Xi'an, 710069, China
| | - Haoxuan Ding
- Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Shu Yang
- School of Information Science and Engineering, Fudan University, Shanghai, 200433, China
- Zhuhai Fudan Innovation Institute, Zhuhai, 519000, China
| | - Hualin Yang
- Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Xiaoqing Yang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Bosheng Li
- Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Xueting Xing
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Yaojie Sun
- School of Information Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Guangxin Gu
- Zhuhai Fudan Innovation Institute, Zhuhai, 519000, China
| | - Xiaorui Chen
- School of Mechanical and Material Engineering, Xi'an University, Xi'an, 710065, China
| | - Jianzhi Gao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Minghu Pan
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Quanmin Guo
- Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
160
|
Sheehan FK, Wang H, Podbevšek D, Naranjo E, Rivera-Cancel J, Moran C, Ulijn RV, Chen X. Aromatic Zipper Topology Dictates Water-Responsive Actuation in Phenylalanine-Based Crystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207773. [PMID: 36971275 DOI: 10.1002/smll.202207773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Water-responsive (WR) materials that reversibly deform in response to relative humidity (RH) changes are gaining increasing interest for their potential in energy harvesting and soft robotics applications. Despite progress, there are significant gaps in the understanding of how supramolecular structure underpins the reconfiguration and performance of WR materials. Here, three crystals are compared based on the amino acid phenylalanine (F) that contain water channels and F packing domains that are either layered (F), continuously connected (phenylalanyl-phenylalanine, FF), or isolated (histidyl-tyrosyl-phenylalanine, HYF). Hydration-induced reconfiguration is analyzed through changes in hydrogen-bond interactions and aromatic zipper topology. F crystals show the greatest WR deformation (WR energy density of 19.8 MJ m-3 ) followed by HYF (6.5 MJ m-3 ), while FF exhibits no observable response. The difference in water-responsiveness strongly correlates to the deformability of aromatic regions, with FF crystals being too stiff to deform, whereas HYF is too soft to efficiently transfer water tension to external loads. These findings reveal aromatic topology design rules for WR crystals and provide insight into general mechanisms of high-performance WR actuation. Moreover, the best-performing crystal, F emerges as an efficient WR material for applications at scale and low cost.
Collapse
Affiliation(s)
- Fahmeed K Sheehan
- Advanced Science Research Center (ASRC) at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA
- Department of Chemistry, Hunter College, 695 Park Ave, New York, NY, 10065, USA
| | - Haozhen Wang
- Advanced Science Research Center (ASRC) at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA
| | - Darjan Podbevšek
- Advanced Science Research Center (ASRC) at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
| | - Elma Naranjo
- Advanced Science Research Center (ASRC) at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- Department of Chemical Engineering, The City College of New York, 275 Convent Ave, New York, NY, 10031, USA
| | - Janel Rivera-Cancel
- Advanced Science Research Center (ASRC) at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA
| | - Cooper Moran
- Department of Chemistry, Hunter College, 695 Park Ave, New York, NY, 10065, USA
| | - Rein V Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA
- Department of Chemistry, Hunter College, 695 Park Ave, New York, NY, 10065, USA
| | - Xi Chen
- Advanced Science Research Center (ASRC) at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA
- Department of Chemical Engineering, The City College of New York, 275 Convent Ave, New York, NY, 10031, USA
| |
Collapse
|
161
|
Chen S, Li Z, Zhang C, Wu X, Wang W, Huang Q, Chen W, Shi J, Yuan D. Cation-π Interaction Trigger Supramolecular Hydrogelation of Peptide Amphiphiles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301063. [PMID: 36932893 DOI: 10.1002/smll.202301063] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Indexed: 06/18/2023]
Abstract
As an important noncovalent interaction, cation-π interaction plays an essential role in a broad area of biology and chemistry. Despite extensive studies in protein stability and molecular recognition, the utilization of cation-π interaction as a major driving force to construct supramolecular hydrogel remains uncharted. Here, a series of peptide amphiphiles are designed with cation-π interaction pairs that can self-assemble into supramolecular hydrogel under physiological condition. The influence of cation-π interaction is thoroughly investigated on peptide folding propensity, morphology, and rigidity of the resultant hydrogel. Computational and experimental results confirm that cation-π interaction could serve as a major driving force to trigger peptide folding, resultant β-hairpin peptide self-assembled into fibril-rich hydrogel. Furthermore, the designed peptides exhibit high efficacy on cytosolic protein delivery. As the first case of using cation-π interactions to trigger peptide self-assembly and hydrogelation, this work provides a novel strategy to generate supramolecular biomaterials.
Collapse
Affiliation(s)
- Shuang Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Zenghui Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Chunhui Zhang
- College of Biology, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Xia Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
- Shenzhen International Institute for Biomedical Research, Longhua District Shenzhen, Guangdong, 518116, P. R. China
| | - Wenjie Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Qingjun Huang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Weiyu Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Junfeng Shi
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Dan Yuan
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
162
|
Dey A, Haldar U, Tota R, Faust R, De P. PIB-based block copolymer with a segment having alternating sequence of leucine and alanine side-chain pendants. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2023. [DOI: 10.1080/10601325.2023.2189434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Asmita Dey
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| | - Ujjal Haldar
- Polymer Science Program, Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Rajasekhar Tota
- Polymer Science Program, Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Rudolf Faust
- Polymer Science Program, Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| |
Collapse
|
163
|
Kumar V, Ozguney B, Vlachou A, Chen Y, Gazit E, Tamamis P. Peptide Self-Assembled Nanocarriers for Cancer Drug Delivery. J Phys Chem B 2023; 127:1857-1871. [PMID: 36812392 PMCID: PMC10848270 DOI: 10.1021/acs.jpcb.2c06751] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/24/2022] [Indexed: 02/24/2023]
Abstract
The design of novel cancer drug nanocarriers is critical in the framework of cancer therapeutics. Nanomaterials are gaining increased interest as cancer drug delivery systems. Self-assembling peptides constitute an emerging novel class of highly attractive nanomaterials with highly promising applications in drug delivery, as they can be used to facilitate drug release and/or stability while reducing side effects. Here, we provide a perspective on peptide self-assembled nanocarriers for cancer drug delivery and highlight the aspects of metal coordination, structure stabilization, and cyclization, as well as minimalism. We review particular challenges in nanomedicine design criteria and, finally, provide future perspectives on addressing a portion of the challenges via self-assembling peptide systems. We consider that the intrinsic advantages of such systems, along with the increasing progress in computational and experimental approaches for their study and design, could possibly lead to novel classes of single or multicomponent systems incorporating such materials for cancer drug delivery.
Collapse
Affiliation(s)
- Vijay
Bhooshan Kumar
- The
Shmunis School of Biomedicine and Cancer Research, George S. Wise
Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Busra Ozguney
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Anastasia Vlachou
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Yu Chen
- The
Shmunis School of Biomedicine and Cancer Research, George S. Wise
Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ehud Gazit
- The
Shmunis School of Biomedicine and Cancer Research, George S. Wise
Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Department
of Materials Science and Engineering, Iby and Aladar Fleischman Faculty
of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol
School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Phanourios Tamamis
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College
Station, Texas 77843-3003, United States
| |
Collapse
|
164
|
Artificial peroxidase of short peptide and hemin co-assemblies with selective chiral catalytic activity in DOPA oxidation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
165
|
Chowdhury UD, Malayil I, Bhargava BL. Understanding the screening effect of aqueous DES on the IDPs: A molecular dynamics simulation study using amyloid β 42 monomer. J Mol Graph Model 2023; 119:108398. [PMID: 36542916 DOI: 10.1016/j.jmgm.2022.108398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/16/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022]
Abstract
Deep eutectic solvents (DESs) have emerged as the promising replacement to the ionic liquids in solvent engineering for bio-compatibility. We aim to understand the effect of aqueous deep eutectic solvents on the conformation of intrinsically disordered proteins (IDPs). In this context, we have studied the effect on amyloid beta (Aβ42) monomer in the hydrated DES composed of tetrabutylammonium chloride and ethylene glycol in a 3:1 ratio using all-atom molecular dynamics simulations. DES is found to effectively screen the interaction of four zones of the amyloid beta monomer with water. Water molecules and the DES constituents modulate the local protein-solvent interactions, in the solvation shell of the protein. In addition, the aqueous DES medium conserves the secondary structure of the Aβ42 monomer by increasing the intramolecular hydrogen bonding and D23-K28 salt-bridge interactions when compared to the pure water medium. The current study provides insights into the impact of DES in stabilizing an IDP, at molecular level. We envisage the hindered aggregation of the amyloid beta structures in DES medium over the pure water medium due to the screening of hydrophobic intramolecular interactions.
Collapse
Affiliation(s)
- Unmesh D Chowdhury
- School of Chemical Sciences, National Institute of Science Education & Research-Bhubaneswar, an OCC of Homi Bhabha National Institute, P.O. Jatni, Khurda, Odisha 752050, India
| | - Insha Malayil
- School of Chemical Sciences, National Institute of Science Education & Research-Bhubaneswar, an OCC of Homi Bhabha National Institute, P.O. Jatni, Khurda, Odisha 752050, India
| | - B L Bhargava
- School of Chemical Sciences, National Institute of Science Education & Research-Bhubaneswar, an OCC of Homi Bhabha National Institute, P.O. Jatni, Khurda, Odisha 752050, India.
| |
Collapse
|
166
|
Sedighi M, Shrestha N, Mahmoudi Z, Khademi Z, Ghasempour A, Dehghan H, Talebi SF, Toolabi M, Préat V, Chen B, Guo X, Shahbazi MA. Multifunctional Self-Assembled Peptide Hydrogels for Biomedical Applications. Polymers (Basel) 2023; 15:1160. [PMID: 36904404 PMCID: PMC10007692 DOI: 10.3390/polym15051160] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Self-assembly is a growth mechanism in nature to apply local interactions forming a minimum energy structure. Currently, self-assembled materials are considered for biomedical applications due to their pleasant features, including scalability, versatility, simplicity, and inexpensiveness. Self-assembled peptides can be applied to design and fabricate different structures, such as micelles, hydrogels, and vesicles, by diverse physical interactions between specific building blocks. Among them, bioactivity, biocompatibility, and biodegradability of peptide hydrogels have introduced them as versatile platforms in biomedical applications, such as drug delivery, tissue engineering, biosensing, and treating different diseases. Moreover, peptides are capable of mimicking the microenvironment of natural tissues and responding to internal and external stimuli for triggered drug release. In the current review, the unique characteristics of peptide hydrogels and recent advances in their design, fabrication, as well as chemical, physical, and biological properties are presented. Additionally, recent developments of these biomaterials are discussed with a particular focus on their biomedical applications in targeted drug delivery and gene delivery, stem cell therapy, cancer therapy and immune regulation, bioimaging, and regenerative medicine.
Collapse
Affiliation(s)
- Mahsa Sedighi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand 9717853076, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Neha Shrestha
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
- Department of Biomedicine and Translational Research, Research Institute for Bioscience and Biotechnology, Kathmandu P.O. Box 7731, Nepal
| | - Zahra Mahmoudi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Zahra Khademi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Alireza Ghasempour
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Hamideh Dehghan
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Seyedeh Fahimeh Talebi
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Maryam Toolabi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Bozhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xindong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
167
|
Sivagnanam S, Das K, Pan I, Barik A, Stewart A, Maity B, Das P. Functionalized Fluorescent Nanostructures Generated from Self-Assembly of a Cationic Tripeptide Direct Cell-Selective Chemotherapeutic Drug Delivery. ACS APPLIED BIO MATERIALS 2023; 6:836-847. [PMID: 36757106 DOI: 10.1021/acsabm.2c00996] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Nanodrug delivery systems (NDDs) capable of conveying chemotherapeutics directly into malignant cells without harming healthy ones are of significant interest in the field of cancer therapy. However, the development of nanostructures with the requisite biocompatibility, inherent optical properties, cellular penetration ability, encapsulation capability, and target selectivity has remained elusive. In an effort to develop cell-selective NDDs, we have synthesized a cationic tripeptide Boc-Arg-Trp-Phe-OMe (PA1), which self-assembles into well-ordered spheres in 100% aqueous medium. The inherent fluorescence properties of the peptide PA1 were shifted from the ultraviolet to the visible region by the self-assembly. These fluorescent nanostructures are proteolytically stable, photostable, and biocompatible, with characteristic blue fluorescence signals that permit us to monitor their intracellular entry in real time. We also demonstrate that these tripeptide spherical structures (TPSS) have the capacity to entrap the chemotherapeutic drug doxorubicin (Dox), shuttle the encapsulated drug within cancerous cells, and initiate the DNA damage signaling cascade, which culminates in apoptosis. Next, we functionalized the TPSS with an epithelial-cell-specific epithelial cell adhesion molecule aptamer. Aptamer-conjugated PA1 (PA1-Apt) facilitated efficient Dox delivery into the breast cancer epithelial cell line MCF7, resulting in cell death. However, cells of the human cardiomyocyte cell line AC16 were resistant to the cell killing actions of PA1-Apt. Together, these data demonstrate that not only can the self-assembly of cationic tripeptides like PA1 be exploited for efficient drug encapsulation and delivery but their unique chemistry also allows for functional modifications, which can improve the selectivity of these versatile NDDs.
Collapse
Affiliation(s)
- Subramaniyam Sivagnanam
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur 603203, Tamil Nadu, India
| | - Kiran Das
- Department of Systems Biology, Centre of Biomedical Research (CBMR), SGPGI Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Ieshita Pan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India
| | - Atanu Barik
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, Maharashtra, India
| | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida 33458, United States
| | - Biswanath Maity
- Department of Systems Biology, Centre of Biomedical Research (CBMR), SGPGI Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Priyadip Das
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
168
|
Bellotto O, D'Andrea P, Marchesan S. Nanotubes and water-channels from self-assembling dipeptides. J Mater Chem B 2023. [PMID: 36790014 DOI: 10.1039/d2tb02643k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Dipeptides are attractive building blocks for biomaterials in light of their inherent biocompatibility, biodegradability, and simplicity of preparation. Since the discovery of diphenylalanine (Phe-Phe) self-assembling ability into nanotubes, research efforts have been devoted towards the identification of other dipeptide sequences capable of forming these interesting nanomorphologies, although design rules towards nanotube formation are still elusive. In this review, we analyze the dipeptide sequences reported thus far for their ability to form nanotubes, which often feature water-filled supramolecular channels as revealed by single-crystal X-ray diffraction, as well as their properties, and their potential biological applications, which span from drug delivery and regenerative medicine, to bioelectronics and bioimaging.
Collapse
Affiliation(s)
- Ottavia Bellotto
- Chem. Pharm. Sc. Dept., University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy.
| | - Paola D'Andrea
- Life Sc. Dept., University of Trieste, Via Weiss 2, 34128 Trieste, Italy
| | - Silvia Marchesan
- Chem. Pharm. Sc. Dept., University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy. .,INSTM, Unit of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
169
|
Controlled sequential in situ self-assembly and disassembly of a fluorogenic cisplatin prodrug for cancer theranostics. Nat Commun 2023; 14:800. [PMID: 36781887 PMCID: PMC9925730 DOI: 10.1038/s41467-023-36469-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
Temporal control of delivery and release of drugs in tumors are important in improving therapeutic outcomes to patients. Here, we report a sequential stimuli-triggered in situ self-assembly and disassembly strategy to direct delivery and release of theranostic drugs in vivo. Using cisplatin as a model anticancer drug, we design a stimuli-responsive small-molecule cisplatin prodrug (P-CyPt), which undergoes extracellular alkaline phosphatase-triggered in situ self-assembly and succeeding intracellular glutathione-triggered disassembly process, allowing to enhance accumulation and elicit burst release of cisplatin in tumor cells. Compared with cisplatin, P-CyPt greatly improves antitumor efficacy while mitigates off-target toxicity in mice with subcutaneous HeLa tumors and orthotopic HepG2 liver tumors after systemic administration. Moreover, P-CyPt also produces activated near-infrared fluorescence (at 710 nm) and dual photoacoustic imaging signals (at 700 and 750 nm), permitting high sensitivity and spatial-resolution delineation of tumor foci and real-time monitoring of drug delivery and release in vivo. This strategy leverages the advantages offered by in situ self-assembly with those of intracellular disassembly, which may act as a general platform for the design of prodrugs capable of improving drug delivery for cancer theranostics.
Collapse
|
170
|
Bera S, Basu S, Jana B, Dastidar P. Real-time Observation of Macroscopic Helical Morphologies under Optical Microscope: A Curious Case of π-π Stacking Driven Molecular Self-assembly of an Organic Gelator Devoid of Hydrogen Bonding. Angew Chem Int Ed Engl 2023; 62:e202216447. [PMID: 36479962 DOI: 10.1002/anie.202216447] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Supramolecular assemblies such as tubules/helix/double helix/helical tape etc. are usually submicron objects preventing direct observation under optical microscope. Chiral-pure form of these assemblies is important for potential applications. Herein, we report a rare phenomenon wherein a DMSO gel of a simple terpyridine derivative [(4-CNPhe)4PyTerp] produced macroscopic helical morphologies (μm length scale) which could be observed under optical microscope, formation of which could be monitored by optical videography, stable enough to withstand acidic vapour, robust enough to display reversible gel↔sol in response to acidic and ammonia vapour and sturdy enough to be maneuvered with a needle. These properties appeared to be unique to the title compound as the other related derivatives failed to display such assembly structures. SXRD and MD simulation studies suggested that weak interactions (π-π stacking) played a crucial role in the self-assembly process.
Collapse
Affiliation(s)
- Sourabh Bera
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Sushmita Basu
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Parthasarathi Dastidar
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
171
|
Boas D, Remennik S, Reches M. Peptide-capped Au and Ag nanoparticles: Detection of heavy metals and photochemical core/shell formation. J Colloid Interface Sci 2023; 631:66-76. [DOI: 10.1016/j.jcis.2022.10.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/21/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022]
|
172
|
Kulkarni N, Rao P, Jadhav GS, Kulkarni B, Kanakavalli N, Kirad S, Salunke S, Tanpure V, Sahu B. Emerging Role of Injectable Dipeptide Hydrogels in Biomedical Applications. ACS OMEGA 2023; 8:3551-3570. [PMID: 36743055 PMCID: PMC9893456 DOI: 10.1021/acsomega.2c05601] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
Owing to their properties such as biocompatibility, tunable mechanical properties, permeability toward oxygen, nutrients, and the ability to hold a significant amount of water, hydrogels have wide applications in biomedical research. They have been engaged in drug delivery systems, 3D cell culture, imaging, and extracellular matrix (ECM) mimetics. Injectable hydrogels represent a major subset of hydrogels possessing advantages of site-specific conformation with minimal invasive techniques. It preserves the inherent properties of drug/biomolecules and is devoid of any side effects associated with surgery. Various polymeric materials utilized in developing injectable hydrogels are associated with the limitations of toxicity, immunogenicity, tedious manufacturing processes, and lack of easy synthetic tunability. Peptides are an important class of biomaterials that have interesting properties such as biocompatibility, stimuli responsiveness, shear thinning, self-healing, and biosignaling. They lack immunogenicity and toxicity. Therefore, numerous peptide-based injectable hydrogels have been explored in the past, and a few of them have reached the market. In recent years, minimalistic dipeptides have shown their ability to form stable hydrogels through cooperative noncovalent interactions. In addition to inherent properties of lengthy peptide-based injectable hydrogels, dipeptides have the unique advantages of low production cost, high synthetic accessibility, and higher stability. Given the instances of expanding significance of injectable peptide hydrogels in biomedical research and an emerging recent trend of dipeptide-based injectable hydrogels, a timely review on dipeptide-based injectable hydrogels shall highlight various aspects of this interesting class of biomaterials. This concise review that focuses on the dipeptide injectable hydrogel may stimulate the current trends of research on this class of biomaterial to translate its significance as interesting products for biomedical applications.
Collapse
Affiliation(s)
- Neeraj Kulkarni
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
| | - Prajakta Rao
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
- Quality
Operations, Novartis Healthcare Pvt. Ltd., Knowledge City, Raidurg, Hyderabad 500081, Telangana, India
| | - Govinda Shivaji Jadhav
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
| | - Bhakti Kulkarni
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
- Springer
Nature Technology and Publishing Solutions, Hadapsar, Pune 411013, Maharashtra, India
| | - Nagaraju Kanakavalli
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
- Aragen
Life Sciences Pvt, Ltd., Madhapur, Hyderabad 500076, Telangana, India
| | - Shivani Kirad
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
| | - Sujit Salunke
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
| | - Vrushali Tanpure
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
| | - Bichismita Sahu
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
| |
Collapse
|
173
|
Li L, Duns GJ, Dessie W, Cao Z, Ji X, Luo X. Recent advances in peptide-based therapeutic strategies for breast cancer treatment. Front Pharmacol 2023; 14:1052301. [PMID: 36794282 PMCID: PMC9922721 DOI: 10.3389/fphar.2023.1052301] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Breast cancer is the leading cause of cancer-related fatalities in female worldwide. Effective therapies with low side effects for breast cancer treatment and prevention are, accordingly, urgently required. Targeting anticancer materials, breast cancer vaccines and anticancer drugs have been studied for many years to decrease side effects, prevent breast cancer and suppress tumors, respectively. There are abundant evidences to demonstrate that peptide-based therapeutic strategies, coupling of good safety and adaptive functionalities are promising for breast cancer therapy. In recent years, peptide-based vectors have been paid attention in targeting breast cancer due to their specific binding to corresponding receptors overexpressed in cell. To overcome the low internalization, cell penetrating peptides (CPPs) could be selected to increase the penetration due to the electrostatic and hydrophobic interactions between CPPs and cell membranes. Peptide-based vaccines are at the forefront of medical development and presently, 13 types of main peptide vaccines for breast cancer are being studied on phase III, phase II, phase I/II and phase I clinical trials. In addition, peptide-based vaccines including delivery vectors and adjuvants have been implemented. Many peptides have recently been used in clinical treatments for breast cancer. These peptides show different anticancer mechanisms and some novel peptides could reverse the resistance of breast cancer to susceptibility. In this review, we will focus on current studies of peptide-based targeting vectors, CPPs, peptide-based vaccines and anticancer peptides for breast cancer therapy and prevention.
Collapse
Affiliation(s)
- Ling Li
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Gregory J. Duns
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Wubliker Dessie
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Zhenmin Cao
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Xiaofang Luo
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| |
Collapse
|
174
|
Thursch LJ, Lima TA, O'Neill N, Ferreira FF, Schweitzer-Stenner R, Alvarez NJ. Influence of central sidechain on self-assembly of glycine-x-glycine peptides. SOFT MATTER 2023; 19:394-409. [PMID: 36454226 DOI: 10.1039/d2sm01082h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Low molecular weight gelators (LMWGs) are the subject of intense research for a range of biomedical and engineering applications. Peptides are a special class of LMWG, which offer infinite sequence possibilities and, therefore, engineered properties. This work examines the propensity of the GxG peptide family, where x denotes a guest residue, to self-assemble into fibril networks via changes in pH and ethanol concentration. These triggers for gelation are motivated by recent work on GHG and GAG, which unexpectedly self-assemble into centimeter long fibril networks with unique rheological properties. The propensity of GxG peptides to self-assemble, and the physical and chemical properties of the self-assembled structures are characterized by microscopy, spectroscopy, rheology, and X-ray diffraction. Interestingly, we show that the number, length, size, and morphology of the crystalline self-assembled aggregates depend significantly on the x-residue chemistry and the solution conditions, i.e. pH, temperature, peptide concentration, etc. The different x-residues allow us to probe the importance of different peptide interactions, e.g. π-π stacking, hydrogen bonding, and hydrophobicity, on the formation of fibrils. We conclude that fibril formation requires π-π stacking interactions in pure water, while hydrogen bonding can form fibrils in the presence of ethanol-water solutions. These results validate and support theoretical arguments on the propensity for self-assembly and leads to a better understanding of the relationship between peptide chemistry and fibril self-assembly. Overall, GxG peptides constitute a unique family of peptides, whose characterization will aid in advancing our understanding of self-assembly driving forces for fibril formation in peptide systems.
Collapse
Affiliation(s)
- Lavenia J Thursch
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, USA.
| | - Thamires A Lima
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, USA.
| | - Nichole O'Neill
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, USA.
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA.
| | - Fabio F Ferreira
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil
| | | | - Nicolas J Alvarez
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
175
|
Huo Y, Hu J, Yin Y, Liu P, Cai K, Ji W. Self-Assembling Peptide-Based Functional Biomaterials. Chembiochem 2023; 24:e202200582. [PMID: 36346708 DOI: 10.1002/cbic.202200582] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Peptides can self-assemble into various hierarchical nanostructures through noncovalent interactions and form functional materials exhibiting excellent chemical and physical properties, which have broad applications in bio-/nanotechnology. The self-assembly mechanism, self-assembly morphology of peptide supramolecular architecture and their various applications, have been widely explored which have the merit of biocompatibility, easy preparation, and controllable functionality. Herein, we introduce the latest research progress of self-assembling peptide-based nanomaterials and review their applications in biomedicine and optoelectronics, including tissue engineering, anticancer therapy, biomimetic catalysis, energy harvesting. We believe that this review will inspire the rational design and development of novel peptide-based functional bio-inspired materials in the future.
Collapse
Affiliation(s)
- Yehong Huo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Jian Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Yuanyuan Yin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
176
|
Jeong S, Lee K, Yoo SH, Lee HS, Kwon S. Crystalline Metal-Peptide Networks: Structures, Applications, and Future Outlook. Chembiochem 2023; 24:e202200448. [PMID: 36161687 DOI: 10.1002/cbic.202200448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/23/2022] [Indexed: 01/20/2023]
Abstract
Metal-peptide networks (MPNs), which are assembled from short peptides and metal ions, are considered one of the most fascinating metal-organic coordinated architectures because of their unique and complicated structures. Although MPNs have considerable potential for development into versatile materials, they have not been developed for practical applications because of several underlying limitations, such as designability, stability, and modifiability. In this review, we summarise several important milestones in the development of crystalline MPNs and thoroughly analyse their structural features, such as peptide sequence designs, coordination geometries, cross-linking types, and network topologies. In addition, potential applications such as gas adsorption, guest encapsulation, and chiral recognition are introduced. We believe that this review is a useful survey that can provide insights into the development of new MPNs with more sophisticated structures and novel functions.
Collapse
Affiliation(s)
- Seoneun Jeong
- Center for Multiscale Chiral Architectures, Department of Chemistry, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Kwonjung Lee
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| | - Sung Hyun Yoo
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Hee-Seung Lee
- Center for Multiscale Chiral Architectures, Department of Chemistry, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Sunbum Kwon
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| |
Collapse
|
177
|
Zhao C, Li X, Bian S, Zeng W, Ronca A, D’Amora U, Raucci MG, Liang J, Sun Y, Jiang Q, Fan Y, Ambrosio L, Zhang X. Nanofibrous polypeptide hydrogels with collagen-like structure as biomimetic extracellular matrix. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2023. [DOI: 10.1186/s42825-022-00110-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AbstractSupramolecular peptides exhibit obvious similarities with collagen fibers in terms of self-assembly characteristics, nanofibrous structure, and responsiveness to external stimuli. Here, a series of supramolecular peptides were developed by altering the amino acid sequence, enabling the self-assembly of three types of 4-biphenylacetic acid (BPAA)-tripeptides into fibrous hydrogel through hydrogen bonding and π–π stacking under the influence of ion induction. Transmission electron and scanning electron microscopies revealed that the diameter of the fiber within nanofibrous hydrogels was ~ 10 and ~ 40 nm, respectively, which was similar with the self-assembled collagen fibers. For this reason, these hydrogels could be considered as a biomimetic extracellular substitute. Meanwhile, the gelation concentration induced by ions was even lower than 0.66 wt%, with an elastic modulus of ~ 0.27 kPa, corresponding to a water content of 99.34 wt%. In addition, the three supramolecular hydrogels were found to be good substrates for L929 cell adhesion and MC-3T3 cell proliferation. The overall results implied that BPAA-based hydrogels have a lucrative application potential as cell carriers.
Graphical Abstract
Collapse
|
178
|
Marciano Y, del Solar V, Nayeem N, Dave D, Son J, Contel M, Ulijn RV. Encapsulation of Gold-Based Anticancer Agents in Protease-Degradable Peptide Nanofilaments Enhances Their Potency. J Am Chem Soc 2023; 145:234-246. [PMID: 36542079 PMCID: PMC10720394 DOI: 10.1021/jacs.2c09820] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We investigated the use of amphiphilic, protease-cleavable peptides as encapsulation moieties for hydrophobic metallodrugs, in order to enhance their bioavailability and consequent activity. Two hydrophobic, gold-containing anticancer agents varying in aromatic ligand distribution (Au(I)-N-heterocyclic carbene compounds 1 and 2) were investigated. These were encapsulated into amphiphilic decapeptides that form soluble filamentous structures with hydrophobic cores, varying supramolecular packing arrangements and surface charge. Peptide sequence strongly dictates the supramolecular packing within the aromatic core, which in turn dictates drug loading. Anionic peptide filaments can effectively load 1, and to a lesser extent 2, while their cationic counterparts could not, collectively demonstrating that loading efficiency is dictated by both aromatic and electrostatic (mis)matching between drug and peptide. Peptide nanofilaments were nontoxic to cancerous and noncancerous cells. By contrast, those loaded with 1 and 2 displayed enhanced cytotoxicity in comparison to 1 and 2 alone, when exposed to Caki-1 and MDA-MB-231 cancerous cell lines, while no cytotoxicity was observed in noncancerous lung fibroblasts, IMR-90. We propose that the enhanced in vitro activity results from the enhanced proteolytic activity in the vicinity of the cancer cells, thereby breaking the filaments into drug-bound peptide fragments that are taken up by these cells, resulting in enhanced cytotoxicity toward cancer cells.
Collapse
Affiliation(s)
- Yaron Marciano
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York (CUNY), 85 Saint Nicholas Terrace, New York, NY 10031, USA
- Department of Chemistry, Brooklyn College, CUNY, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Ph.D. Program in Chemistry, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
| | - Virginia del Solar
- Department of Chemistry, Brooklyn College, CUNY, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | - Nazia Nayeem
- Department of Chemistry, Brooklyn College, CUNY, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Ph.D. Program inBiology, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
| | - Dhwanit Dave
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York (CUNY), 85 Saint Nicholas Terrace, New York, NY 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
- Department of Chemistry, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Jiye Son
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York (CUNY), 85 Saint Nicholas Terrace, New York, NY 10031, USA
| | - María Contel
- Department of Chemistry, Brooklyn College, CUNY, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Ph.D. Program in Chemistry, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
- Ph.D. Program in Biochemistry, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
- Ph.D. Program inBiology, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
| | - Rein V. Ulijn
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York (CUNY), 85 Saint Nicholas Terrace, New York, NY 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
- Ph.D. Program in Biochemistry, The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY 10016, USA
- Department of Chemistry, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| |
Collapse
|
179
|
Rosetti B, Marchesan S. Peptide Inhibitors of Insulin Fibrillation: Current and Future Challenges. Int J Mol Sci 2023; 24:1306. [PMID: 36674821 PMCID: PMC9863703 DOI: 10.3390/ijms24021306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Amyloidoses include a large variety of local and systemic diseases that share the common feature of protein unfolding or refolding into amyloid fibrils. The most studied amyloids are those directly involved in neurodegenerative diseases, while others, such as those formed by insulin, are surprisingly far less studied. Insulin is a very important polypeptide that plays a variety of biological roles and, first and foremost, is at the basis of the therapy of diabetic patients. It is well-known that it can form fibrils at the site of injection, leading to inflammation and immune response, in addition to other side effects. In this concise review, we analyze the current knowledge on insulin fibrillation, with a focus on the development of peptide-based inhibitors, which are promising candidates for their biocompatibility but still pose challenges to their effective use in therapy.
Collapse
Affiliation(s)
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
180
|
Rosa E, de Mello L, Castelletto V, Dallas ML, Accardo A, Seitsonen J, Hamley IW. Cell Adhesion Motif-Functionalized Lipopeptides: Nanostructure and Selective Myoblast Cytocompatibility. Biomacromolecules 2023; 24:213-224. [PMID: 36520063 PMCID: PMC9832505 DOI: 10.1021/acs.biomac.2c01068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The conformation and self-assembly of four lipopeptides, peptide amphiphiles comprising peptides conjugated to lipid chains, in aqueous solution have been examined. The peptide sequence in all four lipopeptides contains the integrin cell adhesion RGDS motif, and the cytocompatibility of the lipopeptides is also analyzed. Lipopeptides have either tetradecyl (C14, myristyl) or hexadecyl (C16, palmitoyl) lipid chains and peptide sequence WGGRGDS or GGGRGDS, that is, with either a tryptophan-containing WGG or triglycine GGG tripeptide spacer between the bioactive peptide motif and the alkyl chain. All four lipopeptides self-assemble above a critical aggregation concentration (CAC), determined through several comparative methods using circular dichroism (CD) and fluorescence. Spectroscopic methods [CD and Fourier transform infrared (FTIR) spectroscopy] show the presence of β-sheet structures, consistent with the extended nanotape, helical ribbon, and nanotube structures observed by cryogenic transmission electron microscopy (cryo-TEM). The high-quality cryo-TEM images clearly show the coexistence of helically twisted ribbon and nanotube structures for C14-WGGRGDS, which highlight the mechanism of nanotube formation by the closure of the ribbons. Small-angle X-ray scattering shows that the nanotapes comprise highly interdigitated peptide bilayers, which are also present in the walls of the nanotubes. Hydrogel formation was observed at sufficiently high concentrations or could be induced by a heat/cool protocol at lower concentrations. Birefringence due to nematic phase formation was observed for several of the lipopeptides, along with spontaneous flow alignment of the lyotropic liquid crystal structure in capillaries. Cell viability assays were performed using both L929 fibroblasts and C2C12 myoblasts to examine the potential uses of the lipopeptides in tissue engineering, with a specific focus on application to cultured (lab-grown) meat, based on myoblast cytocompatibility. Indeed, significantly higher cytocompatibility of myoblasts was observed for all four lipopeptides compared to that for fibroblasts, in particular at a lipopeptide concentration below the CAC. Cytocompatibility could also be improved using hydrogels as cell supports for fibroblasts or myoblasts. Our work highlights that precision control of peptide sequences using bulky aromatic residues within "linker sequences" along with alkyl chain selection can be used to tune the self-assembled nanostructure. In addition, the RGDS-based lipopeptides show promise as materials for tissue engineering, especially those of muscle precursor cells.
Collapse
Affiliation(s)
- Elisabetta Rosa
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights,
Reading, Berkshire RG6 6AD, U.K.,Department
of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Via Domenico Montesano 49, Naples 80131, Italy
| | - Lucas de Mello
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights,
Reading, Berkshire RG6 6AD, U.K.,Departamento
de Biofísica, Universidade Federal
de São Paulo, São
Paulo 04023-062, Brazil
| | - Valeria Castelletto
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights,
Reading, Berkshire RG6 6AD, U.K.
| | - Mark L. Dallas
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights,
Reading, Berkshire RG6 6AD, U.K.
| | - Antonella Accardo
- Department
of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Via Domenico Montesano 49, Naples 80131, Italy
| | - Jani Seitsonen
- Nanomicroscopy
Center, Aalto University, Puumiehenkuja 2, Espoo FIN-02150, Finland
| | - Ian W. Hamley
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights,
Reading, Berkshire RG6 6AD, U.K.,
| |
Collapse
|
181
|
Exploiting terminal charged residue shift for wide bilayer nanotube assembly. J Colloid Interface Sci 2023; 629:1-10. [DOI: 10.1016/j.jcis.2022.08.104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022]
|
182
|
Yonenuma R, Mori H. Synthesis and self-assembly of a diphenylalanine–tetraphenylethylene hybrid monomer and RAFT polymers with aggregation-induced emission. Polym Chem 2023. [DOI: 10.1039/d2py01602h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
A hybrid monomer consisting of diphenylalanine with the self-assembling ability and tetraphenylethylene with aggregation-induced emission properties was synthesized and employed for reversible addition–fragmentation chain transfer polymerization.
Collapse
Affiliation(s)
- Ryo Yonenuma
- Department of Organic Material Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa City, Yamagata Prefecture 992-8510, Japan
| | - Hideharu Mori
- Department of Organic Material Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa City, Yamagata Prefecture 992-8510, Japan
| |
Collapse
|
183
|
Rahman M, Almalki WH, Afzal O, Alfawaz Altamimi AS, Najib Ullah SNM, Abul Barkat M, Beg S. Chiral-engineered supraparticles: Emerging tools for drug delivery. Drug Discov Today 2023; 28:103420. [PMID: 36309193 DOI: 10.1016/j.drudis.2022.103420] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/24/2022] [Accepted: 10/20/2022] [Indexed: 02/02/2023]
Abstract
The handedness of chiral-engineered supraparticles (CE-SPs) influences their interactions with cells and proteins, as evidenced by the increased penetration of breast, cervical, and myeloma cell membranes by d-chirality-coordinated SPs. Quartz crystal dissipation and isothermal titration calorimetry have been used to investigate such chiral-specific interactions. d-SPs are more thermodynamically stable compared with l-SPs in terms of their adhesion. Proteases and other endogenous proteins can be shielded by the opposite chirality of d-SPs, resulting in longer half-lives. Incorporating nanosystems with d-chirality increases uptake by cancer cells and prolongs in vivo stability, demonstrating the importance of chirality in biomaterials. Thus, as we discuss here, chiral nanosystems could enhance drug delivery systems, tumor markers, and biosensors, among other biomaterial-based technologies, by allowing for better control over their features.
Collapse
Affiliation(s)
- Mahfoozur Rahman
- Department of Pharmaceutical Science, SIHAS, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, India.
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | | | | | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Saudi Arabia
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
184
|
Shao L, Ma J, Prelesnik JL, Zhou Y, Nguyen M, Zhao M, Jenekhe SA, Kalinin SV, Ferguson AL, Pfaendtner J, Mundy CJ, De Yoreo JJ, Baneyx F, Chen CL. Hierarchical Materials from High Information Content Macromolecular Building Blocks: Construction, Dynamic Interventions, and Prediction. Chem Rev 2022; 122:17397-17478. [PMID: 36260695 DOI: 10.1021/acs.chemrev.2c00220] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hierarchical materials that exhibit order over multiple length scales are ubiquitous in nature. Because hierarchy gives rise to unique properties and functions, many have sought inspiration from nature when designing and fabricating hierarchical matter. More and more, however, nature's own high-information content building blocks, proteins, peptides, and peptidomimetics, are being coopted to build hierarchy because the information that determines structure, function, and interfacial interactions can be readily encoded in these versatile macromolecules. Here, we take stock of recent progress in the rational design and characterization of hierarchical materials produced from high-information content blocks with a focus on stimuli-responsive and "smart" architectures. We also review advances in the use of computational simulations and data-driven predictions to shed light on how the side chain chemistry and conformational flexibility of macromolecular blocks drive the emergence of order and the acquisition of hierarchy and also on how ionic, solvent, and surface effects influence the outcomes of assembly. Continued progress in the above areas will ultimately usher in an era where an understanding of designed interactions, surface effects, and solution conditions can be harnessed to achieve predictive materials synthesis across scale and drive emergent phenomena in the self-assembly and reconfiguration of high-information content building blocks.
Collapse
Affiliation(s)
- Li Shao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jinrong Ma
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Jesse L Prelesnik
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Yicheng Zhou
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mary Nguyen
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Mingfei Zhao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Samson A Jenekhe
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Sergei V Kalinin
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jim Pfaendtner
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Christopher J Mundy
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - François Baneyx
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
185
|
Bassan GA, Marchesan S. Peptide-Based Materials That Exploit Metal Coordination. Int J Mol Sci 2022; 24:ijms24010456. [PMID: 36613898 PMCID: PMC9820281 DOI: 10.3390/ijms24010456] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Metal-ion coordination has been widely exploited to control the supramolecular behavior of a variety of building blocks into functional materials. In particular, peptides offer great chemical diversity for metal-binding modes, combined with inherent biocompatibility and biodegradability that make them attractive especially for medicine, sensing, and environmental remediation. The focus of this review is the last 5 years' progress in this exciting field to conclude with an overview of the future directions that this research area is currently undertaking.
Collapse
|
186
|
Fasola E, Alboreggia G, Pieraccini S, Oliva F, Agharbaoui FE, Bollati M, Bertoni G, Recchia S, Marelli M, Piarulli U, Pellegrino S, Gazzola S. Conformational switch and multiple supramolecular structures of a newly identified self-assembling protein-mimetic peptide from Pseudomonas aeruginosa YeaZ protein. Front Chem 2022; 10:1038796. [PMID: 36583150 PMCID: PMC9792601 DOI: 10.3389/fchem.2022.1038796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Protein-mimetic peptides (PMPs) are shorter sequences of self-assembling proteins, that represent remarkable building blocks for the generation of bioinspired functional supramolecular structures with multiple applications. The identification of novel aminoacidic sequences that permit the access to valuable biocompatible materials is an attractive area of research. In this work, in silico analysis of the Pseudomonas aeruginosa YeaZ protein (PaYeaZ) led to the identification of a tetradecapeptide that represents the shortest sequence responsible for the YeaZ-YeaZ dimer formation. Based on its sequence, an innovative 20-meric peptide, called PMP-2, was designed, synthesized, and characterized in terms of secondary structure and self-assembly properties. PMP-2 conserves a helical character and self-assembles into helical nanofibers in non-polar solvents (DMSO and trifluoroethanol), as well as in dilute (0.5 mM) aqueous solutions. In contrast, at higher concentrations (>2 mM) in water, a conformational transition from α-helix to β-sheet occurs, which is accompanied by the Protein-mimetic peptide aggregation into 2D-sheets and formation supramolecular gel in aqueous environment. Our findings reveal a newly identified Protein-mimetic peptide that could turn as a promising candidate for future material applications.
Collapse
Affiliation(s)
- Elettra Fasola
- Science and High Technology Department, University of Insubria, Como, Italy
| | - Giulia Alboreggia
- Science and High Technology Department, University of Insubria, Como, Italy
| | | | | | | | - Michela Bollati
- CNR and Department of Biosciences, Institute of Biophysics, University of Milan, Milan, Italy
| | | | - Sandro Recchia
- Science and High Technology Department, University of Insubria, Como, Italy
| | - Marcello Marelli
- CNR-SCITEC—Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Milan, Italy
| | - Umberto Piarulli
- Science and High Technology Department, University of Insubria, Como, Italy,*Correspondence: Umberto Piarulli, ; Silvia Gazzola,
| | - Sara Pellegrino
- Pharmaceutical Science Department, University of Milan, Milan, Italy
| | - Silvia Gazzola
- Science and High Technology Department, University of Insubria, Como, Italy,*Correspondence: Umberto Piarulli, ; Silvia Gazzola,
| |
Collapse
|
187
|
Zu L, Shi H, Yang J, Zhang C, Fu Y, Xi N, Liu L, Wang W. Unidirectional diphenylalanine nanotubes for dynamically guiding neurite outgrowth. Biomed Mater 2022; 18. [PMID: 36541466 DOI: 10.1088/1748-605x/aca737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022]
Abstract
Neural networks have been culturedin vitroto investigate brain functions and diseases, clinical treatments for brain damage, and device development. However, it remains challenging to form complex neural network structures with desired orientations and connectionsin vitro. Here, we introduce a dynamic strategy by using diphenylalanine (FF) nanotubes for controlling physical patterns on a substrate to regulate neurite-growth orientation in cultivating neural networks. Parallel FF nanotube patterns guide neurons to develop neurites through the unidirectional FF nanotubes while restricting their polarization direction. Subsequently, the FF nanotubes disassemble and the restriction of neurites disappear, and secondary neurite development of the neural network occurs in other direction. Experiments were conducted that use the hippocampal neurons, and the results demonstrated that the cultured neural networks by using the proposed dynamic approach can form a significant cross-connected structure with substantially more lateral neural connections than static substrates. The proposed dynamic approach for neurite outgrowing enables the construction of oriented innervation and cross-connected neural networksin vitroand may explore the way for the bio-fabrication of highly complex structures in tissue engineering.
Collapse
Affiliation(s)
- Lipeng Zu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.,Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Huiyao Shi
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.,Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jia Yang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.,Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chuang Zhang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.,Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
| | - Yuanyuan Fu
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang 110122, People's Republic of China
| | - Ning Xi
- Department of Industrial and Manufacturing Systems Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.,Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
| | - Wenxue Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.,Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
| |
Collapse
|
188
|
Hierarchical metal-peptide assemblies with chirality-encoded spiral architecture and catalytic activity. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1351-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
189
|
Dimeric capsule vs columnar polymer: Structural factors determining the aggregation behavior of amino acid functionalized benzene-1,3,5-tricarboxamides in solution and in the solid-state. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
190
|
Adhikary R, Das A. Atomistic Pictures of Self-Assembled Helical Peptide Nanofibers. J Phys Chem B 2022; 126:9476-9492. [PMID: 36350248 DOI: 10.1021/acs.jpcb.2c04484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Spontaneous self-assembly of peptides has been at the forefront of supramolecular chemistry and materials science research over the last two decades. Despite the wealth of information on the morphology of the assembled objects, atomic resolution details of molecular arrangements inside them are largely unknown. In this paper, we investigated non-covalent assemblies of zwitterionic l-phenylalanine tripeptides in water using all-atom explicit-solvent molecular dynamics computer simulations. Our studies produced atomistic pictures of spontaneously assembled nanofibers composed of hundreds of peptide molecules. The dimensions of the nanofibers varied from 10 to 18 nm, with irregular helical twists along the long axes. Previously published experimental data, acquired under similar conditions, provided direct validation of the fibrous morphology and indirect support for the non-trivial helicity observed in our simulations. Quantitative analyses of peptide-water and peptide-peptide interactions revealed heterogeneous local environments of molecules across the nanometer length scales. The combination of electrostatic, hydrogen bonding, van der Waals, and hydrophobic interactions, adopted by a single molecule, was dependent on its relative position inside the fiber. Despite the presence of three hydrophobic phenyl groups, very few molecules were found to be completely shielded from the surrounding water, indicating a subtle role of the hydrophobic effect. Limited conformational flexibility of the tripeptide, along with bare electrostatic interactions, appeared to play a crucial role in the emergence of fibrous morphology of the nanostructures. Our analyses led us to formulate plausible qualitative explanations of the assembly behavior in terms of thermodynamic driving forces and kinetic considerations. We established a clear relationship between details of chemical interactions operating within few molecules and characteristics of the self-assembled states at much longer length scales.
Collapse
Affiliation(s)
- Rumela Adhikary
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Avisek Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
191
|
Wei H, Min J, Wang Y, Shen Y, Du Y, Su R, Qi W. Bioinspired porphyrin-peptide supramolecular assemblies and their applications. J Mater Chem B 2022; 10:9334-9348. [PMID: 36373597 DOI: 10.1039/d2tb01660e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Inspired by the hierarchical chiral assembly of porphyrin-proteins in photosynthetic systems, the hierarchical self-assembly of porphyrin-amino acids/peptides provides a novel strategy for constructing functional materials. How to artificially simulate the assembly of porphyrins, proteins, and other cofactors in the photosynthesis system to obtain persistent strong light capture, charge separation and catalytic reactions has become an important concern in the construction of biomimetic photosynthesis systems. This paper summarizes the different assembly strategies adopted in recent years, the effects of driving forces on self-assembly, and the application of porphyrin-peptides in catalysis and biomedicine, and briefly discusses the challenges and prospects for future research.
Collapse
Affiliation(s)
- Hao Wei
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | - Jiwei Min
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China. .,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yuhe Shen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | - Yaohui Du
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
192
|
Yang K, Gallazzi F, Arens C, Glaser R. Importance of Solvent-Bridged Structures of Fluorinated Diphenylalanines: Synthesis, Detailed NMR Analysis, and Rotational Profiles of Phe(2-F)-Phe(2-F), Phe(2-F)-Phe, and Phe-Phe(2-F). ACS OMEGA 2022; 7:42629-42643. [PMID: 36440139 PMCID: PMC9685757 DOI: 10.1021/acsomega.2c06351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The crystal structure of l-phenylalanyl l-phenylalanine (Phe-Phe, FF, a.k.a. diphenylalanine) is not merely noncentrosymmetric, but it is highly dipole parallel aligned. It is for this reason that FF is a nonlinear optical (NLO) material and exhibits strong second harmonic generation (SHG). Enhancement of the SHG response by ortho fluorination was demonstrated. Crystallization is nontrivial, and learning about the zwitterion structures in solution is important for the rational improvement of the crystallization process. Here, we present an NMR study of di-fluorinated FF (Phe(2-F)-Phe(2-F)) and mono-fluorinated FF isomers (Phe(2-F)-Phe and Phe-Phe(2-F)). The dipeptides were prepared by solid-phase synthesis and purified by high-performance liquid chromatography (HPLC). Their 1H and 13C NMR spectra were recorded in partially deuterated water (10% D2O), and two-dimensional (2D) NMR techniques were employed for signal assignments. The unambiguous assignments are reported of all chemical shifts for the aliphatic H and C atoms and of the C atoms of the carboxylate, the amide carbonyl, the CF carbons, and of every arene C atom in each phenyl ring. The dipeptides are trans amides and intramolecular hydrogen bonding between the ammonium group and the amide carbonyl restricts the H3N-CH-C(O) geometry. We explored the rotational profile of the diphenylalanines as a function of the τ = ∠(C-N-C-CO2) dihedral angle at the SMD(B3LYP/6-31G*) level without and with specific hydration and report the associated Karplus curves J(θ) vs θ = ∠(H-N-C-H). The rotational profiles show a maximum of three stationary structures, and relative conformer stabilities of the free diphenylalanines show that the conformation found in the crystal M1 is the least stable among the three, M3 > M2 ≫ M1. Specific water solvation makes all of the difference and adds a large competitive advantage to the water-bridged ion pair M1a. In fact, M1a becomes the most stable and dominant conformation for the parent diphenylalanine and mono1 F-FF and M1a becomes competitive with M3c for mono2 F-FF and di F-FF. Implications are discussed regarding the importance of the conformational preorganization of diphenylalanines in solution and the facility for their crystallization.
Collapse
Affiliation(s)
- Kaidi Yang
- Department
of Chemistry, University of Missouri, Columbia, Missouri65211, United States
| | - Fabio Gallazzi
- Department
of Chemistry, University of Missouri, Columbia, Missouri65211, United States
- Molecular
Interactions Core, University of Missouri, Columbia, Missouri65211, United States
| | - Christina Arens
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri65409, United States
| | - Rainer Glaser
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri65409, United States
| |
Collapse
|
193
|
Tan W, Zhang Q, Hong P, Xu B. A Self-Assembling Probe for Imaging the States of Golgi Apparatus in Live Single Cells. Bioconjug Chem 2022; 33:1983-1988. [PMID: 35312281 PMCID: PMC9489815 DOI: 10.1021/acs.bioconjchem.2c00084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the enormous progress in genomics and proteomics, it is still challenging to assess the states of organelles in living cells with high spatiotemporal resolution. Based on our recent finding of enzyme-instructed self-assembly of a thiophosphopeptide that targets the Golgi Apparatus (GA) instantly, we use the thiophosphopeptide, which is enzymatically responsive and redox active, as an integrative probe for revealing the state of the GA of live cells at the single cell level. By imaging the probe in the GA of live cells over time, our results show that the accumulation of the probe at the GA depends on cell types. By comparison to a conventional Golgi probe, this self-assembling probe accumulates at the GA much faster and are sensitive to the expression of alkaline phosphatases. In addition, subtle changes of the fluorophore results in slightly different GA responses. This work illustrates a novel class of active molecular probes that combine enzyme-instructed self-assembly and redox reaction for high-resolution imaging of the states of subcellular organelles over a large area and extended times.
Collapse
Affiliation(s)
- Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Qiuxin Zhang
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Pengyu Hong
- Department of Computer Science, Brandeis University, 415 South St., Waltham, MA 02453, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| |
Collapse
|
194
|
La Manna S, Florio D, Panzetta V, Roviello V, Netti PA, Di Natale C, Marasco D. Hydrogelation tunability of bioinspired short peptides. SOFT MATTER 2022; 18:8418-8426. [PMID: 36300826 DOI: 10.1039/d2sm01385a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Supramolecular assemblies of short peptides are experiencing a stimulating flowering. Herein, we report a novel class of bioinspired pentapeptides, not bearing Phe, that form hydrogels with fibrillar structures. The inherent sequence comes from the fragment 269-273 of nucleophosmin 1 protein, that is normally involved in liquid-liquid phase separation processes into the nucleolus. By means of rheology, spectroscopy, and scanning microscopy the crucial roles of the extremities in the modulation of the mechanical properties of hydrogels were elucidated. Three of four peptide showed a typical shear-thinning profile and a self-assembly into hierarchical nanostructures fibers and two of them resulted biocompatible in MCF7 cells. The presence of an amide group at C-terminal extremity caused the fastest aggregation and the major content of structured intermediates during gelling process. The tunable mechanical and structural features of this class of hydrogels render derived supramolecular systems versatile and suitable for future biomedical applications.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy.
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy.
| | - Valeria Panzetta
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples "Federico II", 80125, Naples, Italy
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", 80125, Naples, Italy
- Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Valentina Roviello
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", 80125, Naples, Italy
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples "Federico II", 80125, Naples, Italy
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", 80125, Naples, Italy
- Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Concetta Di Natale
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples "Federico II", 80125, Naples, Italy
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", 80125, Naples, Italy
- Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy.
| |
Collapse
|
195
|
Scelsi A, Bochicchio B, Smith AM, Laezza A, Saiani A, Pepe A. Hydrogels from the Assembly of SAA/Elastin-Inspired Peptides Reveal Non-Canonical Nanotopologies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227901. [PMID: 36432002 PMCID: PMC9698559 DOI: 10.3390/molecules27227901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Peptide-based hydrogels are of great interest in the biomedical field according to their biocompatibility, simple structure and tunable properties via sequence modification. In recent years, multicomponent assembly of peptides have expanded the possibilities to produce more versatile hydrogels, by blending gelating peptides with different type of peptides to add new features. In the present study, the assembly of gelating P5 peptide SFFSF blended with P21 peptide, SFFSFGVPGVGVPGVGSFFSF, an elastin-inspired peptides or, alternatively, with FF dipeptide, was investigated by oscillatory rheology and different microscopy techniques in order to shed light on the nanotopologies formed by the self-assembled peptide mixtures. Our data show that, depending on the added peptides, cooperative or disruptive assembly can be observed giving rise to distinct nanotopologies to which correspond different mechanical properties that could be exploited to fabricate materials with desired properties.
Collapse
Affiliation(s)
- Alessandra Scelsi
- Laboratory of Bioinspired Materials (LABIM), Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Brigida Bochicchio
- Laboratory of Bioinspired Materials (LABIM), Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Andrew M. Smith
- Department of Materials, Manchester Institute of Biotechnology, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Antonio Laezza
- Laboratory of Bioinspired Materials (LABIM), Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Alberto Saiani
- Department of Materials, Manchester Institute of Biotechnology, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Antonietta Pepe
- Laboratory of Bioinspired Materials (LABIM), Department of Science, University of Basilicata, 85100 Potenza, Italy
- Correspondence: ; Tel.: +39-09-7120-5486
| |
Collapse
|
196
|
Bagchi D, Maity A, De SK, Chakraborty A. Metal-Ion-Induced Evolution of Phenylalanine Self-Assembly: Structural Polymorphism of Novel Metastable Intermediates. J Phys Chem Lett 2022; 13:10409-10417. [PMID: 36322139 DOI: 10.1021/acs.jpclett.2c02882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The self-assembly of aromatic amino acids has been widely studied due to their ability to form well-defined amyloid-like fibrillar structures. Herein, for the first time, we report the existence of different metastable intermediate states of diverse morphologies, for example, droplets, spheres, vesicles, flowers, and toroids, that are sequentially formed in aqueous medium during the self-assembly process of phenylalanine in the presence of different divalent (Zn2+, Cd2+, and Hg2+) and trivalent (Al3+, Ga3+, and In3+) metal ions having low pKa values. Due to metal ion-amino acid coordination and strong hydrophobic interaction induced by these metal ions, spherical aggregates are obtained at the initial stage of the structural evolution and further transformed into other intermediate states. Our work may facilitate understanding of the role of metal ions in the amino acid self-assembly process and broaden future applications of the obtained nanostructures in drug delivery, tissue engineering, bioimaging, biocatalysis, and other fields.
Collapse
Affiliation(s)
- Debanjan Bagchi
- Indian Institute of Technology Indore, Department of Chemistry, Indore, 453552 Madhya Pradesh, India
| | - Avijit Maity
- Indian Institute of Technology Indore, Department of Chemistry, Indore, 453552 Madhya Pradesh, India
| | - Soumya Kanti De
- Indian Institute of Technology Indore, Department of Chemistry, Indore, 453552 Madhya Pradesh, India
| | - Anjan Chakraborty
- Indian Institute of Technology Indore, Department of Chemistry, Indore, 453552 Madhya Pradesh, India
| |
Collapse
|
197
|
Alves WA, King GM, Guha S. Looking into a crystal ball: printing and patterning self-assembled peptide nanostructures. NANOSCALE 2022; 14:15607-15616. [PMID: 36268821 DOI: 10.1039/d2nr03750e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The solution processability of organic semiconductors and conjugated polymers along with the advent of nanomaterials as conducting inks have revolutionized next-generation flexible consumer electronics. Another equally important class of nanomaterials, self-assembled peptides, heralded as next-generation materials for bioelectronics, have a lot of potential in printed technology. In this minireview, we address the self-assembly process in dipeptides, their application in electronics, and recent progress in three-dimensional printing. The prospect of a generalizable path for nanopatterning self-assembled peptides using ice lithography and its challenges are further discussed.
Collapse
Affiliation(s)
- Wendel A Alves
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09219-580 Santo Andre, Sao Paulo, Brazil
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA.
- Joint with Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Suchismita Guha
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
198
|
Self-Assembly and Gelation Study of Dipeptide Isomers with Norvaline and Phenylalanine. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dipeptides have emerged as attractive building blocks for supramolecular materials thanks to their low-cost, inherent biocompatibility, ease of preparation, and environmental friendliness as they do not persist in the environment. In particular, hydrophobic amino acids are ideal candidates for self-assembly in polar and green solvents, as a certain level of hydrophobicity is required to favor their aggregation and reduce the peptide solubility. In this work, we analyzed the ability to self-assemble and the gel of dipeptides based on the amino acids norvaline (Nva) and phenylalanine (Phe), studying all their combinations and not yielding to enantiomers, which display the same physicochemical properties, and hence the same self-assembly behavior in achiral environments as those studied herein. A single-crystal X-ray diffraction of all the compounds revealed fine details over their molecular packing and non-covalent interactions.
Collapse
|
199
|
Oliveira CBP, Gomes V, Ferreira PMT, Martins JA, Jervis PJ. Peptide-Based Supramolecular Hydrogels as Drug Delivery Agents: Recent Advances. Gels 2022; 8:706. [PMID: 36354614 PMCID: PMC9689023 DOI: 10.3390/gels8110706] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/19/2023] Open
Abstract
Supramolecular peptide hydrogels have many important applications in biomedicine, including drug delivery applications for the sustained release of therapeutic molecules. Targeted and selective drug administration is often preferential to systemic drug delivery, as it can allow reduced doses and can avoid the toxicity and side-effects caused by off-target binding. New discoveries are continually being reported in this rapidly developing field. In this review, we report the latest developments in supramolecular peptide-based hydrogels for drug delivery, focusing primarily on discoveries that have been reported in the last four years (2018-present). We address clinical points, such as peptide self-assembly and drug release, mechanical properties in drug delivery, peptide functionalization, bioadhesive properties and drug delivery enhancement strategies, drug release profiles, and different hydrogel matrices for anticancer drug loading and release.
Collapse
Affiliation(s)
| | | | | | | | - Peter J. Jervis
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
200
|
Alonso M, Barcia E, González JF, Montejo C, García-García L, Villa-Hermosilla MC, Negro S, Fraguas-Sánchez AI, Fernández-Carballido A. Functionalization of Morin-Loaded PLGA Nanoparticles with Phenylalanine Dipeptide Targeting the Brain. Pharmaceutics 2022; 14:pharmaceutics14112348. [PMID: 36365169 PMCID: PMC9696360 DOI: 10.3390/pharmaceutics14112348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder, with its incidence constantly increasing. To date, there is no cure for the disease, with a need for new and effective treatments. Morin hydrate (MH) is a naturally occurring flavonoid of the Moraceae family with antioxidant and anti-inflammatory properties; however, the blood–brain barrier (BBB) prevents this flavonoid from reaching the CNS when aiming to potentially treat AD. Seeking to use the LAT-1 transporter present in the BBB, a nanoparticle (NPs) formulation loaded with MH and functionalized with phenylalanine-phenylalanine dipeptide was developed (NPphe-MH) and compared to non-functionalized NPs (NP-MH). In addition, two formulations were prepared using rhodamine B (Rh-B) as a fluorescent dye (NPphe-Rh and NP-Rh) to study their biodistribution and ability to cross the BBB. Functionalization of PLGA NPs resulted in high encapsulation efficiencies for both MH and Rh-B. Studies conducted in Wistar rats showed that the presence of phenylalanine dipeptide in the NPs modified their biodistribution profiles, making them more attractive for both liver and lungs, whereas non-functionalized NPs were predominantly distributed to the spleen. Formulation NPphe-Rh remained in the brain for at least 2 h after administration.
Collapse
Affiliation(s)
- Mario Alonso
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Emilia Barcia
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913-94-17-41
| | - Juan-Francisco González
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Consuelo Montejo
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad San Pablo-CEU, 28668 Boadilla del Monte, Spain
| | - Luis García-García
- Department of Pharmacology, Pharmacognosy and Botany, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
- Brain Mapping Lab, Pluridisciplinary Research Institute, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Mónica-Carolina Villa-Hermosilla
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Sofía Negro
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Ana-Isabel Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Ana Fernández-Carballido
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, School of Pharmacy, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|