151
|
Shigella infection interferes with SUMOylation and increases PML-NB number. PLoS One 2015; 10:e0122585. [PMID: 25848798 PMCID: PMC4388590 DOI: 10.1371/journal.pone.0122585] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 02/20/2015] [Indexed: 01/08/2023] Open
Abstract
Shigellosis is a severe diarrheal disease that affects hundreds of thousands of individuals resulting in significant morbidity and mortality worldwide. Shigellosis is caused by Shigella spp., a gram-negative bacterium that uses a Type 3 Secretion System (T3SS) to deliver effector proteins into the cytosol of infected human cells. Shigella infection triggers multiple signaling programs that result in a robust host transcriptional response that includes the induction of multiple proinflammatory cytokines. PML nuclear bodies (PML-NBs) are dynamic subnuclear structures that coordinate immune signaling programs and have a demonstrated role in controlling viral infection. We show that PML-NB number increases upon Shigella infection. We examined the effects of Shigella infection on SUMOylation and found that upon Shigella infection the localization of SUMOylated proteins is altered and the level of SUMOylated proteins decreases. Although Shigella infection does not alter the abundance of SUMO activating enzymes SAE1 or SAE2, it dramatically decreases the level of the SUMO conjugating enzyme Ubc9. All Shigella-induced alterations to the SUMOylation system are dependent upon a T3SS. Thus, we demonstrate that Shigella uses one or more T3SS effectors to influence both PML-NB number and the SUMOylation machinery in human cells.
Collapse
|
152
|
Bravo V, Puhar A, Sansonetti P, Parsot C, Toro CS. Distinct mutations led to inactivation of type 1 fimbriae expression in Shigella spp. PLoS One 2015; 10:e0121785. [PMID: 25811616 PMCID: PMC4374849 DOI: 10.1371/journal.pone.0121785] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/04/2015] [Indexed: 02/07/2023] Open
Abstract
Shigella spp. are responsible for bacillary dysentery in humans. The acquisition or the modification of the virulence plasmid encoding factors promoting entry of bacteria into and dissemination within epithelial cells was a critical step in the evolution of these bacteria from their Escherichia coli ancestor(s). Incorporation of genomic islands (GI) and gene inactivation also shaped interactions between these pathogens and their human host. Sequence analysis of the GI inserted next to the leuX tRNA gene in S. boydii, S. dysenteriae, S. flexneri, S. sonnei and enteroinvasive E. coli (EIEC) suggests that this region initially carried the fec, yjhATS and fim gene clusters. The fim cluster encoding type I fimbriae is systematically inactivated in both reference strains and clinical isolates and distinct mutations are responsible for this inactivation in at least three phylogenetic groups. To investigate consequences of the presence of fimbriae on the outcome of the interaction of Shigella with host cells, we used a S. flexneri strain harboring a plasmid encoding the E. coli fim operon. Production of fimbriae by this recombinant strain increased the ability of bacteria to adhere to and enter into epithelial cells and had no effect on their ability to disseminate from cell to cell. The observations that production of type I fimbriae increases invasion of epithelial cells and that independent mutations abolish fimbriae production in Shigella suggest that these mutations correspond to pathoadaptive events.
Collapse
Affiliation(s)
- Verónica Bravo
- Programa de Microbiología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrea Puhar
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- INSERM, Paris, France
| | - Philippe Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- INSERM, Paris, France
| | - Claude Parsot
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- INSERM, Paris, France
- * E-mail: (CP); (CT)
| | - Cecilia S. Toro
- Programa de Microbiología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail: (CP); (CT)
| |
Collapse
|
153
|
Li J, Chai QY, Zhang Y, Li BX, Wang J, Qiu XB, Liu CH. Mycobacterium tuberculosis Mce3E suppresses host innate immune responses by targeting ERK1/2 signaling. THE JOURNAL OF IMMUNOLOGY 2015; 194:3756-67. [PMID: 25780035 DOI: 10.4049/jimmunol.1402679] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/12/2015] [Indexed: 11/19/2022]
Abstract
Crucial to the pathogenesis of the tuberculosis (TB)-causing pathogen Mycobacterium tuberculosis is its ability to subvert host immune defenses to promote its intracellular survival. The mammalian cell entry protein 3E (Mce3E), located in the region of difference 15 of the M. tuberculosis genome and absent in Mycobacterium bovis bacillus Calmette-Guérin, has an essential role in facilitating the internalization of mammalian cells by mycobacteria. However, relatively little is known about the role of Mce3E in modulation of host innate immune responses. In this study, we demonstrate that Mce3E inhibits the activation of the ERK1/2 signaling pathway, leading to the suppression of Tnf and Il6 expression, and the promotion of mycobacterial survival within macrophages. Mce3E interacts and colocalizes with ERK1/2 at the endoplasmic reticulum in a DEF motif (an ERK-docking motif)-dependent manner, relocates ERK1/2 from cytoplasm to the endoplasmic reticulum, and finally reduces the association of ERK1/2 with MEK1 and blocks the nuclear translocation of phospho-ERK1/2. A DEF motif mutant form of Mce3E (F294A) loses its ability to suppress Tnf and Il6 expression and to promote intracellular survival of mycobacteria. Inhibition of the ERK1/2 pathway in macrophages using U0126, a specific inhibitor of the ERK pathway, also leads to the suppressed Tnf and Il6 expression and the enhanced intracellular survival of mycobacteria. Taken together, these results suggest that M. tuberculosis Mce3E exploits the ERK1/2 signaling pathway to suppress host innate immune responses, providing a potential Mce3E-ERK1/2 interface-based drug target against M. tuberculosis.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Qi-Yao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Yong Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Bing-Xi Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Jing Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Xiao-Bo Qiu
- Department of Cell Biology, Ministry of Education Key Laboratory of Cell Proliferation and Regulation Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
| |
Collapse
|
154
|
Alomairi J, Bonacci T, Ghigo E, Soubeyran P. Alterations of host cell ubiquitination machinery by pathogenic bacteria. Front Cell Infect Microbiol 2015; 5:17. [PMID: 25774357 PMCID: PMC4343185 DOI: 10.3389/fcimb.2015.00017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/09/2015] [Indexed: 11/13/2022] Open
Abstract
Response of immune and non-immune cells to pathogens infections is a very dynamic process. It involves the activation/modulation of many pathways leading to actin remodeling, membrane engulfing, phagocytosis, vesicle trafficking, phagolysosome formation, aiming at the destruction of the intruder. These sophisticated and rapid mechanisms rely on post-translational modifications (PTMs) of key host cells' factors, and bacteria have developed various strategies to manipulate them to favor their survival. Among these important PTMs, ubiquitination has emerged as a major mediator/modulator/regulator of host cells response to infections that pathogens have also learned to use for their own benefit. In this mini-review, we summarize our current knowledge about the normal functions of ubiquitination during host cell infection, and we detail its hijacking by model pathogens to escape clearance and to proliferate.
Collapse
Affiliation(s)
- Jaafar Alomairi
- Cellular Stress, Centre de Recherche en Carcérologie de Marseille, INSERM UMR 1068, CNRS UMR 7258, Aix-Marseille University and Institut Paoli-Calmettes Marseille, France ; Infections, Gender and Pregnancy Laboratory, URMITE-IRD198, INSERM U1095, CNRS UMR7278, Aix-Marseille University Marseille, France
| | - Thomas Bonacci
- Cellular Stress, Centre de Recherche en Carcérologie de Marseille, INSERM UMR 1068, CNRS UMR 7258, Aix-Marseille University and Institut Paoli-Calmettes Marseille, France
| | - Eric Ghigo
- Infections, Gender and Pregnancy Laboratory, URMITE-IRD198, INSERM U1095, CNRS UMR7278, Aix-Marseille University Marseille, France
| | - Philippe Soubeyran
- Cellular Stress, Centre de Recherche en Carcérologie de Marseille, INSERM UMR 1068, CNRS UMR 7258, Aix-Marseille University and Institut Paoli-Calmettes Marseille, France
| |
Collapse
|
155
|
Mass spectrometry-based proteomic approaches to study pathogenic bacteria-host interactions. Protein Cell 2015; 6:265-74. [PMID: 25722051 PMCID: PMC4383758 DOI: 10.1007/s13238-015-0136-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 01/21/2015] [Indexed: 02/08/2023] Open
Abstract
Elucidation of molecular mechanisms underlying host-pathogen interactions is important for control and treatment of infectious diseases worldwide. Within the last decade, mass spectrometry (MS)-based proteomics has become a powerful and effective approach to better understand complex and dynamic host-pathogen interactions at the protein level. Herein we will review the recent progress in proteomic analyses towards bacterial infection of their mammalian host with a particular focus on enteric pathogens. Large-scale studies of dynamic proteomic alterations during infection will be discussed from the perspective of both pathogenic bacteria and host cells.
Collapse
|
156
|
Grishin AM, Beyrakhova KA, Cygler M. Structural insight into effector proteins of Gram-negative bacterial pathogens that modulate the phosphoproteome of their host. Protein Sci 2015; 24:604-20. [PMID: 25565677 DOI: 10.1002/pro.2636] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 12/29/2014] [Indexed: 12/16/2022]
Abstract
Invading pathogens manipulate cellular process of the host cell to establish a safe replicative niche. To this end they secrete a spectrum of proteins called effectors that modify cellular environment through a variety of mechanisms. One of the most important mechanisms is the manipulation of cellular signaling through modifications of the cellular phosphoproteome. Phosphorylation/dephosphorylation plays a pivotal role in eukaryotic cell signaling, with ∼ 500 different kinases and ∼ 130 phosphatases in the human genome. Pathogens affect the phosphoproteome either directly through the action of bacterial effectors, and/or indirectly through downstream effects of host proteins modified by the effectors. Here we review the current knowledge of the structure, catalytic mechanism and function of bacterial effectors that modify directly the phosphorylation state of host proteins. These effectors belong to four enzyme classes: kinases, phosphatases, phospholyases and serine/threonine acetylases.
Collapse
Affiliation(s)
- Andrey M Grishin
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5E5
| | | | | |
Collapse
|
157
|
Rosadini CV, Kagan JC. Microbial strategies for antagonizing Toll-like-receptor signal transduction. Curr Opin Immunol 2015; 32:61-70. [PMID: 25615700 PMCID: PMC4336813 DOI: 10.1016/j.coi.2014.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/24/2014] [Accepted: 12/30/2014] [Indexed: 12/18/2022]
Abstract
Within a few years of the discovery of Toll-like receptors (TLRs) and their role in innate immunity, viral and bacterial proteins were recognized to antagonize TLR signal transduction. Since then, as TLR signaling networks were unraveled, microbial systems have been discovered that target nearly every component within these pathways. However, recent findings as well as some notable exceptions promote the idea that more of these systems have yet to be discovered. For example, we know very little about microbial systems for directly targeting non-cytoplasmic portions of TLR signaling pathways, that is, the ligand interacting portions of the receptor itself. In this review, we compare and contrast strategies by which bacteria and viruses antagonize TLR signaling networks to identify potential areas for future research.
Collapse
Affiliation(s)
- Charles V Rosadini
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
158
|
Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors. Curr Opin Microbiol 2015; 23:14-22. [DOI: 10.1016/j.mib.2014.10.009] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/16/2014] [Accepted: 10/24/2014] [Indexed: 01/08/2023]
|
159
|
Conrath U, Beckers GJM, Langenbach CJG, Jaskiewicz MR. Priming for enhanced defense. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:97-119. [PMID: 26070330 DOI: 10.1146/annurev-phyto-080614-120132] [Citation(s) in RCA: 502] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
When plants recognize potential opponents, invading pathogens, wound signals, or abiotic stress, they often switch to a primed state of enhanced defense. However, defense priming can also be induced by some natural or synthetic chemicals. In the primed state, plants respond to biotic and abiotic stress with faster and stronger activation of defense, and this is often linked to immunity and abiotic stress tolerance. This review covers recent advances in disclosing molecular mechanisms of priming. These include elevated levels of pattern-recognition receptors and dormant signaling enzymes, transcription factor HsfB1 activity, and alterations in chromatin state. They also comprise the identification of aspartyl-tRNA synthetase as a receptor of the priming activator β-aminobutyric acid. The article also illustrates the inheritance of priming, exemplifies the role of recently identified priming activators azelaic and pipecolic acid, elaborates on the similarity to defense priming in mammals, and discusses the potential of defense priming in agriculture.
Collapse
Affiliation(s)
- Uwe Conrath
- Department of Plant Physiology, RWTH Aachen University, Aachen 52056, Germany; , , ,
| | | | | | | |
Collapse
|
160
|
The Shigella flexneri OspB effector: an early immunomodulator. Int J Med Microbiol 2015; 305:75-84. [DOI: 10.1016/j.ijmm.2014.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 11/20/2022] Open
|
161
|
Pearson JS, Zhang Y, Newton HJ, Hartland EL. Post-modern pathogens: surprising activities of translocated effectors from E. coli and Legionella. Curr Opin Microbiol 2014; 23:73-9. [PMID: 25461576 DOI: 10.1016/j.mib.2014.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 11/04/2014] [Accepted: 11/06/2014] [Indexed: 11/16/2022]
Abstract
Many bacterial pathogens have the ability to manipulate cellular processes and interfere with host cell function through the translocation of bacterial 'effector' proteins. Dedicated protein secretion machines from Gram-negative pathogens, including type III, type IV and type VI secretion systems, inject virulence proteins into infected cells, altering normal cell physiology, including cell structure, metabolism, trafficking and signalling. While effectors were once thought to exert an effect simply by their localization and binding to host cell proteins, increasingly effectors are being recognised as enzymes, in some cases mediating highly novel post-translational modifications on host proteins. Here we highlight some of the more unusual activities of translocated effectors from enteropathogenic Escherichia coli and Legionella pneumophila.
Collapse
Affiliation(s)
- Jaclyn S Pearson
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria 3000, Australia
| | - Ying Zhang
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria 3000, Australia
| | - Hayley J Newton
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria 3000, Australia
| | - Elizabeth L Hartland
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria 3000, Australia.
| |
Collapse
|
162
|
Yao Q, Zhang L, Wan X, Chen J, Hu L, Ding X, Li L, Karar J, Peng H, Chen S, Huang N, Rauscher FJ, Shao F. Structure and specificity of the bacterial cysteine methyltransferase effector NleE suggests a novel substrate in human DNA repair pathway. PLoS Pathog 2014; 10:e1004522. [PMID: 25412445 PMCID: PMC4239114 DOI: 10.1371/journal.ppat.1004522] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/15/2014] [Indexed: 11/18/2022] Open
Abstract
Enteropathogenic E. coli (EPEC) and related enterobacteria rely on a type III secretion system (T3SS) effector NleE to block host NF-κB signaling. NleE is a first in class, novel S-adenosyl-L-methionine (SAM)-dependent methyltransferase that methylates a zinc-coordinating cysteine in the Npl4-like Zinc Finger (NZF) domains in TAB2/3 adaptors in the NF-κB pathway, but its mechanism of action and other human substrates are unknown. Here we solve crystal structure of NleE-SAM complex, which reveals a methyltransferase fold different from those of known ones. The SAM, cradled snugly at the bottom of a deep and narrow cavity, adopts a unique conformation ready for nucleophilic attack by the methyl acceptor. The substrate NZF domain can be well docked into the cavity, and molecular dynamic simulation indicates that Cys673 in TAB2-NZF is spatially and energetically favorable for attacking the SAM. We further identify a new NleE substrate, ZRANB3, that functions in PCNA binding and remodeling of stalled replication forks at the DNA damage sites. Specific inactivation of the NZF domain in ZRANB3 by NleE offers a unique opportunity to suggest that ZRANB3-NZF domain functions in DNA repair processes other than ZRANB3 recruitment to DNA damage sites. Our analyses suggest a novel and unexpected link between EPEC infection, virulence proteins and genome integrity. Pathogens often manipulate host functions by posttranslational modifications such as ubiquitination and methylation. The NF-κB pathway is most critical for immune defense against infection, thereby frequently targeted by bacterial virulence factors. NleE, a virulence effector from EPEC, is a SAM-dependent methyltransferase that modifies a zinc-finger cysteine in TAB2/3 in the NF-κB pathway. NleE is not homologous to any known methyltransferases. We present the crystal structure of SAM-bound NleE that shows a novel methyltransferase fold with a unique SAM-binding mode. Computational docking and molecular dynamics simulation illustrate a structural and chemical mechanism underlying NleE recognition of the NZF and catalyzing site-specific cysteine methylation. Subsequent substrate specificity analyses identify an N-terminal region in TAB3 required for efficient NleE recognition as well as another NZF protein ZRANB3 being a new substrate of NleE. NleE-catalyzed cysteine methylation also disrupts the ubiquitin chain-binding of ZRANB3-NZF domain, providing new insights into ZRANB3-NZF functioning in DNA damage repair. These results reinforce the idea of harnessing bacterial effectors as a tool for dissecting eukaryotic functions.
Collapse
Affiliation(s)
- Qing Yao
- National Institute of Biological Sciences, Beijing, China
| | - Li Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Xiaobo Wan
- National Institute of Biological Sciences, Beijing, China
| | - Jing Chen
- National Institute of Biological Sciences, Beijing, China
| | - Liyan Hu
- National Institute of Biological Sciences, Beijing, China
| | - Xiaojun Ding
- National Institute of Biological Sciences, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - Jayashree Karar
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Hongzhuang Peng
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Niu Huang
- National Institute of Biological Sciences, Beijing, China
| | - Frank J. Rauscher
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- National Institute of Biological Sciences, Beijing, Collaborative Innovation Center for Cancer Medicine, Beijing, China
- * E-mail:
| |
Collapse
|
163
|
Chen M, Zhang C, Zi Q, Qiu D, Liu W, Zeng H. A novel elicitor identified from Magnaporthe oryzae triggers defense responses in tobacco and rice. PLANT CELL REPORTS 2014; 33:1865-79. [PMID: 25056480 DOI: 10.1007/s00299-014-1663-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/25/2014] [Accepted: 07/15/2014] [Indexed: 05/08/2023]
Abstract
KEY MESSAGE Our studies indicate a potential important elicitor candidate which can aid in the fight against a worldwide disease, rice blast. In this study, we report the purification, identification, characterization, and gene cloning of a novel hypersensitive response-inducing protein elicitor (MoHrip2) secreted from an important pathogenic fungus, Magnaporthe oryzae. The protein fraction was isolated from the culture filtrate of M. oryzae and identified by de novo sequencing. The elicitor-encoding gene mohrip2 was cloned following sequence comparison and PCR amplification. This 459-bp gene encodes a 152-residue polypeptide that contains an 18-residue signal peptide and exhibits a pI of 4.72 and an apparent molecular mass of 16 kDa. The hypothetical protein, MoHrip2, was expressed in Escherichia coli, and both the recombinant and the endogenous protein caused necrotic lesions in tobacco leaves. In addition to phenolic compound deposition and alkalization of the extracellular medium, MoHrip2 also induced hydrogen peroxide production and nitric oxide accumulation in tobacco cells. Moreover, rice seedlings treated with MoHrip2 exhibited pronounced resistance to M. oryzae compared with control seedlings.
Collapse
Affiliation(s)
- Mingjia Chen
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany,
| | | | | | | | | | | |
Collapse
|
164
|
Abstract
Our growing awareness that contaminated plants, fresh fruits and vegetables are responsible for a significant proportion of food poisoning with pathogenic microorganisms indorses the demand to understand the interactions between plants and human pathogens. Today we understand that those pathogens do not merely survive on or within plants, they actively infect plant organisms by suppressing their immune system. Studies on the infection process and disease development used mainly physiological, genetic, and molecular approaches, and image-based analysis provides yet another method for this toolbox. Employed as an observational tool, it bears the potential for objective and high throughput approaches, and together with other methods it will be very likely a part of data fusion approaches in the near future.
Collapse
Affiliation(s)
- Marek Schikora
- Fraunhofer Institute for Communication, Information Processing and Ergonomics FKIE, Fraunhoferstrasse 20, 53343 Wachtberg, Germany
| | - Adam Schikora
- Institute for Phytopathology and Applied Zoology, IFZ, JLU Giessen, 35392 Giessen, Germany
| |
Collapse
|
165
|
Neumann C, Fraiture M, Hernàndez-Reyes C, Akum FN, Virlogeux-Payant I, Chen Y, Pateyron S, Colcombet J, Kogel KH, Hirt H, Brunner F, Schikora A. The Salmonella effector protein SpvC, a phosphothreonine lyase is functional in plant cells. Front Microbiol 2014; 5:548. [PMID: 25368608 PMCID: PMC4201148 DOI: 10.3389/fmicb.2014.00548] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 10/01/2014] [Indexed: 11/13/2022] Open
Abstract
Salmonella is one of the most prominent causes of food poisoning and growing evidence indicates that contaminated fruits and vegetables are an increasing concern for human health. Successful infection demands the suppression of the host immune system, which is often achieved via injection of bacterial effector proteins into host cells. In this report we present the function of Salmonella effector protein in plant cell, supporting the new concept of trans-kingdom competence of this bacterium. We screened a range of Salmonella Typhimurium effector proteins for interference with plant immunity. Among these, the phosphothreonine lyase SpvC attenuated the induction of immunity-related genes when present in plant cells. Using in vitro and in vivo systems we show that this effector protein interacts with and dephosphorylates activated Arabidopsis Mitogen-activated Protein Kinase 6 (MPK6), thereby inhibiting defense signaling. Moreover, the requirement of Salmonella SpvC was shown by the decreased proliferation of the ΔspvC mutant in Arabidopsis plants. These results suggest that some Salmonella effector proteins could have a conserved function during proliferation in different hosts. The fact that Salmonella and other Enterobacteriaceae use plants as hosts strongly suggests that plants represent a much larger reservoir for animal pathogens than so far estimated.
Collapse
Affiliation(s)
- Christina Neumann
- Research Center for BioSystems, Land Use and Nutrition, Institute for Phytopathology and Applied Zoology, Justus-Liebig University Giessen Giessen, Germany
| | - Malou Fraiture
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen Tübingen, Germany
| | - Casandra Hernàndez-Reyes
- Research Center for BioSystems, Land Use and Nutrition, Institute for Phytopathology and Applied Zoology, Justus-Liebig University Giessen Giessen, Germany
| | - Fidele N Akum
- Research Center for BioSystems, Land Use and Nutrition, Institute for Phytopathology and Applied Zoology, Justus-Liebig University Giessen Giessen, Germany
| | - Isabelle Virlogeux-Payant
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique Tours, France
| | - Ying Chen
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen Tübingen, Germany
| | | | - Jean Colcombet
- Unité de Recherche en Génomique Végétale, Plant Genomics Evry, France
| | - Karl-Heinz Kogel
- Research Center for BioSystems, Land Use and Nutrition, Institute for Phytopathology and Applied Zoology, Justus-Liebig University Giessen Giessen, Germany
| | - Heribert Hirt
- Unité de Recherche en Génomique Végétale, Plant Genomics Evry, France
| | - Frédéric Brunner
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen Tübingen, Germany
| | - Adam Schikora
- Research Center for BioSystems, Land Use and Nutrition, Institute for Phytopathology and Applied Zoology, Justus-Liebig University Giessen Giessen, Germany
| |
Collapse
|
166
|
Ashida H, Sasakawa C. Shigella hacks host immune responses by reprogramming the host epigenome. EMBO J 2014; 33:2598-600. [PMID: 25246515 DOI: 10.15252/embj.201489934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Bacterial pathogens alter host transcriptional programs to promote infection. Shigella OspF is an essential virulence protein with a unique phosphothreonine lyase activity. A new study in The EMBO Journal (Harouz et al, 2014) reveals a novel function of OspF: targeting of heterochromatin protein 1γ (HP1γ) and downregulation of a subset of immune genes. These results illustrate how bacterial pathogens exploit epigenetic modifications to counteract host immune responses.
Collapse
Affiliation(s)
- Hiroshi Ashida
- Division of Bacterial Infection Biology, Institute of Medical Science, University of Tokyo, Minato-ku Tokyo, Japan
| | - Chihiro Sasakawa
- Division of Bacterial Infection Biology, Institute of Medical Science, University of Tokyo, Minato-ku Tokyo, Japan Nippon Institute for Biological Science, Ome Tokyo, Japan Medical Mycology Research Center, Chiba University, Chuo-ku Chiba, Japan
| |
Collapse
|
167
|
Harouz H, Rachez C, Meijer BM, Marteyn B, Donnadieu F, Cammas F, Muchardt C, Sansonetti P, Arbibe L. Shigella flexneri targets the HP1γ subcode through the phosphothreonine lyase OspF. EMBO J 2014; 33:2606-22. [PMID: 25216677 DOI: 10.15252/embj.201489244] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
HP1 proteins are transcriptional regulators that, like histones, are targets for post-translational modifications defining an HP1-mediated subcode. HP1γ has multiple phosphorylation sites, including serine 83 (S83) that marks it to sites of active transcription. In a guinea pig model for Shigella enterocolitis, we observed that the defective type III secretion mxiD Shigella flexneri strain caused more HP1γ phosphorylation in the colon than the wild-type strain. Shigella interferes with HP1 phosphorylation by injecting the phospholyase OspF. This effector interacts with HP1γ and alters its phosphorylation at S83 by inactivating ERK and consequently MSK1, a downstream kinase. MSK1 that here arises as a novel HP1γ kinase, phosphorylates HP1γ at S83 in the context of an MSK1-HP1γ complex, and thereby favors its accumulation on its target genes. Genome-wide transcriptome analysis reveals that this mechanism is linked to up-regulation of proliferative gene and fine-tuning of immune gene expression. Thus, in addition to histones, bacteria control host transcription by modulating the activity of HP1 proteins, with potential implications in transcriptional reprogramming at the mucosal barrier.
Collapse
Affiliation(s)
- Habiba Harouz
- Unité de Pathogénie Microbienne Moléculaire, Unité INSERM 786 Institut Pasteur, Paris, France
| | - Christophe Rachez
- Department of Biologie du Développement et Cellules Souches, Unité de Régulation Epigénétique, Institut Pasteur, Paris, France URA2578 CNRS, Paris, France
| | - Benoit M Meijer
- Unité de Pathogénie Microbienne Moléculaire, Unité INSERM 786 Institut Pasteur, Paris, France
| | - Benoit Marteyn
- Unité de Pathogénie Microbienne Moléculaire, Unité INSERM 786 Institut Pasteur, Paris, France
| | - Françoise Donnadieu
- Unité de Pathogénie Microbienne Moléculaire, Unité INSERM 786 Institut Pasteur, Paris, France
| | - Florence Cammas
- Equipe Epigénétique, différenciation cellulaire et cancer IRCM, Montpellier, France
| | - Christian Muchardt
- Department of Biologie du Développement et Cellules Souches, Unité de Régulation Epigénétique, Institut Pasteur, Paris, France URA2578 CNRS, Paris, France
| | - Philippe Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Unité INSERM 786 Institut Pasteur, Paris, France
| | - Laurence Arbibe
- Unité de Pathogénie Microbienne Moléculaire, Unité INSERM 786 Institut Pasteur, Paris, France
| |
Collapse
|
168
|
Khater S, Mohanty D. Genome-wide search for eliminylating domains reveals novel function for BLES03-like proteins. Genome Biol Evol 2014; 6:2017-33. [PMID: 25062915 PMCID: PMC4159009 DOI: 10.1093/gbe/evu161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Bacterial phosphothreonine lyases catalyze a novel posttranslational modification involving formation of dehydrobutyrine/dehyroalanine by β elimination of the phosphate group of phosphothreonine or phosphoserine residues in their substrate proteins. Though there is experimental evidence for presence of dehydro amino acids in human proteins, no eukaryotic homologs of these lyases have been identified as of today. A comprehensive genome-wide search for identifying phosphothreonine lyase homologs in eukaryotes was carried out. Our fold-based search revealed structural and catalytic site similarity between bacterial phosphothreonine lyases and BLES03 (basophilic leukemia-expressed protein 03), a human protein with unknown function. Ligand induced conformational changes similar to bacterial phosphothreonine lyases, and movement of crucial arginines in the loop region to the catalytic pocket upon binding of phosphothreonine-containing peptides was seen during docking and molecular dynamics studies. Genome-wide search for BLES03 homologs using sensitive profile-based methods revealed their presence not only in eukaryotic classes such as chordata and fungi but also in bacterial and archaebacterial classes. The synteny of these archaebacterial BLES03-like proteins was remarkably similar to that of type IV lantibiotic synthetases which harbor LanL-like phosphothreonine lyase domains. Hence, context-based analysis reinforced our earlier sequence/structure-based prediction of phosphothreonine lyase catalytic function for BLES03. Our in silico analysis has revealed that BLES03-like proteins with previously unknown function are novel eukaryotic phosphothreonine lyases involved in biosynthesis of dehydro amino acids, whereas their bacterial and archaebacterial counterparts might be involved in biosynthesis of natural products similar to lantibiotics.
Collapse
Affiliation(s)
- Shradha Khater
- Bioinformatics Center, National Institute of Immunology, New Delhi, India
| | - Debasisa Mohanty
- Bioinformatics Center, National Institute of Immunology, New Delhi, India
| |
Collapse
|
169
|
Fraiture M, Brunner F. Killing two birds with one stone: trans-kingdom suppression of PAMP/MAMP-induced immunity by T3E from enteropathogenic bacteria. Front Microbiol 2014; 5:320. [PMID: 25101059 PMCID: PMC4105635 DOI: 10.3389/fmicb.2014.00320] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/11/2014] [Indexed: 01/07/2023] Open
Abstract
Within the past decade, remarkable similarities between the molecular organization of animal and plant systems for non-self discrimination were revealed. Obvious parallels exist between the molecular structures of the receptors mediating the recognition of pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs) with plant pattern recognition receptors strikingly resembling mammalian Toll-like receptors. Mitogen-activated protein kinase cascades, leading to the transcriptional activation of immunity-associated genes, illustrate the conservation of whole molecular building blocks of PAMP/MAMP-induced signaling. Enteropathogenic Salmonella and Escherichia coli use a type three secretion system (T3SS) to inject effector proteins into the mammalian host cell to subvert defense mechanisms and promote gut infection. Lately, disease occurrence was increasingly associated with bacteria-contaminated fruits and vegetables and common themes have emerged with regard to whether and how effectors target innate immune responses in a trans-kingdom manner. We propose that numerous Salmonella or E. coli effectors may be active in planta and tend to target central components (hubs) of immune signaling pathways.
Collapse
Affiliation(s)
- Malou Fraiture
- Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University Tübingen Tübingen, Germany
| | - Frédéric Brunner
- Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University Tübingen Tübingen, Germany
| |
Collapse
|
170
|
Legionella pneumophila type IV effectors hijack the transcription and translation machinery of the host cell. Trends Cell Biol 2014; 24:771-8. [PMID: 25012125 DOI: 10.1016/j.tcb.2014.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 01/26/2023]
Abstract
Intracellular bacterial pathogens modulate the host response to persist and replicate inside a eukaryotic cell and cause disease. Legionella pneumophila, the causative agent of Legionnaires' disease, is present in freshwater environments and represents one of these pathogens. During coevolution with protozoan cells, L. pneumophila has acquired highly sophisticated and diverse strategies to hijack host cell processes. It secretes hundreds of effectors into the host cell, and these manipulate host signaling pathways and key cellular processes. Recently it has been shown that L. pneumophila is also able to alter the transcription and translation machinery of the host and to exploit epigenetic mechanisms in the cells it resides in to counteract host responses.
Collapse
|
171
|
Identification of novel Coxiella burnetii Icm/Dot effectors and genetic analysis of their involvement in modulating a mitogen-activated protein kinase pathway. Infect Immun 2014; 82:3740-52. [PMID: 24958706 DOI: 10.1128/iai.01729-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Coxiella burnetii, the causative agent of Q fever, is a human intracellular pathogen that utilizes the Icm/Dot type IVB secretion system to translocate effector proteins into host cells. To identify novel C. burnetii effectors, we applied a machine-learning approach to predict C. burnetii effectors, and examination of 20 such proteins resulted in the identification of 13 novel effectors. To determine whether these effectors, as well as several previously identified effectors, modulate conserved eukaryotic pathways, they were expressed in Saccharomyces cerevisiae. The effects on yeast growth were examined under regular growth conditions and in the presence of caffeine, a known modulator of the yeast cell wall integrity (CWI) mitogen-activated protein (MAP) kinase pathway. In the presence of caffeine, expression of the effectors CBU0885 and CBU1676 caused an enhanced inhibition of yeast growth, and the growth inhibition of CBU0388 was suppressed. Furthermore, analysis of synthetic lethality effects and examination of the activity of the CWI MAP kinase transcription factor Rlm1 indicated that CBU0388 enhances the activation of this MAP kinase pathway in yeast, while CBU0885 and CBU1676 abolish this activation. Additionally, coexpression of CBU1676 and CBU0388 resulted in mutual suppression of their inhibition of yeast growth. These results strongly indicate that these three effectors modulate the CWI MAP kinase pathway in yeast. Moreover, both CBU1676 and CBU0885 were found to contain a conserved haloacid dehalogenase (HAD) domain, which was found to be required for their activity. Collectively, our results demonstrate that MAP kinase pathways are most likely targeted by C. burnetii Icm/Dot effectors.
Collapse
|
172
|
Tan Y, Kagan JC. A cross-disciplinary perspective on the innate immune responses to bacterial lipopolysaccharide. Mol Cell 2014; 54:212-23. [PMID: 24766885 DOI: 10.1016/j.molcel.2014.03.012] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The study of innate immunity to bacteria has focused heavily on the mechanisms by which mammalian cells detect lipopolysaccharide (LPS), the conserved surface component of Gram-negative bacteria. While Toll-like receptor 4 (TLR4) is responsible for all the host transcriptional responses to LPS, recent discoveries have revealed the existence of several TLR4-independent responses to LPS. These discoveries not only broaden our view of the means by which mammalian cells interact with bacteria, but they also highlight new selective pressures that may have promoted the evolution of bacterial immune evasion strategies. In this review, we highlight past and recent discoveries on host LPS sensing mechanisms and discuss bacterial countermeasures that promote infection. By looking at both sides of the host-pathogen interaction equation, we hope to provide comprehensive insights into host defense mechanisms and bacterial pathogenesis.
Collapse
Affiliation(s)
- Yunhao Tan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
173
|
Abstract
The innate immune system has evolved under selective pressure since the radiation of multicellular life approximately 600 million years ago. Because of this long history, innate immune mechanisms found in modern eukaryotic organisms today are highly complex but yet built from common molecular strategies. It is now clear that evolution has selected a conserved set of antimicrobial peptides as well as pattern-recognition receptors (PRRs) that initiate cellular-based signals as a first line of defense against invading pathogens. Conversely, microbial pathogens employ their own strategies in order to evade, inhibit, or otherwise manipulate the innate immune response. Here, we discuss recent discoveries that have changed our view of immune modulatory mechanisms employed by bacterial pathogens, focusing specifically on the initial sites of microbial recognition and extending to host cellular signal transduction, proinflammatory cytokine production, and alteration of protein trafficking and secretion.
Collapse
|
174
|
Shigella Species. Food Microbiol 2014. [DOI: 10.1128/9781555818463.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
175
|
Giogha C, Lung TWF, Pearson JS, Hartland EL. Inhibition of death receptor signaling by bacterial gut pathogens. Cytokine Growth Factor Rev 2014; 25:235-43. [DOI: 10.1016/j.cytogfr.2013.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 12/22/2022]
|
176
|
Salomon D, Orth K. What pathogens have taught us about posttranslational modifications. Cell Host Microbe 2014; 14:269-79. [PMID: 24034613 DOI: 10.1016/j.chom.2013.07.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pathogens use various mechanisms to manipulate host processes to promote infection. Decades of research on pathogens have revealed not only the molecular mechanisms that these microbes use to replicate and survive within host cells, but also seminal information on how host signaling machinery regulates cellular processes. Among these discoveries are mechanisms involving posttranslational modifications that alter the activity, localization, or interactions of the modified protein. Herein, we examine how pathogens have contributed to our basic understanding of three posttranslational modifications: phosphorylation, NMPylation, and ubiquitylation. Over the years, technologies, techniques and research tools have developed side by side with the study of pathogens, facilitating the discovery of protein modifications and furthering our understanding of how they contribute to both infection and cellular functions.
Collapse
Affiliation(s)
- Dor Salomon
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | | |
Collapse
|
177
|
Li J, Yu J, Zhao J, Wang J, Zheng S, Lin S, Chen L, Yang M, Jia S, Zhang X, Chen PR. Palladium-triggered deprotection chemistry for protein activation in living cells. Nat Chem 2014; 6:352-61. [DOI: 10.1038/nchem.1887] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/05/2014] [Indexed: 02/07/2023]
|
178
|
Bou Saab J, Losa D, Chanson M, Ruez R. Connexins in respiratory and gastrointestinal mucosal immunity. FEBS Lett 2014; 588:1288-96. [PMID: 24631537 DOI: 10.1016/j.febslet.2014.02.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 02/27/2014] [Accepted: 02/27/2014] [Indexed: 12/18/2022]
Abstract
The mucosal lining forms the physical and chemical barrier that protects against pathogens and hostile particles and harbors its own population of bacteria, fungi and archea, known as the microbiota. The immune system controls tolerance of this population of microorganisms that have proven to be beneficial for its host. Keeping its physical integrity and a correct balance with the microbiota, the mucosa preserves its homeostasis and its protective function and maintains host's health. However, in some conditions, pathogens may succeed in breaching mucosal homeostasis and successfully infecting the host. In this review we will discuss the role the mucosa plays in the defense against bacterial pathogens by considering the gap junction protein connexins. We will detail their implication in mucosal homeostasis and upon infection with bacteria in the respiratory and the gastrointestinal tracts.
Collapse
Affiliation(s)
- Joanna Bou Saab
- Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Davide Losa
- Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Marc Chanson
- Geneva University Hospitals and University of Geneva, Geneva, Switzerland.
| | - Richard Ruez
- Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
179
|
Silmon de Monerri NC, Kim K. Pathogens hijack the epigenome: a new twist on host-pathogen interactions. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:897-911. [PMID: 24525150 DOI: 10.1016/j.ajpath.2013.12.022] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/01/2013] [Accepted: 12/05/2013] [Indexed: 02/07/2023]
Abstract
Pathogens have evolved strategies to promote their survival by dramatically modifying the transcriptional profile and protein content of the host cells they infect. Modifications of the host transcriptome and proteome are mediated by pathogen-encoded effector molecules that modulate host cells through a variety of different mechanisms. Recent studies highlight the importance of the host chromatin and other epigenetic regulators as targets of pathogens. Host gene regulatory mechanisms may be targeted through cytoplasmic signaling, directly by pathogen effector proteins, and possibly by pathogen RNA. Although many of these changes are short-lived and persist only during the course of infection, several studies indicate that pathogens are able to induce long-term, heritable changes that are essential to pathogenesis of infectious diseases and persistence of pathogens within their hosts. In this review, we discuss how pathogens modulate the epigenome of host cells, a new and flourishing avenue of host-pathogen interaction studies.
Collapse
Affiliation(s)
- Natalie C Silmon de Monerri
- Departments of Medicine, Pathology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Kami Kim
- Departments of Medicine, Pathology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
180
|
Bougdour A, Tardieux I, Hakimi MA. Toxoplasmaexports dense granule proteins beyond the vacuole to the host cell nucleus and rewires the host genome expression. Cell Microbiol 2014; 16:334-43. [DOI: 10.1111/cmi.12255] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Alexandre Bougdour
- CNRS; UMR5163; LAPM; Grenoble 38041 France
- Université Joseph Fourier; Grenoble 38000 France
| | - Isabelle Tardieux
- Institut Cochin; INSERM U1016; CNRS UMR 8104; Université Paris Descartes; Paris 75014 France
| | - Mohamed-Ali Hakimi
- CNRS; UMR5163; LAPM; Grenoble 38041 France
- Université Joseph Fourier; Grenoble 38000 France
| |
Collapse
|
181
|
Derakhshandeh A, Firouzi R, Khoshbakht R. Association of Three Plasmid-Encoded spv Genes Among Different Salmonella Serotypes Isolated from Different Origins. Indian J Microbiol 2014; 53:106-10. [PMID: 24426086 DOI: 10.1007/s12088-012-0316-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/02/2012] [Indexed: 11/24/2022] Open
Abstract
The virulence plasmid associated Salmonella plasmid virulence (spv) locus is strongly concomitant with strains that cause non typhoid bacteremia. The spv region contains three genes required for the virulence, the positive transcriptional regulator spvR and two structural genes spvB and spvC. The purpose of this study was to investigate the presence of these three genes among salmonella serotypes isolated from different sources. A collection of 60 salmonella serotypes from different sources were used. Polymerase chain reaction was carried out for the presence of these genes using specific primers. The prevalence of spvB, spvC, and spvR genes were 26 (43.3 %), 44 (73.3 %), and 28 (46.6 %), respectively. The findings revealed that the distribution of these genes was dissimilar among these serotypes. Many of the human pathogenic salmonella strains which can be transmitted by animals may have these genes and can be very injurious for public health.
Collapse
Affiliation(s)
- Abdollah Derakhshandeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Roya Firouzi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Rahem Khoshbakht
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
182
|
Rüter C, Hardwidge PR. ‘Drugs from Bugs’: bacterial effector proteins as promising biological (immune-) therapeutics. FEMS Microbiol Lett 2013; 351:126-32. [DOI: 10.1111/1574-6968.12333] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/13/2013] [Indexed: 01/04/2023] Open
Affiliation(s)
- Christian Rüter
- Center for Molecular Biology of Inflammation (ZMBE); Institute of Infectiology; University of Münster; Münster Germany
| | | |
Collapse
|
183
|
Abstract
Cyclic dinucleotides (CDNs) have been previously recognized as important secondary signaling molecules in bacteria and, more recently, in mammalian cells. In the former case, they represent secondary messengers affecting numerous responses of the prokaryotic cell, whereas in the latter, they act as agonists of the innate immune response. Remarkable new discoveries have linked these two patterns of utilization of CDNs as secondary messengers and have revealed unexpected influences they likely had on shaping human genetic variation. This Review summarizes these recent insights and provides a perspective on future unanswered questions in this exciting field.
Collapse
|
184
|
Salomon D, Orth K. Lost after translation: post-translational modifications by bacterial type III effectors. Curr Opin Microbiol 2013; 16:213-20. [PMID: 23466212 DOI: 10.1016/j.mib.2013.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 10/26/2022]
Abstract
Many Gram-negative bacterial pathogens use the type III secretion system to deliver effector proteins into host cells. These effectors use various mechanisms to exploit host processes to the advantage of the pathogen. A large group of effectors use post-translational modifications, either reversible or irreversible, to manipulate host proteins, and while most of these mechanisms mimic eukaryotic activities, others appear to be unique biochemical functions. Deciphering such mechanisms and identifying the host targets of these effectors sheds light on eukaryotic signaling pathways and immune responses.
Collapse
Affiliation(s)
- Dor Salomon
- Department of Molecular Biology, University of Texas Southwestern, Medical Center, Dallas, TX 75390-9148, USA
| | | |
Collapse
|
185
|
Samuelson DR, Konkel ME. Serine phosphorylation of cortactin is required for maximal host cell invasion by Campylobacter jejuni. Cell Commun Signal 2013; 11:82. [PMID: 24188565 PMCID: PMC3832248 DOI: 10.1186/1478-811x-11-82] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/23/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Campylobacter jejuni causes acute disease characterized by severe diarrhea containing blood and leukocytes, fever, and abdominal cramping. Disease caused by C. jejuni is dependent on numerous bacterial and host factors. C. jejuni invasion of the intestinal epithelial cells is seen in both clinical samples and animal models indicating that host cell invasion is, in part, necessary for disease. C. jejuni utilizes a flagellar Type III Secretion System (T3SS) to deliver the Campylobacter invasion antigens (Cia) to host cells. The Cia proteins modulate host cell signaling leading to actin cytoskeleton rearrangement necessary for C. jejuni host cell invasion, and are required for the development of disease. RESULTS This study was based on the hypothesis that the C. jejuni CiaD effector protein mediates Erk 1/2 dependent cytoskeleton rearrangement. We showed that CiaD was required for the maximal phosphorylation of Erk 1/2 by performing an immunoblot with a p-Erk 1/2 specific antibody and that Erk 1/2 participates in C. jejuni invasion of host cells by performing the gentamicin protection assay in the presence and absence of the PD98059 (a potent inhibitor of Erk 1/2 activation). CiaD was also found to be required for the maximal phosphorylation of cortactin S405 and S418, as judged by immunoblot analysis. The response of human INT 407 epithelial cells to infection with C. jejuni was evaluated by confocal microscopy and scanning electron microscopy to determine the extent of membrane ruffling. This analysis revealed that CiaD, Erk 1/2, and cortactin participate in C. jejuni-induced membrane ruffling. Finally, cortactin and N-WASP were found to be involved in C. jejuni invasion of host cells using siRNA to N-WASP, and siRNA to cortactin, coupled with the gentamicin protection assay. CONCLUSION We conclude that CiaD is involved in the activation of Erk 1/2 and that activated Erk 1/2 facilitates C. jejuni invasion by phosphorylation of cortactin on serine 405 and 418. This is the first time that cortactin and N-WASP have been shown to be involved in C. jejuni invasion of host cells. These data also provide a mechanistic basis for the requirement of Erk 1/2 in C. jejuni-mediated cytoskeletal rearrangement.
Collapse
Affiliation(s)
| | - Michael E Konkel
- School of Molecular Biosciences, Washington State University, College of Veterinary Medicine, Life Sciences Bldg, Room 302c, Pullman, Washington 99164-7520, USA.
| |
Collapse
|
186
|
Samuelson DR, Eucker TP, Bell JA, Dybas L, Mansfield LS, Konkel ME. The Campylobacter jejuni CiaD effector protein activates MAP kinase signaling pathways and is required for the development of disease. Cell Commun Signal 2013; 11:79. [PMID: 24144181 PMCID: PMC3833307 DOI: 10.1186/1478-811x-11-79] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/07/2013] [Indexed: 12/22/2022] Open
Abstract
Background Enteric pathogens utilize a distinct set of proteins to modulate host cell signaling events that promote host cell invasion, induction of the inflammatory response, and intracellular survival. Human infection with Campylobacter jejuni, the causative agent of campylobacteriosis, is characterized by diarrhea containing blood and leukocytes. The clinical presentation of acute disease, which is consistent with cellular invasion, requires the delivery of the Campylobacter invasion antigens (Cia) to the cytosol of host cells via a flagellar Type III Secretion System (T3SS). We identified a novel T3SS effector protein, which we termed CiaD that is exported from the C. jejuni flagellum and delivered to the cytosol of host cells. Results We show that the host cell kinases p38 and Erk 1/2 are activated by CiaD, resulting in the secretion of interleukin-8 (IL-8) from host cells. Additional experiments revealed that CiaD-mediated activation of p38 and Erk 1/2 are required for maximal invasion of host cells by C. jejuni. CiaD contributes to disease, as evidenced by infection of IL-10 knockout mice. Noteworthy is that CiaD contains a Mitogen-activated protein (MAP) kinase-docking site that is found within effector proteins produced by other enteric pathogens. These findings indicate that C. jejuni activates the MAP kinase signaling pathways Erk 1/2 and p38 to promote cellular invasion and the release of the IL-8 pro-inflammatory chemokine. Conclusions The identification of a novel T3SS effector protein from C. jejuni significantly expands the knowledge of virulence proteins associated with C. jejuni pathogenesis and provides greater insight into the mechanism utilized by C. jejuni to invade host cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael E Konkel
- School of Molecular Biosciences, Washington State University, College of Veterinary Medicine, Life Sciences Bldg, Room 302c, Pullman, WA 99164-7520, USA.
| |
Collapse
|
187
|
Carayol N, Tran Van Nhieu G. The inside story of Shigella invasion of intestinal epithelial cells. Cold Spring Harb Perspect Med 2013; 3:a016717. [PMID: 24086068 DOI: 10.1101/cshperspect.a016717] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As opposed to other invasive pathogens that reside into host cells in a parasitic mode, Shigella, the causative agent of bacillary dysentery, invades the colonic mucosa but does not penetrate further to survive into deeper tissues. Instead, Shigella invades, replicates, and disseminates within the colonic mucosa. Bacterial invasion and spreading in intestinal epithelium lead to the elicitation of inflammatory responses responsible for the tissue destruction and shedding in the environment for further infection of other hosts. In this article, we highlight specific features of the Shigella arsenal of virulence determinants injected by a type III secretion apparatus (T3SA) that point to the targeting of intestinal epithelial cells as a discrete route of invasion during the initial event of the infectious process.
Collapse
Affiliation(s)
- Nathalie Carayol
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France
| | | |
Collapse
|
188
|
Schmutz C, Ahrné E, Kasper CA, Tschon T, Sorg I, Dreier RF, Schmidt A, Arrieumerlou C. Systems-level overview of host protein phosphorylation during Shigella flexneri infection revealed by phosphoproteomics. Mol Cell Proteomics 2013; 12:2952-68. [PMID: 23828894 PMCID: PMC3790303 DOI: 10.1074/mcp.m113.029918] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/14/2013] [Indexed: 01/01/2023] Open
Abstract
The enteroinvasive bacterium Shigella flexneri invades the intestinal epithelium of humans. During infection, several injected effector proteins promote bacterial internalization, and interfere with multiple host cell responses. To obtain a systems-level overview of host signaling during infection, we analyzed the global dynamics of protein phosphorylation by liquid chromatography-tandem MS and identified several hundred of proteins undergoing a phosphorylation change during the first hours of infection. Functional bioinformatic analysis revealed that they were mostly related to the cytoskeleton, transcription, signal transduction, and cell cycle. Fuzzy c-means clustering identified six temporal profiles of phosphorylation and a functional module composed of ATM-phosphorylated proteins related to genotoxic stress. Pathway enrichment analysis defined mTOR as the most overrepresented pathway. We showed that mTOR complex 1 and 2 were required for S6 kinase and AKT activation, respectively. Comparison with a published phosphoproteome of Salmonella typhimurium-infected cells revealed a large subset of coregulated phosphoproteins. Finally, we showed that S. flexneri effector OspF affected the phosphorylation of several hundred proteins, thereby demonstrating the wide-reaching impact of a single bacterial effector on the host signaling network.
Collapse
Affiliation(s)
- Christoph Schmutz
- From the ‡Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Erik Ahrné
- From the ‡Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Christoph A. Kasper
- From the ‡Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Therese Tschon
- From the ‡Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Isabel Sorg
- From the ‡Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Roland F. Dreier
- From the ‡Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Alexander Schmidt
- From the ‡Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Cécile Arrieumerlou
- From the ‡Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| |
Collapse
|
189
|
Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 2013; 26:822-80. [PMID: 24092857 PMCID: PMC3811233 DOI: 10.1128/cmr.00022-13] [Citation(s) in RCA: 895] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although Escherichia coli can be an innocuous resident of the gastrointestinal tract, it also has the pathogenic capacity to cause significant diarrheal and extraintestinal diseases. Pathogenic variants of E. coli (pathovars or pathotypes) cause much morbidity and mortality worldwide. Consequently, pathogenic E. coli is widely studied in humans, animals, food, and the environment. While there are many common features that these pathotypes employ to colonize the intestinal mucosa and cause disease, the course, onset, and complications vary significantly. Outbreaks are common in developed and developing countries, and they sometimes have fatal consequences. Many of these pathotypes are a major public health concern as they have low infectious doses and are transmitted through ubiquitous mediums, including food and water. The seriousness of pathogenic E. coli is exemplified by dedicated national and international surveillance programs that monitor and track outbreaks; unfortunately, this surveillance is often lacking in developing countries. While not all pathotypes carry the same public health profile, they all carry an enormous potential to cause disease and continue to present challenges to human health. This comprehensive review highlights recent advances in our understanding of the intestinal pathotypes of E. coli.
Collapse
|
190
|
Yu Y, Zhang Q, van der Donk WA. Insights into the evolution of lanthipeptide biosynthesis. Protein Sci 2013; 22:1478-89. [PMID: 24038659 DOI: 10.1002/pro.2358] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/20/2013] [Indexed: 11/11/2022]
Abstract
Lanthipeptides are a group of posttranslationally modified peptide natural products that contain multiple thioether crosslinks. These crosslinks are formed by dehydration of Ser/Thr residues followed by addition of the thiols of Cys residues to the resulting dehydroamino acids. At least four different pathways to these polycyclic natural products have evolved, reflecting the high efficiency and evolvability of a posttranslational modification route to generate conformationally constrained peptides. The wealth of genomic information that has been made available in recent years has started to provide insights into how these remarkable pathways and their posttranslational modification machineries may have evolved. In this review, we discuss a model for the evolution of the lanthipeptide biosynthetic enzymes that has recently been developed based on the currently available data.
Collapse
Affiliation(s)
- Yi Yu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | | | | |
Collapse
|
191
|
Abstract
Pathogenic bacteria of the Xanthomonas and Ralstonia genus have developed resourceful strategies creating a favorable environment to multiply and colonize their host plants. One of these strategies involves the secretion and translocation of several families of effector proteins into the host cell. The transcription activator-like effector (TALE) family forms a subset of proteins involved in the direct modulation of host gene expression. TALEs include a number of tandem 34-amino acid repeats in their central part, where specific residues variable in two adjacent positions determine DNA-binding in the host genome. The specificity of this binding and its predictable nature make TALEs a revolutionary tool for gene editing, functional analysis, modification of target gene expression, and directed mutagenesis. Several examples have been reported in higher organisms as diverse as plants, Drosophila, zebrafish, mouse, and even human cells. Here, we summarize the functions of TALEs in their natural context and the biotechnological perspectives of their use.
Collapse
Affiliation(s)
- Alejandra Muñoz Bodnar
- Manihot Biotec Laboratory, Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | | |
Collapse
|
192
|
Abstract
Following pathogen infection or tissue damage, the stimulation of pattern recognition receptors on the cell surface and in the cytoplasm of innate immune cells activates members of each of the major mitogen-activated protein kinase (MAPK) subfamilies--the extracellular signal-regulated kinase (ERK), p38 and Jun N-terminal kinase (JNK) subfamilies. In conjunction with the activation of nuclear factor-κB and interferon-regulatory factor transcription factors, MAPK activation induces the expression of multiple genes that together regulate the inflammatory response. In this Review, we discuss our current knowledge about the regulation and the function of MAPKs in innate immunity, as well as the importance of negative feedback loops in limiting MAPK activity to prevent host tissue damage. We also examine how pathogens have evolved complex mechanisms to manipulate MAPK activation to increase their virulence. Finally, we consider the potential of the pharmacological targeting of MAPK pathways to treat autoimmune and inflammatory diseases.
Collapse
|
193
|
Li S, Zhang L, Yao Q, Li L, Dong N, Rong J, Gao W, Ding X, Sun L, Chen X, Chen S, Shao F. Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains. Nature 2013; 501:242-6. [DOI: 10.1038/nature12436] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/08/2013] [Indexed: 12/25/2022]
|
194
|
Subversion of trafficking, apoptosis, and innate immunity by type III secretion system effectors. Trends Microbiol 2013; 21:430-41. [DOI: 10.1016/j.tim.2013.06.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/08/2013] [Accepted: 06/18/2013] [Indexed: 11/17/2022]
|
195
|
Rennoll-Bankert KE, Dumler JS. Lessons from Anaplasma phagocytophilum: chromatin remodeling by bacterial effectors. Infect Disord Drug Targets 2013; 12:380-7. [PMID: 23082961 PMCID: PMC3664514 DOI: 10.2174/187152612804142242] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/27/2012] [Accepted: 08/27/2012] [Indexed: 02/06/2023]
Abstract
Bacterial pathogens can alter global host gene expression via histone modifications and chromatin remodeling in order to subvert host responses, including those involved with innate immunity, allowing for bacterial survival. Shigella flexneri, Listeria monocytogenes, Chlamydia trachomatis, and Anaplasma phagocytophilum express effector proteins that modify host histones and chromatin structure. A. phagocytophilum modulates granulocyte respiratory burst in part by dampening transcription of several key phagocyte oxidase genes. The A. phagocytophilum protein AnkA localizes to the myeloid cell nucleus where it binds AT-rich regions in the CYBB promoter and decreases its transcription. AT-rich regions of DNA are characteristic of matrix attachment regions (MARs) which are critical for chromatin structure and transcription. MAR-binding proteins, such as SATB1, interact with histone modifying enzymes resulting in altered gene expression. With A. phagocytophilum infection, histone deacetylase 1 (HDAC1) expression is increased and histone H3 acetylation is decreased at the CYBB promoter, suggesting a role for AnkA in altering host epigenetics and modulating gene transcription, at this, and perhaps other loci. This review will focus on how bacterial pathogens alter host epigenetics, by specifically examining A. phagocytophilum AnkA cis-regulation of CYBB transcription and epigenetic changes associated with infection.
Collapse
|
196
|
Baxt LA, Garza-Mayers AC, Goldberg MB. Bacterial subversion of host innate immune pathways. Science 2013; 340:697-701. [PMID: 23661751 DOI: 10.1126/science.1235771] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The pathogenesis of infection is a continuously evolving battle between the human host and the infecting microbe. The past decade has brought a burst of insights into the molecular mechanisms of innate immune responses to bacterial pathogens. In parallel, multiple specific mechanisms by which microorganisms subvert these host responses have been uncovered. This Review highlights recently characterized mechanisms by which bacterial pathogens avoid killing by innate host responses, including autophagy pathways and a proinflammatory cytokine transcriptional response, and by the manipulation of vesicular trafficking to avoid the toxicity of lysosomal enzymes.
Collapse
Affiliation(s)
- Leigh A Baxt
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
197
|
Li J, Lin S, Wang J, Jia S, Yang M, Hao Z, Zhang X, Chen PR. Ligand-Free Palladium-Mediated Site-Specific Protein Labeling Inside Gram-Negative Bacterial Pathogens. J Am Chem Soc 2013; 135:7330-8. [DOI: 10.1021/ja402424j] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jie Li
- Synthetic and Functional Biomolecules
Center, Beijing National Laboratory for Molecular Sciences, Department
of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shixian Lin
- Synthetic and Functional Biomolecules
Center, Beijing National Laboratory for Molecular Sciences, Department
of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jie Wang
- Synthetic and Functional Biomolecules
Center, Beijing National Laboratory for Molecular Sciences, Department
of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shang Jia
- Synthetic and Functional Biomolecules
Center, Beijing National Laboratory for Molecular Sciences, Department
of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Maiyun Yang
- Synthetic and Functional Biomolecules
Center, Beijing National Laboratory for Molecular Sciences, Department
of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ziyang Hao
- Synthetic and Functional Biomolecules
Center, Beijing National Laboratory for Molecular Sciences, Department
of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaoyu Zhang
- College of Chemistry and Chemical
Engineering, Lanzhou University, Lanzhou
730000, China
| | - Peng R. Chen
- Synthetic and Functional Biomolecules
Center, Beijing National Laboratory for Molecular Sciences, Department
of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
198
|
Lee AHY, Middleton MA, Guttman DS, Desveaux D. Phytopathogen type III effectors as probes of biological systems. Microb Biotechnol 2013; 6:230-40. [PMID: 23433088 PMCID: PMC3815918 DOI: 10.1111/1751-7915.12042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/12/2013] [Accepted: 01/16/2013] [Indexed: 11/29/2022] Open
Abstract
Bacterial phytopathogens utilize a myriad of virulence factors to modulate their plant hosts in order to promote successful pathogenesis. One potent virulence strategy is to inject these virulence proteins into plant cells via the type III secretion system. Characterizing the host targets and the molecular mechanisms of type III secreted proteins, known as effectors, has illuminated our understanding of eukaryotic cell biology. As a result, these effectors can serve as molecular probes to aid in our understanding of plant cellular processes, such as immune signalling, vesicle trafficking, cytoskeleton stability and transcriptional regulation. Furthermore, given that effectors directly and specifically interact with their targets within plant cells, these virulence proteins have enormous biotechnological potential for manipulating eukaryotic systems.
Collapse
Affiliation(s)
- Amy Huei-Yi Lee
- Department of Cell & Systems Biology, University of TorontoToronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution & Function, University of TorontoToronto, Ontario, Canada
| | - Maggie A Middleton
- Centre for the Analysis of Genome Evolution & Function, University of TorontoToronto, Ontario, Canada
| | - David S Guttman
- Department of Cell & Systems Biology, University of TorontoToronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution & Function, University of TorontoToronto, Ontario, Canada
| | - Darrell Desveaux
- Department of Cell & Systems Biology, University of TorontoToronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution & Function, University of TorontoToronto, Ontario, Canada
| |
Collapse
|
199
|
Fu P, Zhang X, Jin M, Xu L, Wang C, Xia Z, Zhu Y. Complex structure of OspI and Ubc13: the molecular basis of Ubc13 deamidation and convergence of bacterial and host E2 recognition. PLoS Pathog 2013; 9:e1003322. [PMID: 23633953 PMCID: PMC3636029 DOI: 10.1371/journal.ppat.1003322] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 03/07/2013] [Indexed: 11/24/2022] Open
Abstract
Ubc13 is an important ubiquitin-conjugating (E2) enzyme in the NF-κB signaling pathway. The Shigella effector OspI targets Ubc13 and deamidates Gln100 of Ubc13 to a glutamic acid residue, leading to the inhibition of host inflammatory responses. Here we report the crystal structure of the OspI-Ubc13 complex at 2.3 Å resolution. The structure reveals that OspI uses two differently charged regions to extensively interact with the α1 helix, L1 loop and L2 loop of Ubc13. The Gln100 residue is bound within the hydrophilic catalytic pocket of OspI. A comparison between Ubc13-bound and wild-type free OspI structures revealed that Ubc13 binding induces notable structural reassembly of the catalytic pocket, suggesting that substrate binding might be involved in the catalysis of OspI. The OspI-binding sites in Ubc13 largely overlap with the binding residues for host ubiquitin E3 ligases and a deubiquitinating enzyme, which suggests that the bacterial effector and host proteins exploit the same surface on Ubc13 for specific recognition. Biochemical results indicate that both of the differently charged regions in OspI are important for the interaction with Ubc13, and the specificity determinants in Ubc13 for OspI recognition reside in the distinct residues in the α1 helix and L2 region. Our study reveals the molecular basis of Ubc13 deamidation by OspI, as well as a convergence of E2 recognition by bacterial and host proteins. The Gram-negative pathogenic bacterium Shigella infects human intestinal epithelium cells and causes severe inflammatory colitis (bacillary dysentery). Shigella harbors an approximately 220-kb virulence plasmid that encodes a type III secretion system (T3SS) protein secretion apparatus and many effector proteins. Using the T3SS, Shigella delivers the effector proteins into the host cells, targeting key signal molecules and manipulating the host physiological processes and thereby promoting infection and multiplication. OspI, a newly identified Shigella effector, targets the host Ubc13 protein, a critical ubiquitin-conjugating enzyme in the NF-κB signaling pathway. OspI deamidates Gln100 of Ubc13 to a glutamic acid residue, thereby disrupting TRAF6-catalyzed polyubiquitination and dampening host inflammatory responses. However, the structural mechanism of this specific deamidation is unclear. Through crystallography, we have determined the structure of the OspI-Ubc13 complex. The structure illustrates how OspI interacts with Ubc13 and how Ubc13 induces conformational changes in OspI. Combining structural analysis and biochemical assays, we revealed how OspI distinguishes Ubc13 from other ubiquitin conjugating enzymes and found that OspI binds to the same surface region on Ubc13 as host TRAF6, CHIP and OTUB1. Our study sheds light on the molecular mechanism of Ubc13 deamidation by OspI and provides new insights into E2 recognition by bacterial and host proteins.
Collapse
Affiliation(s)
- Panhan Fu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoqing Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengmeng Jin
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Xu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chong Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zongping Xia
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongqun Zhu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
200
|
Characterization of the ospZ promoter in Shigella flexneri and its regulation by VirB and H-NS. J Bacteriol 2013; 195:2562-72. [PMID: 23543709 DOI: 10.1128/jb.00212-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
OspZ is an effector protein of the type III secretion system in Shigella spp. that downregulates the human inflammatory response during bacterial infection. The ospZ gene is located on the large virulence plasmid of Shigella. Many genes on this plasmid are transcriptionally repressed by the nucleoid structuring protein H-NS and derepressed by VirB, a DNA-binding protein that displays homology to the plasmid partitioning proteins ParB and SopB. In this study, we characterized the ospZ promoter and investigated its regulation by H-NS and VirB in Shigella flexneri. We show that H-NS represses and VirB partially derepresses the ospZ promoter. H-NS-mediated repression requires sequences located between -731 and -412 relative to the beginning of the ospZ gene. Notably, the VirB-dependent derepression of ospZ requires the same VirB binding sites as are required for the VirB-dependent derepression of the divergent icsP gene. These sites are centered 425 bp upstream of the ospZ gene but over 1 kb upstream of the icsP transcription start site. Although these VirB binding sites lie closer to ospZ than icsP, the VirB-dependent increase in ospZ promoter activity is lower than that observed at the icsP promoter. This indicates that the proximity of VirB binding sites to Shigella promoters does not necessarily correlate with the level of VirB-dependent derepression. These findings have implications for virulence gene regulation in Shigella and other pathogens that control gene expression using mechanisms of transcriptional repression and derepression.
Collapse
|