151
|
Vascular remodeling in cancer. Oncogene 2013; 33:3496-505. [PMID: 23912450 DOI: 10.1038/onc.2013.304] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 05/31/2013] [Accepted: 06/10/2013] [Indexed: 12/17/2022]
Abstract
The growth and dissemination of tumors rely on an altered vascular network, which supports their survival and expansion and provides accessibility to the vasculature and a route of transport for metastasizing tumor cells. The remodeling of vascular structures through generation of new vessels (for example, via tumor angiogenesis) is a well studied, even if still quite poorly understood, process in human cancer. Antiangiogenic therapies have provided insight into the contribution of angiogenesis to the biology of human tumors, yet have also revealed the ease with which resistance to antiangiogenic drugs can develop, presumably involving alterations to vascular signaling mechanisms. Furthermore, cellular and/or molecular changes to pre-existing vessels could represent subtle pre-metastatic alterations to the vasculature, which are important for cancer progression. These changes, and associated molecular markers, may forecast the behavior of individual tumors and contribute to the early detection, diagnosis and prognosis of cancer. This review, which primarily focuses on the blood vasculature, explores current knowledge of how tumor vessels can be remodeled, and the cellular and molecular events responsible for this process.
Collapse
|
152
|
Abstract
Human endothelial progenitor cells (EPCs) have been generally defined as circulating cells that express a variety of cell surface markers similar to those expressed by vascular endothelial cells, adhere to endothelium at sites of hypoxia/ischemia, and participate in new vessel formation. Although no specific marker for an EPC has been identified, a panel of markers has been consistently used as a surrogate marker for cells displaying the vascular regenerative properties of the putative EPC. However, it is now clear that a host of hematopoietic and vascular endothelial subsets display the same panel of antigens and can only be discriminated by an extensive gene expression analysis or use of a variety of functional assays that are not often applied. This article reviews our current understanding of the many cell subsets that constitute the term EPC and provides a concluding perspective as to the various roles played by these circulating or resident cells in vessel repair and regeneration in human subjects.
Collapse
Affiliation(s)
- Mervin C Yoder
- Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
153
|
Jones LW, Fels DR, West M, Allen JD, Broadwater G, Barry WT, Wilke LG, Masko E, Douglas PS, Dash RC, Povsic TJ, Peppercorn J, Marcom PK, Blackwell KL, Kimmick G, Turkington TG, Dewhirst MW. Modulation of circulating angiogenic factors and tumor biology by aerobic training in breast cancer patients receiving neoadjuvant chemotherapy. Cancer Prev Res (Phila) 2013; 6:925-37. [PMID: 23842792 DOI: 10.1158/1940-6207.capr-12-0416] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Aerobic exercise training (AET) is an effective adjunct therapy to attenuate the adverse side-effects of adjuvant chemotherapy in women with early breast cancer. Whether AET interacts with the antitumor efficacy of chemotherapy has received scant attention. We carried out a pilot study to explore the effects of AET in combination with neoadjuvant doxorubicin-cyclophosphamide (AC+AET), relative to AC alone, on: (i) host physiology [exercise capacity (VO2 peak), brachial artery flow-mediated dilation (BA-FMD)], (ii) host-related circulating factors [circulating endothelial progenitor cells (CEP) cytokines and angiogenic factors (CAF)], and (iii) tumor phenotype [tumor blood flow ((15)O-water PET), tissue markers (hypoxia and proliferation), and gene expression] in 20 women with operable breast cancer. AET consisted of three supervised cycle ergometry sessions/week at 60% to 100% of VO2 peak, 30 to 45 min/session, for 12 weeks. There was significant time × group interactions for VO2 peak and BA-FMD, favoring the AC+AET group (P < 0.001 and P = 0.07, respectively). These changes were accompanied by significant time × group interactions in CEPs and select CAFs [placenta growth factor, interleukin (IL)-1β, and IL-2], also favoring the AC+AET group (P < 0.05). (15)O-water positron emission tomography (PET) imaging revealed a 38% decrease in tumor blood flow in the AC+AET group. There were no differences in any tumor tissue markers (P > 0.05). Whole-genome microarray tumor analysis revealed significant differential modulation of 57 pathways (P < 0.01), including many that converge on NF-κB. Data from this exploratory study provide initial evidence that AET can modulate several host- and tumor-related pathways during standard chemotherapy. The biologic and clinical implications remain to be determined.
Collapse
Affiliation(s)
- Lee W Jones
- Duke Cancer Institute, Duke University Medical Center, Box 3085, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Sessa C, Lorusso P, Tolcher A, Farace F, Lassau N, Delmonte A, Braghetti A, Bahleda R, Cohen P, Hospitel M, Veyrat-Follet C, Soria JC. Phase I Safety, Pharmacokinetic and Pharmacodynamic Evaluation of the Vascular Disrupting Agent Ombrabulin (AVE8062) in Patients with Advanced Solid Tumors. Clin Cancer Res 2013; 19:4832-42. [DOI: 10.1158/1078-0432.ccr-13-0427] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
155
|
Di Matteo P, Hackl C, Jedeszko C, Valentinis B, Bordignon C, Traversari C, Kerbel RS, Rizzardi GP. NGR-TNF, a novel vascular-targeting agent, does not induce cytokine recruitment of proangiogenic bone marrow-derived cells. Br J Cancer 2013; 109:360-9. [PMID: 23828516 PMCID: PMC3722487 DOI: 10.1038/bjc.2013.347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/12/2013] [Accepted: 06/12/2013] [Indexed: 01/11/2023] Open
Abstract
Background: Administration of certain chemotherapy drugs at the maximum tolerated dose, vascular-disrupting agents (VDAs) and irradiation can induce mobilisation and tumour homing of proangiogenic bone marrow-derived cells (BMDCs). Increases in cytokines and chemokines contribute to such mobilisation that eventually promotes tumour (re)growth. NGR-TNF is a vascular-targeting agent in advanced clinical development, coupling the CNGRCG angiogenic vessel-homing peptide with tumour necrosis factor-alpha (TNF). We investigated whether NGR-TNF mobilises host BMDCs and growth factors. Methods: Blood was obtained from Lewis lung carcinoma and 4T1 tumour-bearing mice at different time points following NGR-TNF, VDA or anti-VEGFR2/flk-1 antibody treatment. Levels of circulating growth factors were assessed by ELISAs. BMDCs were characterised by FACS. Circulating endothelial progenitor cells were defined as CD45−/CD13+/flk-1+/CD117+/7AAD−, Tie2-expressing monocytes as CD45+/CD11b+/Tie2+ and myeloid-derived suppressor cells as CD45+/CD11b+/Gr1+ cells. Results: NGR-TNF decreases tumour blood vessel density-inducing apoptosis of tumour and tumour endothelial cells. Unlike VDAs, or high-dose NGR-TNF, lower doses of NGR-TNF, comparable to those used in clinical trials, neither mobilise nor recruit to the tumour site proangiogenic BMDCs or induce host growth factors. Conclusion: Low-dose NGR-TNF exerts antitumour activity without inducing proangiogenic host responses, conceivably important for preventing/overcoming resistance and designing combination therapeutic strategies.
Collapse
|
156
|
Butein Inhibits Angiogenesis of Human Endothelial Progenitor Cells via the Translation Dependent Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:943187. [PMID: 23840271 PMCID: PMC3690248 DOI: 10.1155/2013/943187] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/09/2013] [Indexed: 12/17/2022]
Abstract
Compelling evidence indicates that bone marrow-derived endothelial progenitor cells (EPCs) can contribute to postnatal neovascularization and tumor angiogenesis. EPCs have been shown to play a "catalytic" role in metastatic progression by mediating the angiogenic switch. Understanding the pharmacological functions and molecular targets of natural products is critical for drug development. Butein, a natural chalcone derivative, has been reported to exert potent anticancer activity. However, the antiangiogenic activity of butein has not been addressed. In this study, we found that butein inhibited serum- and vascular endothelial growth factor- (VEGF-) induced cell proliferation, migration, and tube formation of human EPCs in a concentration dependent manner without cytotoxic effect. Furthermore, butein markedly abrogated VEGF-induced vessels sprouting from aortic rings and suppressed microvessel formation in the Matrigel implant assay in vivo. In addition, butein concentration-dependently repressed the phosphorylation of Akt, mTOR, and the major downstream effectors, p70S6K, 4E-BP1, and eIF4E in EPCs. Taken together, our results demonstrate for the first time that butein exhibits the antiangiogenic effect both in vitro and in vivo by targeting the translational machinery. Butein is a promising angiogenesis inhibitor with the potential for treatment of cancer and other angiogenesis-related diseases.
Collapse
|
157
|
Su Y, Gao L, Teng L, Wang Y, Cui J, Peng S, Fu S. Id1 enhances human ovarian cancer endothelial progenitor cell angiogenesis via PI3K/Akt and NF-κB/MMP-2 signaling pathways. J Transl Med 2013; 11:132. [PMID: 23714001 PMCID: PMC3687679 DOI: 10.1186/1479-5876-11-132] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/22/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) contribute to tumor angiogenesis and growth. We previously reported that over-expression of an inhibitor of DNA binding/differentiation 1 (Id1) in EPCs can enhance EPC proliferation, migration, and adhesion. In this study, we investigated the role of Id1 in EPC angiogenesis in patients with ovarian cancer and the underlying signaling pathway. METHODS Circulating EPCs from 22 patients with ovarian cancer and 15 healthy control subjects were cultured. Id1 and matrix metalloproteinase-2 (MMP-2) expression were analyzed by real-time reverse transcription-polymerase chain reaction (RT-PCR) and western blot. EPC angiogenesis was detected by tube formation assays. Double-stranded DNA containing the interference sequences was synthesized according to the structure of a pGCSIL-GFP viral vector and then inserted into a linearized vector. Positive clones were identified as lentiviral vectors that expressed human Id1 short hairpin RNA (shRNA). RESULTS Id1 and MMP-2 expression were increased in EPCs freshly isolated from ovarian cancer patients compared to those obtained from healthy subjects. shRNA-mediated Id1 down-regulation substantially reduced EPC angiogenesis and MMP-2 expression. Importantly, transfection of EPCs with Id1 in vitro induced phosphorylation of Akt (p-Akt) via phosphoinositide 3-kinase and increased the expression of MMP-2 via NF-κB. Blockage of both pathways by specific inhibitors (LY294002 and PDTC, respectively) abrogated Id1-enhanced EPC angiogenesis. CONCLUSIONS Id1 can enhance EPC angiogenesis in ovarian cancer, which is mainly mediated by the PI3K/Akt and NF-κB/MMP-2 signaling pathways. Id1 and its downstream effectors are potential targets for treatment of ovarian cancer because of their contribution to angiogenesis.
Collapse
Affiliation(s)
- Yajuan Su
- Department of clinical laboratory, the affiliated tumor hospital, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | |
Collapse
|
158
|
Notch1 regulates angio-supportive bone marrow-derived cells in mice: relevance to chemoresistance. Blood 2013; 122:143-53. [PMID: 23690447 DOI: 10.1182/blood-2012-11-459347] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Host responses to chemotherapy can induce resistance mechanisms that facilitate tumor regrowth. To determine the contribution of bone marrow-derived cells (BMDCs), we exposed tumor-bearing mice to chemotherapeutic agents and evaluated the influx and contribution of a genetically traceable subpopulation of BMDCs (vascular endothelial-cadherin-Cre-enhanced yellow fluorescent protein [VE-Cad-Cre-EYFP]). Treatment of tumor-bearing mice with different chemotherapeutics resulted in a three- to 10-fold increase in the influx of VE-Cad-Cre-EYFP. This enhanced influx was accompanied by a significant increase in angiogenesis. Expression profile analysis revealed a progressive change in the EYFP population with loss of endothelial markers and an increase in mononuclear markers. In the tumor, 2 specific populations of VE-Cad-Cre-EYFP BMDCs were identified: Gr1⁺/CD11b⁺ and Tie2high/platelet endothelial cell adhesion moleculelow cells, both located in perivascular areas. A common signature of the EYFP population that exits the bone marrow is an increase in Notch. Inducible inactivation of Notch in the EYFP⁺ BMDCs impaired homing of these BMDCs to the tumor. Importantly, Notch deletion reduced therapy-enhanced angiogenesis, and was associated with an increased antitumor effect of the chemotherapy. These findings revealed the functional significance of a specific population of supportive BMDCs in response to chemotherapeutics and uncovered a new potential strategy to enhance anticancer therapy.
Collapse
|
159
|
Shao YY, Hsu CH, Cheng AL. Predictive biomarkers of antiangiogenic therapy for advanced hepatocellular carcinoma: where are we? Liver Cancer 2013; 2:93-107. [PMID: 24159601 PMCID: PMC3740718 DOI: 10.1159/000343845] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Antiangiogenic therapy, especially treatment with sorafenib, is the primary treatment for patients with advanced hepatocellular carcinoma (HCC). However, the efficacy of such therapy is modest, with low objective response rates and limited prolongation of survival times. Several researchers have investigated predictive biomarkers to help identify patients who can benefit most from antiangiogenic therapy. The largest study on this topic to date was based on the pivotal phase III study of sorafenib (the SHARP study) and did not find any plasma markers that could predict the efficacy of sorafenib. Other studies based on single-arm phase II clinical trials found some potential predictive markers, such as early alpha-fetoprotein response, the serum insulin-like growth factor-1 level at baseline, and the volume transfer constants of dynamic contrast-enhanced magnetic resonance imaging. These findings require validation by further studies. Identifying predictive biomarkers of antiangiogenic therapy for HCC remains challenging and warrants further investigations.
Collapse
Affiliation(s)
- Yu-Yun Shao
- Departments of Oncology, National Taiwan University Hospital, Taiwan, ROC,Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taiwan, ROC
| | - Chih-Hung Hsu
- Departments of Oncology, National Taiwan University Hospital, Taiwan, ROC,Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taiwan, ROC
| | - Ann-Lii Cheng
- Departments of Oncology, National Taiwan University Hospital, Taiwan, ROC,Internal Medicine, National Taiwan University Hospital, Taiwan, ROC,Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taiwan, ROC,*Departments of Oncology and Internal Medicine, National Taiwan University Hospital,7 Chung-Shan South Road, Taipei, Taiwan 10002 (ROC), Tel. +886 2 23123456 ext. 67251, E-mail
| |
Collapse
|
160
|
Park SR, Speranza G, Piekarz R, Wright JJ, Kinders RJ, Wang L, Pfister TD, Trepel JB, Lee MJ, Alarcon S, Steinberg SM, Collins J, Doroshow JH, Kummar S. A multi-histology trial of fostamatinib in patients with advanced colorectal, non-small cell lung, head and neck, thyroid, and renal cell carcinomas, and pheochromocytomas. Cancer Chemother Pharmacol 2013; 71:981-90. [PMID: 23404627 PMCID: PMC4457312 DOI: 10.1007/s00280-013-2091-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/12/2013] [Indexed: 12/19/2022]
Abstract
PURPOSE A multi-cohort phase II study of fostamatinib, an oral multi-kinase inhibitor, was conducted to determine the response rate in patients with advanced colorectal (CRC), thyroid, non-small cell lung, head and neck, and renal cell carcinomas, and pheochromocytomas. METHODS Patients received 200 mg fostamatinib BID in 4-week cycles with response assessed every 2 cycles. Blood was collected for pharmacokinetic analysis and measurements of circulating tumor cells and circulating endothelial (progenitor) cells (CE(P)Cs). RESULTS A total of 37 patients (22 CRC), median of 4 prior therapies, were enrolled. Due to toxicities in four of the first five patients, the study was amended to incorporate a dose escalation phase for each histology. The maximum-tolerated dose was established at 50 mg BID in CRC but was not established for the other cancers. Common grade 3/4 toxicities included transaminitis, hyperbilirubinemia, and hypertension. Pharmacokinetic profile was similar to previous reports. Seventy-three percent of CRC patients had liver involvement and 91 % had prior anti-angiogenic therapy. Patients with abnormal liver tests at baseline were more likely to experience grade ≥ 2 hepatotoxicity than those with normal tests (44 vs. 0 %). No responses were observed; disease stabilization rate was 27 % in CRC. Reduction in CECs following treatment was associated with a better disease stabilization rate (75 vs. 0 %) in CRC. CONCLUSION Fostamatinib had limited anti-tumor activity in this first clinical trial in patients with advanced refractory solid tumors; reduction in CECs and CEPs was indicative of anti-angiogenic effects. Abnormal liver testing at baseline appeared to influence drug tolerability.
Collapse
Affiliation(s)
- Sook Ryun Park
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - Giovanna Speranza
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - Richard Piekarz
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - John J. Wright
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - Robert J. Kinders
- Applied/Developmental Research Directorate, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Lihua Wang
- Applied/Developmental Research Directorate, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Thomas D. Pfister
- Applied/Developmental Research Directorate, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Jane B. Trepel
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Min-Jung Lee
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Sylvia Alarcon
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Seth M. Steinberg
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jerry Collins
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - James H. Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Shivaani Kummar
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
161
|
Treatment-induced host-mediated mechanisms reducing the efficacy of antitumor therapies. Oncogene 2013; 33:1341-7. [PMID: 23524584 DOI: 10.1038/onc.2013.94] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 02/03/2013] [Accepted: 02/03/2013] [Indexed: 12/22/2022]
Abstract
In addition to its direct effects on tumor cells, chemotherapy can rapidly activate various host processes that contribute to therapy resistance and tumor regrowth. The host response to chemotherapy consists of changes in numerous cell types and cytokines. Examples include the acute mobilization and tumor homing of pro-angiogenic bone marrow-derived cells, activation of cells in the tumor microenvironment to produce systemic or paracrine factors, and tissue-specific responses that provide a protective niche for tumor cells. All of these factors reduce chemotherapy efficacy, and blocking the host response at various levels may therefore significantly improve treatment outcome. However, before the combination of conventional chemotherapy with agents blocking specific aspects of the host response can be implemented into clinical practice, a better understanding of the molecular mechanisms behind the host response is required.
Collapse
|
162
|
Voloshin T, Voest EE, Shaked Y. The host immunological response to cancer therapy: An emerging concept in tumor biology. Exp Cell Res 2013; 319:1687-95. [PMID: 23518388 DOI: 10.1016/j.yexcr.2013.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/23/2013] [Accepted: 03/02/2013] [Indexed: 02/04/2023]
Abstract
Almost any type of anti-cancer treatment including chemotherapy, radiation, surgery and targeted drugs can induce host molecular and cellular immunological effects which, in turn, can lead to tumor outgrowth and relapse despite an initial successful therapy outcome. Tumor relapse due to host immunological effects is attributed to angiogenesis, tumor cell dissemination from the primary tumors and seeding at metastatic sites. This short review will describe the types of host cells that participate in this process, the types of factors secreted from the host following therapy that can promote tumor re-growth, and the possible implications of this unique and yet only partially-known process. It is postulated that blocking these specific immunological effects in the reactive host in response to cancer therapy may aid in identifying new host-dependent targets for cancer, which in combination with conventional treatments can prolong therapy efficacy and extend survival. Additional studies investigating this specific research direction-both in preclinical models and in the clinical setting are essential in order to advance our understanding of how tumors relapse and evade therapy.
Collapse
Affiliation(s)
- Tali Voloshin
- Department of Molecular Pharmacology, Rappaport Faculty of Medicine and the Rappaport Institute, Technion-Israel Institute of Technology, 1 Efron Street, Bat Galim, Haifa 31096, Israel
| | - Emile E Voest
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yuval Shaked
- Department of Molecular Pharmacology, Rappaport Faculty of Medicine and the Rappaport Institute, Technion-Israel Institute of Technology, 1 Efron Street, Bat Galim, Haifa 31096, Israel.
| |
Collapse
|
163
|
Siemann DW, Chaplin DJ. An update on the clinical development of drugs to disable tumor vasculature. Expert Opin Drug Discov 2013; 2:1357-67. [PMID: 23484531 DOI: 10.1517/17460441.2.10.1357] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Traditional methods of improving cancer therapy have focused primarily on achieving increased tumor cell kill. However, more recent strategies involve impairing the nutritional support system of the tumor by targeting the tumor vasculature. Rapid developments in this field in recent years have resulted in the identification of a variety of potential targets and a large number of investigational drugs, many of which are now in clinical development. In the following paper the authors review vascular disrupting therapies.
Collapse
Affiliation(s)
- Dietmar W Siemann
- Professor and Associate Chair for Research, University of Florida, Department of Radiation Oncology, Shands Cancer Center, 2000 SW Archer Road, Gainesville, Fl 32610, USA +1 352 265 0287 ; +1 352 265 0759 ;
| | | |
Collapse
|
164
|
Kim YB, Chung YW, Bae HS, Lee JK, Lee NW, Lee KW, Song JY. Circulating endothelial progenitor cells in gynaecological cancer. J Int Med Res 2013; 41:293-9. [DOI: 10.1177/0300060513476999] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Objectives To compare the frequency and absolute numbers of circulating endothelial progenitor cells (EPCs) in healthy control subjects and patients with gynaecological cancer, and to test the hypothesis that cancer treatment lowers EPC numbers. Methods Patients with cervical or ovarian cancer and healthy control subjects provided peripheral blood samples for the isolation of mononuclear cells. EPCs were identified by quadruple immunofluorescence staining and flow cytometry as CD45–/CD34+/CD133+/vascular endothelial growth factor receptor 2 (VEGFR2)+ cells. Results In total, 28 participants were enrolled. Circulating EPCs were present at higher frequencies (and in greater absolute numbers) in patients with cervical or ovarian cancer ( n = 14) than in controls ( n = 14). Concurrent chemoradiation therapy or surgery significantly reduced the frequency and number of EPCs in patients with gynaecological cancer, compared with pretreatment levels. Conclusions EPC levels decline throughout cancer treatment; their measurement may therefore be a useful surrogate marker to monitor treatment response.
Collapse
Affiliation(s)
- Yoon Byoung Kim
- Department of Obstetrics and Gynaecology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ye Won Chung
- Department of Obstetrics and Gynaecology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyo Sook Bae
- Department of Obstetrics and Gynaecology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jae Kwan Lee
- Department of Obstetrics and Gynaecology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Nak Woo Lee
- Department of Obstetrics and Gynaecology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyu Wan Lee
- Department of Obstetrics and Gynaecology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jae Yun Song
- Department of Obstetrics and Gynaecology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
165
|
Understanding the functions of tumor stroma in resistance to ionizing radiation: Emerging targets for pharmacological modulation. Drug Resist Updat 2013; 16:10-21. [DOI: 10.1016/j.drup.2013.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 01/14/2013] [Indexed: 02/08/2023]
|
166
|
Heinemann V, Douillard JY, Ducreux M, Peeters M. Targeted therapy in metastatic colorectal cancer -- an example of personalised medicine in action. Cancer Treat Rev 2013; 39:592-601. [PMID: 23375249 DOI: 10.1016/j.ctrv.2012.12.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/03/2012] [Accepted: 12/09/2012] [Indexed: 02/07/2023]
Abstract
In metastatic colorectal cancer (mCRC), an improved understanding of the underlying pathology and molecular biology has successfully merged with advances in diagnostic techniques and local/systemic therapies as well as improvements in the functioning of multidisciplinary teams, to enable tailored treatment regimens and optimized outcomes. Indeed, as a result of these advancements, median survival for patients with mCRC is now in the range of 20-24months, having approximately tripled in the last 20years. The identification of KRAS as a negative predictive marker for activity of epidermal growth factor receptor (EGFR)-targeted monoclonal antibodies (mAbs), such as panitumumab (Amgen, Thousand Oaks, USA) and cetuximab (ImClone, Branchburg, USA), has perhaps had the greatest impact on patient management. This meant that, for the first time, mCRC patients unlikely to respond to a targeted therapy could be defined ahead of treatment. Ongoing controversies such as whether patients with KRAS G13D- (or BRAF V600-) mutated tumours can still respond to EGFR-targeted mAbs and the potential impact of inter- and intra-tumour heterogeneity on tumour sampling show that the usefulness of KRAS as a biomarker has not yet been exhausted, and that other downstream biomarkers should be considered. Conversely, a predictive biomarker for anti-angiogenic agents such as bevacizumab (Genentech, San Francisco, USA) in the mCRC setting is still lacking. In this review we will discuss the discovery and ongoing investigation into predictive biomarkers for mCRC as well as how recent advances have impacted on clinical practice and ultimately the overall cost of treatment for these patients.
Collapse
Affiliation(s)
- V Heinemann
- Comprehensive Cancer Center der LMU - Krebszentrum München, München, Germany.
| | | | | | | |
Collapse
|
167
|
Todorova M, Agache V, Mortazavi O, Chen B, Karshafian R, Hynynen K, Man S, Kerbel RS, Goertz DE. Antitumor effects of combining metronomic chemotherapy with the antivascular action of ultrasound stimulated microbubbles. Int J Cancer 2013; 132:2956-66. [DOI: 10.1002/ijc.27977] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 11/22/2012] [Indexed: 01/20/2023]
|
168
|
Hida K, Akiyama K, Ohga N, Maishi N, Hida Y. Tumour endothelial cells acquire drug resistance in a tumour microenvironment. J Biochem 2013; 153:243-9. [PMID: 23293323 DOI: 10.1093/jb/mvs152] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tumour growth is dependent on angiogenesis, and tumour blood vessels are recognized as an important target for cancer therapy. Tumour endothelial cells (TECs) are the main targets of anti-angiogenic therapy. Unlike the traditionally held view, some TECs may be genetically abnormal and might acquire drug resistance. Therefore, we investigated the drug resistance of TECs and the mechanism by which it is acquired. TECs show resistance to paclitaxel through greater mRNA expression of multidrug resistance 1, which encodes P-glycoprotein, as compared with normal endothelial cells. We found that high levels of vascular endothelial growth factor in tumour-conditioned medium may be responsible for upregulated P-glycoprotein expression. This is a novel mechanism for the acquisition of drug resistance by TECs in a tumour microenvironment. This review focuses on the possibility that TECs can acquire drug resistance.
Collapse
Affiliation(s)
- Kyoko Hida
- Department of Vascular Biology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
169
|
Sgambato A, Corbi M, Svelto M, Caredda E, Cittadini A. New Insights into the CD133 (Prominin-1) Expression in Mouse and Human Colon Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 777:145-66. [PMID: 23161081 DOI: 10.1007/978-1-4614-5894-4_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Following its discovery as a cancer stem cell marker, CD133 has been widely studied for its role in colorectal tumorigenesis. Indeed, colon cancer remains one of the major causes of cancer-related disease and death worldwide, and there is a strong need for an improvement of current diagnostic, prognostic, and therapeutic strategies. Thus, efforts have been devoted to try to understand whether CD133 might play a role in human colorectal tumorigenesis and might contribute to a better management of colon cancer patients. This chapter reviews the current knowledge on CD133 expression in normal and cancer colon tissues, both in humans and mice, discussing apparently conflicting data reported in the two species. Moreover, a great attention is devoted to the available information regarding the functional role of CD133 in colon cancer cells. Finally, the proposed clinical applications of CD133, as a prognostic and/or predictive marker as well as a target for novel antineoplastic strategies in colorectal cancer, are discussed. Overall, the available data support a potential important role of CD133 as cancer stem cell marker in colon cancer cells and warrant future studies to verify its potential use in the routine clinical management of colon cancer patients.
Collapse
Affiliation(s)
- Alessandro Sgambato
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy,
| | | | | | | | | |
Collapse
|
170
|
Ribatti D. Anti-angiogenesis in neuroblastoma. Crit Rev Oncol Hematol 2012; 86:212-21. [PMID: 23273512 DOI: 10.1016/j.critrevonc.2012.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/05/2012] [Accepted: 11/14/2012] [Indexed: 10/27/2022] Open
Abstract
The nature of the angiogenic balance in neuroblastoma is complex, and a spectrum of angiogenesis stimulators and inhibitors have been detected in neuroblastoma tumours. The complex relationships between angiogenic cascade and anti-angiogenic agents in the tumour vascular phase have indicated that anti-angiogenesis can be considered as a strategy for the adjuvant therapy of neuroblastoma. The major goal is to establish if inhibition of angiogenesis is a realistic therapeutic strategy for inhibiting tumour cell dissemination and the formation of metastasis in neuroblastoma.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy.
| |
Collapse
|
171
|
Kuo YH, Lin CH, Shau WY, Chen TJ, Yang SH, Huang SM, Hsu C, Lu YS, Cheng AL. Dynamics of circulating endothelial cells and endothelial progenitor cells in breast cancer patients receiving cytotoxic chemotherapy. BMC Cancer 2012; 12:620. [PMID: 23268621 PMCID: PMC3561193 DOI: 10.1186/1471-2407-12-620] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 12/18/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The abundance of circulating endothelial cells (CECs) and circulating endothelial progenitor cells (CEPs), which serve as surrogate markers for angiogenesis, may be affected by chemotherapy. We studied their dynamic change during consecutive cycles of chemotherapy. METHODS We collected blood samples from 15 breast cancer patients, who received a total of 56 courses of systemic chemotherapy, and measured the CECs, viable CECs (V-CECs), and CEPs by six-color flow cytometry within the seven days prior to chemotherapy, twice a week during the first and second cycles of chemotherapy, and then once a week during the subsequent cycles. RESULTS The CEC, V-CEC, and CEP levels all significantly decreased from day 1 of treatment to the first week of chemotherapy. After one week of chemotherapy, the CEC and V-CEC levels returned to a level similar to day 1. The CEP level remained significantly reduced after the first week of chemotherapy, but gradually rebounded until the next course of chemotherapy. After six cycles of chemotherapy, the total number of CEC and V-CEC cells trended toward a decrease and the CEP cells toward an increase. Clinical factors, including the existence of a tumor, chemotherapy regimens, and the use of granulocyte colony stimulating factor, did not significantly affect these results. CONCLUSIONS The CEC and CEP counts change dynamically during each course of chemotherapy and after the chemotherapy cycles, providing background data for any future study planning to use CECs and CEPs as surrogate markers of angiogenesis in antiangiogenesis treatments combined with chemotherapy.
Collapse
Affiliation(s)
- Yu-Hsuan Kuo
- Department of Oncology, Chi-Mei Hospital, Tainan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Goertz DE, Todorova M, Mortazavi O, Agache V, Chen B, Karshafian R, Hynynen K. Antitumor effects of combining docetaxel (taxotere) with the antivascular action of ultrasound stimulated microbubbles. PLoS One 2012; 7:e52307. [PMID: 23284980 PMCID: PMC3527530 DOI: 10.1371/journal.pone.0052307] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/12/2012] [Indexed: 11/25/2022] Open
Abstract
Ultrasound stimulated microbubbles (USMB) are being investigated for their potential to promote the uptake of anticancer agents into tumor tissue by exploiting their ability to enhance microvascular permeability. At sufficiently high ultrasound transmit amplitudes it has also recently been shown that USMB treatments can, on their own, induce vascular damage, shutdown blood flow, and inhibit tumor growth. The objective of this study is to examine the antitumor effects of ‘antivascular’ USMB treatments in conjunction with chemotherapy, which differs from previous work which has sought to enhance drug uptake with USMBs by increasing vascular permeability. Conceptually this is a strategy similar to combining vascular disrupting agents with a chemotherapy, and we have selected the taxane docetaxel (Taxotere) for evaluating this approach as it has previously been shown to have potent antitumor effects when combined with small molecule vascular disrupting agents. Experiments were conducted on PC3 tumors implanted in athymic mice. USMB treatments were performed at a frequency of 1 MHz employing sequences of 50 ms bursts (0.00024 duty cycle) at 1.65 MPa. USMB treatments were administered on a weekly basis for 4 weeks with docetaxel (DTX) being given intravenously at a dose level of 5 mg/kg. The USMB treatments, either alone or in combination with DTX, induced an acute reduction in tumor perfusion which was accompanied at the 24 hour point by significantly enhanced necrosis and apoptosis. Longitudinal experiments showed a modest prolongation in survival but no significant growth inhibition occurred in DTX–only and USMB-only treatment groups relative to control tumors. The combined USMB-DTX treatment group produced tumor shrinkage in weeks 4–6, and significant growth inhibition and survival prolongation relative to the control (p<0.001), USMB-only (p<0.01) and DTX-only treatment groups (p<0.01). These results suggest the potential of enhancing the antitumor activity of docetaxel by combining it with antivascular USMB effects.
Collapse
Affiliation(s)
- David E Goertz
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| | | | | | | | | | | | | |
Collapse
|
173
|
Resch T, Pircher A, Kähler CM, Pratschke J, Hilbe W. Endothelial progenitor cells: current issues on characterization and challenging clinical applications. Stem Cell Rev Rep 2012; 8:926-39. [PMID: 22095429 DOI: 10.1007/s12015-011-9332-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since their discovery about a decade ago, endothelial precursor cells (EPC) have been subjected to intensive investigation. The vision to stimulate respectively suppress a key player of vasculogenesis opened a plethora of clinical applications. However, as research opened deeper insights into EPC biology, the enthusiasm of the pioneer era has been damped in favour of a more critical view. Recent research is focused on three major questions: The fact that the number of EPC in peripheral blood is exceedingly low has consistently raised suspicion whether these cells can plausibly have an impact on physiological or pathophysiological processes. Secondly, whereas the key role of EPC in tumourigenesis has been strongly emphasized by various groups in the past, recent publications are challenging this hypothesis. Thirdly, the lack of consensus on EPC-defining markers and standardized protocols for their detection have repeatedly led to difficulties concerning comparability between papers. In this current review, an overview on recent findings on EPC biology is given, their challenging clinical implications are discussed and the perplexity underlying the current controversial debate is illustrated.
Collapse
Affiliation(s)
- Thomas Resch
- Center of Operative Medicine, Department of Visceral, Transplant, and Thoracic Surgery, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
174
|
Abstract
Results obtained from preclinical studies have shown that endothelial progenitor cells (EPCs) play a crucial role in tumor growth and metastasis. In the clinic, EPCs are present in the peripheral blood of cancer patients in higher numbers than in healthy subjects. These cells are mobilized from the bone marrow compartment to the periphery in response to certain cytokines and growth factors. Growing body of evidence suggests that following acute cytotoxic drug therapy levels of circulating EPCs (CEPs) can change significantly in both mouse and human. These changes may predict the efficacy of some anticancer drug treatments. Therefore, the validation and standardization of a procedure to detect CEPs and monitor their kinetic is an important step towards the use of such cells as a possible biomarker to predict clinical outcome. In this chapter, we describe a flow cytometry technique to detect CEPs obtained from human blood specimens stored in both fresh and frozen conditions.
Collapse
|
175
|
Kerbel RS. Strategies for improving the clinical benefit of antiangiogenic drug based therapies for breast cancer. J Mammary Gland Biol Neoplasia 2012; 17:229-39. [PMID: 23011602 DOI: 10.1007/s10911-012-9266-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 08/22/2012] [Indexed: 12/22/2022] Open
Abstract
Viewed as a whole, the aggregate outcomes of a number of positive randomized phase III clinical trial results evaluating the VEGF-pathway targeting antiangiogenic drug bevacizumab, with or without concurrent chemotherapy, in metastatic breast cancer patients have been disappointingly modest. In the case of antiangiogenic tyrosine kinase inhibitors (TKIs) the results have been negative. Nevertheless, several findings indicate antiangiogenic drugs, especially bevacizumab, are active and can lead to demonstrable clinical benefit in some patients, thus stimulating research into developing strategies to significantly improve their efficacy and reduce toxicity. Some of these initiatives include: 1) discovery and validation of predictive markers that can prospectively identify patients more likely to benefit from antiangiogenic therapy; 2) recognition that the nature of the chemotherapy partner or backbone can strongly impact outcomes when combined with antiangiogenic drugs such as bevacizumab, and thus developing what may be improved combination chemotherapy partner regimens, e.g. metronomic chemotherapy; 3) evaluating prospectively in more depth whether subtypes of the disease-especially triple negative or inflammatory breast cancer-are more responsive to antiangiogenic therapy than other subtypes; 4) evaluating new agents that inhibit angiogenesis in a VEGF-independent manner and other types of drug that can be effectively combined with antiangiogenics, e.g. c-met inhibitors; 5) uncovering the basis of resistance or relapse/progression on the therapy with antiangiogenic drugs; 6) development of improved predictive preclinical breast cancer models for therapy testing, e.g. treatment of mice with established multi-organ breast cancer metastatic disease or genetically engineered mouse models of breast cancer, or mice bearing patient derived breast cancer tissue xenografts.
Collapse
Affiliation(s)
- Robert S Kerbel
- Biological Sciences, Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
176
|
Abstract
Vascular disrupting agents (VDAs) are a relatively new class of drugs that target tumor vasculature and induce tumor blood flow shutdown and subsequent necrosis in the tumor core. The first generation of these agents is actively evaluated in clinical trials, whereas new molecules are developed in order to enhance efficacy and to overcome resistance mechanisms. VDA used as a single agent only cause a moderate tumor growth delay. So, strategy aiming at combining VDA to conventional cancer treatments is undergoing extensive investigations. A special emphasis has been put on combination with chemotherapeutic agents. Besides, numerous preclinical studies have also clearly established that the association of VDA to radiotherapy can improve antitumor treatment and may lead to a therapeutic gain. However, up to date, there is a lack of clinical trials evaluating such combinations, whereas it would be of great interest since radiotherapy is widely used as anticancer treatment.
Collapse
|
177
|
Mechanisms of tumor resistance to small-molecule vascular disrupting agents: treatment and rationale of combination therapy. J Formos Med Assoc 2012; 112:115-24. [PMID: 23473523 DOI: 10.1016/j.jfma.2012.09.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 12/13/2022] Open
Abstract
Small-molecule vascular disrupting agents (VDAs) target the established tumor blood vessels, resulting in rapidly and selectively widespread ischemia and necrosis of central tumor; meanwhile, blood flow in normal tissues is relatively unaffected. Although VDAs therapy is considered an important option for treatment, its use is still limited. The tumor cells at the periphery are less sensitive to vascular shutdown than those at the center, and subsequently avoid a nutrient-deprived environment. This phenomenon is referred to as tumor resistance to VDAs treatment. The viable periphery rim of tumor cells contributes to tumor regeneration, metastasis, and ongoing progression. However, there is no systematic review of the plausible mechanisms of repopulation of the viable tumor cells following VDAs therapy. The purpose of this review is to provide insights into mechanisms of tumor surviving small-molecule VDAs therapy, and the synergetic treatment to the remaining viable tumor cells at the periphery.
Collapse
|
178
|
Benayoun L, Schaffer M, Bril R, Gingis-Velitski S, Segal E, Nevelsky A, Satchi-Fainaro R, Shaked Y. Porfimer-sodium (Photofrin-II) in combination with ionizing radiation inhibits tumor-initiating cell proliferation and improves glioblastoma treatment efficacy. Cancer Biol Ther 2012; 14:64-74. [PMID: 23114641 DOI: 10.4161/cbt.22630] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tumor relapse and tumor cell repopulation has been explained partially by the drug-free break period between successive conventional treatments. Strategies to overcome tumor relapse have been proposed, such as the use of chemotherapeutic drugs or radiation in small, frequent fractionated doses without an extended break period between treatment intervals. Yet, tumors usually acquire resistance and eventually escape the therapy. Several mechanisms have been proposed to explain the resistance of tumors to therapy, one of which involves the cancer stem cell or tumor-initiating cell (TIC) concept. TICs are believed to resist many conventional therapies, in part due to their slow proliferation and self-renewal capacities. Therefore, emerging efforts to eradicate TICs are being undertaken. Here we show that treatment with Photofrin II, among the most frequently used photosensitizers, sensitized a TIC-enriched U-87MG human glioblastoma cell to radiation, and improve treatment outcome when used in combination with radiotherapy. A U-87MG tumor cell population enriched with radiation-resistant TICs becomes radio-sensitive, and an inhibition of cell proliferation and an increase in apoptosis are found in the presence of Photofrin II. Furthermore, U-87MG tumors implanted in mice treated with Photofrin II and radiation exhibit a significant reduction in angiogenesis and vasculogenesis, and an increased percentage of apoptotic TICs when compared with tumors grown in mice treated with radiation alone. Collectively, our results offer a new possible explanation for the therapeutic effects of radiosensitizing agents, and suggest that combinatorial treatment modalities can effectively prolong treatment outcome of glioblastoma tumors by inhibiting tumor growth mediated by TICs.
Collapse
Affiliation(s)
- Liat Benayoun
- Department of Molecular Pharmacology, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Zhu Z, Chen G, Li X, Yin Q, Yang Z, Yi J. Endothelial progenitor cells homing to the orthotopic implanted liver tumor of nude mice. ACTA ACUST UNITED AC 2012; 32:675-679. [PMID: 23073795 DOI: 10.1007/s11596-012-1016-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Indexed: 12/17/2022]
Abstract
This study investigated the "homing" phenomenon in hepatocellular carcinoma (HCC). The "homing" specificity of endothelial progenitor cells (EPC) by establishing an orthotopic implantation model in nude mice. EPCs harvested from the marrow cells were separated by density gradient centrifugation. Fluorescence microscope, flow cytometry (FCM) and double fluorescence staining with FITC-UEA-I and DiI-ac-LDL, were employed to identify the cells. 4',6-diamidino-2-phenylindole (DAPI) labelling and real-time PCR were used for detecting the expression of CD133 and chemokines to trace and observe the distribution of EPCs. Our results showed that the distribution rate of EPCs was obviously higher than that in other important organs and the negative control group. Detection of CD133 and chemokines yielded similar results in difference tissues. Our experiment confirmed that the chemotaxis of EPCs does exist in HCC. Moreover, HIF-1α, SDF-1 and VEGF might play important roles in the "homing" of EPCs in HCC. EPCs might be a potential candidate for targeting vector of HCC for gene therapy.
Collapse
Affiliation(s)
- Zhi Zhu
- Department of Breast and Thyroid Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Wenzhou Medical College, Wenzhou, 325000, China
| | - Xingrui Li
- Department of Breast and Thyroid Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Qian Yin
- Department of Breast and Thyroid Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhifang Yang
- Department of Breast and Thyroid Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jilin Yi
- Department of Breast and Thyroid Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
180
|
De Palma M, Nucera S. Circulating endothelial progenitors and tumor resistance to vascular-targeting therapies. Cancer Discov 2012; 2:395-7. [PMID: 22588875 DOI: 10.1158/2159-8290.cd-12-0137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acute mobilization of circulating endothelial progenitors has been implicated in tumor resistance to vascular-disrupting agents. In the current issue of Cancer Discovery, Taylor and colleagues provide novel insight into the kinetics of endothelial progenitor mobilization by vascular-disrupting agents in both mouse tumor models and cancer patients.
Collapse
Affiliation(s)
- Michele De Palma
- The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| | | |
Collapse
|
181
|
Sobhan PK, Seervi M, Joseph J, Varghese S, Pillai PR, Sivaraman DM, James J, George RE, Elizabeth KE, Santhoshkumar TR, Pillai MR. Immortalized functional endothelial progenitor cell lines from umbilical cord blood for vascular tissue engineering. Tissue Eng Part C Methods 2012; 18:890-902. [PMID: 22889128 DOI: 10.1089/ten.tec.2011.0482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Endothelial progenitor cells (EPCs) play a significant role in multiple biological processes such as vascular homeostasis, regeneration, and tumor angiogenesis. This makes them a promising cell of choice for studying a variety of biological processes, toxicity assays, biomaterial-cell interaction studies, as well as in tissue-engineering applications. In this study, we report the generation of two clones of SV40-immortalized EPCs from umbilical cord blood. These cells retained most of the functional features of mature endothelial cells and showed no indication of senescence after repeated culture for more than 240 days. Extensive functional characterization of the immortalized cells by western blot, flow cytometry, and immunofluorescence studies substantiated that these cells retained their ability to synthesize nitric oxide, von Willebrand factor, P-Selectin etc. These cells achieved unlimited proliferation potential subsequent to inactivation of the cyclin-dependent kinase inhibitor p21, but failed to form colonies on soft agar. We also show their enhanced growth and survival on vascular biomaterials compared to parental cultures in late population doubling. These immortalized EPCs can be used as a cellular model system for studying the biology of these cells, gene manipulation experiments, cell-biomaterial interactions, as well as a variety of tissue-engineering applications.
Collapse
Affiliation(s)
- Praveen K Sobhan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Ye J, Gimble JM. Regulation of stem cell differentiation in adipose tissue by chronic inflammation. Clin Exp Pharmacol Physiol 2012; 38:872-8. [PMID: 21883381 DOI: 10.1111/j.1440-1681.2011.05596.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
1. Recent studies suggest that a local hypoxic response leads to chronic inflammation in the adipose tissue of obese individuals. The adipose tissue hypoxia may reflect a compensatory failure in the local vasculature system in response to obesity. 2. Studies suggest that inflammation stimulates angiogenesis and inhibits adipocyte activities in a feedback manner within the obese adipose tissue. Adipose-derived stem cells (ASC) are able to differentiate into multiple lineages of progenitor cells for adipocytes, endothelial cells, fibroblasts and pericytes. Differentiation of ASC into those progenitors is regulated by the adipose tissue microenvironment. 3. As a major factor in the microenvironment, inflammation may favour ASC differentiation into endothelial cells through the induction of angiogenic factors. At the same time, inflammation inhibits ASC differentiation into adipocytes by suppressing peroxisome proliferator-activated receptor γ activity and the insulin signalling pathway. In this context, inflammation may serve as a signal mediating the competition between adipocytes and endothelial cells for the limited source of ASC. 4. It is a new concept that inflammation mediates signals in the competition between adipocytes and endothelial cells for the limited ASC in obesity. There is a lot of evidence that inflammation promotes endothelial cell differentiation. However, this activity of inflammation remains to be established in adipose tissue. The present article reviews the literature in support of this conclusion.
Collapse
Affiliation(s)
- Jianping Ye
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
| | | |
Collapse
|
183
|
Abstract
New vessel formation (angiogenesis) is an essential physiological process for embryologic development, normal growth, and tissue repair. Angiogenesis is tightly regulated at the molecular level; however, this process is dysregulated in several pathological conditions such as cancer. The imbalance between pro- and antiangiogenic signaling molecules within tumors creates an abnormal vascular network that is characterized by dilated, tortuous, and leaky vessels. The pathophysiological consequences of these vascular abnormalities include temporal and spatial heterogeneity in tumor blood flow, oxygenation, and increased tumor interstitial fluid pressure. The resultant microenvironment deeply impacts on tumor progression, and also leads to a reduction in therapy efficacy. The discovery of vascular endothelial growth factor (VEGF) as a major driver of tumor angiogenesis has led to efforts to develop novel therapeutics aimed at inhibiting its activity. Anti-VEGF therapy has become an important option for the management of several human malignancies; however, a significant number of patients do not respond to anti-VEGF therapy when used either as single agent or in combination with chemotherapy. In addition, the benefit of antiangiogenic therapy is relatively short lived and the majority of patients relapse and progress. An increasing amount of reports suggest several potential mechanisms of resistance to antiangiogenic therapy including, but not limited to, tumor hypoxia. This chapter discusses the role of the VEGF axis in tumor biology and highlights the clinical application of anti-VEGF therapies elaborating on pitfalls and strategies to improve clinical outcome.
Collapse
Affiliation(s)
- Annamaria Rapisarda
- SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | |
Collapse
|
184
|
Nowak K, Jachol N, Rafat N, Joas E, Beck GC, Hohenberger P. Alterations of circulating bone marrow-derived VEGFR-2+ progenitor cells in isolated limb perfusion with or without rhTNF-α. Ann Surg Oncol 2012; 20:3694-701. [PMID: 22948772 PMCID: PMC3764318 DOI: 10.1245/s10434-012-2637-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Circulating endothelial progenitor cells (cEPCs) as recruited to the angiogenic vascular system of malignant tumors have been proposed as a biomarker in malignancies. The effect of antitumor chemotherapy on cEPCs is not fully understood. We examined the level of cEPCs, vascular endothelial growth factor (VEGF), and angiopoietin-2 in the blood of sarcoma and melanoma patients before and after isolated limb perfusion (ILP) with or without recombinant human tumor necrosis factor-α (rhTNF-α). METHODS Twenty-two patients, 11 each with soft tissue sarcoma or recurrent melanoma of the limb, were recruited. ILP was performed with rhTNF-α/melphalan (TNF) or melphalan only (no TNF). Fifteen healthy volunteers served as control subjects. Blood was sampled before and up to 6 weeks after ILP. Peripheral blood mononuclear cells were isolated by density gradient centrifugation, and annexin V-negative cells were characterized as cEPCs by triple staining for CD133(+), CD34, and VEGFR-2(+). RESULTS Before treatment, cEPC numbers were significantly increased in sarcoma (0.179 ± 0.190 %) and melanoma patients (0.110 ± 0.073 %) versus healthy controls (0.025 ± 0.018 %; P < 0.01), but did not differ significantly between sarcoma and melanoma patients. cEPC decreased significantly after ILP in patients with no TNF compared to pretreatment values (P < 0.05) and were significantly lower at 4 h, 48 h, and 1 week compared to ILP with TNF (P < 0.05). Values 6 weeks after ILP were significantly lower than before ILP in both investigated groups (P < 0.01). CONCLUSIONS ILP with TNF results in activation of bone marrow-derived EPCs compared to ILP without TNF. Alteration of cEPCs and angiopoietin-2 by rhTNF-α might account for the cytotoxicity and hemorrhagic effects on tumor vessels during limb perfusion procedures.
Collapse
Affiliation(s)
- Kai Nowak
- Division of Surgical Oncology and Thoracic Surgery, Department of Surgery, Mannheim University Medical Center, Heidelberg University, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
185
|
Molecular-targeted therapies for ovarian cancer: prospects for the future. Int J Clin Oncol 2012; 17:424-9. [DOI: 10.1007/s10147-012-0461-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Indexed: 12/16/2022]
|
186
|
Besse B, Tsao LC, Chao DT, Fang Y, Soria JC, Almokadem S, Belani CP. Phase Ib safety and pharmacokinetic study of volociximab, an anti-α5β1 integrin antibody, in combination with carboplatin and paclitaxel in advanced non-small-cell lung cancer. Ann Oncol 2012; 24:90-6. [PMID: 22904239 DOI: 10.1093/annonc/mds281] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND This phase Ib study evaluated volociximab, an anti-α5β1 integrin antibody, in combination with carboplatin (Eli Lilly and Co., Indianapolis, IN) and paclitaxel (Taxol) in advanced, untreated non-small-cell lung cancer (NSCLC). PATIENTS AND METHODS Three cohorts were treated with volociximab (10, 20, or 30 mg/kg) for up to six 3-week cycles in combination with carboplatin-paclitaxel chemotherapy and continued as maintenance therapy for patients with stable disease (SD) or better. Dose-limiting toxic effects, adverse events (AEs), pharmacokinetics, and anti-volociximab antibodies were assessed. RESULTS A maximum tolerated dose was not reached up to the maximum planned dose of 30 mg/kg. In 29 patients who received volociximab, the most common grade≥3 AEs were neutropenia (24%), hyponatremia (17%), and fatigue (10%). Three patients experienced volociximab-related serious AEs. No hemorrhages were observed. Of 33 patients enrolled, 8 (24%) achieved a partial response and 17 (52%) had SD. The median progression-free survival was 6.3 months (95% confidence interval 5.5-8.1). Levels of potential biomarkers of angiogenesis or metastasis were reduced following six cycles of treatment. CONCLUSIONS Volociximab combined with carboplatin and paclitaxel was generally well-tolerated and showed preliminary evidence of efficacy in advanced NSCLC.
Collapse
Affiliation(s)
- B Besse
- Cancer Medicine/Thoracic Unit, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
187
|
Cyclin-dependent kinase 8 mediates chemotherapy-induced tumor-promoting paracrine activities. Proc Natl Acad Sci U S A 2012; 109:13799-804. [PMID: 22869755 DOI: 10.1073/pnas.1206906109] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Conventional chemotherapy not only kills tumor cells but also changes gene expression in treatment-damaged tissues, inducing production of multiple tumor-supporting secreted factors. This secretory phenotype was found here to be mediated in part by a damage-inducible cell-cycle inhibitor p21 (CDKN1A). We developed small-molecule compounds that inhibit damage-induced transcription downstream of p21. These compounds were identified as selective inhibitors of a transcription-regulating kinase CDK8 and its isoform CDK19. Remarkably, p21 was found to bind to CDK8 and stimulate its kinase activity. p21 and CDK8 also cooperate in the formation of internucleolar bodies, where both proteins accumulate. A CDK8 inhibitor suppresses damage-induced tumor-promoting paracrine activities of tumor cells and normal fibroblasts and reverses the increase in tumor engraftment and serum mitogenic activity in mice pretreated with a chemotherapeutic drug. The inhibitor also increases the efficacy of chemotherapy against xenografts formed by tumor cell/fibroblast mixtures. Microarray data analysis revealed striking correlations between CDK8 expression and poor survival in breast and ovarian cancers. CDK8 inhibition offers a promising approach to increasing the efficacy of cancer chemotherapy.
Collapse
|
188
|
Abstract
Advances in understanding the biology of renal cell carcinoma (RCC) have resulted in treatment strategies based on molecularly targeted agents that have substantially improved the outcomes of patients with metastatic RCC. Agents targeting the vascular endothelial growth factor pathway and the mammalian target of rapamycin have shown efficacy in randomized clinical trials and received international approval for treating RCC. Multiple candidate biomarkers of the biologic activity of such targeted therapies as well as markers of treatment response and patients' prognosis are being evaluated to improve drug development and to identify patients who may obtain the greatest benefit from the various treatment options. This review summarizes recent developments in identifying circulating biomarkers of targeted therapies for metastatic RCC, including soluble proteins and circulating cells.
Collapse
|
189
|
Chen F, Feng Y, Zheng K, De Keyzer F, Li J, Feng Y, Cona MM, Wang H, Jiang Y, Yu J, Marchal G, Verfaillie C, De Geest B, Oyen R, Ni Y. Enhanced antitumor efficacy of a vascular disrupting agent combined with an antiangiogenic in a rat liver tumor model evaluated by multiparametric MRI. PLoS One 2012; 7:e41140. [PMID: 22815943 PMCID: PMC3399789 DOI: 10.1371/journal.pone.0041140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 06/17/2012] [Indexed: 12/16/2022] Open
Abstract
A key problem in solid tumor therapy is tumor regrowth from a residual viable rim after treatment with a vascular disrupting agent (VDA). As a potential solution, we studied a combined treatment of a VDA and antiangiogenic. This study was approved by the institutional ethical committee for the use and care of laboratory animals. Rats with implanted liver tumors were randomized into four treatment groups: 1) Zd6126 (Zd); 2) Thalidomide (Tha); 3) Zd in combination with Tha (ZdTha); and 4) controls. Multiparametric MRIs were performed and quantified before and after treatment. Circulating endothelial progenitor cells (EPCs) and plasma stromal cell-derived factor-1α (SDF-1α) were monitored. Tumor apoptosis, necrosis, and microvessels were verified by histopathology. A single use of Zd or Tha did not significantly delay tumor growth. The combined ZdTha showed enhanced antitumor efficacy due to synergistic effects; it induced a cumulative tumor apoptosis or necrosis, which resulted in significant delay in tumor growth and reduction in the viable tumor rim; it also reduced tumor vessel permeability; and it improved tumor hemodynamic indexes, most likely via a transient normalization of tumor vasculature induced by Tha. A stepwise linear regression analysis showed that the apparent diffusion coefficient was an independent predictor of tumor growth. We found no significant increases in Zd-induced circulating EPCs or plasma SDF-1α. ZdTha showed improved therapeutic efficacy in solid tumors compared to either agent alone. The therapeutic effects were successfully tracked in vivo with multiparametric MRI.
Collapse
Affiliation(s)
- Feng Chen
- Theragnostic Laboratory, Department of Imaging and Pathology, University Hospital, University of Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Novel antiangiogenic therapies against advanced hepatocellular carcinoma (HCC). Clin Transl Oncol 2012; 14:564-74. [PMID: 22855137 DOI: 10.1007/s12094-012-0842-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 04/13/2012] [Indexed: 12/12/2022]
Abstract
Angiogenesis is a cornerstone in the process of hepatocarcinogenesis. In the sorafenib era, other antiangiogenic targeted drugs, such as monoclonal antibodies and a new generation of tyrosine kinase inhibitors, have been shown in phase II trials to be safe and effective in the treatment of advanced hepatocellular carcinoma. Several currently active phase III trials are testing these drugs, both in first- and second-line settings. Strategies to overcome primary and acquired resistance to antiangiogenic therapy are urgently needed. Novel biomarkers may help in improving the efficacy of drugs targeting angiogenesis.
Collapse
|
191
|
Nathan P, Zweifel M, Padhani AR, Koh DM, Ng M, Collins DJ, Harris A, Carden C, Smythe J, Fisher N, Taylor NJ, Stirling JJ, Lu SP, Leach MO, Rustin GJS, Judson I. Phase I trial of combretastatin A4 phosphate (CA4P) in combination with bevacizumab in patients with advanced cancer. Clin Cancer Res 2012; 18:3428-39. [PMID: 22645052 DOI: 10.1158/1078-0432.ccr-11-3376] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The vascular disrupting agent (VDA) combretastatin A4 phosphate (CA4P) induces significant tumor necrosis as a single agent. Preclinical models have shown that the addition of an anti-VEGF antibody to a VDA attenuates the revascularization of the surviving tumor rim and thus significantly increases antitumor activity. EXPERIMENTAL DESIGN Patients with advanced solid malignancies received CA4P at 45, 54, or 63 mg/m(2) on day 1, day 8, and then every 14 days. Bevacizumab 10 mg/kg was given on day 8 and at subsequent cycles four hours after CA4P. Functional imaging with dynamic contrast enhanced-MRI (DCE-MRI) was conducted at baseline, after CA4P alone, and after cycle 1 CA4P + bevacizumab. RESULTS A total of 63 mg/m(2) CA4P + 10 mg/kg bevacizumab q14 is the recommended phase II dose. A total of 15 patients were enrolled. Dose-limiting toxicities were grade III asymptomatic atrial fibrillation and grade IV liver hemorrhage in a patient with a history of hemorrhage. Most common toxicities were hypertension, headache, lymphopenia, pruritus, and pyrexia. Asymptomatic electrocardiographic changes were seen in five patients. Nine of 14 patients experienced disease stabilization. A patient with ovarian cancer had a CA125 response lasting for more than a year. DCE-MRI showed statistically significant reductions in tumor perfusion/vascular permeability, which reversed after CA4P alone but which were sustained following bevacizumab. Circulating CD34(+) and CD133(+) bone marrow progenitors increased following CA4P as did VEGF and granulocyte colony-stimulating factor levels. CONCLUSIONS CA4P in combination with bevacizumab appears safe and well tolerated in this dosing schedule. CA4P induced profound vascular changes, which were maintained by the presence of bevacizumab.
Collapse
Affiliation(s)
- Paul Nathan
- Mount Vernon Cancer Centre; Paul Strickland Scanner Centre, Northwood, Middlesex, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Laufer J, Johnson P, Zhang E, Treeby B, Cox B, Pedley B, Beard P. In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:056016. [PMID: 22612139 DOI: 10.1117/1.jbo.17.5.056016] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The use of a novel all-optical photoacoustic scanner for imaging the development of tumor vasculature and its response to a therapeutic vascular disrupting agent is described. The scanner employs a Fabry-Perot polymer film ultrasound sensor for mapping the photoacoustic waves and an image reconstruction algorithm based upon attenuation-compensated acoustic time reversal. The system was used to noninvasively image human colorectal tumor xenografts implanted subcutaneously in mice. Label-free three-dimensional in vivo images of whole tumors to depths of almost 10 mm with sub-100-micron spatial resolution were acquired in a longitudinal manner. This enabled the development of tumor-related vascular features, such as vessel tortuosity, feeding vessel recruitment, and necrosis to be visualized over time. The system was also used to study the temporal evolution of the response of the tumor vasculature following the administration of a therapeutic vascular disrupting agent (OXi4503). This revealed the well-known destruction and recovery phases associated with this agent. These studies illustrate the broader potential of this technology as an imaging tool for the preclinical and clinical study of tumors and other pathologies characterized by changes in the vasculature.
Collapse
Affiliation(s)
- Jan Laufer
- University College London, Department of Medical Physics and Bioengineering, Gower Street, London WC1E 6BT, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
193
|
Kim JW, Jung SY, Kwon YH, Lee JH, Lee YM, Lee BY, Kwon SM. Ginsenoside Rg3 attenuates tumor angiogenesis via inhibiting bioactivities of endothelial progenitor cells. Cancer Biol Ther 2012; 13:504-15. [PMID: 22406998 DOI: 10.4161/cbt.19599] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Accumulating evidence suggests that Ginsenoside Rg3 appears to inhibit tumor growth including Lewis lung carcinoma, intestinal adenocarcinomas or B16 melanoma by inhibiting cell proliferation, tumor cell invasion and metastasis. Endothelial progenitor cells (EPCs) appear to play a key role in the growth of early tumors by intervening with the angiogenic switch promoting tumor neovessel formation by producing angiogenic cytokines during tumor progression. This paper reports a novel mechanism of Ginsenoside Rg3, a candidate anticancer bio-molecule, on tumor angiogenesis by inhibiting the multiple bioactivities of EPCs. When Ginsenoside Rg3 was applied to the ex vivo cultured outgrowth ECs, a type of EPCs, it inhibited the cell proliferation, cell migration and tubular formation of EPCs. Importantly, Ginsenoside Rg3 attenuated the phosphorylation cascade of the VEGF dependent p38/ERK signaling in vitro. The xenograft tumor model clearly showed that Ginsenoside Rg3 suppresses tumor growth and tumor angiogenesis by inhibiting the mobilization of EPCs from the bone marrow microenvironment to the peripheral circulation and modulates VEGF-dependent tumor angiogenesis. In conclusion, this study provides a potential therapeutic molecule, Ginsenoside Rg3, as an anticancer drug by inhibiting the EPC bioactivities.
Collapse
Affiliation(s)
- Jae-Won Kim
- Department of Biomedical Science, Laboratory for Functional Foods & Nutrigenomics, CHA University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
194
|
|
195
|
Moreno Garcia V, Basu B, Molife LR, Kaye SB. Combining antiangiogenics to overcome resistance: rationale and clinical experience. Clin Cancer Res 2012; 18:3750-61. [PMID: 22547772 DOI: 10.1158/1078-0432.ccr-11-1275] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antiangiogenic therapies are now well established in oncology clinical practice; however, despite initial optimism, the results of late-phase trials, especially in the adjuvant setting, have largely proved disappointing. In the context of metastatic disease, resistance to antiangiogenic agents arises through a range of mechanisms, including the development of alternative angiogenic pathways. One of the proposed strategies to overcome this resistance is to combine antiangiogenic agents with different mechanisms of action. Early-phase clinical trials assessing the tolerability and efficacy of different combinations of antiangiogenic drugs, including those that target the VEGF pathway or the angiopoietins, as well as vascular disrupting agents, are increasing in number. An example of this strategy is the combination of sorafenib and bevacizumab, which has elicited major responses in different tumor types, including ovarian carcinoma and glioblastoma. However, overlapping and cumulative toxicities pose a real challenge. This review summarizes the preclinical rationale for this approach and current clinical experience in combining antiangiogenic therapies.
Collapse
Affiliation(s)
- Victor Moreno Garcia
- Division of Clinical Sciences, Institute of Cancer Research and Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom.
| | | | | | | |
Collapse
|
196
|
Abstract
Cancer cells rely on angiogenesis to fulfil their need for oxygen and nutrients; hence, agents targeting angiogenic pathways and mediators have been investigated as potential cancer drugs. Although this strategy has demonstrated delayed tumour progression--leading to progression-free survival and overall survival benefits compared with standard therapy--in some patients, the results are more modest than predicted. A significant number of patients either do not respond to antiangiogenic agents or fairly rapidly develop resistance to them, which raises questions about how resistance develops and how it can be overcome. Furthermore, whether cancers, once they develop resistance, become more invasive or lead to metastatic disease remains unclear. Several mechanisms of resistance have been recently proposed and emerging evidence indicates that, under certain experimental conditions, antiangiogenic agents increase intratumour hypoxia by promoting vessel pruning and inhibiting neoangiogenesis. Indeed, several studies have highlighted the possibility that inhibitors of VEGF (and its receptors) can promote an invasive metastatic switch, in part by creating an increasingly hypoxic tumour microenvironment. As a potential remedy, a number of therapeutic approaches have been investigated that target the hypoxic tumour compartment to improve the clinical outcome of antiangiogenic therapy.
Collapse
|
197
|
Sakamori Y, Masago K, Ohmori K, Togashi Y, Nagai H, Okuda C, Kim YH, Ichiyama S, Mishima M. Increase in circulating endothelial progenitor cells predicts response in patients with advanced non-small-cell lung cancer. Cancer Sci 2012; 103:1065-70. [PMID: 22360644 DOI: 10.1111/j.1349-7006.2012.02249.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 02/06/2012] [Accepted: 02/14/2012] [Indexed: 12/22/2022] Open
Abstract
Previous reports have shown that circulating endothelial progenitor cells (CEPs) are released in response to cytotoxic chemotherapy. We investigate the relationship between the kinetics of CEPs during one cycle of chemotherapy and the response to cytotoxic chemotherapy and prognostic impacts. Previously untreated patients (n = 38) receiving cytotoxic chemotherapy for non-small-cell lung cancer were included. Blood sampling was carried out on day 1, day 8, and just before the second cycle of chemotherapy. The mononuclear cell fraction was analyzed for CEPs by FACS analysis. We evaluated the relationship between the kinetics of CEPs, each independent clinicopathological variable, the response to chemotherapy, and the risk factors associated with prognosis. On the eighth day after chemotherapy, a significant decrease in CEPs was observed. In contrast, CEP counts before the second cycle of chemotherapy were significantly increased. The high percentage change in CEPs between day 1 and before the second cycle of chemotherapy is an independent predictive factor for response to chemotherapy. However, the change in CEP levels did not predict progression-free survival. These findings indicate that the late release of CEPs is a common phenomenon after chemotherapeutic treatment. The correlation with clinical response to chemotherapy provides further support for the biologic relevance of these cells in patients' prognosis and highlights the potential use of CEPs as therapeutic targets.
Collapse
Affiliation(s)
- Yuichi Sakamori
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Taylor M, Billiot F, Marty V, Rouffiac V, Cohen P, Tournay E, Opolon P, Louache F, Vassal G, Laplace-Builhé C, Vielh P, Soria JC, Farace F. Reversing resistance to vascular-disrupting agents by blocking late mobilization of circulating endothelial progenitor cells. Cancer Discov 2012; 2:434-49. [PMID: 22588881 DOI: 10.1158/2159-8290.cd-11-0171] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED The prevailing concept is that immediate mobilization of bone marrow-derived circulating endothelial progenitor cells (CEP) is a key mechanism mediating tumor resistance to vascular-disrupting agents (VDA). Here, we show that administration of VDA to tumor-bearing mice induces 2 distinct peaks in CEPs: an early, unspecific CEP efflux followed by a late yet more dramatic tumor-specific CEP burst that infiltrates tumors and is recruited to vessels. Combination with antiangiogenic drugs could not disrupt the early peak but completely abrogated the late VDA-induced CEP burst, blunted bone marrow-derived cell recruitment to tumors, and resulted in striking antitumor efficacy, indicating that the late CEP burst might be crucial to tumor recovery after VDA therapy. CEP and circulating endothelial cell kinetics in VDA-treated patients with cancer were remarkably consistent with our preclinical data. These findings expand the current understanding of vasculogenic "rebounds" that may be targeted to improve VDA-based strategies. SIGNIFICANCE Our findings suggest that resistance to VDA therapy may be strongly mediated by late, rather than early, tumor-specific recruitment of CEPs, the suppression of which resulted in increased VDA-mediated antitumor efficacy. VDA-based therapy might thus be significantly enhanced by combination strategies targeting late CEP mobilization.
Collapse
Affiliation(s)
- Melissa Taylor
- Translational Research Laboratory, University of Paris-Sud, INSERM U981, Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Targeting the vasculature of visceral tumors: novel insights and treatment perspectives. Langenbecks Arch Surg 2012; 397:569-78. [PMID: 22415155 DOI: 10.1007/s00423-012-0946-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 02/29/2012] [Indexed: 12/27/2022]
Abstract
BACKGROUND Angiogenesis, the formation of new blood vessels from the endothelium of the existing vasculature, describes a crucial process in tumor growth, disease progression, and metastasis. Therefore, the upcoming strategy of inhibiting tumor angiogenesis has generated different treatment modalities, which have been transferred into clinical practice in recent years. Currently, this concept is applied to target the vasculature of different visceral tumors and intensive clinical research has just started. MATERIALS AND METHODS This review summarizes the modifications of systemic treatment of visceral tumors by targeting the vasculature in the past years. Moreover, novel targets and treatment strategies will be discussed to evaluate future directions. RESULTS Leading antiangiogenic drugs combined with systemic chemotherapy have been applied with increasing success during the last years. Therefore, the concept of combining vascular targeting agents with established chemotherapeutic regimens has been increasingly adopted into the therapies of different visceral tumors. CONCLUSION Targeting the vasculature of visceral tumors in combination with established standard tumor therapies includes major clinical potential for future therapy concepts.
Collapse
|
200
|
|