151
|
Swiatczak B, Cohen IR. Gut feelings of safety: tolerance to the microbiota mediated by innate immune receptors. Microbiol Immunol 2016; 59:573-85. [PMID: 26306708 DOI: 10.1111/1348-0421.12318] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/09/2015] [Accepted: 08/20/2015] [Indexed: 12/11/2022]
Abstract
To enable microbial colonization of the gut mucosa, the intestinal immune system must not only react to danger signals but also recognize cues that indicate safety. Recognition of safety, paradoxically, is mediated by the same environmental sensors that are involved in signaling danger. Indeed, in addition to their well-established role in inducing inflammation in response to stress signals, pattern recognition receptors and a variety of metabolic sensors also promote gut-microbiota symbiosis by responding to "microbial symbiosis factors", "resolution-associated molecular patterns", markers of energy extraction and other signals indicating the absence of pathogenic infection and tissue damage. Here we focus on how the paradoxical roles of immune receptors and other environmental sensors define the microbiota signature of an individual.
Collapse
Affiliation(s)
- Bartlomiej Swiatczak
- Department of History of Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, China
| | - Irun R Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
152
|
Monjazeb AM, Kent MS, Grossenbacher SK, Mall C, Zamora AE, Mirsoian A, Chen M, Kol A, Shiao SL, Reddy A, Perks JR, T N Culp W, Sparger EE, Canter RJ, Sckisel GD, Murphy WJ. Blocking Indolamine-2,3-Dioxygenase Rebound Immune Suppression Boosts Antitumor Effects of Radio-Immunotherapy in Murine Models and Spontaneous Canine Malignancies. Clin Cancer Res 2016; 22:4328-40. [PMID: 26979392 DOI: 10.1158/1078-0432.ccr-15-3026] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/28/2016] [Indexed: 01/23/2023]
Abstract
PURPOSE Previous studies demonstrate that intratumoral CpG immunotherapy in combination with radiotherapy acts as an in-situ vaccine inducing antitumor immune responses capable of eradicating systemic disease. Unfortunately, most patients fail to respond. We hypothesized that immunotherapy can paradoxically upregulate immunosuppressive pathways, a phenomenon we term "rebound immune suppression," limiting clinical responses. We further hypothesized that the immunosuppressive enzyme indolamine-2,3-dioxygenase (IDO) is a mechanism of rebound immune suppression and that IDO blockade would improve immunotherapy efficacy. EXPERIMENTAL DESIGN We examined the efficacy and immunologic effects of a novel triple therapy consisting of local radiotherapy, intratumoral CpG, and systemic IDO blockade in murine models and a pilot canine clinical trial. RESULTS In murine models, we observed marked increase in intratumoral IDO expression after treatment with radiotherapy, CpG, or other immunotherapies. The addition of IDO blockade to radiotherapy + CpG decreased IDO activity, reduced tumor growth, and reduced immunosuppressive factors, such as regulatory T cells in the tumor microenvironment. This triple combination induced systemic antitumor effects, decreasing metastases, and improving survival in a CD8(+) T-cell-dependent manner. We evaluated this novel triple therapy in a canine clinical trial, because spontaneous canine malignancies closely reflect human cancer. Mirroring our mouse studies, the therapy was well tolerated, reduced intratumoral immunosuppression, and induced robust systemic antitumor effects. CONCLUSIONS These results suggest that IDO maintains immune suppression in the tumor after therapy, and IDO blockade promotes a local antitumor immune response with systemic consequences. The efficacy and limited toxicity of this strategy are attractive for clinical translation. Clin Cancer Res; 22(17); 4328-40. ©2016 AACR.
Collapse
Affiliation(s)
- Arta M Monjazeb
- Department of Radiation Oncology, UC Davis Comprehensive Cancer Center, Sacramento, California.
| | - Michael S Kent
- Department of Surgical and Radiological Sciences, UC Davis School of Veterinary Medicine, Davis, California
| | | | - Christine Mall
- Department of Dermatology, UC Davis Health Sciences, Sacramento, California
| | - Anthony E Zamora
- Department of Dermatology, UC Davis Health Sciences, Sacramento, California
| | - Annie Mirsoian
- Department of Dermatology, UC Davis Health Sciences, Sacramento, California
| | - Mingyi Chen
- Department of Pathology, UC Davis Health Sciences, Sacramento, California
| | - Amir Kol
- Department of Pathology, Microbiology, and Immunology, UC Davis School of Veterinary Medicine, Davis, California
| | - Stephen L Shiao
- Departments of Radiation Oncology and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Abhinav Reddy
- Department of Radiation Oncology, UC Davis Comprehensive Cancer Center, Sacramento, California
| | - Julian R Perks
- Department of Radiation Oncology, UC Davis Comprehensive Cancer Center, Sacramento, California
| | - William T N Culp
- Department of Surgical and Radiological Sciences, UC Davis School of Veterinary Medicine, Davis, California
| | - Ellen E Sparger
- Department of Surgical and Radiological Sciences, UC Davis School of Veterinary Medicine, Davis, California
| | - Robert J Canter
- Division of Surgical Oncology, Department of Surgery, UC Davis Comprehensive Cancer Center, Sacramento, California
| | - Gail D Sckisel
- Department of Dermatology, UC Davis Health Sciences, Sacramento, California
| | - William J Murphy
- Department of Dermatology, UC Davis Health Sciences, Sacramento, California. Division of Hematology and Oncology, Department of Internal Medicine, UC Davis Comprehensive Cancer Center, Sacramento, California
| |
Collapse
|
153
|
Vaikunthanathan T, Safinia N, Lombardi G, Lechler RI. Microbiota, immunity and the liver. Immunol Lett 2016; 171:36-49. [PMID: 26835593 DOI: 10.1016/j.imlet.2016.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/24/2016] [Accepted: 01/27/2016] [Indexed: 12/18/2022]
Abstract
The gut harbors a complex community of over 100 trillion microbial cells known to exist in symbiotic harmony with the host influencing human physiology, metabolism, nutrition and immune function. It is now widely accepted that perturbations of this close partnership results in the pathogenesis of several major diseases with increasing evidence highlighting their role outside of the intestinal tract. The intimate proximity and circulatory loop of the liver and the gut has attracted significant attention regarding the role of the microbiota in the development and progression of liver disease. Here we give an overview of the interaction between the microbiota and the immune system and focus on their convincing role in both the propagation and treatment of liver disease.
Collapse
Affiliation(s)
- T Vaikunthanathan
- MRC Centre for Transplantation, Division of Transplantation Immunology & Mucosal Biology, King's College London, 5th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom.
| | - N Safinia
- MRC Centre for Transplantation, Division of Transplantation Immunology & Mucosal Biology, King's College London, 5th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom.
| | - G Lombardi
- MRC Centre for Transplantation, Division of Transplantation Immunology & Mucosal Biology, King's College London, 5th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom.
| | - R I Lechler
- MRC Centre for Transplantation, Division of Transplantation Immunology & Mucosal Biology, King's College London, 5th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom.
| |
Collapse
|
154
|
Acute Exposure to Tris(1,3-dichloro-2-propyl) Phosphate (TDCIPP) Causes Hepatic Inflammation and Leads to Hepatotoxicity in Zebrafish. Sci Rep 2016; 6:19045. [PMID: 26743178 PMCID: PMC4705469 DOI: 10.1038/srep19045] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/04/2015] [Indexed: 01/22/2023] Open
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) has been frequently detected in environmental media and has adverse health effect on wildlife and humans. It has been implicated to have hepatotoxicity, but its molecular mechanisms remain unclear. In the present study, adult male zebrafish were exposed to TDCIPP and global hepatic gene expression was examined by RNA-Seq and RT-qPCR in order to understand the molecular mechanisms of TDCIPP-induced hepatotoxicity. Our results indicated that TDCIPP exposure significantly up-regulated the expression of genes involved in endoplasmic reticulum stress and Toll-like receptor (TLR) pathway, implying an inflammatory response, which was supported by up-regulation of inflammation-related biomaker genes. Hepatic inflammation was further confirmed by histological observation of increase of infiltrated neutrophils and direct observation of liver recruitment of neutrophils labeled with Ds-Red fluorescent protein of Tg(lysC:DsRed) zebrafish upon TDCIPP exposure. To further characterize the hepatotoxicity of TDCIPP, the expression of hepatotoxicity biomarker genes, liver histopathology and morphology were examined. The exposure to TDCIPP significantly up-regulated the expression of several biomarker genes for hepatotoxicity (gck, gsr and nqo1) and caused hepatic vacuolization and apoptosis as well as increase of the liver size. Collectively, our results suggest that exposure to TDCIPP induces hepatic inflammation and leads to hepatotoxicity in zebrafish.
Collapse
|
155
|
Liu R, Luo F, Liu X, Wang L, Yang J, Deng Y, Huang E, Qian J, Lu Z, Jiang X, Zhang D, Chu Y. Biological Response Modifier in Cancer Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 909:69-138. [PMID: 27240457 DOI: 10.1007/978-94-017-7555-7_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biological response modifiers (BRMs) emerge as a lay of new compounds or approaches used in improving cancer immunotherapy. Evidences highlight that cytokines, Toll-like receptor (TLR) signaling, and noncoding RNAs are of crucial roles in modulating antitumor immune response and cancer-related chronic inflammation, and BRMs based on them have been explored. In particular, besides some cytokines like IFN-α and IL-2, several Toll-like receptor (TLR) agonists like BCG, MPL, and imiquimod are also licensed to be used in patients with several malignancies nowadays, and the first artificial small noncoding RNA (microRNA) mimic, MXR34, has entered phase I clinical study against liver cancer, implying their potential application in cancer therapy. According to amounts of original data, this chapter will review the regulatory roles of TLR signaling, some noncoding RNAs, and several key cytokines in cancer and cancer-related immune response, as well as the clinical cases in cancer therapy based on them.
Collapse
Affiliation(s)
- Ronghua Liu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Feifei Luo
- Biotherapy Research Center, Fudan University, Shanghai, 200032, China.,Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoming Liu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Department of Dermatology, Shenzhen Hospital, Peking University, Shenzhen, Guangdong, 518036, China
| | - Luman Wang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Jiao Yang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Yuting Deng
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Enyu Huang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Jiawen Qian
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Zhou Lu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Xuechao Jiang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Dan Zhang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Yiwei Chu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China. .,Biotherapy Research Center, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
156
|
Mohammad Hosseini A, Majidi J, Baradaran B, Yousefi M. Toll-Like Receptors in the Pathogenesis of Autoimmune Diseases. Adv Pharm Bull 2015; 5:605-14. [PMID: 26793605 DOI: 10.15171/apb.2015.082] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/02/2014] [Accepted: 07/21/2014] [Indexed: 12/15/2022] Open
Abstract
Human Toll-like receptors (TLRs) are a family of transmembrane receptors, which play a key role in both innate and adaptive immune responses. Beside of recognizing specific molecular patterns that associated with different types of pathogens, TLRs may also detect a number of self-proteins and endogenous nucleic acids. Activating TLRs lead to the heightened expression of various inflammatory genes, which have a protective role against infection. Data rising predominantly from human patients and animal models of autoimmune disease indicate that, inappropriate triggering of TLR pathways by exogenous or endogenous ligands may cause the initiation and/or perpetuation of autoimmune reactions and tissue damage. Given their important role in infectious and non-infectious disease process, TLRs and its signaling pathways emerge as appealing targets for therapeutics. In this review, we demonstrate how TLRs pathways could be involved in autoimmune disorders and their therapeutic application.
Collapse
Affiliation(s)
| | - Jafar Majidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
157
|
The TLR7 agonist induces tumor regression both by promoting CD4⁺T cells proliferation and by reversing T regulatory cell-mediated suppression via dendritic cells. Oncotarget 2015; 6:1779-89. [PMID: 25593198 PMCID: PMC4359331 DOI: 10.18632/oncotarget.2757] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/16/2014] [Indexed: 11/25/2022] Open
Abstract
Treg-induced immunosuppression is now recognized as a key element in enabling tumors to escape immune-mediated destruction. Although topical TLR7 therapies such as imiquimod have been proved successful in the treatment of dermatological malignancy and a number of conditions beyond the FDA-approved indications, the mechanism behind the effect of TLR7 on effector T cell and Treg cell function in cancer immunosurveillance is still not well understood. Here, we found that Loxoribin, one of the TLR7 ligands, could inhibit tumor growth in xenograft models of colon cancer and lung cancer, and these anti-tumor effects of Loxoribin were mediated by promoting CD4⁺T cell proliferation and reversing Treg-mediated suppression via dendritic cells (DCs). However, deprivation of IL-6 using a neutralizing antibody abrogated the ability of Loxoribin-treated DCs, which reversed the Treg cell-mediated suppression. Furthermore, adoptive transfer of Loxoribin-treated DCs inhibited the tumor growth in vivo. Thus, this study links TLR7 signaling to the functional control of effector T cells and Treg cells and identifies Loxoribin as a new therapeutic strategy in cancer treatment, which may offer new opportunities to improve the outcome of cancer immunotherapy.
Collapse
|
158
|
Rahimzadeh M, Norouzian M, Arabpour F, Naderi N. Regulatory T-cells and preeclampsia: an overview of literature. Expert Rev Clin Immunol 2015; 12:209-27. [PMID: 26580672 DOI: 10.1586/1744666x.2016.1105740] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Regulatory T-cells (Tregs) are key players in successful pregnancy and their deficiencies are implicated in pregnancy complications such as preeclampsia (PE), but the results are inconsistent among studies. This study aims to compile an overview of the studies about the associations of Tregs and PE risk and to provide recommendations for future research. A sensitive search of three databases including PubMed, Scopus and Google scholar (from 1995 to January 9, 2015) identified 636 unique titles. An accurate process of study selection, data extraction and method qualification were independently conducted by authors on retrieved papers. Seventeen papers met the inclusion criteria and were included in quality assessment. Regarding the source of Tregs, 14 studies assessed Tregs in peripheral blood, 2 studies in peripheral blood and decidua and one study in peripheral blood and umbilical cord blood. Despite variation in the combinations of markers and other aspects of the studies designs, remarkable constancy in the results of studies that measured Tregs as CD4+FoxP3+ or CD4+CD25+FoxP3+ cells (but not CD4+CD25(high/low)FoxP3+ markers) was found, which in broad terms showed a shift towards fewer Treg cells in PE. This review revealed an association between lower percentage of circulating CD4+FoxP3+ or CD4+CD25+FoxP3+ Tregs and the risk of PE. Given the above issue and regarding the high consistency of studies on reduction of suppressive activity of Tregs in PE, we have proposed a model in which the Tregs deficiency is a reflection of immune endocrine imbalance, which reverses maternal tolerance and results in development of preeclampsia.
Collapse
Affiliation(s)
- Mahsa Rahimzadeh
- a Department of Biochemistry, Faculty of Medicine , Hormozgan University of Medical Sciences , Bandar Abbas, Iran.,c Molecular Medicine Research Center , Hormozgan University of Medical Sciences , Bandar Abbas , Iran
| | - Marzieh Norouzian
- b Department of Immunology, Faculty of Medicine , Hormozgan University of Medical Sciences , Bandar Abbas , Iran
| | - Fahimeh Arabpour
- b Department of Immunology, Faculty of Medicine , Hormozgan University of Medical Sciences , Bandar Abbas , Iran
| | - Nadereh Naderi
- b Department of Immunology, Faculty of Medicine , Hormozgan University of Medical Sciences , Bandar Abbas , Iran.,c Molecular Medicine Research Center , Hormozgan University of Medical Sciences , Bandar Abbas , Iran
| |
Collapse
|
159
|
Kang X, Zhang X, Liu Z, Xu H, Wang T, He L, Zhao A. Excessive TLR9 signaling contributes to the pathogenesis of spontaneous abortion through impairment of Treg cell survival by activation of Caspase 8/3. Int Immunopharmacol 2015; 29:285-292. [PMID: 26563540 DOI: 10.1016/j.intimp.2015.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/03/2015] [Accepted: 11/03/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND The pregnant uterine microenvironment is repleted with Toll-like receptors (TLRs), however, their roles of these receptors in establishing tolerance to growing fetus are largely unknown. RESULT Decidual TLR1, TLR3, TLR4, TLR8 and TLR9 gene expressions were significantly over-expressed in patients of spontaneous abortion compared with elective abortion with normal pregnancy. In particular, the expression of TLR4 and TLR9 mRNA was considerably higher than that of remaining TLRs. We mimic TLR9 signal with combination of its pathogenic ligand CpG ODN and antagonists ODN in a well-established abortion-prone CBA/J×DBA/2 model. CpG ODN dramatically boosted fetal loss and lowered the proportion of Regulatory cells (Treg cells) in vivo. CpG ODN directly triggered the impaired survival and increased activity of Caspase 8/3 of Treg cells in vitro. These effects were blocked by antagonist ODN. CONCLUSION Excessive TLR9 signaling contributed to maternal-fetal tolerance disruption via an effect on Treg cell survival by activation of Caspase 8/3.
Collapse
Affiliation(s)
- Xiaomin Kang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China
| | - Xiaoxin Zhang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China
| | - Zhilan Liu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China
| | - Haijing Xu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China
| | - Tongfei Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China
| | - Liying He
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China
| | - Aimin Zhao
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, PR China.
| |
Collapse
|
160
|
Cutaneous RANK–RANKL Signaling Upregulates CD8-Mediated Antiviral Immunity during Herpes simplex Virus Infection by Preventing Virus-Induced Langerhans Cell Apoptosis. J Invest Dermatol 2015; 135:2676-2687. [DOI: 10.1038/jid.2015.225] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/11/2015] [Accepted: 06/01/2015] [Indexed: 01/20/2023]
|
161
|
Cui J, Chen Y, Wang HY, Wang RF. Mechanisms and pathways of innate immune activation and regulation in health and cancer. Hum Vaccin Immunother 2015; 10:3270-85. [PMID: 25625930 DOI: 10.4161/21645515.2014.979640] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Research on innate immune signaling and regulation has recently focused on pathogen recognition receptors (PRRs) and their signaling pathways. Members of PRRs sense diverse microbial invasions or danger signals, and initiate innate immune signaling pathways, leading to proinflammatory cytokines production, which, in turn, instructs adaptive immune response development. Despite the diverse functions employed by innate immune signaling to respond to a variety of different pathogens, the innate immune response must be tightly regulated. Otherwise, aberrant, uncontrolled immune responses will lead to harmful, or even fatal, consequences. Therefore, it is essential to better discern innate immune signaling and many regulators, controlling various signaling pathways, have been identified. In this review, we focus on the recent advances in our understanding of the activation and regulation of innate immune signaling in the host response to pathogens and cancer.
Collapse
Key Words
- AIM2, absent in melanoma 2
- ALRs, AIM2-like receptors
- AMPK, AMP activated protein kinase
- ASC, apoptosis-associated speck-like protein containing a CARD
- Atg16L, autophagy related 16-like
- BMM, bone marrow-derived macrophage
- CARD, caspase recruitment domain
- CDNs, cyclic dinucleotides
- CLRs, C-type lectin receptors
- CMV, cytomegalovirus
- CYLD, the familial cylindromatosis tumor suppressor gene
- DAMPs, danger-associated molecular patterns
- DCs, dendritic cells
- DDX41, DEAD (Asp-Glu-Ala-Asp) box polypeptide 41
- ER, endoplasmic reticulum
- GBP5, guanylate-binding protein 5
- GSK3β, Glycogen synthase kinase 3β
- HCC, hepatocellular carcinoma
- IFI16, interferon, gamma-inducible protein 16
- IFN, interferon
- IKK, IkB kinase
- IKKi, inducible IkB kinase
- IRAK, interleukin-1 receptor-associated kinase
- IRF, interferon regulatory factor
- KSHV, Kaposi's sarcoma-associated herpesvirus
- LBP, LPS-binding protein
- LGP 2, laboratory of genetics and physiology 2
- LPS, lipopolysaccharide
- LRR, leucine-rich repeat
- LT, lethal toxin
- LUBAC, linear ubiquitin assembly complex
- MAVS, mitochondrial antiviral signaling protein
- MDA5, melanoma differentiation-associated protein 5
- MDP, muramyl dipeptide
- MIB, mind bomb
- MyD88, myeloid differentiation factor 88
- NAIPs, neuronal apoptosis inhibitory proteins
- NEMO, NF-kB essential modulator
- NLRs, Nod- like receptors
- NOD, nucleotide-binding oligomerization domain
- Nrdp1, neuregulin receptor degradation protein 1
- PAMPs, pathogen-associated molecular patterns
- PKC-d, protein kinase C delta
- PKR, dsRNA-dependent protein kinase
- PRRs
- PRRs, pathogen recognition receptors
- RACK1, receptor for activated C kinase 1
- RAUL, RTA-associated E3 ligase
- RIG-I, retinoic acid-inducible gene 1
- RIP, receptor-interacting protein
- RLRs, RIG-I-like receptors
- ROS, reactive oxygen species
- SARM, sterile a- and armadillo motif-containing protein
- SIGIRR, single Ig IL-1-related receptor
- SOCS, suppressor of cytokine signaling
- STING, stimulator of interferon gene
- TAK1, TGF-b-activating kinase 1
- TANK, TRAF family-member-associated NF-kB activator
- TBK1, TANK binding kinase 1
- TIR, Toll IL-1 receptor
- TIRAP, TIR domain-containing adapter protein
- TLRs, Toll-like receptors
- TRAF, TNFR-associated factor
- TRAILR, tumor-necrosis factor-related apoptosis-inducing ligand receptor
- TRAM, TRIF-related adaptor molecule
- TRIF, TIR domain-containing adaptor inducing IFN-b
- TRIMs, tripartite motif containing proteins
- TRIP, TRAF-interacting protein
- ULK1, autophagy related serine threonine UNC-51- like kinase
- cDC, conventional dendritic cell
- cGAS, cyclic GMP-AMP synthase
- cIAP, cellular inhibitor of apoptosis protein
- cancer
- iE-DAP, g-D-glutamyl-meso-diaminopimelic acid
- inflammation
- innate immunity
- pDC, plasmacytoid dendritic cell
- type I interferon
Collapse
Affiliation(s)
- Jun Cui
- a Key Laboratory of Gene Engineering of the Ministry of Education; State Key Laboratory of Biocontrol; School of Life Sciences ; Sun Yat-sen University ; Guangzhou , P. R. China
| | | | | | | |
Collapse
|
162
|
MALT1 is an intrinsic regulator of regulatory T cells. Cell Death Differ 2015; 24:1214-1223. [PMID: 26405015 PMCID: PMC5584480 DOI: 10.1038/cdd.2015.104] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/25/2015] [Accepted: 06/07/2015] [Indexed: 01/02/2023] Open
Abstract
Regulatory T cells (Tregs) are crucial for the maintenance of immunological self-tolerance and their absence or dysfunction can lead to autoimmunity. However, the molecular pathways that govern Treg biology remain obscure. In this study, we show that the nuclear factor-κB signalling mediator mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is an important novel regulator of both Tregs originating in the thymus (‘natural’ or nTregs) and Tregs induced to differentiate from naive thymocyte helper (Th) cells in the periphery (‘induced’ or iTregs). Our examination of mice deficient for MALT1 revealed that these mutants have a reduced number of total Tregs. In young Malt1−/− mice, nTregs are totally absent and iTreg are diminished in the periphery. Interestingly, total Treg numbers increase in older Malt1−/− mice as well as in Malt1−/− mice subjected to experimentally induced inflammation. iTregs isolated from WT and Malt1−/− mice were indistinguishable with respect to their ability to suppress the activities of effector T cells, but Malt1−/− iTregs expressed higher levels of Toll-like receptor (TLR) 2. Treatment of WT and Malt1−/− Th cells in vitro with the TLR2 ligand Pam3Cys strongly enhanced the induction and proliferation of Malt1−/− iTregs. Our data suggest that MALT1 supports nTreg development in the thymus but suppresses iTreg induction in the periphery during inflammation. Our data position MALT1 as a key molecule that contributes to immune tolerance at steady-state while facilitating immune reactivity under stress conditions.
Collapse
|
163
|
Shahar E, Gorodetsky R, Aizenshtein E, Lalush L, Pitcovski J. Modulating the innate immune activity in murine tumor microenvironment by a combination of inducer molecules attached to microparticles. Cancer Immunol Immunother 2015; 64:1137-49. [PMID: 26031575 PMCID: PMC11028936 DOI: 10.1007/s00262-015-1719-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/21/2015] [Indexed: 12/15/2022]
Abstract
Targeted cancer immunotherapy is challenging due to the cellular diversity and imposed immune tolerance in the tumor microenvironment (TME). A promising route to overcome those drawbacks may be by activating innate immune cells (IIC) in the TME, toward tumor destruction. Studies have shown the ability to "re-educate" pro-tumor-activated IIC toward antitumor responses. The current research aims to stimulate such activation using a combination of innate activators loaded onto microparticles (MP). Four inducers of Toll-like receptors 4 and 7, complement C5a receptor (C5aR) and gamma Fc receptor and their combinations were loaded on MP, and their influence on immune cell activation evaluated. MP stimulation of immune cell activation was tested in vitro and in vivo using a subcutaneous B16-F10 melanoma model induced in C57BL6 mice. Exposure to the TLR4 ligand lipopolysaccharide (LPS) bound to MP-induced acute inflammatory cytokine and chemokine activity in vitro and in vivo, with the elevation of CD45(+) leukocytes in particular GR-1(+) neutrophils and F4/80 macrophages in the TME. Nevertheless, LPS alone on MP was insufficient to significantly delay tumor progression. LPS combined with the C5aR ligand C5a-pep on the same MP resulted in a similar inflammation activation pattern. However, interleukin-10 levels were lower, and tumor growth was significantly delayed. Mixtures of these two ligands on separate MP did not yield the same cytokine activation pattern, demonstrating the importance of the cells' dual activation. The results suggest that combining inducers of distinct innate immune activation pathways holds promise for successful redirection of TME-residing IIC toward anti-tumoral activation.
Collapse
Affiliation(s)
- Ehud Shahar
- MIGAL – Galilee Research Institute, P.O. Box 831, 11016 Kiryat Shmona, Israel
- Lab of Biotechnology and Radiobiology, Sharett Institute of Oncology, Hadassah – Hebrew University Medical Center, Jerusalem, Israel
| | - Raphael Gorodetsky
- Lab of Biotechnology and Radiobiology, Sharett Institute of Oncology, Hadassah – Hebrew University Medical Center, Jerusalem, Israel
| | - Elina Aizenshtein
- MIGAL – Galilee Research Institute, P.O. Box 831, 11016 Kiryat Shmona, Israel
| | - Lior Lalush
- MIGAL – Galilee Research Institute, P.O. Box 831, 11016 Kiryat Shmona, Israel
- Tel Hai Academic College, Upper Galilee, Israel
| | - Jacob Pitcovski
- MIGAL – Galilee Research Institute, P.O. Box 831, 11016 Kiryat Shmona, Israel
- Tel Hai Academic College, Upper Galilee, Israel
| |
Collapse
|
164
|
Wang M, Yin B, Wang HY, Wang RF. Current advances in T-cell-based cancer immunotherapy. Immunotherapy 2015; 6:1265-78. [PMID: 25524383 DOI: 10.2217/imt.14.86] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer is a leading cause of death worldwide; due to the lack of ideal cancer biomarkers for early detection or diagnosis, most patients present with late-stage disease at the time of diagnosis, thus limiting the potential for successful treatment. Traditional cancer treatments, including surgery, chemotherapy and radiation therapy, have demonstrated very limited efficacy for patients with late-stage disease. Therefore, innovative and effective cancer treatments are urgently needed for cancer patients with late-stage and refractory disease. Cancer immunotherapy, particularly adoptive cell transfer, has shown great promise in the treatment of patients with late-stage disease, including those who are refractory to standard therapies. In this review, we will highlight recent advances and discuss future directions in adoptive cell transfer based cancer immunotherapy.
Collapse
Affiliation(s)
- Mingjun Wang
- Center for Inflammation & Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
165
|
Pandiyan P, Zhu J. Origin and functions of pro-inflammatory cytokine producing Foxp3+ regulatory T cells. Cytokine 2015; 76:13-24. [PMID: 26165923 DOI: 10.1016/j.cyto.2015.07.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/24/2015] [Accepted: 07/03/2015] [Indexed: 12/12/2022]
Abstract
CD4(+)CD25(+)Foxp3(+) regulatory cells (Tregs) are a special lineage of cells central in the maintenance of immune homeostasis, and are targeted for human immunotherapy. They are conventionally associated with the production of classical anti-inflammatory cytokines such as IL-10, TGF-β and IL-35, consistent to their anti-inflammatory functions. However, emerging evidence show that they also express effector cytokines such as IFN-γ and IL-17A under inflammatory conditions. While some studies reveal that these pro-inflammatory cytokine producing Foxp3(+) regulatory cells retain their suppressive ability, others believe that these cells are dys-regulated and are associated with perpetuation of immunopathology. Therefore the development of these cells may challenge the efficacy of human Treg therapy. Mechanistically, toll-like receptor (TLR) ligands and the pro-inflammatory cytokine milieu have been shown to play important roles in the induction of effector cytokines in Tregs. Here we review the mechanisms of development and the possible functions of pro-inflammatory cytokine producing Foxp3+ Tregs.
Collapse
Affiliation(s)
- Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
166
|
Taube MA, del Mar Cendra M, Elsahn A, Christodoulides M, Hossain P. Pattern recognition receptors in microbial keratitis. Eye (Lond) 2015; 29:1399-415. [PMID: 26160532 DOI: 10.1038/eye.2015.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 05/31/2015] [Indexed: 12/12/2022] Open
Abstract
Microbial keratitis is a significant cause of global visual impairment and blindness. Corneal infection can be caused by a wide variety of pathogens, each of which exhibits a range of mechanisms by which the immune system is activated. The complexity of the immune response to corneal infection is only now beginning to be elucidated. Crucial to the cornea's defences are the pattern-recognition receptors: Toll-like and Nod-like receptors and the subsequent activation of inflammatory pathways. These inflammatory pathways include the inflammasome and can lead to significant tissue destruction and corneal damage, with the potential for resultant blindness. Understanding the immune mechanisms behind this tissue destruction may enable improved identification of therapeutic targets to aid development of more specific therapies for reducing corneal damage in infectious keratitis. This review summarises current knowledge of pattern-recognition receptors and their downstream pathways in response to the major keratitis-causing organisms and alludes to potential therapeutic approaches that could alleviate corneal blindness.
Collapse
Affiliation(s)
- M-A Taube
- Division of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - M del Mar Cendra
- Division of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - A Elsahn
- Division of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - M Christodoulides
- Division of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - P Hossain
- Division of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
167
|
Ye J, Ma C, Hsueh EC, Dou J, Mo W, Liu S, Han B, Huang Y, Zhang Y, Varvares MA, Hoft DF, Peng G. TLR8 signaling enhances tumor immunity by preventing tumor-induced T-cell senescence. EMBO Mol Med 2015; 6:1294-311. [PMID: 25231413 PMCID: PMC4287933 DOI: 10.15252/emmm.201403918] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Accumulating evidence suggests the immunosuppressive microenvironments created by malignant tumors represent a major obstacle for effective anti-tumor immunity. A better understanding of the suppressive mechanisms mediated by tumor microenvironments and the development of strategies to reverse the immune suppression are major challenges for the success of tumor immunotherapy. Here, we report that human tumor cells can induce senescence in naïve/effector T cells, exhibiting potent suppressive function in vitro and in vivo. We further show that tumor-derived endogenous cyclic adenosine monophosphate (cAMP) is responsible for the induction of T-cell senescence. Importantly, activation of TLR8 signaling in tumor cells can block the induction and reverse the suppression of senescent naïve and tumor-specific T cells in vitro and in vivo, resulting in enhanced anti-tumor immunity. These studies identify a novel mechanism of human tumor-mediated immune suppression and provide a new strategy to reverse tumor immunosuppressive effects for tumor immunotherapy.
Collapse
Affiliation(s)
- Jian Ye
- Department of Internal Medicine, Division of Infectious Diseases, Allergy & Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Chunling Ma
- Department of Internal Medicine, Division of Infectious Diseases, Allergy & Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA Department of Laboratory Medicine, Women & Children's Health Care Hospital of Linyi, Linyi, China
| | - Eddy C Hsueh
- Department of Surgery, Division of General Surgery, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Jie Dou
- Department of Internal Medicine, Division of Infectious Diseases, Allergy & Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Wei Mo
- Department of Internal Medicine, Division of Infectious Diseases, Allergy & Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Shuai Liu
- Department of Internal Medicine, Division of Infectious Diseases, Allergy & Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Bing Han
- Department of Internal Medicine, Division of Infectious Diseases, Allergy & Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Yi Huang
- Department of Internal Medicine, Division of Infectious Diseases, Allergy & Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Yanping Zhang
- Department of Surgery, Division of General Surgery, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Mark A Varvares
- Department of Otolaryngology-Head and Neck Surgery, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Daniel F Hoft
- Department of Internal Medicine, Division of Infectious Diseases, Allergy & Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Guangyong Peng
- Department of Internal Medicine, Division of Infectious Diseases, Allergy & Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
168
|
Van Gool SW. Brain Tumor Immunotherapy: What have We Learned so Far? Front Oncol 2015; 5:98. [PMID: 26137448 PMCID: PMC4470276 DOI: 10.3389/fonc.2015.00098] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/13/2015] [Indexed: 12/17/2022] Open
Abstract
High grade glioma is a rare brain cancer, incurable in spite of modern neurosurgery, radiotherapy, and chemotherapy. Novel approaches are in research, and immunotherapy emerges as a promising strategy. Clinical experiences with active specific immunotherapy demonstrate feasibility, safety and most importantly, but incompletely understood, prolonged long-term survival in a fraction of the patients. In relapsed patients, we developed an immunotherapy schedule and we categorized patients into clinically defined risk profiles. We learned how to combine immunotherapy with standard multimodal treatment strategies for newly diagnosed glioblastoma multiforme patients. The developmental program allows further improvements related to newest scientific insights. Finally, we developed a mode of care within academic centers to organize cell-based therapies for experimental clinical trials in a large number of patients.
Collapse
|
169
|
Harnessing the Microbiome to Enhance Cancer Immunotherapy. J Immunol Res 2015; 2015:368736. [PMID: 26101781 PMCID: PMC4458560 DOI: 10.1155/2015/368736] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/10/2015] [Indexed: 12/20/2022] Open
Abstract
The microbiota plays a key role in regulating the innate and adaptive immune system. Herein, we review the immunological aspects of the microbiota in tumor immunity in mice and man, with a focus on toll-like receptor (TLR) agonists, vaccines, checkpoint modulators, chemotherapy, and adoptive T cell transfer (ACT) therapies. We propose innovative treatments that may safely harness the microbiota to enhance T cell-based therapies in cancer patients. Finally, we highlight recent developments in tumor immunotherapy, particularly novel ways to modulate the microbiome and memory T cell responses to human malignancies.
Collapse
|
170
|
Bang C, Schmitz RA. Archaea associated with human surfaces: not to be underestimated. FEMS Microbiol Rev 2015; 39:631-48. [DOI: 10.1093/femsre/fuv010] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2015] [Indexed: 12/18/2022] Open
|
171
|
Sciorati C, Monno A, Ascherman DP, Seletti E, Manfredi AA, Rovere-Querini P. Required role of apoptotic myogenic precursors and toll-like receptor stimulation for the establishment of autoimmune myositis in experimental murine models. Arthritis Rheumatol 2015; 67:809-22. [PMID: 25504878 DOI: 10.1002/art.38985] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 12/02/2014] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Muscle regeneration is a hallmark of the idiopathic inflammatory myopathies (IIMs), a group of autoimmune disorders that are characterized by leukocyte infiltration and dysfunction of the skeletal muscle. Despite detailed studies describing the clinical and histopathologic features of IIMs, the immunopathogenesis of these disorders remains undefined. The aim of this study was to investigate the immunopathologic processes of autoimmune myositis in experimental murine models. METHODS Expression of the autoantigen histidyl-transfer RNA synthetase (HisRS) was analyzed in mice with acutely injured or dystrophic muscles, in inflammatory leukocytes, and in purified satellite cells. Anti-HisRS antibodies and myositis induction were assessed in mice after muscle injury and immunization with apoptotic satellite cells or C2C12 myoblasts, in the presence or absence of the Toll-like receptor 7 (TLR-7) agonist R848. RESULTS Muscle necrosis, leukocyte infiltration, and myofiber regeneration induced by toxic agents (cardiotoxin or glycerol) or promoted by genetic disruption of the α-sarcoglycan/dystrophin complex in mice were uniformly associated with up-regulated expression of HisRS. Although regenerating myofibers and purified satellite cells are known to show increased expression of HisRS in these settings, anti-HisRS antibodies were not detectable. However, intramuscular immunization with ultraviolet B-irradiated, HisRS-expressing apoptotic myoblasts in the presence of R848 triggered the production of anti-HisRS IgG antibodies as well as persistent lymphocyte infiltration and prolonged/delayed muscle regeneration. Conversely, intramuscular administration of R848 alone or in combination with living or postapoptotic/necrotic myoblasts failed to generate this myositis phenotype. CONCLUSION In the presence of TLR/adjuvant signals and underlying muscle injury, apoptotic myogenic precursors expressing high levels of autoantigen can provoke autoantibody formation and lymphocytic infiltration of muscle tissue, effectively replicating the features of IIM.
Collapse
|
172
|
Morin-Brureau M, Hooper KM, Prosniak M, Sauma S, Harshyne LA, Andrews DW, Hooper DC. Enhancement of glioma-specific immunity in mice by "NOBEL", an insulin-like growth factor 1 receptor antisense oligodeoxynucleotide. Cancer Immunol Immunother 2015; 64:447-57. [PMID: 25579379 PMCID: PMC11028597 DOI: 10.1007/s00262-015-1654-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/03/2015] [Indexed: 10/24/2022]
Abstract
Autologous glioblastoma multiforme tumor cells treated with an antisense oligodeoxynucleotide (AS-ODN) targeting insulin-like growth factor receptor-1 (IGF-1R) are the basis of a vaccine with therapeutic effects on tumor recurrence in a pilot clinical trial. As a preface to continued clinical investigation of this vaccination strategy, we have studied the contribution of an optimized IGF-1R AS-ODN, designated "NOBEL", to the induction of immunity to mouse GL261 glioma cells. The impact of NOBEL on mechanisms contributing to the development of GL261 immunity was first examined in the periphery. GL261 cells are naturally immunogenic when implanted into the flanks of congenic C57BL/6 mice, immunizing rather than forming tumors in around 50 % of these animals but causing tumors in the majority of mice lacking T and B lymphocytes. Overnight treatment with NOBEL in vitro reduces IGF-1R expression by GL261 cells but has minimal effect on cell viability and does not reduce the capacity of the cells to form tumors upon implantation. In contrast, tumors are extremely rare when GL261 cells are mixed with NOBEL at inoculation into the flanks of C57BL/6, and the recipient mice become immune to subcutaneous and intracranial challenge with untreated GL261. Adaptive immune mechanisms contribute to this effect, as immunocompromised mice fail to either fully control tumor formation or develop immunity following flank administration of the GL261/NOBEL mix. NOBEL's structure has known immunostimulatory motifs that likely contribute to the immunogenicity of the mix, but its specificity for IGF-1R mRNA is also important as a similarly structured sense molecule is not effective.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Brain Neoplasms/immunology
- Brain Neoplasms/pathology
- Brain Neoplasms/therapy
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Glioma/immunology
- Glioma/pathology
- Glioma/therapy
- Immunity, Cellular/immunology
- Immunotherapy
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Oligodeoxyribonucleotides, Antisense/administration & dosage
- Oligodeoxyribonucleotides, Antisense/genetics
- Oligodeoxyribonucleotides, Antisense/immunology
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- beta 2-Microglobulin/physiology
Collapse
Affiliation(s)
- Mélanie Morin-Brureau
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Kirsten M. Hooper
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA 19107 USA
- Present Address: Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA USA
| | - Michael Prosniak
- Department of Cancer Biology, Thomas Jefferson University, 1020 Locust Street, JAH Rm 452, Philadelphia, PA 19107-6731 USA
| | - Sami Sauma
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Larry A. Harshyne
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - David W. Andrews
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - D. Craig Hooper
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA 19107 USA
- Department of Cancer Biology, Thomas Jefferson University, 1020 Locust Street, JAH Rm 452, Philadelphia, PA 19107-6731 USA
| |
Collapse
|
173
|
Abstract
The mammalian Toll-like receptor (TLR) family consists of 13 members, and recognizes specific patterns of microbial components, called pathogen-associated molecular patterns (PAMPs). TLR-dependent recognition of PAMPs leads to activation of the innate immune system, which subsequently leads to activation of antigen-specific adaptive immunity. The TLR-mediated signaling pathways consist of the MyD88-dependent pathway and TRIF-dependent pathway, both of which induce gene expression. This unit discusses mammalian TLRs (TLR1 to 13) that have an essential role in the innate immune recognition of microorganisms. Also discussed are TLR-mediated signaling pathways and antibodies that are available to detect specific TLRs.
Collapse
Affiliation(s)
- Kiyoshi Takeda
- Graduate School of Medicine, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shizuo Akira
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
174
|
Jung S, von Thülen T, Laukemper V, Pigisch S, Hangel D, Wagner H, Kaufmann A, Bauer S. A single naturally occurring 2'-O-methylation converts a TLR7- and TLR8-activating RNA into a TLR8-specific ligand. PLoS One 2015; 10:e0120498. [PMID: 25785446 PMCID: PMC4364935 DOI: 10.1371/journal.pone.0120498] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/23/2015] [Indexed: 12/20/2022] Open
Abstract
TLR7 and TLR8 recognize RNA from pathogens and lead to subsequent immune stimulation. Here we demonstrate that a single naturally occurring 2’-O-methylation within a synthetic 18s rRNA derived RNA sequence prevents IFN-α production, however secretion of proinflammatory cytokines such as IL-6 is not impaired. By analysing TLR-deficient plasmacytoid dendritic cells and performing HEK293 genetic complementation assays we could demonstrate that the single 2’-O-methylation containing RNA still activated TLR8 but not TLR7. Therefore this specific 2’-O-ribose methylation in rRNA converts a TLR7 / TLR8 ligand to an exclusively TLR8-specific ligand. Interestingly, other modifications at this position such as 2’-O-deoxy or 2’-fluoro had no strong modulating effect on TLR7 or TLR8 activation suggesting an important role of 2’-O-methylation for shaping differential TLR7 or TLR8 activation.
Collapse
Affiliation(s)
- Stephanie Jung
- Institut für Immunologie, Philipps-Universität Marburg, BMFZ, Marburg, Germany
| | - Tina von Thülen
- Institut für Immunologie, Philipps-Universität Marburg, BMFZ, Marburg, Germany
| | - Viktoria Laukemper
- Institut für Immunologie, Philipps-Universität Marburg, BMFZ, Marburg, Germany
| | - Stephanie Pigisch
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, München, Germany
| | - Doris Hangel
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, München, Germany
| | - Hermann Wagner
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, München, Germany
| | - Andreas Kaufmann
- Institut für Immunologie, Philipps-Universität Marburg, BMFZ, Marburg, Germany
| | - Stefan Bauer
- Institut für Immunologie, Philipps-Universität Marburg, BMFZ, Marburg, Germany
- * E-mail:
| |
Collapse
|
175
|
Chatillon JF, Hamieh M, Bayeux F, Abasq C, Fauquembergue E, Drouet A, Guisier F, Latouche JB, Musette P. Direct Toll-Like Receptor 8 signaling increases the functional avidity of human CD8+ T lymphocytes generated for adoptive T cell therapy strategies. IMMUNITY INFLAMMATION AND DISEASE 2015; 3:1-13. [PMID: 25866635 PMCID: PMC4386909 DOI: 10.1002/iid3.43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/25/2014] [Accepted: 09/13/2014] [Indexed: 11/14/2022]
Abstract
Adoptive transfer of in vitro activated and expanded antigen-specific cytotoxic T lymphocytes (CTLs) is a promising therapeutic strategy for infectious diseases and cancers. Obtaining in vitro a sufficient amount of highly specific cytotoxic cells and capable of retaining cytotoxic activity in vivo remains problematic. We studied the role of Toll-Like Receptor-8 (TLR8) engagement on peripheral CTLs activated with melanoma antigen MART-1-expressing artificial antigen-presenting cells (AAPCs). After a 3-week co-culture, 3–27% of specific CTLs were consistently obtained. CTLs expressed TLR8 in the intracellular compartment and at the cell surface. Specific CTLs activated with a TLR8 agonist (CL075) 24 h before the end of the culture displayed neither any change in their production levels of molecules involved in cytotoxicity (IFN-γ, Granzyme B, and TNF-α) nor major significant change in their cell surface phenotype. However, these TLR8-stimulated lymphocytes displayed increased cytotoxic activity against specific peptide-pulsed target cells related to an increase in specific anti-melanoma CTL functional avidity. TLR8 engagement on CTLs could, therefore, be useful in different immunotherapy strategies.
Collapse
Affiliation(s)
- Jean-François Chatillon
- University of Rouen Rouen, France ; Institut National de la Santé et de la Recherche Médicale (INSERM) U905 Rouen, France
| | - Mohamad Hamieh
- University of Rouen Rouen, France ; INSERM U1079 Rouen, France
| | - Florence Bayeux
- Institut National de la Santé et de la Recherche Médicale (INSERM) U905 Rouen, France
| | - Claire Abasq
- University of Rouen Rouen, France ; Institut National de la Santé et de la Recherche Médicale (INSERM) U905 Rouen, France ; Rouen University Hospital Rouen, France
| | | | | | - Florian Guisier
- University of Rouen Rouen, France ; Institut National de la Santé et de la Recherche Médicale (INSERM) U905 Rouen, France ; Rouen University Hospital Rouen, France
| | - Jean-Baptiste Latouche
- University of Rouen Rouen, France ; INSERM U1079 Rouen, France ; Rouen University Hospital Rouen, France
| | - Philippe Musette
- University of Rouen Rouen, France ; Institut National de la Santé et de la Recherche Médicale (INSERM) U905 Rouen, France ; Rouen University Hospital Rouen, France
| |
Collapse
|
176
|
Ye J, Peng G. Controlling T cell senescence in the tumor microenvironment for tumor immunotherapy. Oncoimmunology 2015; 4:e994398. [PMID: 25949919 DOI: 10.4161/2162402x.2014.994398] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 11/27/2014] [Indexed: 02/01/2023] Open
Abstract
Understanding molecular mechanisms involved in creating and sustaining the tumor suppressive microenvironment is critical for the development of novel antitumor therapeutic strategies. We have identified the induction of T cell senescence as a novel mechanism utilized by human tumor cells to induce immune suppression, and provided a new strategy using TLR8 ligands to reverse tumor immunosuppressive effects for tumor immunotherapy.
Collapse
Affiliation(s)
- Jian Ye
- Division of Infectious Diseases; Allergy & Immunology and Department of Internal Medicine; Saint Louis University School of Medicine ; Saint Louis, MO, USA
| | - Guangyong Peng
- Division of Infectious Diseases; Allergy & Immunology and Department of Internal Medicine; Saint Louis University School of Medicine ; Saint Louis, MO, USA
| |
Collapse
|
177
|
Overexpression of Toll-like receptor 8 correlates with the progression of podocyte injury in murine autoimmune glomerulonephritis. Sci Rep 2014; 4:7290. [PMID: 25468389 PMCID: PMC4252901 DOI: 10.1038/srep07290] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/12/2014] [Indexed: 12/23/2022] Open
Abstract
Members of the Toll-like receptor (TLR) family serve as pathogen sensors and participate in local autoimmune responses. This study found a correlation between glomerular injury and TLR expression by analysing BXSB/MpJ-Yaa (BXSB-Yaa) lupus model mice. In isolated glomeruli, the mRNA expression of several TLRs was higher in BXSB-Yaa mice than in healthy control BXSB mice. In particular, the expression of Tlr8 and its downstream cytokines was markedly increased. In mouse kidneys, TLR8 protein and mRNA localized to podocytes, and TLR8 protein expression in the glomerulus was higher in BXSB-Yaa mice than in BXSB mice. In BXSB-Yaa mice, the glomerular levels of Tlr8 mRNA negatively correlated with the glomerular levels of podocyte functional markers (Nphs1, Nphs2, and Synpo) and positively correlated with urinary albumin levels. Furthermore, the glomerular and serum levels of miR-21, a putative microRNA ligand of TLR8, were higher in BXSB-Yaa mice than in BXSB mice. The urinary levels of Tlr8 mRNA were also higher in BXSB-Yaa mice than in BXSB mice. In conclusion, the overexpression of TLR8 correlates with the progression of podocyte injury in glomerulonephritis. Thus, altered levels of urinary Tlr8 mRNA might reflect podocyte injury.
Collapse
|
178
|
Smigiel KS, Srivastava S, Stolley JM, Campbell DJ. Regulatory T-cell homeostasis: steady-state maintenance and modulation during inflammation. Immunol Rev 2014; 259:40-59. [PMID: 24712458 DOI: 10.1111/imr.12170] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulatory T (Treg) cells play a vital role in the prevention of autoimmunity and the maintenance of self-tolerance, but these cells also have an active role in inhibiting immune responses during viral, bacterial, and parasitic infections. Although excessive Treg activity can lead to immunodeficiency, chronic infection, and cancer, too little Treg activity results in autoimmunity and immunopathology and impairs the quality of pathogen-specific responses. Recent studies have helped define the homeostatic mechanisms that support the diverse pool of peripheral Treg cells under steady-state conditions and delineate how the abundance and function of Treg cells changes during inflammation. These findings are highly relevant for developing effective strategies to manipulate Treg cell activity to promote allograft tolerance and treat autoimmunity, chronic infection, and cancer.
Collapse
Affiliation(s)
- Kate S Smigiel
- Benaroya Research Institute, Seattle, WA, USA; Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | | | | | | |
Collapse
|
179
|
Barbi J, Pardoll D, Pan F. Treg functional stability and its responsiveness to the microenvironment. Immunol Rev 2014; 259:115-39. [PMID: 24712463 DOI: 10.1111/imr.12172] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Regulatory T cells (Tregs) prevent autoimmunity and tissue damage resulting from excessive or unnecessary immune activation through their suppressive function. While their importance for proper immune control is undeniable, the stability of the Treg lineage has recently become a controversial topic. Many reports have shown dramatic loss of the signature Treg transcription factor Forkhead box protein 3 (Foxp3) and Treg function under various inflammatory conditions. Other recent studies demonstrate that most Tregs are extremely resilient in their expression of Foxp3 and the retention of suppressive function. While this debate is unlikely to be settled in the immediate future, improved understanding of the considerable heterogeneity within the Foxp3(+) Treg population and how Treg subsets respond to ranging environmental cues may be keys to reconciliation. In this review, we discuss the diverse mechanisms responsible for the observed stability or instability of Foxp3(+) Treg identity and function. These include transcriptional and epigenetic programs, transcript targeting, and posttranslational modifications that appear responsive to numerous elements of the microenvironment. These mechanisms for Treg functional modulation add to the discussion of Treg stability.
Collapse
Affiliation(s)
- Joseph Barbi
- Department of Oncology, Immunology and Hematopoiesis Division, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
180
|
Pedersen AE, Holmstrøm K, Jørgensen F, Jensen SS, Gad M. Development of assay platforms for in vitro screening of Treg modulating potential of pharmacological compounds. Immunopharmacol Immunotoxicol 2014; 37:63-71. [PMID: 25367176 DOI: 10.3109/08923973.2014.977449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CD4 + CD25+ regulatory T cells (Tregs) are believed to be pivotal in controlling chronic inflammation as well as in opposing the effect of cancer immunotherapy. Therefore, identification of novel drug compounds that interfere with Treg function is of high priority together with research that investigates Treg modulation by current drugs. For such research as well as for novel cell based therapies based on Treg infusions, rapid in vitro assays as well as functional assays based on inhibitory capacity of Tregs are required. Here, we report on such assays using highly pure fluorescence-activated cell sorting (FACS) sorted CD4 + CD25(high)CD127(dim/-)CD45RA+ naïve Treg cells followed by in vitro expansion. We report on the use of these cells in a short-term assay based on Treg mediated inhibition of the early effector T cell activation markers CD69 and CD154. Additionally, we investigate the use of highly pure Tregs in a functional assay based on Treg mediated inhibition of effector T cell proliferation. We report highly reproducible Treg function in assays that test the effect of well-known model compounds such as CpG-A, anti-IL-6R (tocilizumab), anti-TNF-α (adalimumab) or a combination of IL-6 and TNF-α. In conclusion, these assays have the potential for use in pharmacological screening and discovery in relation to drug development in immunology.
Collapse
Affiliation(s)
- Anders Elm Pedersen
- Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark and
| | | | | | | | | |
Collapse
|
181
|
Husseinzadeh N, Davenport SM. Role of Toll-like receptors in cervical, endometrial and ovarian cancers: A review. Gynecol Oncol 2014; 135:359-63. [DOI: 10.1016/j.ygyno.2014.08.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/06/2014] [Accepted: 08/09/2014] [Indexed: 12/30/2022]
|
182
|
Gong L, Wang Y, Zhou L, Bai X, Wu S, Zhu F, Zhu YF. Activation of toll-like receptor-7 exacerbates lupus nephritis by modulating regulatory T cells. Am J Nephrol 2014; 40:325-44. [PMID: 25341693 DOI: 10.1159/000368204] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/25/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Toll-like receptor-7 (TLR7), which recognizes viral single-stranded RNA, can trigger immune complex glomerulonephritis in experimental lupus erythematosus. However, whether it modulates dendritic cells (DCs) phenotype and regulatory T cells (Treg) function is incompletely understood. METHOD Splenocytes and bone marrow DCs were obtained from 5- and 20-week-old female MRL(lpr/lpr) mice and C57BL/6 mice. In addition, to understand the response of Treg and DCs to TLR7 ligation in vivo, 16-week-old female MRL(lpr/lpr) and C57BL/6 mice were distributed into two groups with or without intraperitoneal injections of TLR7 ligand every other day. RESULTS After activation with the TLR7 ligand imiquimod in vivo and vitro, DCs from imiquimod-treated MRL/lpr mice showed an altered costimulatory profile, with decreased induction of CD80, CD86, and MHCII expression, comparing to age-matched C57BL/6 control mice. There was no significant difference in the numbers of CD4+CD25+Foxp3+ cells after TLR7 ligation by imiquimod in MRL(lpr/lpr) and control mice. Immunostaining of kidney sections of nephritic MRL/lpr mice revealed that CD11c was expressed in the infiltrated tubulointerstitial cells, and confocal microscopic analysis of renal CD11c+MHCII+, CD11c+CD80+, and CD11c+)CD86+ cells showed an immature phenotype with low levels of CD80, CD86, and MHCII in imiquimod-treated MRL/lpr mice. There was no difference in the number of Foxp3 positive cells in kidneys between the imiquimod and vehicle-treated groups. CONCLUSIONS Our results suggest that activation of TLR7 exacerbated lupus nephritis by modulating the abnormally costimulatory phenotype of dendritic cells and functions of Treg in MRL/lpr mice.
Collapse
Affiliation(s)
- Li Gong
- Experimental animal center, Nanfang Hospital, Southern Medical University, Guang Zhou, China
| | | | | | | | | | | | | |
Collapse
|
183
|
Ishii N, Funami K, Tatematsu M, Seya T, Matsumoto M. Endosomal localization of TLR8 confers distinctive proteolytic processing on human myeloid cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:5118-28. [PMID: 25297876 DOI: 10.4049/jimmunol.1401375] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nucleic acid-sensing TLRs are involved in both antimicrobial immune responses and autoimmune inflammation. TLR8 is phylogenetically and structurally related to TLR7 and TLR9, which undergo proteolytic processing in the endolysosomes to generate functional receptors. Recent structural analyses of human TLR8 ectodomain and its liganded form demonstrated that TLR8 is also cleaved, and both the N- and C-terminal halves contribute to ligand binding. However, the structures and ssRNA recognition mode of endogenous TLR8 in human primary cells are largely unknown. In this study, we show that proteolytic processing of TLR8 occurs in human monocytes and macrophages in a different manner compared with TLR7/9 cleavage. The insertion loop between leucine-rich repeats 14 and 15 in TLR8 is indispensable for the cleavage and stepwise processing that occurs in the N-terminal fragment. Both furin-like proprotein convertase and cathepsins contribute to TLR8 cleavage in the early/late endosomes. TLR8 recognizes viral ssRNA and endogenous RNA, such as microRNAs, resulting in the production of proinflammatory cytokines. Hence, localization sites of the receptors are crucial for the nucleic acid-sensing mode and downstream signaling.
Collapse
Affiliation(s)
- Noriko Ishii
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Kenji Funami
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Megumi Tatematsu
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Misako Matsumoto
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| |
Collapse
|
184
|
Adamczak DM, Nowak JK, Frydrychowicz M, Kaczmarek M, Sikora J. The role of Toll-like receptors and vitamin D in diabetes mellitus type 1--a review. Scand J Immunol 2014; 80:75-84. [PMID: 24845558 DOI: 10.1111/sji.12188] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/04/2014] [Indexed: 12/17/2022]
Abstract
It is widely accepted that type 1 diabetes mellitus (T1DM) is an autoimmune disease resulting from an interaction between immunologic, genetic and environmental factors. However, the exact mechanism leading to the development of T1DM remains incomplete. There is a large body of evidence pointing towards the important role of toll-like receptor (TLR) activation and vitamin D deficiency in T1DM pathogenesis. In this article, we review the available data on the influence of TLRs' level of activation and vitamin D status on the risk of the development of T1DM in humans and rodent models. We also summarize the current information regarding the interactions between TLRs' level of activation, vitamin D status and various environmental factors, such as enteroviral infections, the gut microbiota and breastfeeding substitution, among others. Our results stipulate that vitamin D seems to protect against T1DM by reducing the TLRs' level of activation.
Collapse
Affiliation(s)
- D M Adamczak
- Poznan University of Medical Sciences, Clinical Hospital No. 1, Poznan, Poland; Department of Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | | | | |
Collapse
|
185
|
Ignatz-Hoover JJ, Wang H, Moreton SA, Chakrabarti A, Agarwal MK, Sun K, Gupta K, Wald DN. The role of TLR8 signaling in acute myeloid leukemia differentiation. Leukemia 2014; 29:918-926. [PMID: 25283842 PMCID: PMC4387126 DOI: 10.1038/leu.2014.293] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/23/2014] [Accepted: 09/22/2014] [Indexed: 02/02/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive disease with a poor 5-year survival of 21% that is characterized by a differentiation arrest of immature myeloid cells. For a rare subtype of AML (acute promyeloctyic leukemia, 5-10% of cases) all-trans retinoic acid therapy removes the differentiation block, yielding over a 90% cure rate. However, this treatment is not effective for the other 90-95% of AML patients, suggesting new differentiation strategies are needed. Interestingly, differentiation is induced in normal hematopoietic cells through Toll-like receptor (TLR) stimulation and TLRs are expressed on AML cells. We present evidence that the TLR8 activation promotes AML differentiation and growth inhibition in a TLR8/MyD88/p38 dependent manner. We also show that that TLR7/TLR8 agonist, R848, considerably impairs the growth of human AML cells in immunodeficient mice. Our data suggests TLR8 activation has direct anti-leukemic effects independent of its immunomodulating properties that are currently under investigation for cancer therapy. Taken together, our results suggest that treatment with TLR8 agonists may be a promising new therapeutic strategy for AML.
Collapse
Affiliation(s)
| | - Huaiyu Wang
- Department of Pathology, Case Western Reserve University, Cleveland OH.,Department of Hematology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Stephen A Moreton
- Department of Pathology, Case Western Reserve University, Cleveland OH
| | | | | | - Kevin Sun
- Department of Pathology, Case Western Reserve University, Cleveland OH
| | - Kalpana Gupta
- Department of Pathology, Case Western Reserve University, Cleveland OH
| | - David N Wald
- Department of Pathology, Case Western Reserve University, Cleveland OH
| |
Collapse
|
186
|
Lee SJ, Shin SJ, Lee MH, Lee MG, Kang TH, Park WS, Soh BY, Park JH, Shin YK, Kim HW, Yun CH, Jung ID, Park YM. A potential protein adjuvant derived from Mycobacterium tuberculosis Rv0652 enhances dendritic cells-based tumor immunotherapy. PLoS One 2014; 9:e104351. [PMID: 25102137 PMCID: PMC4125215 DOI: 10.1371/journal.pone.0104351] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 07/13/2014] [Indexed: 01/05/2023] Open
Abstract
A key factor in dendritic cell (DC)-based tumor immunotherapy is the identification of an immunoadjuvant capable of inducing DC maturation to enhance cellular immunity. The efficacy of a 50S ribosomal protein L7/L12 (rplL) from Mycobacterium tuberculosis Rv0652, as an immunoadjuvant for DC-based tumor immunotherapy, and its capacity for inducing DC maturation was investigated. In this study, we showed that Rv0652 is recognized by Toll-like receptor 4 (TLR4) to induce DC maturation, and pro-inflammatory cytokine production (TNF-alpha, IL-1beta, and IL-6) that is partially modulated by both MyD88 and TRIF signaling pathways. Rv0652-activated DCs could activate naïve T cells, effectively polarize CD4+ and CD8+ T cells to secrete IFN-gamma, and induce T cell-mediated-cytotoxicity. Immunization of mice with Rv0652-stimulated ovalbumin (OVA)-pulsed DCs resulted in induction of a potent OVA-specific CD8+ T cell response, slowed tumor growth, and promoted long-term survival in a murine OVA-expressing E.G7 thymoma model. These findings suggest that Rv0652 enhances the polarization of T effector cells toward a Th1 phenotype through DC maturation, and that Rv0652 may be an effective adjuvant for enhancing the therapeutic response to DC-based tumor immunotherapy.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport/genetics
- Adaptor Proteins, Vesicular Transport/immunology
- Adjuvants, Immunologic/chemistry
- Adjuvants, Immunologic/pharmacology
- Animals
- Bacterial Proteins/chemistry
- Bacterial Proteins/pharmacology
- Cell Line, Tumor
- Cytokines/genetics
- Cytokines/immunology
- Dendritic Cells/immunology
- Dendritic Cells/pathology
- Immunity, Cellular/genetics
- Immunity, Cellular/immunology
- Immunotherapy
- Mice, Knockout
- Mycobacterium tuberculosis/chemistry
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/therapy
- Toll-Like Receptor 4/genetics
- Toll-Like Receptor 4/immunology
Collapse
Affiliation(s)
- Seung Jun Lee
- Department of Immunology, Lab of Dendritic Cell Differentiation & Regulation, School of Medicine, Konkuk University, Chungju, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Moon Hee Lee
- Department of Immunology, Lab of Dendritic Cell Differentiation & Regulation, School of Medicine, Konkuk University, Chungju, South Korea
| | - Min-Goo Lee
- Department of Physiology, College of Medicine, Korea University, Seoul, South Korea
| | - Tae Heung Kang
- Department of Immunology, Lab of Dendritic Cell Differentiation & Regulation, School of Medicine, Konkuk University, Chungju, South Korea
| | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Byoung Yul Soh
- Department of Biochemistry, College of Medicine, Seonam University, Namwon, Jeonbuk, South Korea
| | - Jung Hee Park
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental & Bioresources Sciences, Chonbuk National University, Iksan, South Korea
| | - Yong Kyoo Shin
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Han Wool Kim
- Department of Agricultural Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - In Duk Jung
- Department of Immunology, Lab of Dendritic Cell Differentiation & Regulation, School of Medicine, Konkuk University, Chungju, South Korea
- * E-mail: (IDJ); (YMP)
| | - Yeong-Min Park
- Department of Immunology, Lab of Dendritic Cell Differentiation & Regulation, School of Medicine, Konkuk University, Chungju, South Korea
- * E-mail: (IDJ); (YMP)
| |
Collapse
|
187
|
Dar AA, Patil RS, Chiplunkar SV. Insights into the Relationship between Toll Like Receptors and Gamma Delta T Cell Responses. Front Immunol 2014; 5:366. [PMID: 25132835 PMCID: PMC4116803 DOI: 10.3389/fimmu.2014.00366] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/15/2014] [Indexed: 01/26/2023] Open
Abstract
The tumor microenvironment is an important aspect of cancer biology that contributes to tumor initiation, tumor progression and responses to therapy. The composition and characteristics of the tumor microenvironment vary widely and are important in determining the anti-tumor immune response. Successful immunization requires activation of both innate and adaptive immunity. Generally, immune system is compromised in patients with cancer due to immune suppression, loss of tumor antigen expression and dysfunction of antigen presenting cells (APC). Thus, therapeutic immunization leading to cancer regression remains a significant challenge. Certain cells of the immune system, including dendritic cells (DCs) and gamma delta (γδ) T cells are capable of driving potent anti-tumor responses. The property of MHC-unrestricted cytotoxicity, high potential of cytokine release, tissue tropism and early activation in infections and malignant disease makes γδ T cells as an emerging candidate for immunotherapy. Various strategies are being developed to enhance anti-tumor immune responses of γδ T cells and DCs one of them is the use of novel adjuvants like toll like receptors (TLR) agonists, which enhance γδ T cell function directly or through DC activation, which has ability to prime γδ T cells. TLR agonists are being used clinically either alone or in combination with tumor antigens and has shown initial success in both enhancing immune responses and eliciting anti-tumor activity. TLR activated γδ T cells and DCs nurture each other's activation. This provides a potent base for first line of defense and manipulation of the adaptive response against pathogens and cancer. The available data provides a strong rationale for initiating combinatorial therapy for the treatment of diseases and this review will summarize the application of adjuvants (TLRs) for boosting immune response of γδ T cells to treat cancer and infectious diseases and their use in combinatorial therapy.
Collapse
Affiliation(s)
- Asif Amin Dar
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre , Navi Mumbai , India
| | - Rushikesh Sudam Patil
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre , Navi Mumbai , India
| | - Shubhada Vivek Chiplunkar
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre , Navi Mumbai , India
| |
Collapse
|
188
|
Muccioli M, Benencia F. Toll-like Receptors in Ovarian Cancer as Targets for Immunotherapies. Front Immunol 2014; 5:341. [PMID: 25101083 PMCID: PMC4105689 DOI: 10.3389/fimmu.2014.00341] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/04/2014] [Indexed: 01/21/2023] Open
Abstract
In the last decade, it has become apparent that toll-like receptor (TLR) signaling can play an important role in ovarian cancer (OC) progression. Interestingly, TLR activation in immune cells can help activate an anti-tumor response, while TLR signaling in tumor cells themselves is often associated with cancer-promoting inflammation. For example, it has been shown that TLR activation in dendritic cells can result in more effective antigen presentation to T cells, thereby favoring tumor eradication. However, aberrant TLR expression in OC cells is associated with more aggressive disease (likely due to recruitment of pro-tumoral leukocytes to the tumor site) and has also been implicated in resistance to mainstream chemotherapy. The delicate balance of TLR activation in the tumor microenvironment in different cell types altogether help shape the inflammatory profile and outcome of tumor growth or regression. With further studies, specific activation or repression of TLRs may be harnessed to offer novel immunotherapies or adjuvants to traditional chemotherapy for some OC patients. Herewith, we review recent literature on basic and translational research concerning therapeutic targeting of TLR pathways for the treatment of OC.
Collapse
Affiliation(s)
- Maria Muccioli
- Molecular and Cell Biology Program, Ohio University , Athens, OH , USA
| | - Fabian Benencia
- Molecular and Cell Biology Program, Ohio University , Athens, OH , USA ; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University , Athens, OH , USA
| |
Collapse
|
189
|
Broggi A, Granucci F. Microbe- and danger-induced inflammation. Mol Immunol 2014; 63:127-33. [PMID: 25037632 DOI: 10.1016/j.molimm.2014.06.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 06/25/2014] [Indexed: 12/22/2022]
Abstract
The ability of the immune system to give rise to an effective response against pathogens while maintaining tolerance towards self-tissues has always been an object of keen interest for immunologist. Over the years, different theories have been proposed to explain if and how the immune system is able to discriminate between self and non-self, including the Infectious Non-self theory from Charles Janeway and Polly Matzinger's Danger theory. Nowadays we know Janeway's theory is largely true, however the immune system does respond to injured, stressed and necrotic cells releasing danger signals (DAMPs) with a potent inflammatory response. To avoid unwanted prolonged autoimmune reactions, though, danger-induced inflammation should be tightly regulated. In the present review we discuss how prototypic DAMPs are able to induce inflammation and the peculiarity of danger-induced inflammation, as opposed to a complete immune response to fight pathogen invasions.
Collapse
Affiliation(s)
- Achille Broggi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| |
Collapse
|
190
|
Voo KS, Bover L, Harline ML, Weng J, Sugimoto N, Liu YJ. Targeting of TLRs inhibits CD4+ regulatory T cell function and activates lymphocytes in human peripheral blood mononuclear cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:627-34. [PMID: 24928999 DOI: 10.4049/jimmunol.1203334] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Accumulating evidence suggests elements within tumors induce exhaustion of effector T cells and infiltration of immunosuppressive regulatory T cells (Tregs), thus preventing the development of durable antitumor immunity. Therefore, the discovery of agents that simultaneously block Treg suppressive function and reinvigorate effector function of lymphocytes is key to the development of effective cancer immunotherapy. Previous studies have shown that TLR ligands (TLRLs) could modulate the function of these T cell targets; however, those studies relied on cell-free or accessory cell-based assay systems that do not accurately reflect in vivo responses. In contrast, we used a human PBMC-based proliferation assay system to simultaneously monitor the effect of TLRLs on T cells (CD4(+), CD8(+), Tregs), B cells, and NK cells, which gave different and even conflicting results. We found that the TLR7/8L:CL097 could simultaneously activate CD8(+) T cells, B cells, and NK cells plus block Treg suppression of T cells and B cells. The TLRLs TLR1/2L:Pam3CSK4, TLR5L:flagellin, TLR4L:LPS, and TLR8/7L:CL075 also blocked Treg suppression of CD4(+) or CD8(+) T cell proliferation, but not B cell proliferation. Besides CL097, TLR2L:PGN, CL075, and TLR9L:CpG-A, CpG-B, and CpG-C) were strong activators of NK cells. Importantly, we found that Pam3CSK4 could: 1) activate CD4(+) T cell proliferation, 2) inhibit the expansion of IL-10(+) naturally occurring FOXP3(+) Tregs and induction of IL-10(+) CD4(+) Tregs (IL-10-producing type 1 Treg), and 3) block naturally occurring FOXP3(+) Tregs suppressive function. Our results suggest these agents could serve as adjuvants to enhance the efficacy of current immunotherapeutic strategies in cancer patients.
Collapse
Affiliation(s)
- Kui Shin Voo
- Department of Genomic Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030;
| | - Laura Bover
- Department of Genomic Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Megan Lundell Harline
- Department of Genomic Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Jinsheng Weng
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030; and
| | | | | |
Collapse
|
191
|
Orson FM, Wang R, Brimijoin S, Kinsey BM, Singh RA, Ramakrishnan M, Wang HY, Kosten TR. The future potential for cocaine vaccines. Expert Opin Biol Ther 2014; 14:1271-83. [PMID: 24835496 DOI: 10.1517/14712598.2014.920319] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Addiction to cocaine is a major problem around the world, but especially in developed countries where the combination of wealth and user demand has created terrible social problems. Although only some users become truly addicted, those who are often succumb to a downward spiral in their lives from which it is very difficult to escape. From the medical perspective, the lack of effective and safe, non-addictive therapeutics has instigated efforts to develop alternative approaches for treatment, including anticocaine vaccines designed to block cocaine's pharmacodynamic effects. AREAS COVERED This paper discusses the implications of cocaine pharmacokinetics for robust vaccine antibody responses, the results of human vaccine clinical trials, new developments in animal models for vaccine evaluation, alternative vaccine formulations and complementary therapy to enhance anticocaine effectiveness. EXPERT OPINION Robust anti-cocaine antibody responses are required for benefit to cocaine abusers, but since any reasonably achievable antibody level can be overcome with higher drug doses, sufficient motivation to discontinue use is also essential so that the relative barrier to cocaine effects will be appropriate for each individual. Combining a vaccine with achievable levels of an enzyme to hydrolyze cocaine to inactive metabolites, however, may substantially increase the blockade and improve treatment outcomes.
Collapse
Affiliation(s)
- Frank M Orson
- Center for Translational Research in Inflammatory Diseases, Baylor College of Medicine, Department of Medicine , Bldg. 109, Rm. 234, 2002 Holcombe Blvd, Houston, TX 77030 , USA +1 713 794 7960 ; +1 713 794 7938 ;
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Yu X, Wei B, Dai Y, Zhang M, Wu J, Xu X, Jiang G, Zheng S, Zhou L. Genetic polymorphism of interferon regulatory factor 5 (IRF5) correlates with allograft acute rejection of liver transplantation. PLoS One 2014; 9:e94426. [PMID: 24788560 PMCID: PMC4005731 DOI: 10.1371/journal.pone.0094426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 03/16/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Although liver transplantation is one of the most efficient curative therapies of end stage liver diseases, recipients may suffer liver graft loss opst-operation. IRF-5, a member of Interferon Regulatory Factors, functions as a key regulator in TLR4 cascade, and is capable of inducing inflammatory cytokines. Although TLR4 has been proved to contribute to acute allograft rejection, including after liver transplantation, the correlation between IRF5 gene and acute rejection has not been elucidated yet. METHODS The study enrolled a total of 289 recipients, including 39 females and 250 males, and 39 recipients developed acute allograft rejection within 6 months post-transplantation. The allograft rejections were diagnosed by liver biopsies. Genome DNA of recipients was extracted from pre-operative peripheral blood. Genotyping of IRF-5, including rs3757385, rs752637 and rs11761199, was performed, followed by SNP frequency and Hardy-Weinberg equilibrium analysis. RESULTS The genetic polymorphism of rs3757385 was found associated with acute rejection. G/G homozygous individuals were at higher risk of acute rejection, with a P value of 0.042 (OR = 2.34 (1.07-5.10)). CONCLUSIONS IRF5, which transcriptionally activates inflammatory cytokines, is genetically associated with acute rejection and might function as a risk factor for acute rejection of liver transplantations.
Collapse
Affiliation(s)
- Xiaobo Yu
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bajin Wei
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yifan Dai
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guoping Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lin Zhou
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
193
|
Pan F, Barbi J. Ubiquitous points of control over regulatory T cells. J Mol Med (Berl) 2014; 92:555-69. [PMID: 24777637 DOI: 10.1007/s00109-014-1156-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/04/2014] [Accepted: 04/11/2014] [Indexed: 12/31/2022]
Abstract
Posttranslational modification by ubiquitin tagging is crucial for regulating the stability, activity and cellular localization of many target proteins involved in processes including DNA repair, cell cycle progression, protein quality control, and signal transduction. It has long been appreciated that ubiquitin-mediated events are important for certain signaling pathways leading to leukocyte activation and the stimulation of effector function. Now it is clear that the activities of molecules and pathways central to immune regulation are also modified and controlled by ubiquitin tagging. Among the mechanisms of immune control, regulatory T cells (or Tregs) are themselves particularly sensitive to such regulation. E3 ligases and deubiquitinases both influence Tregs through their effects on the signaling pathways pertinent to these cells or through the direct, posttranslational regulation of Foxp3. In this review, we will summarize and discuss several examples of ubiquitin-mediated control over multiple aspects of Treg biology including the generation, function and phenotypic fidelity of these cells. Fully explored and exploited, these potential opportunities for Treg modulation may lead to novel immunotherapies for both positive and negative fine-tuning of immune restraint.
Collapse
Affiliation(s)
- Fan Pan
- Immunology and Hematopoiesis Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA,
| | | |
Collapse
|
194
|
Immune Adjuvant Effect of Molecularly-defined Toll-Like Receptor Ligands. Vaccines (Basel) 2014; 2:323-53. [PMID: 26344622 PMCID: PMC4494261 DOI: 10.3390/vaccines2020323] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 01/07/2023] Open
Abstract
Vaccine efficacy is optimized by addition of immune adjuvants. However, although adjuvants have been used for over a century, to date, only few adjuvants are approved for human use, mostly aimed at improving vaccine efficacy and antigen-specific protective antibody production. The mechanism of action of immune adjuvants is diverse, depending on their chemical and molecular nature, ranging from non-specific effects (i.e., antigen depot at the immunization site) to specific activation of immune cells leading to improved host innate and adaptive responses. Although the detailed molecular mechanism of action of many adjuvants is still elusive, the discovery of Toll-like receptors (TLRs) has provided new critical information on immunostimulatory effect of numerous bacterial components that engage TLRs. These ligands have been shown to improve both the quality and the quantity of host adaptive immune responses when used in vaccine formulations targeted to infectious diseases and cancer that require both humoral and cell-mediated immunity. The potential of such TLR adjuvants in improving the design and the outcomes of several vaccines is continuously evolving, as new agonists are discovered and tested in experimental and clinical models of vaccination. In this review, a summary of the recent progress in development of TLR adjuvants is presented.
Collapse
|
195
|
Crucial Role of Viral Reactivation in the Development of Severe Drug Eruptions: a Comprehensive Review. Clin Rev Allergy Immunol 2014; 49:192-202. [DOI: 10.1007/s12016-014-8421-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
196
|
Nucleic acid sensing by T cells initiates Th2 cell differentiation. Nat Commun 2014; 5:3566. [PMID: 24717539 DOI: 10.1038/ncomms4566] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 03/04/2014] [Indexed: 02/07/2023] Open
Abstract
While T-cell responses are directly modulated by Toll-like receptor (TLR) ligands, the mechanism and physiological function of nucleic acids (NAs)-mediated T cell costimulation remains unclear. Here we show that unlike in innate cells, T-cell costimulation is induced even by non-CpG DNA and by self-DNA, which is released from dead cells and complexes with antimicrobial peptides or histones. Such NA complexes are internalized by T cells and induce costimulatory responses independently of known NA sensors, including TLRs, RIG-I-like receptors (RLRs), inflammasomes and STING-dependent cytosolic DNA sensors. Such NA-mediated costimulation crucially induces Th2 differentiation by suppressing T-bet expression, followed by the induction of GATA-3 and Th2 cytokines. These findings unveil the function of NA sensing by T cells to trigger and amplify allergic inflammation.
Collapse
|
197
|
Lu H. TLR Agonists for Cancer Immunotherapy: Tipping the Balance between the Immune Stimulatory and Inhibitory Effects. Front Immunol 2014; 5:83. [PMID: 24624132 PMCID: PMC3939428 DOI: 10.3389/fimmu.2014.00083] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/17/2014] [Indexed: 01/07/2023] Open
Affiliation(s)
- Hailing Lu
- Tumor Vaccine Group, University of Washington , Seattle, WA , USA
| |
Collapse
|
198
|
Howell J, Gow P, Angus P, Visvanathan K. Role of toll-like receptors in liver transplantation. Liver Transpl 2014; 20:270-80. [PMID: 24243591 DOI: 10.1002/lt.23793] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/07/2013] [Accepted: 11/09/2013] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLRs) are pathogen recognition receptors that orchestrate the innate immune response and the subsequent adaptive immune response. TLRs can be triggered by exogenous ligands expressed by invading pathogens or by the release of endogenous ligands, such as that occurring through cellular injury during the transplantation process. They are now recognized to play an important role in many facets of transplantation biology, including rejection and tolerance, ischemia/reperfusion injury (IRI), and infections after transplantation. The role of TLRs in liver transplantation is unique with respect to other organ transplants because the portal circulation is a continuous source of TLR2 and TLR4 ligands, and this influences TLR signaling pathways, which have a central role in transplantation immunity. This review provides a critical update on recent data outlining the important role of TLRs in liver transplantation, and there is a particular focus on emerging advances in our understanding of rejection and tolerance, IRI, and infections after transplantation and on the ways in which these events may influence the recurrence of diseases such as hepatitis C infection after liver transplantation.
Collapse
Affiliation(s)
- Jessica Howell
- Liver Transplant Unit, Austin Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia
| | | | | | | |
Collapse
|
199
|
Tsuge M, Oka T, Yamashita N, Saito Y, Fujii Y, Nagaoka Y, Yashiro M, Tsukahara H, Morishima T. Gene expression analysis in children with complex seizures due to influenza A(H1N1)pdm09 or rotavirus gastroenteritis. J Neurovirol 2014; 20:73-84. [PMID: 24464411 DOI: 10.1007/s13365-013-0231-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/11/2013] [Accepted: 12/26/2013] [Indexed: 10/25/2022]
Abstract
Viral infections have been implicated as a cause of complex seizures in children. The pathogenic differences in complex seizures due to influenza A(H1N1)pdm09 or rotavirus gastroenteritis remain unclear. This study analyzed the gene expression profiles in the peripheral whole blood from pediatric patients with complex seizures due to influenza A(H1N1)pdm09 or rotavirus gastroenteritis. The gene expression profiles of ten patients (five with seizures and five without) with influenza A(H1N1)pdm09 and six patients (three with seizures and three without) with rotavirus gastroenteritis were examined. Gene expression profiles in the whole blood were different in complex seizures due to influenza A(H1N1)pdm09 or rotavirus gastroenteritis. Transcripts related to the immune response were significantly differentially expressed in complex seizures with influenza A(H1N1)pdm09, and transcripts related to the stress response were significantly differentially expressed in complex seizures with rotavirus gastroenteritis. Pathway analysis showed that the mitogen-activated protein kinases in the T cell receptor signaling pathway were activated in complex seizures due to influenza A(H1N1)pdm09. Dysregulation of the genes related to immune response or stress response could contribute to the pathogenic differences of the complex seizures due to influenza A(H1N1)pdm09 or rotavirus gastroenteritis.
Collapse
Affiliation(s)
- Mitsuru Tsuge
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan,
| | | | | | | | | | | | | | | | | |
Collapse
|
200
|
McNally A, McNally M, Galea R, Thomas R, Steptoe RJ. Immunogenic, but not steady-state, antigen presentation permits regulatory T-cells to control CD8+ T-cell effector differentiation by IL-2 modulation. PLoS One 2014; 9:e85455. [PMID: 24454872 PMCID: PMC3890313 DOI: 10.1371/journal.pone.0085455] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 12/04/2013] [Indexed: 12/13/2022] Open
Abstract
Absorption of IL-2 is one proposed mechanism of CD4+CD25+FoxP3+ regulatory T cell (Treg) suppression. Direct in vivo experimental evidence for this has recently been obtained. While modulation of IL-2 bioavailability controls CD8+ T-cell effector differentiation under strongly immunogenic conditions it is not known whether Treg modulate CD8+ T cell responses through this mechanism under steady-state conditions. Here we assess this using a mouse model in which dendritic cells (DC) are manipulated to present cognate antigen to CD8+ T cells either in the steady-state or after activation. Our observations show that Treg exert a check on expansion and effector differentiation of CD8+ T cells under strongly immunogenic conditions associated with TLR ligand activation of DC, and this is mediated by limiting IL-2 availability. In contrast, when DC remain unactivated, depletion of Treg has little apparent effect on effector differentiation or IL-2 homeostasis. We conclude that while modulation of IL-2 homeostasis is an important mechanism through which Treg control CD8+ effector differentiation under immunogenic conditions, this mechanism plays little role in modulating CD8+ T-cell differentiation under steady-state conditions.
Collapse
Affiliation(s)
- Alice McNally
- UQ Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Michael McNally
- UQ Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Ryan Galea
- UQ Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Ranjeny Thomas
- UQ Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Raymond J. Steptoe
- UQ Diamantina Institute, University of Queensland, Brisbane, Australia
- * E-mail:
| |
Collapse
|