151
|
Tonello M, Baratti D, Sammartino P, Di Giorgio A, Robella M, Sassaroli C, Framarini M, Valle M, Macrì A, Graziosi L, Coccolini F, Lippolis PV, Gelmini R, Deraco M, Biacchi D, Santullo F, Vaira M, Di Lauro K, D'Acapito F, Carboni F, Giuffrè G, Donini A, Fugazzola P, Faviana P, Sorrentino L, Scapinello A, Del Bianco P, Sommariva A. Microsatellite and RAS/RAF Mutational Status as Prognostic Factors in Colorectal Peritoneal Metastases Treated with Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy (HIPEC). Ann Surg Oncol 2022; 29:3405-3417. [PMID: 34783946 DOI: 10.1245/s10434-021-11045-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cytoreductive surgery (CRS) with hyperthermic intraperitoneal chemotherapy (HIPEC) leads to prolonged survival for selected patients with colorectal (CRC) peritoneal metastases (PM). This study aimed to analyze the prognostic role of micro-satellite (MS) status and RAS/RAF mutations for patients treated with CRS. METHODS Data were collected from 13 Italian centers with PM expertise within a collaborative group of the Italian Society of Surgical Oncology. Clinical and pathologic variables and KRAS/NRAS/BRAF mutational and MS status were correlated with overall survival (OS) and disease-free survival (DFS). RESULTS The study enrolled 437 patients treated with CRS-HIPEC. The median OS was 42.3 months [95% confidence interval (CI), 33.4-51.2 months], and the median DFS was 13.6 months (95% CI, 12.3-14.9 months). The local (peritoneal) DFS was 20.5 months (95% CI, 16.4-24.6 months). In addition to the known clinical factors, KRAS mutations (p = 0.005), BRAF mutations (p = 0.01), and MS status (p = 0.04) were related to survival. The KRAS- and BRAF-mutated patients had a shorter survival than the wild-type (WT) patients (5-year OS, 29.4% and 26.8% vs 51.5%, respectively). The patients with micro-satellite instability (MSI) had a longer survival than the patients with micro-satellite stability (MSS) (5-year OS, 58.3% vs 36.7%). The MSI/WT patients had the best prognosis. The MSS/WT and MSI/mutated patients had similar survivals, whereas the MSS/mutated patients showed the worst prognosis (5-year OS, 70.6%, 48.1%, 23.4%; p = 0.0001). In the multivariable analysis, OS was related to the Peritoneal Cancer Index [hazard ratio (HR), 1.05 per point], completeness of cytoreduction (CC) score (HR, 2.8), N status (HR, 1.6), signet-ring (HR, 2.4), MSI/WT (HR, 0.5), and MSS/WT-MSI/mutation (HR, 0.4). Similar results were obtained for DFS. CONCLUSION For patients affected by CRC-PM who are eligible for CRS, clinical and pathologic criteria need to be integrated with molecular features (KRAS/BRAF mutation). Micro-satellite status should be strongly considered because MSI confers a survival advantage over MSS, even for mutated patients.
Collapse
Affiliation(s)
- Marco Tonello
- Unit of Surgical Oncology of the Esophagus and Digestive Tract, Surgical Oncology Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Dario Baratti
- Peritoneal Surface Malignancy Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Sammartino
- Cytoreductive Surgery and HIPEC Unit, Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Rome, Italy
| | - Andrea Di Giorgio
- Surgical Unit of Peritoneum and Retroperitoneum, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Manuela Robella
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Cinzia Sassaroli
- Colorectal Surgical Oncology, Abdominal Oncology Department, Fondazione Giovanni Pascale" IRCCS, Naples, Italy
| | - Massimo Framarini
- General and Oncologic Surgery, Morgagni-Pierantoni Hospital, AUSL Romagna, Forlì, Italy
| | - Mario Valle
- Peritoneal Malignancies Unit, INT "Regina Elena", Rome, Italy
| | - Antonio Macrì
- Peritoneal Surface Malignancy and Soft Tissue Sarcoma Program, University of Messina, Messina, Italy
| | - Luigina Graziosi
- General and Emergency Surgery Department, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Federico Coccolini
- General Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy
- General Emergency and Trauma Surgery, Pisa University Hospital, Pisa, Italy
| | - Piero Vincenzo Lippolis
- General and Peritoneal Surgery, Department of Surgery, Hospital University Pisa (AOUP), Pisa, Italy
| | - Roberta Gelmini
- General and Oncological Surgery Unit, AOU of Modena University of Modena and Reggio Emilia, Modena, Italy
| | - Marcello Deraco
- Peritoneal Surface Malignancy Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Daniele Biacchi
- Cytoreductive Surgery and HIPEC Unit, Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Rome, Italy
| | - Francesco Santullo
- Surgical Unit of Peritoneum and Retroperitoneum, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marco Vaira
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Katia Di Lauro
- Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy
| | - Fabrizio D'Acapito
- General and Oncologic Surgery, Morgagni-Pierantoni Hospital, AUSL Romagna, Forlì, Italy
| | - Fabio Carboni
- Peritoneal Malignancies Unit, INT "Regina Elena", Rome, Italy
| | - Giuseppe Giuffrè
- Department of Human Pathology in Adult and Developmental Age 'Gaetano Barresi', Section of Pathology, University of Messina, Messina, Italy
| | - Annibale Donini
- General and Emergency Surgery Department, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Paola Fugazzola
- General Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy
| | - Pinuccia Faviana
- Pathological Anatomy III, Laboratory Medicine Department, Hospital University Pisa (AOUP), Pisa, Italy
| | - Lorena Sorrentino
- General and Oncological Surgery Unit, AOU of Modena University of Modena and Reggio Emilia, Modena, Italy
| | | | - Paola Del Bianco
- Clinical Research Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Antonio Sommariva
- Unit of Surgical Oncology of the Esophagus and Digestive Tract, Surgical Oncology Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
| |
Collapse
|
152
|
Liang W, Yi H, Mao C, Meng Q, Wu X, Li S, Xue J. Research Progress of RNA Methylation Modification in Colorectal Cancer. Front Pharmacol 2022; 13:903699. [PMID: 35614935 PMCID: PMC9125385 DOI: 10.3389/fphar.2022.903699] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence indicates that RNA methylation, as the most common modification of mRNA, is of great significance in tumor progression and metastasis. Colorectal cancer is a common malignant tumor of the digestive system that seriously affects the health of middle-aged and elderly people. Although there have been many studies on the biological mechanism of the occurrence and development of colorectal cancer, there are still major deficiencies in the diagnosis and prognosis of colorectal cancer. With the deep study of RNA methylation, it was found that RNA modification is highly related to colorectal cancer tumorigenesis, development and prognosis. Here, we will highlight various RNA chemical modifications including N6-methyladenosine, 5-methylcytosine, N1-methyladenosine, 7-methylguanine, pseudouridine and their modification enzymes followed by summarizing their functions in colorectal cancer.
Collapse
Affiliation(s)
- Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Hongyang Yi
- The Third People's Hospital of Shenzhen, Shenzhen, China
| | - Chenyu Mao
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Qingxue Meng
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Xueliang Wu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Shanliang Li
- Department of Pharmacology, Guangxi University of Chinese Medicine, Nanning, China
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| |
Collapse
|
153
|
Yang D, Jones MG, Naranjo S, Rideout WM, Min KHJ, Ho R, Wu W, Replogle JM, Page JL, Quinn JJ, Horns F, Qiu X, Chen MZ, Freed-Pastor WA, McGinnis CS, Patterson DM, Gartner ZJ, Chow ED, Bivona TG, Chan MM, Yosef N, Jacks T, Weissman JS. Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell 2022; 185:1905-1923.e25. [PMID: 35523183 DOI: 10.1016/j.cell.2022.04.015] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/09/2022] [Accepted: 04/08/2022] [Indexed: 12/19/2022]
Abstract
Tumor evolution is driven by the progressive acquisition of genetic and epigenetic alterations that enable uncontrolled growth and expansion to neighboring and distal tissues. The study of phylogenetic relationships between cancer cells provides key insights into these processes. Here, we introduced an evolving lineage-tracing system with a single-cell RNA-seq readout into a mouse model of Kras;Trp53(KP)-driven lung adenocarcinoma and tracked tumor evolution from single-transformed cells to metastatic tumors at unprecedented resolution. We found that the loss of the initial, stable alveolar-type2-like state was accompanied by a transient increase in plasticity. This was followed by the adoption of distinct transcriptional programs that enable rapid expansion and, ultimately, clonal sweep of stable subclones capable of metastasizing. Finally, tumors develop through stereotypical evolutionary trajectories, and perturbing additional tumor suppressors accelerates progression by creating novel trajectories. Our study elucidates the hierarchical nature of tumor evolution and, more broadly, enables in-depth studies of tumor progression.
Collapse
Affiliation(s)
- Dian Yang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Matthew G Jones
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Biological and Medical Informatics Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Integrative Program in Quantitative Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Santiago Naranjo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - William M Rideout
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Kyung Hoi Joseph Min
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Raymond Ho
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph M Replogle
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94158, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jennifer L Page
- Cell and Genome Engineering Core, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey J Quinn
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Felix Horns
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xiaojie Qiu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Michael Z Chen
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Medical Scientist Training Program, Harvard Medical School, Boston, MA 02115, USA
| | - William A Freed-Pastor
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Christopher S McGinnis
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David M Patterson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg BioHub Investigator, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Cellular Construction, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Eric D Chow
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Advanced Technology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michelle M Chan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Nir Yosef
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg BioHub Investigator, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, CA 94720, USA; Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Cambridge, MA, USA.
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
154
|
Pich O, Bailey C, Watkins TBK, Zaccaria S, Jamal-Hanjani M, Swanton C. The translational challenges of precision oncology. Cancer Cell 2022; 40:458-478. [PMID: 35487215 DOI: 10.1016/j.ccell.2022.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/16/2022] [Accepted: 04/05/2022] [Indexed: 12/11/2022]
Abstract
The translational challenges in the field of precision oncology are in part related to the biological complexity and diversity of this disease. Technological advances in genomics have facilitated large sequencing efforts and discoveries that have further supported this notion. In this review, we reflect on the impact of these discoveries on our understanding of several concepts: cancer initiation, cancer prevention, early detection, adjuvant therapy and minimal residual disease monitoring, cancer drug resistance, and cancer evolution in metastasis. We discuss key areas of focus for improving cancer outcomes, from biological insights to clinical application, and suggest where the development of these technologies will lead us. Finally, we discuss practical challenges to the wider adoption of molecular profiling in the clinic and the need for robust translational infrastructure.
Collapse
Affiliation(s)
- Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Chris Bailey
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Thomas B K Watkins
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Simone Zaccaria
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK; Department of Medical Oncology, University College London Hospitals, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
155
|
Feoli A, Viviano M, Cipriano A, Milite C, Castellano S, Sbardella G. Lysine methyltransferase inhibitors: where we are now. RSC Chem Biol 2022; 3:359-406. [PMID: 35441141 PMCID: PMC8985178 DOI: 10.1039/d1cb00196e] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
Protein lysine methyltransferases constitute a large family of epigenetic writers that catalyse the transfer of a methyl group from the cofactor S-adenosyl-l-methionine to histone- and non-histone-specific substrates. Alterations in the expression and activity of these proteins have been linked to the genesis and progress of several diseases, including cancer, neurological disorders, and growing defects, hence they represent interesting targets for new therapeutic approaches. Over the past two decades, the identification of modulators of lysine methyltransferases has increased tremendously, clarifying the role of these proteins in different physio-pathological states. The aim of this review is to furnish an updated outlook about the protein lysine methyltransferases disclosed modulators, reporting their potency, their mechanism of action and their eventual use in clinical and preclinical studies.
Collapse
Affiliation(s)
- Alessandra Feoli
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Monica Viviano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Alessandra Cipriano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Ciro Milite
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Sabrina Castellano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Gianluca Sbardella
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| |
Collapse
|
156
|
Small-Molecule RAS Inhibitors as Anticancer Agents: Discovery, Development, and Mechanistic Studies. Int J Mol Sci 2022; 23:ijms23073706. [PMID: 35409064 PMCID: PMC8999084 DOI: 10.3390/ijms23073706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
Mutations of RAS oncogenes are responsible for about 30% of all human cancer types, including pancreatic, lung, and colorectal cancers. While KRAS1 is a pseudogene, mutation of KRAS2 (commonly known as KRAS oncogene) is directly or indirectly associated with human cancers. Among the RAS family, KRAS is the most abundant oncogene related to uncontrolled cellular proliferation to generate solid tumors in many types of cancer such as pancreatic carcinoma (over 80%), colon carcinoma (40-50%), lung carcinoma (30-50%), and other types of cancer. Once described as 'undruggable', RAS proteins have become 'druggable', at least to a certain extent, due to the continuous efforts made during the past four decades. In this account, we discuss the chemistry and biology (wherever available) of the small-molecule inhibitors (synthetic, semi-synthetic, and natural) of KRAS proteins that were published in the past decades. Commercial drugs, as well as investigational molecules from preliminary stages to clinical trials, are categorized and discussed in this study. In summary, this study presents an in-depth discussion of RAS proteins, classifies the RAS superfamily, and describes the molecular mechanism of small-molecule RAS inhibitors.
Collapse
|
157
|
Shi Y, Ge C, Fang D, Wei W, Li L, Wei Q, Yu H. NCAPG facilitates colorectal cancer cell proliferation, migration, invasion and epithelial-mesenchymal transition by activating the Wnt/β-catenin signaling pathway. Cancer Cell Int 2022; 22:119. [PMID: 35292013 PMCID: PMC8922890 DOI: 10.1186/s12935-022-02538-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/01/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The condensation complex gene non-SMC condensin I complex subunit G(NCAPG), a cell cycle-associated condensin, is over-expressed in various cancers. However, its biological function in colorectal cancer (CRC) has yet to be deciphered. In this study, we investigated the role of NCAPG in CRC progression. METHODS Tissues and cells were used to measure NCAPG expression levels and their association with clinicopathological characteristics. NCAPG silencing and overexpression in CRC cells were used to measure its effect on proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) progression. In addition, mRNA, and protein expression levels of key EMT biomarkers were measured. The underlying mechanism of NCAPG modulating CRC progression was further explored using western blotting, co-immunoprecipitation (CO-IP), and immunofluorescence (IF) assays. RESULTS NCAPG was over-expressed in CRC tissues and cell lines. High expression levels were associated with differentiation levels, lymph metastasis, and vascular invasion in patients. NCAPG silencing suppressed, while NCAPG overexpression promoted the proliferative, migration, and invasive capacity of HCT116 and SW480 cells. Mechanistically, we discovered that NCAPG participated in regulating the EMT process and the Wnt/β-catenin signaling pathway to facilitate CRC invasion and metastasis. Additional experiments demonstrated that NCAPG activated the Wnt/β-catenin signaling pathway by binding to β-catenin in CRC cells. CONCLUSION NCAPG acts as an oncogene involved in the development and progression of CRC by binding to β-catenin to activate the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yanlong Shi
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Chang Ge
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Debao Fang
- School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, 230000, Anhui, China
| | - Wei Wei
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Li Li
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Qian Wei
- School of Nursing, Anhui Medical University, HeFei, 230000, Anhui, China
| | - Hongzhu Yu
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, 236000, Anhui, China.
| |
Collapse
|
158
|
The role of RNA binding proteins in hepatocellular carcinoma. Adv Drug Deliv Rev 2022; 182:114114. [PMID: 35063534 DOI: 10.1016/j.addr.2022.114114] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/02/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of overall cancer deaths worldwide with limited therapeutic options. Due to the heterogeneity of HCC pathogenesis, the molecular mechanisms underlying HCC development are not fully understood. Emerging evidence indicates that RNA-binding proteins (RBPs) play a vital role throughout hepatocarcinogenesis. Thus, a deeper understanding of how RBPs contribute to HCC progression will provide new tools for early diagnosis and prognosis of this devastating disease. In this review, we summarize the tumor suppressive and oncogenic roles of RBPs and their roles in hepatocarcinogenesis. The diagnostic and therapeutic potential of RBPs in HCC, including their limitations, are also discussed.
Collapse
|
159
|
Mitochondrial Function Differences between Tumor Tissue of Human Metastatic and Premetastatic CRC. BIOLOGY 2022; 11:biology11020293. [PMID: 35205159 PMCID: PMC8869310 DOI: 10.3390/biology11020293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/28/2022] [Accepted: 02/09/2022] [Indexed: 12/25/2022]
Abstract
Simple Summary Metastasis is an important cause of death from colorectal cancer (CRC). Mitochondria, which are important organelles of cells, play a key role in the metastatic transformation of cancer cells. We aimed to evaluate the adaptations associated with mitochondrial function in tumor tissues from advanced stages of human CRC and whether they could ultimately be used as a therapeutic target in metastatic CRC. We have compared the mitochondrial functionality parameters in tumor tissue samples and the normal adjacent tissue of advanced CRC patients with no radio- or chemotherapy treatment before surgery. Notable differences in mitochondrial functionality were detected between the samples of adjacent tissue versus tumor tissue from metastatic CRC patients. These findings suggest a shift in the mitochondrial function profile occurring in tumor tissue once the metastatic stage has been reached. These changes contribute to promote and maintain the metastatic phenotype, with evidence of mitochondrial function impairment in tumor tissue in the metastatic stage samples. Abstract Most colorectal cancer (CRC) patients die as a consequence of metastasis. Mitochondrial dysfunction could enhance cancer development and metastatic progression. We aimed to evaluate the adaptations associated with mitochondrial function in tumor tissues from stages III and IV of human CRC and whether they could ultimately be used as a therapeutic target in metastatic colorectal cancer (mCRC). We analyzed the protein levels by Western blotting and the enzymatic activities of proteins involved in mitochondrial function, as well as the amount of mitochondrial DNA (mtDNA), by real-time PCR, analyzing samples of non-tumor adjacent tissue and tumor tissue from stages III and IV CRC patients without radio- or chemotherapy treatment prior to surgery. Our data indicate that the tumor tissue of pre-metastatic stage III CRC exhibited an oxidant metabolic profile very similar to the samples of non-tumor adjacent tissue of both stages. Notable differences in the protein expression levels of ATPase, IDH2, LDHA, and SIRT1, as well as mtDNA amount, were detected between the samples of non-tumor adjacent tissue and tumor tissue from metastatic CRC patients. These findings suggest a shift in the oxidative metabolic profile that takes place in the tumor tissue once the metastatic stage has been reached. Tumor tissue oxidative metabolism contributes to promote and maintain the metastatic phenotype, with evidence of mitochondrial function impairment in stage IV tumor tissue.
Collapse
|
160
|
Zhang D, Wu F, Song J, Meng M, Fan X, Lu C, Weng Q, Fang S, Zheng L, Tang B, Yang Y, Tu J, Xu M, Zhao Z, Ji J. A role for the NPM1/PTPN14/YAP axis in mediating hypoxia-induced chemoresistance to sorafenib in hepatocellular carcinoma. Cancer Cell Int 2022; 22:65. [PMID: 35135548 PMCID: PMC8822852 DOI: 10.1186/s12935-022-02479-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/20/2022] [Indexed: 12/21/2022] Open
Abstract
Background Tumor microenvironments are characterized by resistance to chemotherapeutic agents and radiotherapy. Hypoxia plays an important role in the development of tumor resistance, as well as the generation of metastatic potential. YAP also participates in the regulation of hypoxia-mediated chemoresistance, and is negatively regulated by protein tyrosine phosphatase non-receptor type 14 (PTPN14). Methods The PTPN14 expression in hepatocellular carcinoma (HCC) tissues were evaluated by qRT-PCR, western blot and tissue microarrays. The effect of PTPN14 on HCC progression was investigated in vitro and in vivo. Results Here, we report that PTPN14 expression was downregulated in HCC tissues and cell lines. Silencing PTPN14 significantly enhanced proliferation, migration, invasion of HepG2 cells in vitro and tumor growth and metastasis in vivo, whereas overexpression of PTPN14 significantly inhibited these abilities in SK-Hep1 cells. We also found that hypoxia-induced nuclear translocation and accumulation of PTPN14 led to resistance to sorafenib in HCC cells. Further mechanistic studies suggested that NPM1 regulates PTPN14 localization, and that NPM1 regulates YAP by retaining PTPN14 in the nucleus under hypoxic conditions. Conclusions These data suggest that a therapeutic strategy against chemoresistant HCC may involve disruption of NPM1-mediated regulation of YAP by retaining PTPN14 in the nucleus under hypoxic conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02479-0.
Collapse
Affiliation(s)
- Dengke Zhang
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Fazong Wu
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Jingjing Song
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Miaomiao Meng
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Xiaoxi Fan
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Chenying Lu
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Qiaoyou Weng
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Shiji Fang
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Liyun Zheng
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Bufu Tang
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Yang Yang
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Jianfei Tu
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Min Xu
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Zhongwei Zhao
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
| | - Jiansong Ji
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
| |
Collapse
|
161
|
Lewuillon C, Laguillaumie MO, Quesnel B, Idziorek T, Touil Y, Lemonnier L. Put in a “Ca2+ll” to Acute Myeloid Leukemia. Cells 2022; 11:cells11030543. [PMID: 35159351 PMCID: PMC8834247 DOI: 10.3390/cells11030543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 02/05/2023] Open
Abstract
Acute myeloid leukemia (AML) is a clonal disorder characterized by genetic aberrations in myeloid primitive cells (blasts) which lead to their defective maturation/function and their proliferation in the bone marrow (BM) and blood of affected individuals. Current intensive chemotherapy protocols result in complete remission in 50% to 80% of AML patients depending on their age and the AML type involved. While alterations in calcium signaling have been extensively studied in solid tumors, little is known about the role of calcium in most hematologic malignancies, including AML. Our purpose with this review is to raise awareness about this issue and to present (i) the role of calcium signaling in AML cell proliferation and differentiation and in the quiescence of hematopoietic stem cells; (ii) the interplay between mitochondria, metabolism, and oxidative stress; (iii) the effect of the BM microenvironment on AML cell fate; and finally (iv) the mechanism by which chemotherapeutic treatments modify calcium homeostasis in AML cells.
Collapse
Affiliation(s)
- Clara Lewuillon
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Marie-Océane Laguillaumie
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Bruno Quesnel
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Thierry Idziorek
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Yasmine Touil
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Loïc Lemonnier
- Univ. Lille, Inserm, U1003—PHYCEL—Physiologie Cellulaire, F-59000 Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, F-59655 Villeneuve d’Ascq, France
- Correspondence:
| |
Collapse
|
162
|
Mo J, Moye SL, McKay RM, Le LQ. Neurofibromin and suppression of tumorigenesis: beyond the GAP. Oncogene 2022; 41:1235-1251. [PMID: 35066574 PMCID: PMC9063229 DOI: 10.1038/s41388-021-02156-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disease and one of the most common inherited tumor predisposition syndromes, affecting 1 in 3000 individuals worldwide. The NF1 gene encodes neurofibromin, a large protein with RAS GTP-ase activating (RAS-GAP) activity, and loss of NF1 results in increased RAS signaling. Neurofibromin contains many other domains, and there is considerable evidence that these domains play a role in some manifestations of NF1. Investigating the role of these domains as well as the various signaling pathways that neurofibromin regulates and interacts with will provide a better understanding of how neurofibromin acts to suppress tumor development and potentially open new therapeutic avenues. In this review, we discuss what is known about the structure of neurofibromin, its interactions with other proteins and signaling pathways, its role in development and differentiation, and its function as a tumor suppressor. Finally, we discuss the latest research on potential therapeutics for neurofibromin-deficient neoplasms.
Collapse
Affiliation(s)
- Juan Mo
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Stefanie L Moye
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Renee M McKay
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- UTSW Comprehensive Neurofibromatosis Clinic, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- O'Donnell Brain Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
| |
Collapse
|
163
|
Tuntithavornwat S, Shea DJ, Wong BS, Guardia T, Lee SJ, Yankaskas CL, Zheng L, Kontrogianni-Konstantopoulos A, Konstantopoulos K. Giant obscurin regulates migration and metastasis via RhoA-dependent cytoskeletal remodeling in pancreatic cancer. Cancer Lett 2022; 526:155-167. [PMID: 34826548 PMCID: PMC9427004 DOI: 10.1016/j.canlet.2021.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/15/2021] [Accepted: 11/12/2021] [Indexed: 12/23/2022]
Abstract
Obscurins, encoded by the OBSCN gene, are giant cytoskeletal proteins with structural and regulatory roles. Large scale omics analyses reveal that OBSCN is highly mutated across different types of cancer, exhibiting a 5-8% mutation frequency in pancreatic cancer. Yet, the functional role of OBSCN in pancreatic cancer progression and metastasis has to be delineated. We herein show that giant obscurins are highly expressed in normal pancreatic tissues, but their levels are markedly reduced in pancreatic ductal adenocarcinomas. Silencing of giant obscurins in non-tumorigenic Human Pancreatic Ductal Epithelial (HPDE) cells and obscurin-expressing Panc5.04 pancreatic cancer cells induces an elongated, spindle-like morphology and faster cell migration via cytoskeletal remodeling. Specifically, depletion of giant obscurins downregulates RhoA activity, which in turn results in reduced focal adhesion density, increased microtubule growth rate and faster actin dynamics. Although OBSCN knockdown is not sufficient to induce de novo tumorigenesis, it potentiates tumor growth in a subcutaneous implantation model and exacerbates metastasis in a hemispleen murine model of pancreatic cancer metastasis, thereby shortening survival. Collectively, these findings reveal a critical role of giant obscurins as tumor suppressors in normal pancreatic epithelium whose loss of function induces RhoA-dependent cytoskeletal remodeling, and promotes cell migration, tumor growth and metastasis.
Collapse
Affiliation(s)
- Soontorn Tuntithavornwat
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Daniel J Shea
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Bin Sheng Wong
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, USA
| | - Talia Guardia
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Se Jong Lee
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Christopher L Yankaskas
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, USA
| | - Lei Zheng
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aikaterini Kontrogianni-Konstantopoulos
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA.
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
164
|
Kamitsukasa Y, Nakano K, Murakami K, Hirata K, Yamamoto M, Shimizu T, Ohto U. The structure of NLRP9 reveals a unique C-terminal region with putative regulatory function. FEBS Lett 2022; 596:876-885. [PMID: 35090055 DOI: 10.1002/1873-3468.14302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 11/07/2022]
Abstract
Nucleotide-binding and oligomerization domain-like receptors (NLRs) can form inflammasomes that activate caspase-1 and pro-interleukin-1β and induce pyroptosis. NLR family pyrin domain-containing 9 (NLRP9) forms an inflammasome and activates innate immune responses during virus infection, but little is known about this process. Here, we report the crystal and cryo-electron microscopy structures of NLRP9 in an ADP-bound state, revealing inactive and closed conformations of NLRP9 and its similarities to other structurally characterised NLRs. Moreover, we found a C-terminal region interacting with the concave surface of the leucine-rich repeat domain of NLRP9. This region is unique among NLRs and might be involved in the specific function of NLRP9. These data provide the structural basis for understanding the mechanism of NLRP9 regulation and activation.
Collapse
Affiliation(s)
- Yukie Kamitsukasa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kenji Nakano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Karin Murakami
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kunio Hirata
- RIKEN Spring-8 Center, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Masaki Yamamoto
- RIKEN Spring-8 Center, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
165
|
Felip E, Gutiérrez-Chamorro L, Gómez M, Garcia-Vidal E, Romeo M, Morán T, Layos L, Pérez-Roca L, Riveira-Muñoz E, Clotet B, Fernandez PL, Mesía R, Martínez-Cardús A, Ballana E, Margelí M. Modulation of DNA Damage Response by SAM and HD Domain Containing Deoxynucleoside Triphosphate Triphosphohydrolase (SAMHD1) Determines Prognosis and Treatment Efficacy in Different Solid Tumor Types. Cancers (Basel) 2022; 14:641. [PMID: 35158911 PMCID: PMC8833711 DOI: 10.3390/cancers14030641] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 12/31/2022] Open
Abstract
SAMHD1 is a deoxynucleotide triphosphate (dNTP) triphosphohydrolase with important roles in the control of cell proliferation and apoptosis, either through the regulation of intracellular dNTPs levels or the modulation of the DNA damage response. However, SAMHD1's role in cancer evolution is still unknown. We performed the first in-depth study of SAMHD1's role in advanced solid tumors, by analyzing samples of 128 patients treated with chemotherapy agents based on platinum derivatives and/or antimetabolites, developing novel in vitro knock-out models to explore the mechanisms driving SAMHD1 function in cancer. Low (or no) expression of SAMHD1 was associated with a positive prognosis in breast, ovarian, and non-small cell lung cancer (NSCLC) cancer patients. A predictive value was associated with low-SAMHD1 expression in NSCLC and ovarian patients treated with antimetabolites in combination with platinum derivatives. In vitro, SAMHD1 knock-out cells showed increased γ-H2AX and apoptosis, suggesting that SAMHD1 depletion induces DNA damage leading to cell death. In vitro treatment with platinum-derived drugs significantly enhanced γ-H2AX and apoptotic markers expression in knock-out cells, indicating a synergic effect of SAMHD1 depletion and platinum-based treatment. SAMHD1 expression represents a new strong prognostic and predictive biomarker in solid tumors and, thus, modulation of the SAMHD1 function may constitute a promising target for the improvement of cancer therapy.
Collapse
Affiliation(s)
- Eudald Felip
- AIDS Research Institute-IrsiCaixa, IGTP (Health Research Institute Germans Trias i Pujol), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.F.); (L.G.-C.); (E.G.-V.); (E.R.-M.); (B.C.)
- Medical Oncology Department, Catalan Institute of Oncology-Badalona, Hospital Germans Trias i Pujol (HGTiP), 08916 Badalona, Spain; (M.R.); (T.M.); (L.L.); (R.M.); (A.M.-C.)
- (B-ARGO) Badalona Applied Research Group in Oncology, (IGTP), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Departament de Medicina, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Lucía Gutiérrez-Chamorro
- AIDS Research Institute-IrsiCaixa, IGTP (Health Research Institute Germans Trias i Pujol), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.F.); (L.G.-C.); (E.G.-V.); (E.R.-M.); (B.C.)
| | - Maica Gómez
- Department of Pathology, IGTP (Health Research Institute Germans Trias i Pujol), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (M.G.); (P.L.F.)
| | - Edurne Garcia-Vidal
- AIDS Research Institute-IrsiCaixa, IGTP (Health Research Institute Germans Trias i Pujol), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.F.); (L.G.-C.); (E.G.-V.); (E.R.-M.); (B.C.)
| | - Margarita Romeo
- Medical Oncology Department, Catalan Institute of Oncology-Badalona, Hospital Germans Trias i Pujol (HGTiP), 08916 Badalona, Spain; (M.R.); (T.M.); (L.L.); (R.M.); (A.M.-C.)
- (B-ARGO) Badalona Applied Research Group in Oncology, (IGTP), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Departament de Medicina, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Teresa Morán
- Medical Oncology Department, Catalan Institute of Oncology-Badalona, Hospital Germans Trias i Pujol (HGTiP), 08916 Badalona, Spain; (M.R.); (T.M.); (L.L.); (R.M.); (A.M.-C.)
- (B-ARGO) Badalona Applied Research Group in Oncology, (IGTP), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Departament de Medicina, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Laura Layos
- Medical Oncology Department, Catalan Institute of Oncology-Badalona, Hospital Germans Trias i Pujol (HGTiP), 08916 Badalona, Spain; (M.R.); (T.M.); (L.L.); (R.M.); (A.M.-C.)
- (B-ARGO) Badalona Applied Research Group in Oncology, (IGTP), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Departament de Medicina, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Laia Pérez-Roca
- Banc de Tumors, IGTP (Health Research Institute Germans Trias i Pujol), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain;
| | - Eva Riveira-Muñoz
- AIDS Research Institute-IrsiCaixa, IGTP (Health Research Institute Germans Trias i Pujol), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.F.); (L.G.-C.); (E.G.-V.); (E.R.-M.); (B.C.)
| | - Bonaventura Clotet
- AIDS Research Institute-IrsiCaixa, IGTP (Health Research Institute Germans Trias i Pujol), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.F.); (L.G.-C.); (E.G.-V.); (E.R.-M.); (B.C.)
| | - Pedro Luis Fernandez
- Department of Pathology, IGTP (Health Research Institute Germans Trias i Pujol), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (M.G.); (P.L.F.)
| | - Ricard Mesía
- Medical Oncology Department, Catalan Institute of Oncology-Badalona, Hospital Germans Trias i Pujol (HGTiP), 08916 Badalona, Spain; (M.R.); (T.M.); (L.L.); (R.M.); (A.M.-C.)
- (B-ARGO) Badalona Applied Research Group in Oncology, (IGTP), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Departament de Medicina, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Anna Martínez-Cardús
- Medical Oncology Department, Catalan Institute of Oncology-Badalona, Hospital Germans Trias i Pujol (HGTiP), 08916 Badalona, Spain; (M.R.); (T.M.); (L.L.); (R.M.); (A.M.-C.)
- (B-ARGO) Badalona Applied Research Group in Oncology, (IGTP), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Departament de Medicina, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Ester Ballana
- AIDS Research Institute-IrsiCaixa, IGTP (Health Research Institute Germans Trias i Pujol), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.F.); (L.G.-C.); (E.G.-V.); (E.R.-M.); (B.C.)
| | - Mireia Margelí
- Medical Oncology Department, Catalan Institute of Oncology-Badalona, Hospital Germans Trias i Pujol (HGTiP), 08916 Badalona, Spain; (M.R.); (T.M.); (L.L.); (R.M.); (A.M.-C.)
- (B-ARGO) Badalona Applied Research Group in Oncology, (IGTP), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Departament de Medicina, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| |
Collapse
|
166
|
Philipovskiy A, Ghafouri R, Dwivedi AK, Alvarado L, McCallum R, Maegawa F, Konstantinidis IT, Hakim N, Shurmur S, Awasthi S, Gaur S, Corral J. Association Between Tumor Mutation Profile and Clinical Outcomes Among Hispanic-Latino Patients With Metastatic Colorectal Cancer. Front Oncol 2022; 11:772225. [PMID: 35141142 PMCID: PMC8819001 DOI: 10.3389/fonc.2021.772225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
In the United States, CRC is the third most common type of cancer and the second leading cause of cancer-related death. Although the incidence of CRC among the Hispanic population has been declining, recently, a dramatic increase in CRC incidents among HL younger than 50 years of age has been reported. The incidence of early-onset CRC is more significant in HL population (45%) than in non-Hispanic Whites (27%) and African-Americans (15%). The reason for these racial disparities and the biology of CRC in the HL are not well understood. We performed this study to understand the biology of the disease in HL patients. We analyzed formalin-fixed paraffin-embedded tumor tissue samples from 52 HL patients with mCRC. We compared the results with individual patient clinical histories and outcomes. We identified commonly altered genes in HL patients (APC, TP53, KRAS, GNAS, and NOTCH). Importantly, mutation frequencies in the APC gene were significantly higher among HL patients. The combination of mutations in the APC, NOTCH, and KRAS genes in the same tumors was associated with a higher risk of progression after first-line of chemotherapy and overall survival. Our data support the notion that the molecular drivers of CRC might be different in HL patients.
Collapse
Affiliation(s)
- Alexander Philipovskiy
- Department of Internal Medicine, Division of Hematology-Oncology, Texas Tech University Health Sciences Center Lubbock, Lubbock, TX, United States
- *Correspondence: Alexander Philipovskiy,
| | - Reshad Ghafouri
- Department of Internal Medicine, Division of Hematology-Oncology, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Alok Kumar Dwivedi
- Department of Molecular and Translational Medicine, Division of Biostatistics & Epidemiology, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Luis Alvarado
- Department of Molecular and Translational Medicine, Division of Biostatistics & Epidemiology, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Richard McCallum
- Department of Internal Medicine, Division of Gastroenterology, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Felipe Maegawa
- Department of Surgery, Southern Arizona VA Health Care System, University of Arizona, Tucson, AZ, United States
| | - Ioannis T. Konstantinidis
- Department of Surgery, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Nawar Hakim
- Department of Pathology, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Scott Shurmur
- Department of Internal Medicine, Division of Hematology-Oncology, Texas Tech University Health Sciences Center Lubbock, Lubbock, TX, United States
| | - Sanjay Awasthi
- Department of Internal Medicine, Division of Hematology-Oncology, Texas Tech University Health Sciences Center Lubbock, Lubbock, TX, United States
| | - Sumit Gaur
- Department of Internal Medicine, Division of Hematology-Oncology, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Javier Corral
- Department of Internal Medicine, Division of Hematology-Oncology, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| |
Collapse
|
167
|
Yuan J, Liu T, Zhang Y. An Iron Metabolism-Related Gene Signature for the Prognosis of Colon Cancer. Front Cell Dev Biol 2022; 9:786684. [PMID: 35118074 PMCID: PMC8804292 DOI: 10.3389/fcell.2021.786684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022] Open
Abstract
As an essential microelement, the iron ion is involved in cell proliferation, metabolism, and differentiation. Iron metabolism plays a crucial role in the occurrence and development of colon adenocarcinoma (COAD). In this study, univariate and multivariate Cox regression, and least absolute shrinkage and selection operator analyses were conducted to construct the gene signature, based on a dataset from The Cancer Genome Atlas. We identified the prognostic value of two iron metabolism-related genes [SLC39A8 (encoding solute carrier family 39 member 8) and SLC48A1 (encoding solute carrier family 48 member 1)] in COAD. A nomogram model was established to predict the overall survival of patients with COAD. Functional analysis showed that the tumor microenvironment and immune cell infiltrate were different between the low risk and high risk subgroups. This study verified that the iron metabolism-related gene signature (SLC39A8 and SLC48A1) could be used as a prognostic biomarker for patients with COAD.
Collapse
|
168
|
Vougiouklakis T, Zhu K, Vasudevaraja V, Serrano J, Shen G, Linn RL, Feng X, Chiang S, Barroeta JE, Thomas KM, Schwartz LE, Shukla PS, Malpica A, Oliva E, Cotzia P, DeLair DF, Snuderl M, Jour G. Integrated analysis of ovarian juvenile granulosa cell tumors reveals distinct epigenetic signatures and recurrent TERT rearrangements. Clin Cancer Res 2022; 28:1724-1733. [PMID: 35031544 DOI: 10.1158/1078-0432.ccr-21-3394] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/01/2021] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Adult granulosa cell tumor (AGCT) is characterized by the somatic FOXL2 p.C134W mutation, and recurrences have been associated with TERT promoter and KMT2D-truncating mutations. Conversely, the molecular underpinnings of the rare juvenile granulosa cell tumor (JGCT) have not been well elucidated. To this end, we applied a tumor-only integrated approach to investigate the genomic, transcriptomic, and epigenomic landscape of 31 JGCTs to identify putative oncogenic drivers. EXPERIMENTAL DESIGN Multipronged analyses of 31 JGCTs were performed utilizing a clinically validated next-generation sequencing (NGS)-panel targeting 580 cancer-related genes for genomic interrogation, in addition to targeted RNA NGS for transcriptomic exploration. Genome-wide DNA methylation profiling was conducted using an Infinium Methylation EPIC array targeting 866,562 CpG methylation sites. RESULTS We identified frequent KMT2C-truncating mutations along with other mutated genes implicated in the switch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex, in addition to previously reported hotspot AKT1 and DICER1 mutations. Targeted transcriptome sequencing revealed recurrent TERT rearrangements (13%) involving partners CLPTM1L or DROSHA, and differential gene expression analysis showed FGFR1 upregulation in the TERT non-rearranged JGCTs under direct promoter control. Genome-wide DNA methylation rendered a clear delineation between AGCTs and JGCTs at the epigenomic level further supporting its diagnostic utility in distinguishing among these tumors. CONCLUSIONS This is the largest comprehensive molecular study of JGCTs, where we further expand our current understanding of JGCT pathogenesis and demonstrate putative oncogenic drivers and TERT rearrangements in a subset of tumors. Our findings further offer insights into possible targeted therapies in a rare entity.
Collapse
Affiliation(s)
| | - Kelsey Zhu
- pathology, New York University Langone Medical Center
| | | | | | | | - Rebecca L Linn
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia
| | | | - Sarah Chiang
- Department of Pathology, Memorial Sloan Kettering Cancer Center
| | | | | | - Lauren E Schwartz
- Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania
| | | | - Anais Malpica
- Department of Pathology, The University of Texas MD Anderson Cancer Center
| | - Esther Oliva
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School
| | | | | | | | | |
Collapse
|
169
|
Lee SK, Kweon YC, Lee AR, Lee YY, Park CY. Metastasis enhancer PGRMC1 boosts store-operated Ca2+ entry by uncoiling Ca2+ sensor STIM1 for focal adhesion turnover and actomyosin formation. Cell Rep 2022; 38:110281. [DOI: 10.1016/j.celrep.2021.110281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/05/2021] [Accepted: 12/23/2021] [Indexed: 12/22/2022] Open
|
170
|
Xiang XS, Li PC, Wang WQ, Liu L. Histone deacetylases: A novel class of therapeutic targets for pancreatic cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188676. [PMID: 35016922 DOI: 10.1016/j.bbcan.2022.188676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is the seventh leading cause of cancer death worldwide, with a low 5-year survival rate. Novel agents are urgently necessary to treat the main pathological type, known as pancreatic ductal carcinoma (PDAC). The dysregulation of histone deacetylases (HDACs) has been identified in association with PDAC, which can be more easily targeted by small molecular inhibitors than gene mutations and may represent a therapeutic breakthrough for PDAC. However, the contributions of HDACs to PDAC remain controversial, and pharmacokinetic challenges have limited the application of HDAC inhibitors (HDACis) in PDAC. This review summarizes the mechanisms associated with success and failure of HDACis in PDAC and discusses the recent progress made in HDACi development and application, such as combination therapies designed to enhance efficacy. More precise strategies involving HDACis might eventually improve the outcomes of PDAC treatment.
Collapse
Affiliation(s)
- Xue-Song Xiang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng-Cheng Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
171
|
Bou Malhab LJ, Abdel-Rahman WM. Obesity and Inflammation: Colorectal Cancer Engines. Curr Mol Pharmacol 2022; 15:620-646. [PMID: 34488607 DOI: 10.2174/1874467214666210906122054] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022]
Abstract
The prevalence of obesity continues to increase to the extent that it became a worldwide pandemic. An accumulating body of evidence has associated obesity with the development of different types of cancer, including colorectal cancer, which is a notorious disease with a high mortality rate. At the molecular level, colorectal cancer is a heterogenous disease characterized by a myriad of genetic and epigenetic alterations associated with various forms of genomic instability (detailed in Supplementary Materials). Recently, the microenvironment has emerged as a major factor in carcinogenesis. Our aim is to define the different molecular alterations leading to the development of colorectal cancer in obese patients with a focus on the role of the microenvironment in carcinogenesis. We also highlight all existent molecules in clinical trials that target the activated pathways in obesity-associated colorectal cancer, whether used as single treatments or in combination. Obesity predisposes to colorectal cancer via creating a state of chronic inflammation with dysregulated adipokines, inflammatory mediators, and other factors such as immune cell infiltration. A unifying theme in obesity-mediated colorectal cancer is the activation of the PI3K/AKT, mTOR/MAPK, and STAT3 signaling pathways. Different inhibitory molecules towards these pathways exist, increasing the therapeutic choice of obesity-associated colon cancer. However, obese patients are more likely to suffer from chemotherapy overdosing. Preventing obesity through maintaining a healthy and active lifestyle remains to be the best remedy.
Collapse
Affiliation(s)
- Lara J Bou Malhab
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Wael M Abdel-Rahman
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
172
|
El Ghamrasni S, Quevedo R, Hawley J, Mazrooei P, Hanna Y, Cirlan I, Zhu H, Bruce JP, Oldfield LE, Yang SYC, Guilhamon P, Reimand J, Cescon DW, Done SJ, Lupien M, Pugh TJ. Mutations in Noncoding Cis-Regulatory Elements Reveal Cancer Driver Cistromes in Luminal Breast Cancer. Mol Cancer Res 2022; 20:102-113. [PMID: 34556523 PMCID: PMC9398156 DOI: 10.1158/1541-7786.mcr-21-0471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/31/2021] [Accepted: 09/17/2021] [Indexed: 01/07/2023]
Abstract
Whole-genome sequencing of primary breast tumors enabled the identification of cancer driver genes and noncoding cancer driver plexuses from somatic mutations. However, differentiating driver from passenger events among noncoding genetic variants remains a challenge. Herein, we reveal cancer-driver cis-regulatory elements linked to transcription factors previously shown to be involved in development of luminal breast cancers by defining a tumor-enriched catalogue of approximately 100,000 unique cis-regulatory elements from 26 primary luminal estrogen receptor (ER)+ progesterone receptor (PR)+ breast tumors. Integrating this catalog with somatic mutations from 350 publicly available breast tumor whole genomes, we uncovered cancer driver cistromes, defined as the sum of binding sites for a transcription factor, for ten transcription factors in luminal breast cancer such as FOXA1 and ER, nine of which are essential for growth in breast cancer with four exclusive to the luminal subtype. Collectively, we present a strategy to find cancer driver cistromes relying on quantifying the enrichment of noncoding mutations over cis-regulatory elements concatenated into a functional unit. IMPLICATIONS: Mapping the accessible chromatin of luminal breast cancer led to discovery of an accumulation of mutations within cistromes of transcription factors essential to luminal breast cancer. This demonstrates coopting of regulatory networks to drive cancer and provides a framework to derive insight into the noncoding space of cancer.
Collapse
Affiliation(s)
- Samah El Ghamrasni
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Rene Quevedo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - James Hawley
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Parisa Mazrooei
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Genentech, South San Francisco, California
| | - Youstina Hanna
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Iulia Cirlan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Helen Zhu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Jeff P Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Leslie E Oldfield
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - S Y Cindy Yang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Paul Guilhamon
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jüri Reimand
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Dave W Cescon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Susan J Done
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| |
Collapse
|
173
|
Singh I, Lele TP. Nuclear Morphological Abnormalities in Cancer: A Search for Unifying Mechanisms. Results Probl Cell Differ 2022; 70:443-467. [PMID: 36348118 PMCID: PMC9722227 DOI: 10.1007/978-3-031-06573-6_16] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Irregularities in nuclear shape and/or alterations to nuclear size are a hallmark of malignancy in a broad range of cancer types. Though these abnormalities are commonly used for diagnostic purposes and are often used to assess cancer progression in the clinic, the mechanisms through which they occur are not well understood. Nuclear size alterations in cancer could potentially arise from aneuploidy, changes in osmotic coupling with the cytoplasm, and perturbations to nucleocytoplasmic transport. Nuclear shape changes may occur due to alterations to cell-generated mechanical stresses and/or alterations to nuclear structural components, which balance those stresses, such as the nuclear lamina and chromatin. A better understanding of the mechanisms underlying abnormal nuclear morphology and size may allow the development of new therapeutics to target nuclear aberrations in cancer.
Collapse
Affiliation(s)
- Ishita Singh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Tanmay P. Lele
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA,Department of Chemical Engineering, University of Florida, Gainesville, FL, USA,Department of Translational Medical Sciences, Texas A&M University, Houston, TX, USA
| |
Collapse
|
174
|
Wang Y, Xie Y, Sun B, Guo Y, Song L, Mohammednur DE, Zhao C. The degradation of Rap1GAP via E6AP-mediated ubiquitin-proteasome pathway is associated with HPV16/18-infection in cervical cancer cells. Infect Agent Cancer 2021; 16:71. [PMID: 34952616 PMCID: PMC8710002 DOI: 10.1186/s13027-021-00409-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cervical cancers are closely associated with persistent high-risk human papillomaviruses (HR HPV) infection. The main mechanism involves the targeting of tumor suppressors, such as p53 and pRB, for degradation by HR HPV-encoded oncoproteins, thereby leading to tumorigenesis. Rap1GAP, a tumor suppressor gene, is down-regulated in many cancers. Previous studies have revealed that down-regulation of Rap1GAP is correlated with HPV16/18 infection in cervical cancer. However, the molecular mechanism remains unclear. In this study, we aimed to address the degradation pathway of Rap1GAP in HPV-positive cervical cancer cells. METHODS HPV-positive (HeLa and SiHa) and negative (C33A) cervical cancer cells were used to analyze the pathways of Rap1GAP degradation. MG132 (carbobenzoxy-leucyl-leucyl-leucine) was used to inhibit protein degradation by proteasome. Co-immunoprecipitation (co-IP) was used to detect the interaction between Rap1GAP and E6AP. siRNA for E6AP was used to silence the expression of E6AP. Rapamycin was used to induce cell autophagy. Western blotting was used to check the levels of proteins. RESULTS Following treatment with MG132, the levels of Rap1GAP were increased in the HR HPV-positive HeLa and SiHa cells, but not in the HPV-negative C33A cells. Co-immunoprecipitation assay revealed ubiquitinated Rap1GAP protein in HeLa and SiHa cells, but not in C33A cells. E6-associated protein (E6AP) mediated the ubiquitination of Rap1GAP by binding to it in HeLa and SiHa cells, but not in C33A cells. However, the levels of Rap1GAP were decreased in HeLa and SiHa cells after knocking down E6AP by siRNA. Silencing of E6AP did not affect the levels of Rap1GAP in C33A cells. Autophagy marker p62 was decreased and LC3 II/LC3 I was increased after knocking down E6AP in HeLa cells, but not in C33A cells. The levels of Rap1GAP were decreased after treating the cells with rapamycin to induce cell autophagy in HeLa and C33A cells. CONCLUSION Rap1GAP may be degraded by autophagy in cervical cancer cells, but HPV infection can switch the degradation pathway from autophagy to E6AP-mediated ubiquitin-proteasome degradation. E6AP may be a key component of the switch.
Collapse
Affiliation(s)
- Yinghui Wang
- College of Laboratory Medicine, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning, China
- Liaoning Provincial Center for Disease Control and Prevention, Shenyang, China
| | - Yihang Xie
- College of Laboratory Medicine, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning, China
| | - Boxuan Sun
- College of Laboratory Medicine, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning, China
| | - Yuwei Guo
- College of Laboratory Medicine, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning, China
| | - Ling Song
- College of Laboratory Medicine, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning, China
- Foruth Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dawit Eman Mohammednur
- College of Laboratory Medicine, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning, China
| | - Chunyan Zhao
- College of Laboratory Medicine, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning, China.
| |
Collapse
|
175
|
Qadir J, Majid S, Khan MS, Rashid F, Wani MD, Bhat SA. Implication of ARID1A Undercurrents and PDL1, TP53 Overexpression in Advanced Gastric Cancer. Pathol Oncol Res 2021; 27:1609826. [PMID: 34924820 PMCID: PMC8677663 DOI: 10.3389/pore.2021.1609826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022]
Abstract
AT-rich interactive domain-containing protein 1A (ARID1A), TP53 and programmed cell death-ligand 1 (PDL1) are involved in several protein interactions that regulate the expression of various cancer-related genes involved in the progression of the cell cycle, cell proliferation, DNA repair, and apoptosis. In addition, gene expression analysis identified some common downstream targets of ARID1A and TP53. It has been established that tumors formed by ARID1A-deficient cancer cells exhibited elevated PDL1 expression. However, the aberrations in these molecules have not been studied in this population especially in Gastric Cancer (GC). In this backdrop we aimed to investigate the role of the ARID1A mutation and expression of ARID1A, TP53 and PDL1 genes in the etiopathogenesis of Gastric Cancer (GC) in the ethnic Kashmiri population (North India). The study included 103 histologically confirmed GC cases. The mutations, if any, in exon-9 of ARID1A gene was analysed by Polymerase Chain Reaction (PCR) followed by Sanger sequencing. The mRNA expression of the ARID1A, TP53 and PDL1 genes was analysed by Quantitative real time-PCR (qRT-PCR). We identified a nonsense mutation (c.3219; C > T) in exon-9 among two GC patients (∼2.0%), which introduces a premature stop codon at protein position 1073. The mRNA expression of the ARID1A, TP53 and PDL1 gene was significantly reduced in 25.3% and elevated in 47.6 and 39.8% of GC cases respectively with a mean fold change of 0.63, 2.93 and 2.43. The data revealed that reduced mRNA expression of ARID1A and elevated mRNA expression of TP53 and PDL1 was significantly associated with the high-grade and advanced stage of cancer. Our study proposes that ARAD1A under-expression and overexpression of TP53 and PDL1 might be crucial for tumor progression with TP53 and PDL1 acting synergistically.
Collapse
Affiliation(s)
- Jasiya Qadir
- Department of Biochemistry, Government Medical College Srinagar and Associated Hospitals, Srinagar, India
| | - Sabhiya Majid
- Department of Biochemistry, Government Medical College Srinagar and Associated Hospitals, Srinagar, India
| | - Mosin Saleem Khan
- Department of Biochemistry, Government Medical College Srinagar and Associated Hospitals, Srinagar, India
| | - Fouzia Rashid
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, India
| | - Mumtaz Din Wani
- Department of Surgery, Government Medical College Srinagar and Associated Hospitals, Srinagar, India
| | | |
Collapse
|
176
|
Cadoux-Hudson T, Schofield CJ, McCullagh JS. Isocitrate dehydrogenase gene variants in cancer and their clinical significance. Biochem Soc Trans 2021; 49:2561-2572. [PMID: 34854890 PMCID: PMC8786286 DOI: 10.1042/bst20210277] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022]
Abstract
Human isocitrate dehydrogenase (IDH) genes encode for the IDH1, 2 & 3 isoenzymes which catalyse the formation of 2-oxoglutarate from isocitrate and are essential for normal mammalian metabolism. Although mutations in these genes in cancer were long thought to lead to a 'loss of function', combined genomic and metabolomic studies led to the discovery that a common IDH 1 mutation, present in low-grade glioma and acute myeloid leukaemia (AML), yields a variant (R132H) with a striking change of function leading to the production of (2R)-hydroxyglutarate (2HG) which consequently accumulates in large quantities both within and outside cells. Elevated 2HG is proposed to promote tumorigenesis, although the precise mechanism by which it does this remains uncertain. Inhibitors of R132H IDH1, and other subsequently identified cancer-linked 2HG producing IDH variants, are approved for clinical use in the treatment of chemotherapy-resistant AML, though resistance enabled by additional substitutions has emerged. In this review, we provide a current overview of cancer linked IDH mutations focussing on their distribution in different cancer types, the effects of substitution mutations on enzyme activity, the mode of action of recently developed inhibitors, and their relationship with emerging resistance-mediating double mutations.
Collapse
Affiliation(s)
- Thomas Cadoux-Hudson
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Institute for Antimicrobial Research, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Institute for Antimicrobial Research, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - James S.O. McCullagh
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Institute for Antimicrobial Research, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
177
|
Onglao W, Khew-Goodall Y, Belle L, Lonic A. Aberrant post-translational modifications in endosomal trafficking are potential therapeutic targets to avert therapy resistance in solid cancers: Dysregulation of PTM-regulated endosomal interactions presents an opportunity to block oncogenic signalling from multiple receptors by targeting common trafficking pathways: Dysregulation of PTM-regulated endosomal interactions presents an opportunity to block oncogenic signalling from multiple receptors by targeting common trafficking pathways. Bioessays 2021; 44:e2100192. [PMID: 34913509 DOI: 10.1002/bies.202100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 11/12/2022]
Abstract
Drugs targeting a single TK/RTK in the treatment of solid cancers has not had the same success seen in blood cancers. This is, in part, due to acquired resistance in solid cancers arising from a range of mechanisms including the upregulation of compensatory RTK signalling. Rather than attempting to inhibit individual compensatory RTK-requiring knowledge of which RTKs are upregulated in any given tumour-strategies to universally inhibit signalling from multiple RTKs may represent an effective alternative. Endosomal trafficking of RTKs is a common conduit that can regulate signalling from multiple RTKs simultaneously. As such, we posit that targeting endosomal trafficking-in particular, aberrant post-translational modifications in cancers that contribute to dysregulated endosomal trafficking-could inhibit oncogenic signalling driven by multiple RTKs and pave the way for the development of a novel class of inhibitors that shift the trafficking of RTKs to inhibit tumour growth.
Collapse
Affiliation(s)
- Winona Onglao
- Centre for Cancer Biology, An Alliance of SA Pathology and the University of South Australia, Adelaide, South Australia, Australia.,Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Yeesim Khew-Goodall
- Centre for Cancer Biology, An Alliance of SA Pathology and the University of South Australia, Adelaide, South Australia, Australia.,Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,The Discipline of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Leila Belle
- Centre for Cancer Biology, An Alliance of SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Ana Lonic
- Centre for Cancer Biology, An Alliance of SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
178
|
Walker WH, Kaper AL, Meléndez-Fernández OH, Bumgarner JR, Liu JA, Walton JC, DeVries AC, Nelson RJ. Time-restricted feeding alters the efficiency of mammary tumor growth. Chronobiol Int 2021; 39:535-546. [PMID: 34894935 DOI: 10.1080/07420528.2021.2011306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Disruption of circadian rhythms has detrimental host consequences. Indeed, both clinical and foundational science demonstrate a clear relationship between disruption of circadian rhythms and cancer initiation and progression. Because timing of food intake can act as a zeitgeber (i.e., entrainment signal) for the circadian clock, and most individuals in the developed world have access to food at all times of the day in a "24/7" society, we sought to determine the effects of timing of food intake on mammary tumor growth. We hypothesized that restricting access to food to during the inactive phase would accelerate tumor growth. Adult female Balb/C mice received a unilateral orthotopic injection of murine mammary carcinoma 4T1 cells into the ninth inguinal mammary gland. Beginning on the day of tumor injection and continuing until the end of the experiment, mice were food restricted to their active phase (ZT12 (lights off)- ZT0 (lights on), inactive phase (ZT0 - ZT12), or had ad libitum access to food. Mice that were food restricted to their inactive phase displayed a significant increase in body mass on days 7 and 14 of tumor growth relative to active phase or ad libitum fed mice. Additionally, mice fed during their inactive phase demonstrated a 20% reduction in food consumption relative to mice fed during their active phase and a 17% reduction in food consumption relative to ab libitum fed mice. Tumor volume was not significantly different between groups. However, food restricting mice to their inactive phase increased mammary tumor growth efficiency (i.e., mg of tumor mass per gram of food intake) relative to mice fed during the active phase and approached significance (p = .06) relative to ad libitum fed mice. To determine a potential explanation for the increased tumor growth efficiency, we examined rhythms of activity and body temperature. Mice fed during the inactive phase displayed significantly disrupted daily activity and body temperature rhythms relative to both other feeding regimens. Together, these data demonstrate that improperly timed food intake can have detrimental consequences on mammary tumor growth likely via disrupted circadian rhythms.
Collapse
Affiliation(s)
- William H Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia, USA
| | - Alexis L Kaper
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia, USA
| | | | - Jacob R Bumgarner
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia, USA
| | - Jennifer A Liu
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia, USA
| | - James C Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia, USA
| | - A Courtney DeVries
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia, USA.,Department of Medicine, Division of Oncology/Hematology, West Virginia, USA.,WVU Cancer Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia, USA
| |
Collapse
|
179
|
Tilli TM. Precision Medicine: Technological Impact into Breast Cancer Diagnosis, Treatment and Decision Making. J Pers Med 2021; 11:jpm11121348. [PMID: 34945820 PMCID: PMC8703478 DOI: 10.3390/jpm11121348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common cancer in women, impacting 2.1 million women each year. The number of publications on BC is much higher than for any other type of tumor, as well as the number of clinical trials. One of the consequences of all this information is reflected in the number of approved drugs. This review aims to discuss the impact of technological advances in the diagnosis, treatment and decision making of breast cancer and the prospects for the next 10 years. Currently, the literature has described personalized medicine, but what will the treatment be called for in the coming years?
Collapse
Affiliation(s)
- Tatiana Martins Tilli
- Translational Oncology Platform, Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
180
|
Liu JY, Li B, Xu EP, Zhong YS. Research development and potential therapeutic value of m6A modification in occurrence and progression of colorectal tumors. Shijie Huaren Xiaohua Zazhi 2021; 29:1373-1381. [DOI: 10.11569/wcjd.v29.i23.1373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent years, significant breakthroughs have been made in the study of genomics and proteomics, as vital compoments in epigenetic modifications, in the development of malignant tumors. Thereby, researchers have focused on the modification of RNA. N6-methyladenosine (m6A) is the major internal epigenetic modification in eukaryotic mRNA, and it is dynamic, reversible, and regulated by methylation enzymes (writers), demethylases (erasers), and recognition proteins (readers) that preferentially recognize m6A modifications. Thus, m6A regulates RNA transport, localization, translation, and decay, and plays a tumor promoting or anti-cancer role. M6A provides potential therapeutic targets for a variety of malignancies. In this review, we will summarize the biological characteristics and regulatory mechanisms of m6A RNA modification, and discuss the role of m6A modification in colorectal carcinogenesis and development. Moreover, related target therapies are discussed, aiming to provide a basis for novel biomarkers and therapeutic targets in the future.
Collapse
Affiliation(s)
- Jing-Yi Liu
- Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China,Shanghai Center of Engineering Technology, Diagnosis, and Treatment in Endoscopy, Shanghai 200032, China
| | - Bing Li
- Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China,Shanghai Center of Engineering Technology, Diagnosis, and Treatment in Endoscopy, Shanghai 200032, China
| | - En-Pan Xu
- Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China,Shanghai Center of Engineering Technology, Diagnosis, and Treatment in Endoscopy, Shanghai 200032, China
| | - Yun-Shi Zhong
- Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China,Shanghai Center of Engineering Technology, Diagnosis, and Treatment in Endoscopy, Shanghai 200032, China
| |
Collapse
|
181
|
Chen J, Ding J, Huang W, Sun L, Chen J, Liu Y, Zhan Q, Gao G, He X, Qiu G, Long P, Wei L, Lu Z, Sun Y. DNASE1L3 as a Novel Diagnostic and Prognostic Biomarker for Lung Adenocarcinoma Based on Data Mining. Front Genet 2021; 12:699242. [PMID: 34868195 PMCID: PMC8636112 DOI: 10.3389/fgene.2021.699242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Previous researches have highlighted that low-expressing deoxyribonuclease1-like 3 (DNASE1L3) may play a role as a potential prognostic biomarker in several cancers. However, the diagnosis and prognosis roles of DNASE1L3 gene in lung adenocarcinoma (LUAD) remain largely unknown. This research aimed to explore the diagnosis value, prognostic value, and potential oncogenic roles of DNASE1L3 in LUAD. We performed bioinformatics analysis on LUAD datasets downloaded from TCGA (The Cancer Genome Atlas) and GEO (Gene Expression Omnibus), and jointly analyzed with various online databases. We found that both the mRNA and protein levels of DNASE1L3 in patients with LUAD were noticeably lower than that in normal tissues. Low DNASE1L3 expression was significantly associated with higher pathological stages, T stages, and poor prognosis in LUAD cohorts. Multivariate analysis revealed that DNASE1L3 was an independent factor affecting overall survival (HR = 0.680, p = 0.027). Moreover, decreased DNASE1L3 showed strong diagnostic efficiency for LUAD. Results indicated that the mRNA level of DNASE1L3 was positively correlated with the infiltration of various immune cells, immune checkpoints in LUAD, especially with some m6A methylation regulators. In addition, enrichment function analysis revealed that the co-expressed genes may participate in the process of intercellular signal transduction and transmission. GSEA indicated that DNASE1L3 was positively related to G protein-coupled receptor ligand biding (NES = 1.738; P adjust = 0.044; FDR = 0.033) and G alpha (i) signaling events (NES = 1.635; P adjust = 0.044; FDR = 0.033). Our results demonstrated that decreased DNASE1L3 may serve as a novel diagnostic and prognostic biomarker associating with immune infiltrates in lung adenocarcinoma.
Collapse
Affiliation(s)
- Jianlin Chen
- Departments of Clinical Laboratory of Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| | - Junping Ding
- Departments of General surgery of Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| | - Wenjie Huang
- Departments of Clinical Laboratory of Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| | - Lin Sun
- Departments of Clinical Laboratory of Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| | - Jinping Chen
- Departments of Respiratory Medicine of Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| | - Yangyang Liu
- Departments of Clinical Laboratory of Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| | - Qianmei Zhan
- Departments of Clinical Laboratory of Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| | - Gan Gao
- Departments of Clinical Laboratory of Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Xiaoling He
- Department of Clinical Laboratory of People's Hospital Rong an County, Liuzhou, China
| | - Guowen Qiu
- Departments of Orthopedics of Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| | - Peiying Long
- Department of Clinical Laboratory of People's Hospital Rong an County, Liuzhou, China
| | - Lishu Wei
- Departments of Clinical Laboratory of Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| | - Zhenni Lu
- Departments of Clinical Laboratory of Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| | - Yifan Sun
- Departments of Clinical Laboratory of Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| |
Collapse
|
182
|
Wen F, Ruan S, Huang W, Chen X, Wang Y, Gu S, Liu J, Liu S, Shu P. Prognostic Value of Tumor Mutational Burden Related to Immune Infiltration in Cervical Squamous Cell Carcinoma. Front Med (Lausanne) 2021; 8:755657. [PMID: 34859010 PMCID: PMC8631969 DOI: 10.3389/fmed.2021.755657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022] Open
Abstract
Cervical squamous cell carcinoma is one of the most common causes of female cancer deaths worldwide. At present, immunotherapy using immune checkpoint blockade (ICB) has improved the prognosis of many cancer patients, and neoantigens generated by mutations may serve as potential biomarkers for predicting the outcome of ICB therapy. In this study, we identified missense mutations as the most frequent in landscapes of gene mutation in cervical squamous cell carcinoma (CESC) samples. Patients with higher tumor mutation burden (TMB) presented higher overall survival (OS). In addition, there was a significant correlation between the high TMB group and fractions of most immune cells. Univariate and multivariate Cox regression analyses identified five hub genes (IFNG, SERPINA3, CCL4L2, TNFSF15, and IL1R1) that were used to build a prognostic model. In the prognostic model, the low-risk group achieved better OS. Mutations in the five hub genes mainly affected the infiltration level of CD8+ T cells and dendritic cells. In conclusion, our study is valuable for exploring the role of TMB and its relationship with immune infiltration in CESC. Moreover, the prognosis model may help predict the sensitivity of patients to immunotherapy and provide underlying biomarkers for personalized immunotherapy.
Collapse
Affiliation(s)
- Fang Wen
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuai Ruan
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjie Huang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoxue Chen
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yulan Wang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Suping Gu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiatong Liu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shenlin Liu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Shu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
183
|
Mardis ER. The emergence of cancer genomics in diagnosis and precision medicine. NATURE CANCER 2021; 2:1263-1264. [PMID: 35121919 DOI: 10.1038/s43018-021-00305-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Elaine R Mardis
- Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
184
|
Tools used to assay genomic instability in cancers and cancer meiomitosis. J Cell Commun Signal 2021; 16:159-177. [PMID: 34841477 DOI: 10.1007/s12079-021-00661-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/21/2021] [Indexed: 10/19/2022] Open
Abstract
Genomic instability is a defining characteristic of cancer and the analysis of DNA damage at the chromosome level is a crucial part of the study of carcinogenesis and genotoxicity. Chromosomal instability (CIN), the most common level of genomic instability in cancers, is defined as the rate of loss or gain of chromosomes through successive divisions. As such, DNA in cancer cells is highly unstable. However, the underlying mechanisms remain elusive. There is a debate as to whether instability succeeds transformation, or if it is a by-product of cancer, and therefore, studying potential molecular and cellular contributors of genomic instability is of high importance. Recent work has suggested an important role for ectopic expression of meiosis genes in driving genomic instability via a process called meiomitosis. Improving understanding of these mechanisms can contribute to the development of targeted therapies that exploit DNA damage and repair mechanisms. Here, we discuss a workflow of novel and established techniques used to assess chromosomal instability as well as the nature of genomic instability such as double strand breaks, micronuclei, and chromatin bridges. For each technique, we discuss their advantages and limitations in a lab setting. Lastly, we provide detailed protocols for the discussed techniques.
Collapse
|
185
|
Jin Z, Dixon JG, Fiskum JM, Parekh HD, Sinicrope FA, Yothers G, Allegra CJ, Wolmark N, Haller D, Schmoll HJ, de Gramont A, Kerr R, Taieb J, Van Cutsem E, Tweleves C, O’Connell M, Saltz LB, Sadahiro S, Blanke CD, Tomita N, Seitz JF, Erlichman C, Yoshino T, Yamanaka T, Marsoni S, Andre T, Mahipal A, Goldberg RM, George TJ, Shi Q. Clinicopathological and Molecular Characteristics of Early-Onset Stage III Colon Adenocarcinoma: An Analysis of the ACCENT Database. J Natl Cancer Inst 2021; 113:1693-1704. [PMID: 34405233 PMCID: PMC8634466 DOI: 10.1093/jnci/djab123] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/23/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Colon cancer (CC) incidence in young adults (age 20-49 years), termed early-onset CC (EO-CC), is increasing. METHODS Individual patient data on 35 713 subjects with stage III colon cancer from 25 randomized studies in the Adjuvant Colon Cancer ENdpoint database were pooled. The distributions of demographics, clinicopathological features, biomarker status, and outcome data were summarized by age group. Overall survival, disease-free survival, time to recurrence, and survival after recurrence were assessed by Kaplan-Meier curves and Cox models stratified by treatment arms within studies, adjusting for sex, race, body mass index, performance status, disease stage, grade, risk group, number of lymph nodes examined, disease sidedness, and molecular markers. All statistical tests were 2-sided. RESULTS Using a 5% difference between age groups as the clinically meaningful cutoff, patients with stage III EO-CC had similar sex, race, performance status, risk group, tumor sidedness, and T stage compared with patients with late-onset CC (age 50 years and older). EO-CC patients were less likely to be overweight (30.2% vs 36.2%) and more commonly had 12 or more lymph nodes resected (69.5% vs 58.7%). EO-CC tumors were more frequently mismatch repair deficient (16.4% vs 11.5%) and less likely to have BRAFV600E (5.6% vs 14.0%), suggesting a higher rate of Lynch syndrome in EO-CC. Patients with EO-CC had statistically significantly better overall survival (hazard ratio [HR] = 0.81, 95% confidence interval [CI] = 0.74 to 0.89; P < .001), disease-free survival (HR = 0.91, 95% CI = 0.84 to 0.98; P = .01), and survival after recurrence (HR = 0.88, 95% CI = 0.80 to 0.97; P = .008) in the analysis without molecular markers; however, age at onset of CC lost its prognostic value when outcome was adjusted for molecular markers. CONCLUSION Tumor biology was found to be a more important prognostic factor than age of onset among stage III colon cancer patients in the Adjuvant Colon Cancer ENdpoint database.
Collapse
Affiliation(s)
- Zhaohui Jin
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Jesse G Dixon
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Jack M Fiskum
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Hiral D Parekh
- Cancer Specialists of North Florida, Jacksonville, FL, USA
| | | | - Greg Yothers
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carmen J Allegra
- Department of Medicine, Shands Cancer Center, University of Florida, Gainesville, FL, USA
| | | | - Daniel Haller
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hans-Joachim Schmoll
- Department of Internal Medicine IV-Hematology-Oncology, University Clinic Halle (Saale), Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Aimery de Gramont
- Department of Medical Oncology, Franco-British Institute, Levallois-Perret, France
| | | | - Julien Taieb
- Sorbonne Paris Cité, Paris Descartes University Georges Pompidou European Hospital, Paris, France
| | - Eric Van Cutsem
- Digestive Oncology, University Hospitals Gasthuisberg Leuven and KU Leuven, Leuven, Belgium
| | - Christopher Tweleves
- University of Leeds and St. James’s Institute of Oncology, Tom Connors Cancer Research Center, University of Bradford, Bradford, UK
| | | | | | | | | | - Naohiro Tomita
- Cancer Treatment Center, Toyonaka Municipal Hospital, Toyonaka, Japan
| | | | | | - Takayuki Yoshino
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takeharu Yamanaka
- Department of Biostatistics, Yokohama City University School of Medicine, Kanagawa, Japan
| | | | - Thierry Andre
- Medical Oncology Department in St. Antoine Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Amit Mahipal
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Richard M Goldberg
- West Virginia University Cancer Institute and the Mary Babb Randolph Cancer Center, Morgantown, WV, USA
| | - Thomas J George
- University of Florida, Health Cancer Center, Gainesville, FL, USA
| | - Qian Shi
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
186
|
van 't Erve I, Wesdorp NJ, Medina JE, Ferreira L, Leal A, Huiskens J, Bolhuis K, van Waesberghe JHTM, Swijnenburg RJ, van den Broek D, Velculescu VE, Kazemier G, Punt CJA, Meijer GA, Fijneman RJA. KRAS A146 Mutations Are Associated With Distinct Clinical Behavior in Patients With Colorectal Liver Metastases. JCO Precis Oncol 2021; 5:PO.21.00223. [PMID: 34820593 PMCID: PMC8608264 DOI: 10.1200/po.21.00223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/23/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
Somatic KRAS mutations occur in approximately half of the patients with metastatic colorectal cancer (mCRC). Biologic tumor characteristics differ on the basis of the KRAS mutation variant. KRAS mutations are known to influence patient prognosis and are used as predictive biomarker for treatment decisions. This study examined clinical features of patients with mCRC with a somatic mutation in KRAS G12, G13, Q61, K117, or A146. Patients with mCRC and a KRAS A146 mutation are characterized by high tumor burden and poor prognosis![]()
Collapse
Affiliation(s)
- Iris van 't Erve
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Nina J Wesdorp
- Deparment of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, the Netherlands
| | - Jamie E Medina
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Leonardo Ferreira
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alessandro Leal
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD.,Center for Personalized Medicine, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Karen Bolhuis
- Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Jan-Hein T M van Waesberghe
- Deparment of Radiology and Molecular Imaging, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, the Netherlands
| | - Rutger-Jan Swijnenburg
- Deparment of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, the Netherlands
| | - Daan van den Broek
- Department for Laboratory Medicine, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Victor E Velculescu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Geert Kazemier
- Deparment of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, the Netherlands
| | - Cornelis J A Punt
- Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gerrit A Meijer
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Remond J A Fijneman
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
187
|
Azcue P, Guerrero Setas D, Encío I, Ibáñez-Beroiz B, Mercado M, Vera R, Gómez-Dorronsoro ML. A Novel Prognostic Biomarker Panel for Early-Stage Colon Carcinoma. Cancers (Basel) 2021; 13:5909. [PMID: 34885019 PMCID: PMC8656725 DOI: 10.3390/cancers13235909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/09/2022] Open
Abstract
Molecular characterization of colorectal cancer has helped us understand better the biology of the disease. However, previous efforts have yet to provide significant clinical value in order to be integrated into clinical practice for patients with early-stage colon cancer (CC). The purpose of this study was to assess PD-L1, GLUT-1, e-cadherin, MUC2, CDX2, and microsatellite instability (dMMR) and to propose a risk-panel with prognostic capabilities. Biomarkers were immunohistochemically assessed through tissue microarrays in a cohort of 144 patients with stage II/III colon cancer. A biomarker panel consisting of PD-L1, GLUT-1, dMMR, and potentially CDX2 was constructed that divided patients into low, medium, and high risk of overall survival or disease-free survival (DFS) in equally sized groups. Compared with low-risk patients, medium-risk patients have almost twice the risk of death (HR = 2.10 (0.99-4.46), p = 0.054), while high-risk patients have almost four times the risk (HR = 3.79 (1.77-8.11), p = 0.001). The multivariate goodness of fit was 0.756 and was correlated with Kaplan-Meier curves (p = 0.002). Consistent results were found for DFS. This study provides a critical basis for the future development of an immunohistochemical assessment capable of discerning early-stage CC patients as a function of their prognosis. This tool may aid with treatment personalization in daily clinical practice and improve survival outcomes.
Collapse
Affiliation(s)
- Pablo Azcue
- Department of Health Science, Public University of Navarra, 31008 Pamplona, Spain; (I.E.); (B.I.-B.)
| | - David Guerrero Setas
- Department of Pathology, University Hospital of Navarra, 31008 Pamplona, Spain; (D.G.S.); (M.M.)
- Campus Arrosadia, Public University of Navarra, 31006 Pamplona, Spain
- Molecular Pathology of Cancer Group–Navarrabiomed, 31008 Pamplona, Spain
- Department of Medical Oncology, University Hospital of Navarra, 31008 Pamplona, Spain;
| | - Ignacio Encío
- Department of Health Science, Public University of Navarra, 31008 Pamplona, Spain; (I.E.); (B.I.-B.)
- Institute for Health Research Navarra (IdISNA), 31008 Pamplona, Spain
| | - Berta Ibáñez-Beroiz
- Department of Health Science, Public University of Navarra, 31008 Pamplona, Spain; (I.E.); (B.I.-B.)
- Institute for Health Research Navarra (IdISNA), 31008 Pamplona, Spain
- Unit of Methodology-Navarrabiomed-University Hospital of Navarra, 31008 Pamplona, Spain
- Research Network on Health Services Research and Chronic Diseases (REDISSEC), 31008 Pamplona, Spain
| | - María Mercado
- Department of Pathology, University Hospital of Navarra, 31008 Pamplona, Spain; (D.G.S.); (M.M.)
| | - Ruth Vera
- Department of Medical Oncology, University Hospital of Navarra, 31008 Pamplona, Spain;
- Institute for Health Research Navarra (IdISNA), 31008 Pamplona, Spain
| | - María Luisa Gómez-Dorronsoro
- Department of Pathology, University Hospital of Navarra, 31008 Pamplona, Spain; (D.G.S.); (M.M.)
- Institute for Health Research Navarra (IdISNA), 31008 Pamplona, Spain
| |
Collapse
|
188
|
Fan X, Song J, Fan Y, Li J, Chen Y, Zhu H, Zhang Z. CSMD1 Mutation Related to Immunity Can Be Used as a Marker to Evaluate the Clinical Therapeutic Effect and Prognosis of Patients with Esophageal Cancer. Int J Gen Med 2021; 14:8689-8710. [PMID: 34849012 PMCID: PMC8627272 DOI: 10.2147/ijgm.s338284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION As a highly aggressive tumor with a poor prognosis, esophageal cancer (ESCA)'s relationship with gene mutations is unclear. Therefore, we tried to explore the role of gene mutation in ESCA progression and its relationship with immune response, clinical treatment, and prognosis. METHODS In addition to copy number variation (CNV) situations of common genes obtained from 2 public databases, the relationship between mutations and prognosis/tumor mutational burden (TMB) was also analyzed. Kaplan-Meier survival and Cox regression analysis were used to identify the CSMD1 mutation status as an independent predictor of prognosis. We also enriched related functions and pathways. Next, the relationship between 22 immune cells and CSMD1 mutation status was analyzed. In addition to the differences in the expression levels of immune checkpoint inhibitors (ICIs)-related genes between the high TMB and low TMB groups, the differences in the expression levels of ICIs/m6a/multi-drug resistance-related genes and the sensitivity of three chemotherapeutic drugs between CSMD1 mutant and the wild group were also compared. In addition to differences and prognostic analysis of CSMD1 expression, the correlation analysis between the expression of these genes/immune cells and the expression of CSMD1 was also performed. Finally, a nomogram that could efficiently and conveniently predict the survival probability of ESCA patients was constructed and verified. RESULTS We obtained 17 frequently mutated genes distribution. Mutation and loss of CSMD1 are frequent in ESCA. Only CSMD1 mutation can be used as an independent predictor of poor prognosis. Patients in the high TMB group have a lower survival probability. Wild CSMD1 may be involved in immune-related pathways. More helper T cells and fewer resting state dendritic cells were found in the CSMD1 mutant group. The PD-1 expression in the high TMB group showed higher. Paclitaxel sensitivity and ABCC1 expression were higher in the wild CSMD1 group. Most cancers show differential expression of CSMD1. Except for the prognosis of ESCA, the expression of CSMD1 is related to immune cell content and the expression of ICIs/m6a/multi-drug resistance related genes. DISCUSSION CSMD1 mutation could be used as an immune-related biomarker to predict prognosis and treatment effect of paclitaxel. Mutation and loss of CSMD1 may promote the progression of ESCA.
Collapse
Affiliation(s)
- Xin Fan
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Jianxiong Song
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Yating Fan
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Jiaqi Li
- School of Stomatology, Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Yutao Chen
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Huanhuan Zhu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Zhiyuan Zhang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| |
Collapse
|
189
|
Emerson IA, Chitluri KK. DCMP: database of cancer mutant protein domains. Database (Oxford) 2021; 2021:baab066. [PMID: 34791106 PMCID: PMC8607521 DOI: 10.1093/database/baab066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/09/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022]
Abstract
Protein domains are functional and structural units of proteins. They are responsible for a particular function that contributes to protein's overall role. Because of this essential role, the majority of the genetic variants occur in the domains. In this study, the somatic mutations across 21 cancer types were mapped to the individual protein domains. To map the mutations to the domains, we employed the whole human proteome to predict the domains in each protein sequence and recognized about 149 668 domains. A novel Perl-API program was developed to convert the protein domain positions into genomic positions, and users can freely access them through GitHub. We determined the distribution of protein domains across 23 chromosomes with the help of these genomic positions. Interestingly, chromosome 19 has more number of protein domains in comparison with other chromosomes. Then, we mapped the cancer mutations to all the protein domains. Around 46-65% of mutations were mapped to their corresponding protein domains, and significantly mutated domains for all the cancer types were determined using the local false discovery ratio (locfdr). The chromosome positions for all the protein domains can be verified using the cross-reference ensemble database. Database URL: https://dcmp.vit.ac.in/.
Collapse
Affiliation(s)
- Isaac Arnold Emerson
- Bioinformatics Programming Lab, Department of
Biotechnology, School of Bio Sciences and Technology, Vellore Institute of
Technology, Vellore, TN 632 014, India
| | - Kiran Kumar Chitluri
- Bioinformatics Programming Lab, Department of
Biotechnology, School of Bio Sciences and Technology, Vellore Institute of
Technology, Vellore, TN 632 014, India
| |
Collapse
|
190
|
Liu S, Qiao W, Sun Q, Luo Y. Chromosome Region Maintenance 1 (XPO1/CRM1) as an Anticancer Target and Discovery of Its Inhibitor. J Med Chem 2021; 64:15534-15548. [PMID: 34669417 DOI: 10.1021/acs.jmedchem.1c01145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chromosome region maintenance 1 (CRM1) is a major nuclear export receptor protein and contributes to cell homeostasis by mediating the transport of cargo from the nucleus to the cytoplasm. CRM1 is a therapeutic target comprised of several tumor types, including osteosarcoma, multiple myeloma, gliomas, and pancreatic cancer. In the past decade, dozens of CRM1 inhibitors have been discovered and developed, including KPT-330, which received FDA approval for multiple myeloma (MM) and diffuse large B-cell lymphoma (DLBCL) in 2019 and 2020, respectively. This review summarizes the biological functions of CRM1, the current understanding of the role CRM1 plays in cancer, the discovery of CRM1 small-molecule inhibitors, preclinical and clinical studies on KPT-330, and other recently developed inhibitors. A new CRM1 inhibition mechanism and structural dynamics are discussed. Through this review, we hope to guide the future design and optimization of CRM1 inhibitors.
Collapse
Affiliation(s)
- Song Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenliang Qiao
- Lung Cancer Center, Laboratory of Lung Cancer, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Qingxiang Sun
- State Key Laboratory of Biotherapy, Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
191
|
Liao R, Chen X, Cao Q, Wang Y, Miao Z, Lei X, Jiang Q, Chen J, Wu X, Li X, Li J, Dong C. HIST1H1B Promotes Basal-Like Breast Cancer Progression by Modulating CSF2 Expression. Front Oncol 2021; 11:780094. [PMID: 34746019 PMCID: PMC8570124 DOI: 10.3389/fonc.2021.780094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/05/2021] [Indexed: 01/09/2023] Open
Abstract
Background Basal-like breast cancer (BLBC) is associated with a poor clinical outcome; however, the mechanism of BLBC aggressiveness is still unclear. It has been shown that a linker histone functions as either a positive or negative regulator of gene expression in tumors. Here, we aimed to investigate the possible involvement and mechanism of HIST1H1B in BLBC progression. Experimental design We analyzed multiple gene expression datasets to determine the relevance of HIST1H1B expression with BLBC. We employed quantitative real-time PCR, transwell assay, colony formation assay, and mammosphere assay to dissect the molecular events associated with the expression of HIST1H1B in human breast cancer. We studied the association of HIST1H1B with CSF2 by ChIP assay. Using tumorigenesis assays, we determine the effect of HIST1H1B expression on tumorigenicity of BLBC cells. Results Here, we show that the linker histone HIST1H1B is dramatically elevated in BLBC due to HIST1H1B copy number amplification and promoter hypomethylation. HIST1H1B upregulates colony-stimulating factor 2 (CSF2) expression by binding the CSF2 promoter. HIST1H1B expression promotes, whereas knockdown of HIST1H1B expression suppresses tumorigenicity. In breast cancer patients, HIST1H1B expression is positively correlated with large tumor size, high grade, metastasis and poor survival. Conclusion HIST1H1B contributes to basal-like breast cancer progression by modulating CSF2 expression, indicating a potential prognostic marker and therapeutic target for this disease.
Collapse
Affiliation(s)
- Ruocen Liao
- Department of Pathology and Pathophysiology, and Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingyu Chen
- Department of Pathology and Pathophysiology, and Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| | - Qianhua Cao
- Department of Pathology and Pathophysiology, and Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Wang
- Cancer Institute of Integrative Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Zhaorui Miao
- Department of Pathology and Pathophysiology, and Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingyu Lei
- Department of Pathology and Pathophysiology, and Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| | - Qianjin Jiang
- Department of Pathology and Pathophysiology, and Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Chen
- Department of Pathology and Pathophysiology, and Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuebiao Wu
- Department of Pathophysiology, Gannan Medical University, Gannan, China
| | - Xiaoli Li
- R&D Department of Hangzhou, Abcam Plc, Hangzhou, China
| | - Jun Li
- Department of Pathology and Pathophysiology, and Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenfang Dong
- Department of Pathology and Pathophysiology, and Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
192
|
Mezheyeuski A, Micke P, Martín-Bernabé A, Backman M, Hrynchyk I, Hammarström K, Ström S, Ekström J, Edqvist PH, Sundström M, Ponten F, Leandersson K, Glimelius B, Sjöblom T. The Immune Landscape of Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13215545. [PMID: 34771707 PMCID: PMC8583221 DOI: 10.3390/cancers13215545] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary We sought to provide a detailed overview of the immune landscape of colorectal cancer in the largest study to date in terms of patient numbers and analyzed immune cell types. We applied a multiplex in situ staining method in combination with an advanced scanning and image analysis pipeline akin to flow cytometry, and analyzed 5968 individual multi-layer images of tissue defining in a total of 39,078,450 cells. We considered the location of immune cells with respect to the stroma, and tumor cell compartment and tumor regions in the central part or the invasive margin. To the best of our knowledge, this study is the first comprehensive spatial description of the immune landscape in colorectal cancer using a large population-based cohort and a multiplex immune cell identification. Abstract While the clinical importance of CD8+ and CD3+ cells in colorectal cancer (CRC) is well established, the impact of other immune cell subsets is less well described. We sought to provide a detailed overview of the immune landscape of CRC in the largest study to date in terms of patient numbers and in situ analyzed immune cell types. Tissue microarrays from 536 patients were stained using multiplexed immunofluorescence panels, and fifteen immune cell subclasses, representing adaptive and innate immunity, were analyzed. Overall, therapy-naïve CRC patients clustered into an ‘inflamed’ and a ‘desert’ group. Most T cell subsets and M2 macrophages were enriched in the right colon (p-values 0.046–0.004), while pDC cells were in the rectum (p = 0.008). Elderly patients had higher infiltration of M2 macrophages (p = 0.024). CD8+ cells were linked to improved survival in colon cancer stages I-III (q = 0.014), while CD4+ cells had the strongest impact on overall survival in metastatic CRC (q = 0.031). Finally, we demonstrated repopulation of the immune infiltrate in rectal tumors post radiation, following an initial radiation-induced depletion. This study provides a detailed analysis of the in situ immune landscape of CRC paving the way for better diagnostics and providing hints to better target the immune microenvironment.
Collapse
Affiliation(s)
- Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (P.M.); (M.B.); (K.H.); (S.S.); (J.E.); (P.-H.E.); (M.S.); (F.P.); (B.G.); (T.S.)
- Correspondence:
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (P.M.); (M.B.); (K.H.); (S.S.); (J.E.); (P.-H.E.); (M.S.); (F.P.); (B.G.); (T.S.)
| | - Alfonso Martín-Bernabé
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, 17164 Stockholm, Sweden;
| | - Max Backman
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (P.M.); (M.B.); (K.H.); (S.S.); (J.E.); (P.-H.E.); (M.S.); (F.P.); (B.G.); (T.S.)
| | - Ina Hrynchyk
- City Clinical Pathologoanatomic Bureau, 220116 Minsk, Belarus;
| | - Klara Hammarström
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (P.M.); (M.B.); (K.H.); (S.S.); (J.E.); (P.-H.E.); (M.S.); (F.P.); (B.G.); (T.S.)
| | - Simon Ström
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (P.M.); (M.B.); (K.H.); (S.S.); (J.E.); (P.-H.E.); (M.S.); (F.P.); (B.G.); (T.S.)
| | - Joakim Ekström
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (P.M.); (M.B.); (K.H.); (S.S.); (J.E.); (P.-H.E.); (M.S.); (F.P.); (B.G.); (T.S.)
| | - Per-Henrik Edqvist
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (P.M.); (M.B.); (K.H.); (S.S.); (J.E.); (P.-H.E.); (M.S.); (F.P.); (B.G.); (T.S.)
| | - Magnus Sundström
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (P.M.); (M.B.); (K.H.); (S.S.); (J.E.); (P.-H.E.); (M.S.); (F.P.); (B.G.); (T.S.)
| | - Fredrik Ponten
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (P.M.); (M.B.); (K.H.); (S.S.); (J.E.); (P.-H.E.); (M.S.); (F.P.); (B.G.); (T.S.)
| | - Karin Leandersson
- Department of Translational Medicine, Lund University, 20502 Malmö, Sweden;
| | - Bengt Glimelius
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (P.M.); (M.B.); (K.H.); (S.S.); (J.E.); (P.-H.E.); (M.S.); (F.P.); (B.G.); (T.S.)
| | - Tobias Sjöblom
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (P.M.); (M.B.); (K.H.); (S.S.); (J.E.); (P.-H.E.); (M.S.); (F.P.); (B.G.); (T.S.)
| |
Collapse
|
193
|
Mellinghoff IK, Chang SM, Jaeckle KA, van den Bent M. Isocitrate Dehydrogenase Mutant Grade II and III Glial Neoplasms. Hematol Oncol Clin North Am 2021; 36:95-111. [PMID: 34711457 DOI: 10.1016/j.hoc.2021.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mutations in isocitrate dehydrogenase (IDH) 1 or IDH2 occur in most of the adult low-grade gliomas and, less commonly, in cholangiocarcinoma, chondrosarcoma, acute myeloid leukemia, and other human malignancies. Cancer-associated mutations alter the function of the enzyme, resulting in production of R(-)-2-hydroxyglutarate and broad epigenetic dysregulation. Small molecule IDH inhibitors have received regulatory approval for the treatment of IDH mutant (mIDH) leukemia and are under development for the treatment of mIDH solid tumors. This article provides a current view of mIDH adult astrocytic and oligodendroglial tumors, including their clinical presentation and treatment, and discusses novel approaches and challenges toward improving the treatment of these tumors.
Collapse
Affiliation(s)
- Ingo K Mellinghoff
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California San Francisco, 505 Parnassus Room M 774SF, San Francisco, CA 94142-0112, USA
| | - Kurt A Jaeckle
- Department of Neurology and Oncology, Mayo Clinic Florida, Mangurian 4415, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Martin van den Bent
- Department of Neuro-onoclogy, Brain Tumor Center at Erasmus MC Cancer Institute, Nt-542, Dr Molenwaterplein 40, Rotterdam 3015 GD, The Netherlands.
| |
Collapse
|
194
|
FAT1 and PTPN14 Regulate the Malignant Progression and Chemotherapy Resistance of Esophageal Cancer through the Hippo Signaling Pathway. Anal Cell Pathol (Amst) 2021; 2021:9290372. [PMID: 34712552 PMCID: PMC8548181 DOI: 10.1155/2021/9290372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/28/2022] Open
Abstract
Background Esophageal cancer (EC) is a common malignant tumor, which brings heavy economic burden to patients and society. Therefore, it is important to understand the molecular mechanism of recurrence, metastasis, and drug resistance of esophageal cancer. Methods Human esophageal cancer cell line TE13 (poorly differentiated squamous cell carcinoma) and normal human esophageal epithelial cell line het-1a were selected for aseptic culture. At the same time, 6 bottles of TE13 cell line were inoculated in logarithmic phase. Cell apoptosis was analyzed by flow cytometry (FCM). Cell clone formation assay was used to analyze the proliferation. Fibronectin-coated dishes were used to detect the characteristics of cell adhesion to extracellular matrix. The Transwell method was used to detect the cell invasion ability. Western blot was used to analyze the expression of Yap1, PTPN14, FAT1, and Myc. Results Results showed that FAT1 and PTPN14 were downregulated, while Yap1 was upregulated in esophageal cancer tissues. FAT1 inhibited the proliferation, adhesion, and invasion of human esophageal cancer cell lines, which might be associated with the upregulation of PTPN14 and the inhibition of Yap1 and Myc. Conclusion The results suggested that PTPN14 and FAT1 could regulate malignant progression and chemotherapy resistance of esophageal cancer based on the Hippo signaling pathway.
Collapse
|
195
|
Vuaroqueaux V, Hendriks HR, Al-Hasani H, Peille AL, Das S, Fiebig HH. Pharmacogenomics characterization of the MDM2 inhibitor MI-773 reveals candidate tumours and predictive biomarkers. NPJ Precis Oncol 2021; 5:96. [PMID: 34711913 PMCID: PMC8553758 DOI: 10.1038/s41698-021-00235-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
MI-773 is a recently developed small-molecule inhibitor of the mouse double minute 2 (MDM2) proto-oncogene. Preclinical data on the anti-tumour activity of MI-773 are limited and indicate that tumour cell lines (CLs) with mutated TP53 are more resistant to MI-773 than wild type TP53. Here, we explored the compound's therapeutic potential in vitro using a panel of 274 annotated CLs derived from a diversity of tumours. MI-773 exhibited a pronounced selectivity and moderate potency, with anti-tumour activity in the sub-micromolar range in about 15% of the CLs. The most sensitive tumour types were melanoma, sarcoma, renal and gastric cancers, leukaemia, and lymphoma. A COMPARE analysis showed that the profile of MI-773 was similar to that of Nutlin-3a, the first potent inhibitor of p53-MDM2 interactions, and, in addition, had a superior potency. In contrast, it poorly correlates with profiles of compounds targeting the p53 pathway with another mechanism of action. OMICS analyses confirmed that MI-773 was primarily active in CLs with wild type TP53. In silico biomarker investigations revealed that the TP53 mutation status plus the aggregated expression levels of 11 genes involved in the p53 signalling pathway predicted sensitivity or resistance of CLs to inhibitors of p53-MDM2 interactions reliably. The results obtained for MI-773 could help to refine the selection of cancer patients for therapy.
Collapse
Affiliation(s)
| | - Hans R Hendriks
- Hendriks Pharmaceutical Consulting, 1443 LR, Purmerend, The Netherlands
| | - Hoor Al-Hasani
- 4HF Biotec GmbH, Am Flughafen 14, 79108, Freiburg, Germany
| | | | - Samayita Das
- 4HF Biotec GmbH, Am Flughafen 14, 79108, Freiburg, Germany
| | | |
Collapse
|
196
|
Blasiak J, Szczepańska J, Sobczuk A, Fila M, Pawlowska E. RIF1 Links Replication Timing with Fork Reactivation and DNA Double-Strand Break Repair. Int J Mol Sci 2021; 22:11440. [PMID: 34768871 PMCID: PMC8583789 DOI: 10.3390/ijms222111440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Replication timing (RT) is a cellular program to coordinate initiation of DNA replication in all origins within the genome. RIF1 (replication timing regulatory factor 1) is a master regulator of RT in human cells. This role of RIF1 is associated with binding G4-quadruplexes and changes in 3D chromatin that may suppress origin activation over a long distance. Many effects of RIF1 in fork reactivation and DNA double-strand (DSB) repair (DSBR) are underlined by its interaction with TP53BP1 (tumor protein p53 binding protein). In G1, RIF1 acts antagonistically to BRCA1 (BRCA1 DNA repair associated), suppressing end resection and homologous recombination repair (HRR) and promoting non-homologous end joining (NHEJ), contributing to DSBR pathway choice. RIF1 is an important element of intra-S-checkpoints to recover damaged replication fork with the involvement of HRR. High-resolution microscopic studies show that RIF1 cooperates with TP53BP1 to preserve 3D structure and epigenetic markers of genomic loci disrupted by DSBs. Apart from TP53BP1, RIF1 interact with many other proteins, including proteins involved in DNA damage response, cell cycle regulation, and chromatin remodeling. As impaired RT, DSBR and fork reactivation are associated with genomic instability, a hallmark of malignant transformation, RIF1 has a diagnostic, prognostic, and therapeutic potential in cancer. Further studies may reveal other aspects of common regulation of RT, DSBR, and fork reactivation by RIF1.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Joanna Szczepańska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Anna Sobczuk
- Department of Gynaecology and Obstetrics, Medical University of Lodz, 93-338 Lodz, Poland;
| | - Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-217 Lodz, Poland;
| |
Collapse
|
197
|
The Role of Emerin in Cancer Progression and Metastasis. Int J Mol Sci 2021; 22:ijms222011289. [PMID: 34681951 PMCID: PMC8537873 DOI: 10.3390/ijms222011289] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/27/2022] Open
Abstract
It is commonly recognized in the field that cancer cells exhibit changes in the size and shape of their nuclei. These features often serve as important biomarkers in the diagnosis and prognosis of cancer patients. Nuclear size can significantly impact cell migration due to its incredibly large size. Nuclear structural changes are predicted to regulate cancer cell migration. Nuclear abnormalities are common across a vast spectrum of cancer types, regardless of tissue source, mutational spectrum, and signaling dependencies. The pervasiveness of nuclear alterations suggests that changes in nuclear structure may be crucially linked to the transformation process. The factors driving these nuclear abnormalities, and the functional consequences, are not completely understood. Nuclear envelope proteins play an important role in regulating nuclear size and structure in cancer. Altered expression of nuclear lamina proteins, including emerin, is found in many cancers and this expression is correlated with better clinical outcomes. A model is emerging whereby emerin, as well as other nuclear lamina proteins, binding to the nucleoskeleton regulates the nuclear structure to impact metastasis. In this model, emerin and lamins play a central role in metastatic transformation, since decreased emerin expression during transformation causes the nuclear structural defects required for increased cell migration, intravasation, and extravasation. Herein, we discuss the cellular functions of nuclear lamina proteins, with a particular focus on emerin, and how these functions impact cancer progression and metastasis.
Collapse
|
198
|
Zougros A, Michelli M, Chatziandreou I, Nonni A, Gakiopoulou H, Michalopoulos NV, Lazaris AC, Saetta AA. mRNA coexpression patterns of Wnt pathway components and their clinicopathological associations in breast and colorectal cancer. Pathol Res Pract 2021; 227:153649. [PMID: 34656913 DOI: 10.1016/j.prp.2021.153649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/24/2022]
Abstract
Aberrant Wnt signaling is implicated in carcinogenesis triggering efforts for the development of new therapeutic agents, many of which have entered clinical trials. We extend our previous analysis of WNT3, FZD7, LEF1 expression levels in breast and colorectal cancer including WNT2, FZD4 and β-catenin expression, in an effort to delineate their relative expression levels along with concurrent expression patterns and possible prognostic value. We analyzed 82 breast and 102 colorectal carcinomas for relative mRNA expression levels of the investigated genes by RT-PCR relative quantification with the ΔΔCt method. Statistical analysis was performed in order to determine associations of relative mRNA expression and linear correlations. β-catenin expression was determined by immunochemistry. Regarding breast carcinomas, decreased relative mRNA expression levels of WNT2, FZD4 were found frequently and WNT2 expression was correlated with ER/ PR status (p = 0.045/p = 0.028), whereas β-catenin with grade (p = 0.026). In colorectal carcinomas, increased relative mRNA expression levels of WNT2 and FZD4 were found in 59% and 32% of cases respectively, whereas β-catenin showed decreased mRNA expression levels in 57% of cases and a correlation with pN-category (p = 0.037). Linear correlations were observed between WNT2/FZD4 (R=0.542, p < 0.001), WNT2/β-catenin (R=0.254, p = 0.010), FZD4/β-catenin (R=0.406, p < 0.001) expression and a correlation between mRNA expression and membranous/cytoplasmic β-catenin emerged (p = 0.039/0.046). Our results suggest a possible clinical significance for Wnt pathway gene expression levels in both tumour types. The concurrent expression of the investigated genes as well as the different expression profiles, underlines the complexity of this pathway and the necessity of patient selection in order to maximize the efficacy of drugs targeting Wnt pathway.
Collapse
Affiliation(s)
- Alexandros Zougros
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, Athens, Greece
| | - Maria Michelli
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, Athens, Greece
| | - Ilenia Chatziandreou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, Athens, Greece
| | - Afroditi Nonni
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, Athens, Greece
| | - Harikleia Gakiopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, Athens, Greece
| | - Nikolaos V Michalopoulos
- Fourth Department of Surgery, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Rimini 1, Haidari, Athens, Greece
| | - Andreas C Lazaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, Athens, Greece
| | - Angelica A Saetta
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, Athens, Greece.
| |
Collapse
|
199
|
Kravchuk OI, Burakov AV, Gornostaev NG, Mikhailov KV, Adameyko KI, Finoshin AD, Georgiev AA, Mikhailov VS, Yeryukova YE, Rubinovsky GA, Zayts DV, Gazizova GR, Gusev OA, Shagimardanova EI, Lyupina YV. Histone Deacetylases in the Process of Halisarca dujardini Cell Reaggregation. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421050052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
200
|
Huang J, Tseng LH, Parini V, Lokhandwala PM, Pallavajjala A, Rodriguez E, Xian R, Chen L, Gocke CD, Eshleman JR, Lin MT. IDH1 and IDH2 Mutations in Colorectal Cancers. Am J Clin Pathol 2021; 156:777-786. [PMID: 33929516 DOI: 10.1093/ajcp/aqab023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES To elucidate clinicopathologic and molecular characteristics of IDH1 and IDH2 (IDH1/2) mutations in colorectal cancers (CRCs). METHODS We evaluated IDH1/2 mutations in 1,623 CRCs using a next-generation sequencing assay. RESULTS IDH1/2 mutations, predominantly IDH1 p.R132C, were detected in 15 (0.9%) CRCs and in 5 (3.0%) of 167 BRAF p.V600E-mutated CRCs. Three IDH1/2-mutated CRCs were associated with inflammatory bowel disease. They were significantly associated with old age, mucinous or signet ring cell adenocarcinoma, and high-grade histomorphology. Concordance of variant allele frequency between IDH1/2 mutants and other trunk drivers in CRCs and presence of IDH1/2 mutation in the adenoma and early adenocarcinoma indicated IDH1/2 mutations could be trunk drivers suitable for targeted therapy. CONCLUSIONS IDH1/2 mutations in CRCs were uncommon but enriched in BRAF p.V600E-mutated CRCs and perhaps colitis-associated CRCs. Further studies on IDH1/2-mutated CRCs are needed to clarify their clinicopathologic features and implications for targeted therapy.
Collapse
Affiliation(s)
- Jialing Huang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Li-Hui Tseng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Vamsi Parini
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Parvez M Lokhandwala
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aparna Pallavajjala
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erika Rodriguez
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rena Xian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liam Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher D Gocke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James R Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ming-Tseh Lin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|