151
|
Stein A, Pache RA, Bernadó P, Pons M, Aloy P. Dynamic interactions of proteins in complex networks: a more structured view. FEBS J 2009; 276:5390-405. [PMID: 19712106 DOI: 10.1111/j.1742-4658.2009.07251.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
152
|
Abstract
The best-studied signaling pathways still hold secrets. Recent studies have now applied a new wave of technologies encompassing computational approaches and experimental techniques to the mitogen-activated protein kinase pathway in yeast and have provided new knowledge of pathway connections, components, and dynamics. The computational algorithms build on advances in network science motivated by studies of large-scale social and WWW networks. Experimental techniques permit exploration of the frequency-space response, describing biological signaling networks in the language of control theory. Together, these technologies are revealing the design choices made by evolution, and they provide a framework for building new biological circuits to order.
Collapse
Affiliation(s)
- Joel S Bader
- Department of Biomedical Engineering and High-Throughput Biology Center, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
153
|
Zeke A, Lukács M, Lim WA, Reményi A. Scaffolds: interaction platforms for cellular signalling circuits. Trends Cell Biol 2009; 19:364-74. [PMID: 19651513 DOI: 10.1016/j.tcb.2009.05.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 05/17/2009] [Accepted: 05/18/2009] [Indexed: 12/12/2022]
Abstract
Scaffold proteins influence cellular signalling by binding to multiple signalling enzymes, receptors or ion channels. Although normally devoid of catalytic activity, they have a big impact on controlling the flow of signalling information. By assembling signalling proteins into complexes, they play the part of signal processing hubs. As we learn more about the way signalling components are linked into natural signalling circuits, researchers are becoming interested in building non-natural signalling pathways to test our knowledge and/or to intentionally reprogram cellular behaviour. In this review, we discuss the role of scaffold proteins as efficient tools for assembling intracellular signalling complexes, both natural and artificial.
Collapse
Affiliation(s)
- András Zeke
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | | | | | | |
Collapse
|
154
|
Balázs A, Csizmok V, Buday L, Rakács M, Kiss R, Bokor M, Udupa R, Tompa K, Tompa P. High levels of structural disorder in scaffold proteins as exemplified by a novel neuronal protein, CASK-interactive protein1. FEBS J 2009; 276:3744-56. [PMID: 19523119 DOI: 10.1111/j.1742-4658.2009.07090.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
CASK-interactive protein1 is a newly recognized post-synaptic density protein in mammalian neurons. Although its N-terminal region contains several well-known functional domains, its entire C-terminal proline-rich region of 800 amino acids lacks detectable sequence homology to any previously characterized protein. We used multiple techniques for the structural characterization of this region and its three fragments. By bioinformatics predictions, CD spectroscopy, wide-line and 1H-NMR spectroscopy, limited proteolysis and gel filtration chromatography, we provided evidence that the entire proline-rich region of CASK-interactive protein1 is intrinsically disordered. We also showed that the proline-rich region is biochemically functional, as it interacts with the adaptor protein Abl-interactor-2. To extend the finding of a high level of disorder in this scaffold protein, we collected 74 scaffold proteins (also including proteins denoted as anchor and docking), and predicted their disorder by three different algorithms. We found that a very high fraction (53.6; on average) of the residues fall into local disorder and their ordered domains are connected by linker regions which are mostly disordered (64.5 on average). Because of this high frequency of disorder, the usual design of scaffold proteins of short globular domains (86 amino acids on average) connected by longer linker regions (140 amino acids on average) and the noted binding functions of these regions in both CASK-interactive protein1 and the other proteins studied, we suggest that structurally disordered regions prevail and play key recognition roles in scaffold proteins.
Collapse
Affiliation(s)
- Annamária Balázs
- Department of Medical Chemistry, Semmelweis University Medical School, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Distal recognition sites in substrates are required for efficient phosphorylation by the cAMP-dependent protein kinase. Genetics 2009; 182:529-39. [PMID: 19364808 DOI: 10.1534/genetics.109.102178] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Protein kinases are important mediators of signal transduction in eukaryotic cells, and identifying the substrates of these enzymes is essential for a complete understanding of most signaling networks. In this report, novel substrate-binding variants of the cAMP-dependent protein kinase (PKA) were used to identify substrate domains required for efficient phosphorylation in vivo. Most wild-type protein kinases, including PKA, interact only transiently with their substrates. The substrate domains identified were distal to the sites of phosphorylation and were found to interact with a C-terminal region of PKA that was itself removed from the active site. Only a small set of PKA alterations resulted in a stable association with substrates, and the identified residues were clustered together within the hydrophobic core of this enzyme. Interestingly, these residues stretched from the active site of the enzyme to the C-terminal substrate-binding domain identified here. This spatial organization is conserved among the entire eukaryotic protein kinase family, and alteration of these residues in a second, unrelated protein kinase also resulted in a stable association with substrates. In all, this study identified distal sites in PKA substrates that are important for recognition by this enzyme and suggests that the interaction of these domains with PKA might influence specific aspects of substrate binding and/or release.
Collapse
|
156
|
Good M, Tang G, Singleton J, Reményi A, Lim WA. The Ste5 scaffold directs mating signaling by catalytically unlocking the Fus3 MAP kinase for activation. Cell 2009; 136:1085-97. [PMID: 19303851 DOI: 10.1016/j.cell.2009.01.049] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 01/22/2009] [Accepted: 01/23/2009] [Indexed: 12/23/2022]
Abstract
The scaffold protein Ste5 is required to properly direct signaling through the yeast mating pathway to the mitogen-activated protein kinase (MAPK), Fus3. Scaffolds are thought to function by tethering kinase and substrate in proximity. We find, however, that the previously identified Fus3-binding site on Ste5 is not required for signaling, suggesting an alternative mechanism controls Fus3's activation by the MAPKK Ste7. Reconstituting MAPK signaling in vitro, we find that Fus3 is an intrinsically poor substrate for Ste7, although the related filamentation MAPK, Kss1, is an excellent substrate. We identify and structurally characterize a domain in Ste5 that catalytically unlocks Fus3 for phosphorylation by Ste7. This domain selectively increases the k(cat) of Ste7-->Fus3 phosphorylation but has no effect on Ste7-->Kss1 phosphorylation. The dual requirement for both Ste7 and this Ste5 domain in Fus3 activation explains why Fus3 is selectively activated by the mating pathway and not by other pathways that also utilize Ste7.
Collapse
Affiliation(s)
- Matthew Good
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | |
Collapse
|
157
|
Atkins BD, Yoshida S, Pellman D. Symmetry breaking: scaffold plays matchmaker for polarity signaling proteins. Curr Biol 2009; 18:R1130-2. [PMID: 19108767 DOI: 10.1016/j.cub.2008.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Many cell types can spontaneously polarize even in the absence of specific positional cues. In budding yeast, this symmetry-breaking polarization depends on a scaffold protein called Bem1p. A recent study defines Bem1p's molecular function during symmetry breaking.
Collapse
Affiliation(s)
- Benjamin D Atkins
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
158
|
Modularity of MAP kinases allows deformation of their signalling pathways. Nat Cell Biol 2009; 11:484-91. [PMID: 19295513 DOI: 10.1038/ncb1856] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 01/08/2009] [Indexed: 12/20/2022]
Abstract
Eukaryotic protein kinase pathways have both grown in number and changed their network architecture during evolution. We wondered if there are pivotal proteins in these pathways that have been repeatedly responsible for forming new connections through evolution, thus changing the topology of the network; and if so, whether the underlying properties of these proteins could be exploited to re-engineer and rewire these pathways. We addressed these questions in the context of the mitogen-activated protein kinase (MAPK) pathways. MAPK proteins were found to have repeatedly acquired new specificities and interaction partners during evolution, suggesting that these proteins are pivotal in the kinase network. Using the MAPKs Fus3 and Hog1 of the Saccharomyces cerevisiae mating and hyper-osmolar pathways, respectively, we show that these pivotal proteins can be re-designed to achieve a wide variety of changes in the input-output properties of the MAPK network. Through an analysis of our experimental results and of the sequence and structure of these proteins, we show that rewiring of the network is possible due to the underlying modular design of the MAPKs. We discuss the implications of our findings on the radiation of MAPKs through evolution and on how these proteins achieve their specificity.
Collapse
|
159
|
Marmaras VJ, Lampropoulou M. Regulators and signalling in insect haemocyte immunity. Cell Signal 2009; 21:186-95. [DOI: 10.1016/j.cellsig.2008.08.014] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 08/24/2008] [Indexed: 02/06/2023]
|
160
|
Lochhead PA. Protein kinase activation loop autophosphorylation in cis: overcoming a Catch-22 situation. Sci Signal 2009; 2:pe4. [PMID: 19155529 DOI: 10.1126/scisignal.254pe4] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Autophosphorylation of the activation loop in cis is an underappreciated and poorly understood mode of activation of protein kinases. Here, I describe four examples of protein kinases that are activated in this way, concentrating on their biochemical properties and how their autophosphorylation in cis is achieved.
Collapse
Affiliation(s)
- Pamela A Lochhead
- The Laboratory of Molecular Signalling, The Babraham Research Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
161
|
Yu RC, Pesce CG, Colman-Lerner A, Lok L, Pincus D, Serra E, Holl M, Benjamin K, Gordon A, Brent R. Negative feedback that improves information transmission in yeast signalling. Nature 2008; 456:755-61. [PMID: 19079053 PMCID: PMC2716709 DOI: 10.1038/nature07513] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Accepted: 10/03/2008] [Indexed: 11/22/2022]
Abstract
Haploid Saccharomyces cerevisiae yeast cells use a prototypic cell signalling system to transmit information about the extracellular concentration of mating pheromone secreted by potential mating partners. The ability of cells to respond distinguishably to different pheromone concentrations depends on how much information about pheromone concentration the system can transmit. Here we show that the mitogen-activated protein kinase Fus3 mediates fast-acting negative feedback that adjusts the dose response of the downstream system response to match the dose response of receptor-ligand binding. This 'dose-response alignment', defined by a linear relationship between receptor occupancy and downstream response, can improve the fidelity of information transmission by making downstream responses corresponding to different receptor occupancies more distinguishable and reducing amplification of stochastic noise during signal transmission. We also show that one target of the feedback is a previously uncharacterized signal-promoting function of the regulator of G-protein signalling protein Sst2. Our work suggests that negative feedback is a general mechanism used in signalling systems to align dose responses and thereby increase the fidelity of information transmission.
Collapse
Affiliation(s)
- Richard C Yu
- Molecular Sciences Institute, 2168 Shattuck Avenue, Berkeley, California 94704, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Nucleus-specific and cell cycle-regulated degradation of mitogen-activated protein kinase scaffold protein Ste5 contributes to the control of signaling competence. Mol Cell Biol 2008; 29:582-601. [PMID: 19001089 DOI: 10.1128/mcb.01019-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae cells are capable of responding to mating pheromone only prior to their exit from the G(1) phase of the cell cycle. Ste5 scaffold protein is essential for pheromone response because it couples pheromone receptor stimulation to activation of the appropriate mitogen-activated protein kinase (MAPK) cascade. In naïve cells, Ste5 resides primarily in the nucleus. Upon pheromone treatment, Ste5 is rapidly exported from the nucleus and accumulates at the tip of the mating projection via its association with multiple plasma membrane-localized molecules. We found that concomitant with its nuclear export, the rate of Ste5 turnover is markedly reduced. Preventing nuclear export destabilized Ste5, whereas preventing nuclear entry stabilized Ste5, indicating that Ste5 degradation occurs mainly in the nucleus. This degradation is dependent on ubiquitin and the proteasome. We show that Ste5 ubiquitinylation is mediated by the SCF(Cdc4) ubiquitin ligase and requires phosphorylation by the G(1) cyclin-dependent protein kinase (cdk1). The inability to efficiently degrade Ste5 resulted in pathway activation and cell cycle arrest in the absence of pheromone. These findings reveal that maintenance of this MAPK scaffold at an appropriately low level depends on its compartment-specific and cell cycle-dependent degradation. Overall, this mechanism provides a novel means for helping to prevent inadvertent stimulus-independent activation of a response and for restricting and maximizing the signaling competence of the cell to a specific cell cycle stage, which likely works hand in hand with the demonstrated role that G(1) Cdk1-dependent phosphorylation of Ste5 has in preventing its association with the plasma membrane.
Collapse
|
163
|
Locasale JW. Three-state kinetic mechanism for scaffold-mediated signal transduction. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:051921. [PMID: 19113169 PMCID: PMC2713820 DOI: 10.1103/physreve.78.051921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 08/30/2008] [Indexed: 05/27/2023]
Abstract
Signaling events in eukaryotic cells are often guided by a scaffolding protein. Scaffold proteins assemble multiple proteins into a spatially localized signaling complex and exert numerous physical effects on signaling pathways. To study these effects, we consider a minimal, three-state kinetic model of scaffold-mediated kinase activation. We first introduce and apply a path summation technique to obtain approximate solutions to a single molecule master equation that governs protein kinase activation. We then consider exact numerical solutions. We comment on when this approximation is appropriate and then use this analysis to illustrate the competition of processes occurring at many time scales that are involved in signal transduction in the presence of a scaffold protein. We find that our minimal model captures how scaffold concentration can influence the times over which signaling is distributed in kinase cascades. For a range of scaffold concentrations, scaffolds allow for signaling to be distributed over multiple decades. The findings are consistent with recent experiments and simulation data. These results provide a framework and offer a mechanism for understanding how scaffold proteins can influence the shape of the waiting time distribution of kinase activation and effectively broaden the times over which protein kinases are activated in the course of cell signaling.
Collapse
Affiliation(s)
- Jason W Locasale
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
164
|
Takahashi S, Pryciak PM. Membrane localization of scaffold proteins promotes graded signaling in the yeast MAP kinase cascade. Curr Biol 2008; 18:1184-91. [PMID: 18722124 DOI: 10.1016/j.cub.2008.07.050] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/14/2008] [Accepted: 07/16/2008] [Indexed: 01/18/2023]
Abstract
BACKGROUND Signaling through mitogen-activated protein kinase (MAPK) cascade pathways can show various input-output behaviors, including either switch-like or graded responses to increasing levels of stimulus. Prior studies suggest that switch-like behavior is promoted by positive feedback loops and nonprocessive phosphorylation reactions, but it is unclear whether graded signaling is a default behavior or whether it must be enforced by separate mechanisms. It has been hypothesized that scaffold proteins promote graded behavior. RESULTS Here, we experimentally probe the determinants of graded signaling in the yeast mating MAPK pathway. We find that graded behavior is robust in that it resists perturbation by loss of several negative-feedback regulators. However, the pathway becomes switch-like when activated by a crosstalk stimulus that bypasses multiple upstream components. To dissect the contributing factors, we developed a method for gradually varying the signal input at different pathway steps in vivo. Input at the beginning of the kinase cascade produced a sharp, threshold-like response. Surprisingly, the scaffold protein Ste5 increased this threshold behavior when limited to the cytosol. However, signaling remained graded whenever Ste5 was allowed to function at the plasma membrane. CONCLUSIONS The results suggest that the MAPK cascade module is inherently ultrasensitive but is converted to a graded system by the pathway-specific activation mechanism. Scaffold-mediated assembly of signaling complexes at the plasma membrane allows faithful propagation of weak signals, which consequently reduces pathway ultrasensitivity. These properties help shape the input-output properties of the system to fit the physiological context.
Collapse
Affiliation(s)
- Satoe Takahashi
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
165
|
Abstract
Protein kinase cascades are a reoccurring feature of signal transduction pathways. Recent investigations have focused on how kinase-scaffolding proteins help to convert a graded stimulus into a switch-like or binary response. New findings reveal that the graded-to-binary conversion can be turned on or off, depending on the location of the scaffold within the cell.
Collapse
Affiliation(s)
- Henrik G Dohlman
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA.
| |
Collapse
|
166
|
Dose-to-duration encoding and signaling beyond saturation in intracellular signaling networks. PLoS Comput Biol 2008; 4:e1000197. [PMID: 18846202 PMCID: PMC2543107 DOI: 10.1371/journal.pcbi.1000197] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 09/02/2008] [Indexed: 11/27/2022] Open
Abstract
The cellular response elicited by an environmental cue typically varies with the strength of the stimulus. For example, in the yeast Saccharomyces cerevisiae, the concentration of mating pheromone determines whether cells undergo vegetative growth, chemotropic growth, or mating. This implies that the signaling pathways responsible for detecting the stimulus and initiating a response must transmit quantitative information about the intensity of the signal. Our previous experimental results suggest that yeast encode pheromone concentration as the duration of the transmitted signal. Here we use mathematical modeling to analyze possible biochemical mechanisms for performing this “dose-to-duration” conversion. We demonstrate that modulation of signal duration increases the range of stimulus concentrations for which dose-dependent responses are possible; this increased dynamic range produces the counterintuitive result of “signaling beyond saturation” in which dose-dependent responses are still possible after apparent saturation of the receptors. We propose a mechanism for dose-to-duration encoding in the yeast pheromone pathway that is consistent with current experimental observations. Most previous investigations of information processing by signaling pathways have focused on amplitude encoding without considering temporal aspects of signal transduction. Here we demonstrate that dose-to-duration encoding provides cells with an alternative mechanism for processing and transmitting quantitative information about their surrounding environment. The ability of signaling pathways to convert stimulus strength into signal duration results directly from the nonlinear nature of these systems and emphasizes the importance of considering the dynamic properties of signaling pathways when characterizing their behavior. Understanding how signaling pathways encode and transmit quantitative information about the external environment will not only deepen our understanding of these systems but also provide insight into how to reestablish proper function of pathways that have become dysregulated by disease. Cells must be able to detect and respond to changes in their surroundings. Often environmental cues, such as hormones or growth factors, are received by membrane receptors that in turn activate intracellular signaling pathways. These pathways then transmit information about the stimulus to the cellular components required to elicit an appropriate response. In many cases, the nature of the response depends on the dose of the stimulus. Thus, in addition to relaying qualitative information (e.g., the presence or absence of a stimulus), signaling pathways must also transmit quantitative information about the intensity of the stimulus. Here we introduce “dose-to-duration” encoding as an effective strategy for relaying such information. We demonstrate that by providing a mechanism for overcoming saturation effects, modulation of signal duration increases the range of stimulus concentrations for which dose-dependent responses are possible. This increased dynamic range produces the counterintuitive result of “signaling beyond saturation” in which dose-dependent responses are still possible after apparent saturation of the receptors. Finally, we demonstrate that dose-to-duration encoding is used in the yeast mating response pathway and presents a simple mechanism that can account for current experimental observations.
Collapse
|
167
|
Locasale JW, Chakraborty AK. Regulation of signal duration and the statistical dynamics of kinase activation by scaffold proteins. PLoS Comput Biol 2008; 4:e1000099. [PMID: 18584022 PMCID: PMC2427176 DOI: 10.1371/journal.pcbi.1000099] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 05/20/2008] [Indexed: 11/26/2022] Open
Abstract
Scaffolding proteins that direct the assembly of multiple kinases into a spatially localized signaling complex are often essential for the maintenance of an appropriate biological response. Although scaffolds are widely believed to have dramatic effects on the dynamics of signal propagation, the mechanisms that underlie these consequences are not well understood. Here, Monte Carlo simulations of a model kinase cascade are used to investigate how the temporal characteristics of signaling cascades can be influenced by the presence of scaffold proteins. Specifically, we examine the effects of spatially localizing kinase components on a scaffold on signaling dynamics. The simulations indicate that a major effect that scaffolds exert on the dynamics of cell signaling is to control how the activation of protein kinases is distributed over time. Scaffolds can influence the timing of kinase activation by allowing for kinases to become activated over a broad range of times, thus allowing for signaling at both early and late times. Scaffold concentrations that result in optimal signal amplitude also result in the broadest distributions of times over which kinases are activated. These calculations provide insights into one mechanism that describes how the duration of a signal can potentially be regulated in a scaffold mediated protein kinase cascade. Our results illustrate another complexity in the broad array of control properties that emerge from the physical effects of spatially localizing components of kinase cascades on scaffold proteins. Signal transduction is the science of cellular communication. Cells detect signals from their environment and use them to make decisions such as whether or when to proliferate. Tight regulation of signal transduction is required for all healthy cells, and aberrant signaling leads to countless diseases such as cancer and diabetes. For example, in higher organisms such as mammals, signal transduction that leads to cell proliferation is often guided by a scaffold protein. Scaffolding proteins direct the assembly of multiple proteins involved in cell signaling by providing a platform for these proteins to carry out efficient signal transmission. Although scaffolds are widely believed to have dramatic effects on how signal transduction is carried out, the mechanisms that underlie these consequences are not well understood. Therefore, we used a computational approach that simulates the behavior of a model signal transduction module comprising a set of proteins in the presence of a scaffold. The simulations reveal mechanisms for how scaffolds can dynamically regulate the timing of cell signaling. Scaffolds allow for controlled levels of signal that are delivered inside the cell at appropriate times. Our findings support the possibility that these signaling dynamics regulated by scaffolds affect cell decision-making in many medically important intracellular processes.
Collapse
Affiliation(s)
- Jason W. Locasale
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Arup K. Chakraborty
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
168
|
Cortese MS, Uversky VN, Dunker AK. Intrinsic disorder in scaffold proteins: getting more from less. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 98:85-106. [PMID: 18619997 DOI: 10.1016/j.pbiomolbio.2008.05.007] [Citation(s) in RCA: 228] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Regulation, recognition and cell signaling involve the coordinated actions of many players. Signaling scaffolds, with their ability to bring together proteins belonging to common and/or interlinked pathways, play crucial roles in orchestrating numerous events by coordinating specific interactions among signaling proteins. This review examines the roles of intrinsic disorder (ID) in signaling scaffold protein function. Several well-characterized scaffold proteins with structurally and functionally characterized ID regions are used here to illustrate the importance of ID for scaffolding function. These examples include scaffolds that are mostly disordered, only partially disordered or those in which the ID resides in a scaffold partner. Specific scaffolds discussed include RNase, voltage-activated potassium channels, axin, BRCA1, GSK-3beta, p53, Ste5, titin, Fus3, BRCA1, MAP2, D-AKAP2 and AKAP250. Among the mechanisms discussed are: molecular recognition features, fly-casting, ease of encounter complex formation, structural isolation of partners, modulation of interactions between bound partners, masking of intramolecular interaction sites, maximized interaction surface per residue, toleration of high evolutionary rates, binding site overlap, allosteric modification, palindromic binding, reduced constraints for alternative splicing, efficient regulation via posttranslational modification, efficient regulation via rapid degradation, protection of normally solvent-exposed sites, enhancing the plasticity of interaction and molecular crowding. We conclude that ID can enhance scaffold function by a diverse array of mechanisms. In other words, scaffold proteins utilize several ID-facilitated mechanisms to enhance function, and by doing so, get more functionality from less structure.
Collapse
Affiliation(s)
- Marc S Cortese
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
169
|
Hao N, Nayak S, Behar M, Shanks RH, Nagiec MJ, Errede B, Hasty J, Elston TC, Dohlman HG. Regulation of cell signaling dynamics by the protein kinase-scaffold Ste5. Mol Cell 2008; 30:649-56. [PMID: 18538663 DOI: 10.1016/j.molcel.2008.04.016] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 02/08/2008] [Accepted: 04/25/2008] [Indexed: 11/29/2022]
Abstract
Cell differentiation requires the ability to detect and respond appropriately to a variety of extracellular signals. Here we investigate a differentiation switch induced by changes in the concentration of a single stimulus. Yeast cells exposed to high doses of mating pheromone undergo cell division arrest. Cells at intermediate doses become elongated and divide in the direction of a pheromone gradient (chemotropic growth). Either of the pheromone-responsive MAP kinases, Fus3 and Kss1, promotes cell elongation, but only Fus3 promotes chemotropic growth. Whereas Kss1 is activated rapidly and with a graded dose-response profile, Fus3 is activated slowly and exhibits a steeper dose-response relationship (ultrasensitivity). Fus3 activity requires the scaffold protein Ste5; when binding to Ste5 is abrogated, Fus3 behaves like Kss1, and the cells no longer respond to a gradient or mate efficiently with distant partners. We propose that scaffold proteins serve to modulate the temporal and dose-response behavior of the MAP kinase.
Collapse
Affiliation(s)
- Nan Hao
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Kothe E. Sexual attraction: on the role of fungal pheromone/receptor systems (A review). Acta Microbiol Immunol Hung 2008; 55:125-43. [PMID: 18595318 DOI: 10.1556/amicr.55.2008.2.5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pheromones have been detected in all fungal phylogenetic lineages. This came as a surprise, as the general role of pheromones in mate attraction was not envisioned for some fungi. Pheromones and pheromone receptor genes have been identified, however, in members of all true fungal lineages, and even for mycelia forming organisms of plant and amoeba lineages, like oomycetes and myxomycetes. The mating systems and genes governing the mating type are different in fungi, ranging from bipolar with two opposite mating types to tetrapolar mating systems (with four possible mating outcomes, only one of which leads to fertile sexual development) in homobasidioymcetes with more than 23,000 mating types occurring in nature. Pheromones and receptors specifically recognizing these pheromones have evolved with slightly different functions in these different systems. This review is dedicated to follow the evolution of pheromone/receptor systems from simple, biallelic bipolar systems to multiallelic, tetrapolar versions and to explain the slightly different functions the pheromone recognition and subsequent signal transduction cascades within the fungal kingdom. The biotechnological implications of a detailed understanding of mating systems for biological control and plant protection, in medicine, and in mushroom breeding are discussed.
Collapse
Affiliation(s)
- Erika Kothe
- Institute of Microbiology, Friedrich-Schiller-Universität, Neugasse 25, D-07743 Jena, Germany.
| |
Collapse
|
171
|
Szőllősi E, Bokor M, Bodor A, Perczel A, Klement E, Medzihradszky KF, Tompa K, Tompa P. Intrinsic Structural Disorder of DF31, a Drosophila Protein of Chromatin Decondensation and Remodeling Activities. J Proteome Res 2008; 7:2291-9. [DOI: 10.1021/pr700720c] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Edit Szőllősi
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary, Research Institute for Solid State Physics and Optics of Hungarian Academy of Sciences, Budapest, Hungary, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary, Proteomics Research Group, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary, and Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco,
| | - Monika Bokor
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary, Research Institute for Solid State Physics and Optics of Hungarian Academy of Sciences, Budapest, Hungary, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary, Proteomics Research Group, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary, and Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco,
| | - Andrea Bodor
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary, Research Institute for Solid State Physics and Optics of Hungarian Academy of Sciences, Budapest, Hungary, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary, Proteomics Research Group, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary, and Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco,
| | - Andras Perczel
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary, Research Institute for Solid State Physics and Optics of Hungarian Academy of Sciences, Budapest, Hungary, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary, Proteomics Research Group, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary, and Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco,
| | - Eva Klement
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary, Research Institute for Solid State Physics and Optics of Hungarian Academy of Sciences, Budapest, Hungary, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary, Proteomics Research Group, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary, and Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco,
| | - Katalin F. Medzihradszky
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary, Research Institute for Solid State Physics and Optics of Hungarian Academy of Sciences, Budapest, Hungary, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary, Proteomics Research Group, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary, and Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco,
| | - Kalman Tompa
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary, Research Institute for Solid State Physics and Optics of Hungarian Academy of Sciences, Budapest, Hungary, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary, Proteomics Research Group, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary, and Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco,
| | - Peter Tompa
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary, Research Institute for Solid State Physics and Optics of Hungarian Academy of Sciences, Budapest, Hungary, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary, Proteomics Research Group, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary, and Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco,
| |
Collapse
|
172
|
Sheridan DL, Kong Y, Parker SA, Dalby KN, Turk BE. Substrate discrimination among mitogen-activated protein kinases through distinct docking sequence motifs. J Biol Chem 2008; 283:19511-20. [PMID: 18482985 DOI: 10.1074/jbc.m801074200] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) mediate cellular responses to a wide variety of extracellular stimuli. MAPK signal transduction cascades are tightly regulated, and individual MAPKs display exquisite specificity in recognition of their target substrates. All MAPK family members share a common phosphorylation site motif, raising questions as to how substrate specificity is achieved. Here we describe a peptide library screen to identify sequence requirements of the DEF site (docking site for ERK FXF), a docking motif separate from the phosphorylation site. We show that MAPK isoforms recognize DEF sites with unique sequences and identify two key residues on the MAPK that largely dictate sequence specificity. Based on these observations and computational docking studies, we propose a revised model for MAPK interaction with substrates containing DEF sites. Variations in DEF site sequence requirements provide one possible mechanism for encoding complex target specificity among MAPK isoforms.
Collapse
Affiliation(s)
- Douglas L Sheridan
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
173
|
Science amongst the vines. EMBO Rep 2008; 9:425-8. [DOI: 10.1038/embor.2008.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 03/19/2008] [Indexed: 11/08/2022] Open
|
174
|
Abstract
MAP kinases transduce signals that are involved in a multitude of cellular pathways and functions in response to a variety of ligands and cell stimuli. Aberrant or inappropriate functions of MAPKs have now been identified in diseases ranging from cancer to inflammatory disease to obesity and diabetes. In many cell types, the MAPKs ERK1/2 are linked to cell proliferation. ERK1/2 are thought to play a role in some cancers, because mutations in Ras and B-Raf, which can activate the ERK1/2 cascade, are found in many human tumors. Abnormal ERK1/2 signaling has also been found in polycystic kidney disease, and serious developmental disorders such as cardio-facio-cutaneous syndrome arise from mutations in components of the ERK1/2 cascade. ERK1/2 are essential in well-differentiated cells and have been linked to long-term potentiation in neurons and in maintenance of epithelial polarity. Additionally, ERK1/2 are important for insulin gene transcription in pancreatic beta cells, which produce insulin in response to increases in circulating glucose to permit efficient glucose utilization and storage in the organism. Nutrients and hormones that induce or repress insulin secretion activate and/or inhibit ERK1/2 in a manner that reflects the secretory demand on beta cells. Disturbances in this and other regulatory pathways may result in the contribution of ERK1/2 to the etiology of certain human disorders.
Collapse
|
175
|
Pieroni E, de la Fuente van Bentem S, Mancosu G, Capobianco E, Hirt H, de la Fuente A. Protein networking: insights into global functional organization of proteomes. Proteomics 2008; 8:799-816. [PMID: 18297653 DOI: 10.1002/pmic.200700767] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The formulation of network models from global protein studies is essential to understand the functioning of organisms. Network models of the proteome enable the application of Complex Network Analysis, a quantitative framework to investigate large complex networks using techniques from graph theory, statistical physics, dynamical systems and other fields. This approach has provided many insights into the functional organization of the proteome so far and will likely continue to do so. Currently, several network concepts have emerged in the field of proteomics. It is important to highlight the differences between these concepts, since different representations allow different insights into functional organization. One such concept is the protein interaction network, which contains proteins as nodes and undirected edges representing the occurrence of binding in large-scale protein-protein interaction studies. A second concept is the protein-signaling network, in which the nodes correspond to levels of post-translationally modified forms of proteins and directed edges to causal effects through post-translational modification, such as phosphorylation. Several other network concepts were introduced for proteomics. Although all formulated as networks, the concepts represent widely different physical systems. Therefore caution should be taken when applying relevant topological analysis. We review recent literature formulating and analyzing such networks.
Collapse
Affiliation(s)
- Enrico Pieroni
- CRS4 Bioinformatica, c/o Parco Tecnologico POLARIS, Pula, Italy
| | | | | | | | | | | |
Collapse
|
176
|
Yu L, Qi M, Sheff MA, Elion EA. Counteractive control of polarized morphogenesis during mating by mitogen-activated protein kinase Fus3 and G1 cyclin-dependent kinase. Mol Biol Cell 2008; 19:1739-52. [PMID: 18256288 PMCID: PMC2291402 DOI: 10.1091/mbc.e07-08-0757] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 01/18/2008] [Accepted: 01/29/2008] [Indexed: 01/10/2023] Open
Abstract
Cell polarization in response to external cues is critical to many eukaryotic cells. During pheromone-induced mating in Saccharomyces cerevisiae, the mitogen-activated protein kinase (MAPK) Fus3 induces polarization of the actin cytoskeleton toward a landmark generated by the pheromone receptor. Here, we analyze the role of Fus3 activation and cell cycle arrest in mating morphogenesis. The MAPK scaffold Ste5 is initially recruited to the plasma membrane in random patches that polarize before shmoo emergence. Polarized localization of Ste5 is important for shmooing. In fus3 mutants, Ste5 is recruited to significantly more of the plasma membrane, whereas recruitment of Bni1 formin, Cdc24 guanine exchange factor, and Ste20 p21-activated protein kinase are inhibited. In contrast, polarized recruitment still occurs in a far1 mutant that is also defective in G1 arrest. Remarkably, loss of Cln2 or Cdc28 cyclin-dependent kinase restores polarized localization of Bni1, Ste5, and Ste20 to a fus3 mutant. These and other findings suggest Fus3 induces polarized growth in G1 phase cells by down-regulating Ste5 recruitment and by inhibiting Cln/Cdc28 kinase, which prevents basal recruitment of Ste5, Cdc42-mediated asymmetry, and mating morphogenesis.
Collapse
Affiliation(s)
- Lu Yu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115-5730
| | - Maosong Qi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115-5730
| | - Mark A. Sheff
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115-5730
| | - Elaine A. Elion
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115-5730
| |
Collapse
|
177
|
Bashor CJ, Helman NC, Yan S, Lim WA. Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics. Science 2008; 319:1539-43. [PMID: 18339942 DOI: 10.1126/science.1151153] [Citation(s) in RCA: 261] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Scaffold proteins link signaling molecules into linear pathways by physically assembling them into complexes. Scaffolds may also have a higher-order role as signal-processing hubs, serving as the target of feedback loops that optimize signaling amplitude and timing. We demonstrate that the Ste5 scaffold protein can be used as a platform to systematically reshape output of the yeast mating MAP kinase pathway. We constructed synthetic positive- and negative-feedback loops by dynamically regulating recruitment of pathway modulators to an artificial binding site on Ste5. These engineered circuits yielded diverse behaviors: ultrasensitive dose response, accelerated or delayed response times, and tunable adaptation. Protein scaffolds provide a flexible platform for reprogramming cellular responses and could be exploited to engineer cells with novel therapeutic and biotechnological functions.
Collapse
Affiliation(s)
- Caleb J Bashor
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| | | | | | | |
Collapse
|
178
|
Côte P, Whiteway M. The role of Candida albicans FAR1 in regulation of pheromone-mediated mating, gene expression and cell cycle arrest. Mol Microbiol 2008; 68:392-404. [DOI: 10.1111/j.1365-2958.2008.06158.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
179
|
Mishra P, Socolich M, Wall MA, Graves J, Wang Z, Ranganathan R. Dynamic scaffolding in a G protein-coupled signaling system. Cell 2008; 131:80-92. [PMID: 17923089 DOI: 10.1016/j.cell.2007.07.037] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 06/07/2007] [Accepted: 07/19/2007] [Indexed: 10/22/2022]
Abstract
The INAD scaffold organizes a multiprotein complex that is essential for proper visual signaling in Drosophila photoreceptor cells. Here we show that one of the INAD PDZ domains (PDZ5) exists in a redox-dependent equilibrium between two conformations--a reduced form that is similar to the structure of other PDZ domains, and an oxidized form in which the ligand-binding site is distorted through formation of a strong intramolecular disulfide bond. We demonstrate transient light-dependent formation of this disulfide bond in vivo and find that transgenic flies expressing a mutant INAD in which PDZ5 is locked in the reduced state display severe defects in termination of visual responses and visually mediated reflex behavior. These studies demonstrate a conformational switch mechanism for PDZ domain function and suggest that INAD behaves more like a dynamic machine rather than a passive scaffold, regulating signal transduction at the millisecond timescale through cycles of conformational change.
Collapse
Affiliation(s)
- Prashant Mishra
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, USA
| | | | | | | | | | | |
Collapse
|
180
|
Mapping dynamic protein interactions in MAP kinase signaling using live-cell fluorescence fluctuation spectroscopy and imaging. Proc Natl Acad Sci U S A 2007; 104:20320-5. [PMID: 18077328 DOI: 10.1073/pnas.0710336105] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fluorescence correlation spectroscopy (FCS), fluorescence cross-correlation spectroscopy (FCCS), and photon counting histograms (PCH) are fluctuation methods that emerged recently as potentially useful tools for obtaining parameters of molecular dynamics, interactions, and oligomerization in vivo. Here, we report the successful implementation of FCS, FCCS, and PCH in live yeast cells using fluorescent protein-tagged proteins expressed from their native chromosomal loci, examining cytosolic dynamics and interactions among components of the mitogen activated protein kinase (MAPK) cascade, a widely occurring signaling motif, in response to mating pheromone. FCS analysis detailed the diffusion characteristics and mobile concentrations of MAPK proteins. FCCS analysis using EGFP and mCherry-tagged protein pairs observed the interactions of Ste7 (MAPK kinase) with the MAPKs, Fus3 or Kss1, and of the scaffold protein, Ste5, with Ste7 and Ste11 (MAPK kinase kinase) in the cytosol, providing in vivo constants of their binding equilibrium. The interaction of Ste5 with Fus3 in the cytosol was below the limit of detection, suggesting a weak interaction, if it exists, with K(d) >400-500 nM. Using PCH, we show that cytosolic Ste5 were mostly monomers. Artificial dimerization of Ste5, as confirmed by PCH, using a dimerizing tag, stimulated the interaction between Ste5 and Fus3. Native Ste5 was found to bind Fus3 preferentially at the cortex in pheromone-treated cells, as detected by fluorescence resonance energy transfer (FRET). These results provide a quantitative spatial map of MAPK complexes in vivo and directly support the model that membrane association and regulation of the Ste5 scaffold are critical steps in MAPK activation.
Collapse
|
181
|
Tompa P, Fuxreiter M. Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions. Trends Biochem Sci 2007; 33:2-8. [PMID: 18054235 DOI: 10.1016/j.tibs.2007.10.003] [Citation(s) in RCA: 839] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 10/16/2007] [Accepted: 10/29/2007] [Indexed: 02/07/2023]
Abstract
The notion that all protein functions are determined through macromolecular interactions is the driving force behind current efforts that aim to solve the structures of all cellular complexes. Recent findings, however, demonstrate a significant amount of structural disorder or polymorphism in protein complexes, a phenomenon that has been largely overlooked thus far. It is our view that such disorder can be classified into four mechanistic categories, covering a continuous spectrum of structural states from static to dynamic disorder and from segmental to full disorder. To emphasize its generality and importance, we suggest a generic term, 'fuzziness', for this phenomenon. Given the crucial role of protein disorder in protein-protein interactions and in regulatory processes, we envision that fuzziness will become integral to understanding the interactome.
Collapse
Affiliation(s)
- Peter Tompa
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary.
| | | |
Collapse
|
182
|
Goldsmith EJ, Akella R, Min X, Zhou T, Humphreys JM. Substrate and docking interactions in serine/threonine protein kinases. Chem Rev 2007; 107:5065-81. [PMID: 17949044 PMCID: PMC4012561 DOI: 10.1021/cr068221w] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Elizabeth J Goldsmith
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8816, USA.
| | | | | | | | | |
Collapse
|
183
|
Maeder CI, Hink MA, Kinkhabwala A, Mayr R, Bastiaens PIH, Knop M. Spatial regulation of Fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signalling. Nat Cell Biol 2007; 9:1319-26. [PMID: 17952059 DOI: 10.1038/ncb1652] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 08/30/2007] [Indexed: 02/07/2023]
Abstract
Signal transduction through mitogen-activated protein kinase (MAPK) cascades is thought to occur through the assembly of macromolecular complexes. We quantified the abundance of complexes in the cytoplasm among the MAPKs Ste11, Ste7, Fus3 and the scaffold protein Ste5 in yeast pheromone signalling using fluorescence cross-correlation spectroscopy (FCCS). Significant complex concentrations were observed that remained unchanged on pheromone stimulation, demonstrating that global changes in complex abundances do not contribute to the transmission of signal through the cytoplasm. On the other hand, investigation of the distribution of active Fus3 (Fus3(PP)) across the cytoplasm using fluorescence lifetime imaging microscopy (FLIM) revealed a gradient of Fus3(PP) activity emanating from the tip of the mating projection. Spatial partitioning of Fus3 activating kinases to this site and deactivating phosphatases in the cytoplasm maintain this Fus3(PP)-activity distribution. Propagation of signalling from the shmoo is, therefore, spatially constrained by a gradient-generating reaction-diffusion mechanism.
Collapse
Affiliation(s)
- Celine I Maeder
- Cell Biology and Biophysics Unit, EMBL-Heidelberg, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
184
|
Structural disorder promotes assembly of protein complexes. BMC STRUCTURAL BIOLOGY 2007; 7:65. [PMID: 17922903 PMCID: PMC2194777 DOI: 10.1186/1472-6807-7-65] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 10/08/2007] [Indexed: 11/21/2022]
Abstract
Background The idea that the assembly of protein complexes is linked with protein disorder has been inferred from a few large complexes, such as the viral capsid or bacterial flagellar system, only. The relationship, which suggests that larger complexes have more disorder, has never been systematically tested. The recent high-throughput analyses of protein-protein interactions and protein complexes in the cell generated data that enable to address this issue by bioinformatic means. Results In this work we predicted structural disorder for both E. coli and S. cerevisiae, and correlated it with the size of complexes. Using IUPred to predict the disorder for each complex, we found a statistically significant correlation between disorder and the number of proteins assembled into complexes. The distribution of disorder has a median value of 10% in yeast for complexes of 2–4 components (6% in E. coli), but 18% for complexes in the size range of 11–100 proteins (12% in E. coli). The level of disorder as assessed for regions longer than 30 consecutive disordered residues shows an even stronger division between small and large complexes (median values about 4% for complexes of 2–4 components, but 12% for complexes of 11–100 components in yeast). The predicted correlation is also supported by experimental evidence, by observing the structural disorder in protein components of complexes that can be found in the Protein Data Bank (median values 1. 5% for complexes of 2–4 components, and 9.6% for complexes of 11–100 components in yeast). Further analysis shows that this correlation is not directly linked with the increased disorder in hub proteins, but reflects a genuine systemic property of the proteins that make up the complexes. Conclusion Overall, it is suggested and discussed that the assembly of protein-protein complexes is enabled and probably promoted by protein disorder.
Collapse
|
185
|
Pincet F. Membrane recruitment of scaffold proteins drives specific signaling. PLoS One 2007; 2:e977. [PMID: 17912354 PMCID: PMC1991591 DOI: 10.1371/journal.pone.0000977] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 09/12/2007] [Indexed: 11/28/2022] Open
Abstract
Cells must give the right response to each stimulus they receive. Scaffolding, a signaling process mediated by scaffold proteins, participates in the decoding of the cues by specifically directing signal transduction. The aim of this paper is to describe the molecular mechanisms of scaffolding, i.e. the principles by which scaffold proteins drive a specific response of the cell. Since similar scaffold proteins are found in many species, they evolved according to the purpose of each organism. This means they require adaptability. In the usual description of the mechanisms of scaffolding, scaffold proteins are considered as reactors where molecules involved in a cascade of reactions are simultaneously bound with the right orientation to meet and interact. This description is not realistic: (i) it is not verified by experiments and (ii) timing and orientation constraints make it complex which seems to contradict the required adaptability. A scaffold protein, Ste5, is used in the MAPK pathway of Saccharomyces Cerevisiae for the cell to provide a specific response to stimuli. The massive amount of data available for this pathway makes it ideal to investigate the actual mechanisms of scaffolding. Here, a complete treatment of the chemical reactions allows the computation of the distributions of all the proteins involved in the MAPK pathway when the cell receives various cues. These distributions are compared to several experimental results. It turns out that the molecular mechanisms of scaffolding are much simpler and more adaptable than previously thought in the reactor model. Scaffold proteins bind only one molecule at a time. Then, their membrane recruitment automatically drives specific, amplified and localized signal transductions. The mechanisms presented here, which explain how the membrane recruitment of a protein can produce a drastic change in the activity of cells, are generic and may be commonly used in many biological processes.
Collapse
Affiliation(s)
- Frédéric Pincet
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris, France.
| |
Collapse
|
186
|
Zhao X, Mehrabi R, Xu JR. Mitogen-activated protein kinase pathways and fungal pathogenesis. EUKARYOTIC CELL 2007; 6:1701-14. [PMID: 17715363 PMCID: PMC2043402 DOI: 10.1128/ec.00216-07] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Xinhua Zhao
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
187
|
Oh E, Heise CJ, English JM, Cobb MH, Thurmond DC. WNK1 is a novel regulator of Munc18c-syntaxin 4 complex formation in soluble NSF attachment protein receptor (SNARE)-mediated vesicle exocytosis. J Biol Chem 2007; 282:32613-22. [PMID: 17848561 PMCID: PMC2423411 DOI: 10.1074/jbc.m706591200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Defects in soluble NSF attachment protein receptor (SNARE)-mediated granule exocytosis occur in islet beta cells, adipocytes, and/or skeletal muscle cells correlate with increased susceptibility to insulin resistance and diabetes. The serine/threonine kinase WNK1 (with no K (lysine)) has recently been implicated in exocytosis and is expressed in all three of these cell types. To search for WNK1 substrates related to exocytosis, we conducted a WNK1 two-hybrid screen, which yielded Munc18c. Munc18c is known to be a key regulator of accessibility of the target membrane (t-SNARE) protein syntaxin 4 to participate in SNARE core complex assembly, although a paucity of Munc18c-binding factors has precluded discovery of its precise functions. To validate WNK1 as a new Munc18c-interacting partner, the direct interaction between WNK1 and Munc18c was confirmed using in vitro binding analysis, and endogenous WNK1-Munc18c complexes were detected in the cytosolic and plasma membrane compartments of the islet beta cell line MIN6. This binding interaction is mediated through the N-terminal 172 residues of Munc18c and the kinase domain residues of WNK1 (residues 159-491). Expression of either of these two minimal interaction domains resulted in inhibition of glucose-stimulated insulin secretion, consistent with a functional importance for the endogenous WNK1-Munc18c complex in exocytosis. Interestingly, Munc18c failed to serve as a WNK1 substrate in kinase activity assays, suggesting that WNK1 functions in SNARE complex assembly outside its role as a kinase. Taken together, these data support a novel role for WNK1 and a new mechanism for the regulation of SNARE complex assembly by WNK1-Munc18c complexes.
Collapse
Affiliation(s)
- Eunjin Oh
- Department of Biochemistry and Molecular Biology, Center for Diabetes Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Charles J. Heise
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239
| | | | - Melanie H. Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Debbie C. Thurmond
- Department of Biochemistry and Molecular Biology, Center for Diabetes Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
- To whom correspondence and reprint requests should be addressed: 635 Barnhill Dr., MS4053, Dept. of Biochemistry and Molecular Biology, Indianapolis, IN 46202. Tel.: 317-274-1551; Fax: 317-274-4686; E-mail:
| |
Collapse
|
188
|
Jiménez-Sánchez M, Cid VJ, Molina M. Retrophosphorylation of Mkk1 and Mkk2 MAPKKs by the Slt2 MAPK in the yeast cell integrity pathway. J Biol Chem 2007; 282:31174-85. [PMID: 17711850 DOI: 10.1074/jbc.m706270200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Saccharomyces cerevisiae, a variety of stresses and aggressions to the cell wall stimulate the activation of the cell wall integrity MAPK pathway, which triggers the expression of a series of genes important for the maintenance of cell wall homeostasis. This MAPK module lies downstream of the Rho1 small GTPase and protein kinase C Pkc1 and consists of MAPKKK Bck1, MAPKKs Mkk1 and Mkk2, and the Slt2 MAPK. In agreement with previous reports suggesting that Mkk1 and Mkk2 were functionally redundant, we show here that both Mkk1 and Mkk2 alone or even chimerical proteins constructed by interchanging their catalytic and regulatory domains are able to efficiently maintain signal transduction through the pathway. Both Mkk1 and Mkk2 are phosphorylated in vivo concomitant to activation of the cell integrity pathway. Interestingly, hyperphosphorylation of the MEKs required not only the upstream components of the pathway, but also a catalytically competent Slt2 MAPK downstream. Active Slt2 purified from yeast extracts was able to phosphorylate Mkk1 and Mkk2 in vitro. We have mapped Ser(50) as a direct phosphorylation target for Slt2 in Mkk2. However, substitution of all (Ser/Thr)-Pro canonical MAPK target sites with alanine did not totally abrogate Slt2-dependent Mkk2 phosphorylation. Mutation or deletion of a conserved MAPK-docking site at the N-terminal extension of Mkk2 precluded its interaction with Slt2 and negatively affected retrophosphorylation. Our data show that the cell wall integrity MAPKKs are targets for their downstream MAPK, suggesting the existence of complex feedback regulatory mechanisms at this level.
Collapse
Affiliation(s)
- María Jiménez-Sánchez
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | |
Collapse
|
189
|
Locasale JW, Shaw AS, Chakraborty AK. Scaffold proteins confer diverse regulatory properties to protein kinase cascades. Proc Natl Acad Sci U S A 2007; 104:13307-12. [PMID: 17686969 PMCID: PMC1948937 DOI: 10.1073/pnas.0706311104] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The assembly of multiple signaling proteins into a complex by a scaffold protein guides many cellular decisions. Despite recent advances, the overarching principles that govern scaffold function are not well understood. We carried out a computational study using kinetic Monte Carlo simulations to understand how spatial localization of kinases on a scaffold may regulate signaling under different physiological conditions. Our studies identify regulatory properties of scaffold proteins that allow them to both amplify and attenuate incoming signals in different biological contexts. These properties are not caused by the well established prozone or combinatorial inhibition effect. These results bring coherence to seemingly paradoxical observations and suggest that cells have evolved design rules that enable scaffold proteins to regulate widely disparate cellular functions.
Collapse
Affiliation(s)
- Jason W. Locasale
- Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| | - Andrey S. Shaw
- Department of Pathology and Immunology, Washington University, St. Louis, MO 63110
- To whom correspondence may be addressed. E-mail: or
| | - Arup K. Chakraborty
- Departments of Chemical Engineering
- Chemistry, and
- Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; and
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
190
|
Ubersax JA, Ferrell JE. Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 2007; 8:530-41. [PMID: 17585314 DOI: 10.1038/nrm2203] [Citation(s) in RCA: 1045] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A typical protein kinase must recognize between one and a few hundred bona fide phosphorylation sites in a background of approximately 700,000 potentially phosphorylatable residues. Multiple mechanisms have evolved that contribute to this exquisite specificity, including the structure of the catalytic site, local and distal interactions between the kinase and substrate, the formation of complexes with scaffolding and adaptor proteins that spatially regulate the kinase, systems-level competition between substrates, and error-correction mechanisms. The responsibility for the recognition of substrates by protein kinases appears to be distributed among a large number of independent, imperfect specificity mechanisms.
Collapse
Affiliation(s)
- Jeffrey A Ubersax
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305-5174, USA.
| | | |
Collapse
|
191
|
Chen RE, Thorner J. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1773:1311-40. [PMID: 17604854 PMCID: PMC2031910 DOI: 10.1016/j.bbamcr.2007.05.003] [Citation(s) in RCA: 469] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 05/02/2007] [Accepted: 05/04/2007] [Indexed: 10/23/2022]
Abstract
Signaling pathways that activate different mitogen-activated protein kinases (MAPKs) elicit many of the responses that are evoked in cells by changes in certain environmental conditions and upon exposure to a variety of hormonal and other stimuli. These pathways were first elucidated in the unicellular eukaryote Saccharomyces cerevisiae (budding yeast). Studies of MAPK pathways in this organism continue to be especially informative in revealing the molecular mechanisms by which MAPK cascades operate, propagate signals, modulate cellular processes, and are controlled by regulatory factors both internal to and external to the pathways. Here we highlight recent advances and new insights about MAPK-based signaling that have been made through studies in yeast, which provide lessons directly applicable to, and that enhance our understanding of, MAPK-mediated signaling in mammalian cells.
Collapse
Affiliation(s)
- Raymond E Chen
- Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA
| | | |
Collapse
|
192
|
Linding R, Jensen LJ, Ostheimer GJ, van Vugt MA, Jørgensen C, Miron IM, Diella F, Colwill K, Taylor L, Elder K, Metalnikov P, Nguyen V, Pasculescu A, Jin J, Park JG, Samson LD, Woodgett JR, Russell RB, Bork P, Yaffe MB, Pawson T. Systematic discovery of in vivo phosphorylation networks. Cell 2007; 129:1415-26. [PMID: 17570479 PMCID: PMC2692296 DOI: 10.1016/j.cell.2007.05.052] [Citation(s) in RCA: 588] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 04/24/2007] [Accepted: 05/30/2007] [Indexed: 01/23/2023]
Abstract
Protein kinases control cellular decision processes by phosphorylating specific substrates. Thousands of in vivo phosphorylation sites have been identified, mostly by proteome-wide mapping. However, systematically matching these sites to specific kinases is presently infeasible, due to limited specificity of consensus motifs, and the influence of contextual factors, such as protein scaffolds, localization, and expression, on cellular substrate specificity. We have developed an approach (NetworKIN) that augments motif-based predictions with the network context of kinases and phosphoproteins. The latter provides 60%-80% of the computational capability to assign in vivo substrate specificity. NetworKIN pinpoints kinases responsible for specific phosphorylations and yields a 2.5-fold improvement in the accuracy with which phosphorylation networks can be constructed. Applying this approach to DNA damage signaling, we show that 53BP1 and Rad50 are phosphorylated by CDK1 and ATM, respectively. We describe a scalable strategy to evaluate predictions, which suggests that BCLAF1 is a GSK-3 substrate.
Collapse
Affiliation(s)
- Rune Linding
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, USA
| | | | - Gerard J. Ostheimer
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, USA
| | - Marcel A.T.M. van Vugt
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, USA
- Department of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands
| | - Claus Jørgensen
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Ioana M. Miron
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | | | - Karen Colwill
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Lorne Taylor
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Kelly Elder
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Pavel Metalnikov
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Vivian Nguyen
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Adrian Pasculescu
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Jing Jin
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Jin Gyoon Park
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Leona D. Samson
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, USA
| | - James R. Woodgett
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | | | - Peer Bork
- European Molecular Biology Laboratory, Heidelberg, Germany
- Max-Delbrück-Centre for Molecular Medicine, Berlin, Germany
| | - Michael B. Yaffe
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Tony Pawson
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| |
Collapse
|
193
|
|
194
|
Richter C, West M, Odorizzi G. Dual mechanisms specify Doa4-mediated deubiquitination at multivesicular bodies. EMBO J 2007; 26:2454-64. [PMID: 17446860 PMCID: PMC1868904 DOI: 10.1038/sj.emboj.7601692] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 03/29/2007] [Indexed: 12/23/2022] Open
Abstract
Doa4 is a ubiquitin-specific protease in Saccharomyces cerevisiae that deubiquitinates integral membrane proteins sorted into the lumenal vesicles of late-endosomal multivesicular bodies (MVBs). We show that the non-catalytic N terminus of Doa4 mediates its recruitment to endosomes through its association with Bro1, which is one of several highly conserved class E Vps proteins that comprise the core MVB sorting machinery. In turn, Bro1 directly stimulates deubiquitination by interacting with a YPxL motif in the catalytic domain of Doa4. Mutations in either Doa4 or Bro1 that disrupt catalytic activation of Doa4 impair deubiquitination and sorting of MVB cargo proteins and lead to the formation of lumenal MVB vesicles that are predominantly small compared with the vesicles seen in wild-type cells. Thus, by recruiting Doa4 to late endosomes and stimulating its catalytic activity, Bro1 fulfills a novel dual role in coordinating deubiquitination in the MVB pathway.
Collapse
Affiliation(s)
- Caleb Richter
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Matthew West
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Greg Odorizzi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, 347 UCB, Colorado Avenue, Boulder, CO 80309, USA. Tel.: +1 303 735 0179; Fax: +1 303 492 7744; E-mail:
| |
Collapse
|
195
|
Strickfaden SC, Winters MJ, Ben-Ari G, Lamson RE, Tyers M, Pryciak PM. A mechanism for cell-cycle regulation of MAP kinase signaling in a yeast differentiation pathway. Cell 2007; 128:519-31. [PMID: 17289571 PMCID: PMC1847584 DOI: 10.1016/j.cell.2006.12.032] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 10/05/2006] [Accepted: 12/01/2006] [Indexed: 11/17/2022]
Abstract
Yeast cells arrest in the G1 phase of the cell cycle upon exposure to mating pheromones. As cells commit to a new cycle, G1 CDK activity (Cln/CDK) inhibits signaling through the mating MAPK cascade. Here we show that the target of this inhibition is Ste5, the MAPK cascade scaffold protein. Cln/CDK disrupts Ste5 membrane localization by phosphorylating a cluster of sites that flank a small, basic, membrane-binding motif in Ste5. Effective inhibition of Ste5 signaling requires multiple phosphorylation sites and a substantial accumulation of negative charge, which suggests that Ste5 acts as a sensor for high G1 CDK activity. Thus, Ste5 is an integration point for both external and internal signals. When Ste5 cannot be phosphorylated, pheromone triggers an aberrant arrest of cells outside G1 either in the presence or absence of the CDK-inhibitor protein Far1. These findings define a mechanism and physiological benefit of restricting antiproliferative signaling to G1.
Collapse
Affiliation(s)
- Shelly C Strickfaden
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
196
|
Ngo JCK, Gullingsrud J, Giang K, Yeh MJ, Fu XD, Adams JA, McCammon JA, Ghosh G. SR protein kinase 1 is resilient to inactivation. Structure 2007; 15:123-33. [PMID: 17223538 DOI: 10.1016/j.str.2006.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 11/27/2006] [Accepted: 11/29/2006] [Indexed: 11/25/2022]
Abstract
SR protein kinase 1 (SRPK1) is a constitutively active kinase, which processively phosphorylates multiple serines within its substrates, ASF/SF2. We describe crystallographic, molecular dynamics, and biochemical results that shed light on how SRPK1 preserves its constitutive active conformation. Our structure reveals that unlike other known active kinase structures, the activation loop remains in an active state without any specific intraprotein interactions. Moreover, SRPK1 remains active despite extensive mutation to the activation segment. Molecular dynamics simulations reveal that SRPK1 partially absorbs the effect of mutations by forming compensatory interactions that maintain a catalytically competent chemical environment. Furthermore, SRPK1 is similarly resistant to deletion of its spacer loop region. Based upon a model of SRPK1 bound to a segment encompassing the docking motif and active-site peptide of ASF/SF2, we suggest a mechanism for processive phosphorylation and propose that the atypical resiliency we observed is critical for SRPK1's processive activity.
Collapse
Affiliation(s)
- Jacky Chi Ki Ngo
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
197
|
Chi A, Huttenhower C, Geer LY, Coon JJ, Syka JEP, Bai DL, Shabanowitz J, Burke DJ, Troyanskaya OG, Hunt DF. Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc Natl Acad Sci U S A 2007; 104:2193-8. [PMID: 17287358 PMCID: PMC1892997 DOI: 10.1073/pnas.0607084104] [Citation(s) in RCA: 456] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a strategy for the analysis of the yeast phosphoproteome that uses endo-Lys C as the proteolytic enzyme, immobilized metal affinity chromatography for phosphopeptide enrichment, a 90-min nanoflow-HPLC/electrospray-ionization MS/MS experiment for phosphopeptide fractionation and detection, gas phase ion/ion chemistry, electron transfer dissociation for peptide fragmentation, and the Open Mass Spectrometry Search Algorithm for phosphoprotein identification and assignment of phosphorylation sites. From a 30-microg (approximately 600 pmol) sample of total yeast protein, we identify 1,252 phosphorylation sites on 629 proteins. Identified phosphoproteins have expression levels that range from <50 to 1,200,000 copies per cell and are encoded by genes involved in a wide variety of cellular processes. We identify a consensus site that likely represents a motif for one or more uncharacterized kinases and show that yeast kinases, themselves, contain a disproportionately large number of phosphorylation sites. Detection of a pHis containing peptide from the yeast protein, Cdc10, suggests an unexpected role for histidine phosphorylation in septin biology. From diverse functional genomics data, we show that phosphoproteins have a higher number of interactions than an average protein and interact with each other more than with a random protein. They are also likely to be conserved across large evolutionary distances.
Collapse
|
198
|
Zhao X, Xu JR. A highly conserved MAPK-docking site in Mst7 is essential for Pmk1 activation in Magnaporthe grisea. Mol Microbiol 2007; 63:881-94. [PMID: 17214742 DOI: 10.1111/j.1365-2958.2006.05548.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In Magnaporthe grisea, the MST11-MST7-PMK1 MAP kinase (MAPK) cascade is essential for appressorium formation and plant infection. Although expressing a dominant active MST7 allele results in Pmk1 activation in the absence of Mst11 and improper regulation of appressorium formation, the direct interaction between Mst7 and Pmk1 is not observed in yeast two-hybrid assays. Thus, it is not clear how Mst7 transmits the upstream signals to Pmk1. Like its homologues from other ascomycetes, Mst7 contains a putative MAPK-docking site (12-20) at its N-terminus. Deletion of this MAPK-docking site had no obvious effect on the expression of MST7 but blocked appressorium formation and plant infection. The kinase activity of Mst7 was not affected by the docking site deletion but Mst7(Delta12-20) failed to activate Pmk1. Mutations in the putative docking region of Pmk1 also abolished appressorium formation. In both co-immunoprecipitation and bimolecular fluorescence complementation (BiFC) assays, the direct interaction between Mst7 and Pmk1 was detected only during appressorium formation. Deletion of the MAPK-docking site of Mst7 eliminated the Mst7-Pmk1 interaction in M. grisea. These data indicate that the MAPK-docking site of Mst7 is essential for its association and activation of downstream Pmk1, and the Mst7-Pmk1 interaction is enhanced or stabilized during appressorium formation.
Collapse
Affiliation(s)
- Xinhua Zhao
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
199
|
McClean MN, Mody A, Broach JR, Ramanathan S. Cross-talk and decision making in MAP kinase pathways. Nat Genet 2007; 39:409-14. [PMID: 17259986 DOI: 10.1038/ng1957] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 12/06/2006] [Indexed: 11/08/2022]
Abstract
Cells must respond specifically to different environmental stimuli in order to survive. The signal transduction pathways involved in sensing these stimuli often share the same or homologous proteins. Despite potential cross-wiring, cells show specificity of response. We show, through modeling, that the physiological response of such pathways exposed to simultaneous and temporally ordered inputs can demonstrate system-level mechanisms by which pathways achieve specificity. We apply these results to the hyperosmolar and pheromone mitogen-activated protein (MAP) kinase pathways in the yeast Saccharomyces cerevisiae. These two pathways specifically sense osmolar and pheromone signals, despite sharing a MAPKKK, Ste11, and having homologous MAPKs (Fus3 and Hog1). We show that in a single cell, the pathways are bistable over a range of inputs, and the cell responds to only one stimulus even when exposed to both. Our results imply that these pathways achieve specificity by filtering out spurious cross-talk through mutual inhibition. The variability between cells allows for heterogeneity of the decisions.
Collapse
Affiliation(s)
- Megan N McClean
- FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
200
|
Nihalani D, Wong H, Verma R, Holzman LB. Src family kinases directly regulate JIP1 module dynamics and activation. Mol Cell Biol 2007; 27:2431-41. [PMID: 17242197 PMCID: PMC1899903 DOI: 10.1128/mcb.01479-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
JIP1 is a mammalian scaffold protein that assembles and participates in regulating the dynamics and activation of components of the mixed-lineage kinase-dependent JNK module. Mechanisms governing JIP1-JNK module regulation remain unclear. JIP1 is a multiply phosphorylated protein; for this reason, it was hypothesized that signaling by unidentified protein kinases or phosphatases might determine module function. We find that Src family kinases directly bind and tyrosine phosphorylate JIP1 under basal conditions in several naturally occurring systems and, by doing so, appear to provide a regulated signal that increases the affinity of JIP1 for DLK and maintains the JIP-JNK module in a catalytically inactive state.
Collapse
Affiliation(s)
- Deepak Nihalani
- University of Michigan Medical School, Medical Science Research Building 2, 1150 West Medical Center Drive, Ann Arbor, MI 48109-0676, USA
| | | | | | | |
Collapse
|