151
|
Xu D, Dhiman R, Garibay A, Mock HP, Leister D, Kleine T. Cellulose defects in the Arabidopsis secondary cell wall promote early chloroplast development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:156-170. [PMID: 31498930 DOI: 10.1111/tpj.14527] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/12/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Lincomycin (LIN)-mediated inhibition of protein synthesis in chloroplasts prevents the greening of seedlings, represses the activity of photosynthesis-related genes in the nucleus, including LHCB1.2, and induces the phenylpropanoid pathway, resulting in the production of anthocyanins. In genomes uncoupled (gun) mutants, LHCB1.2 expression is maintained in the presence of LIN or other inhibitors of early chloroplast development. In a screen using concentrations of LIN lower than those employed to isolate gun mutants, we have identified happy on lincomycin (holi) mutants. Several holi mutants show an increased tolerance to LIN, exhibiting de-repressed LHCB1.2 expression and chlorophyll synthesis in seedlings. The mutations responsible were identified by whole-genome single-nucleotide polymorphism (SNP) mapping, and most were found to affect the phenylpropanoid pathway; however, LHCB1.2 expression does not appear to be directly regulated by phenylpropanoids, as indicated by the metabolic profiling of mutants. The most potent holi mutant is defective in a subunit of cellulose synthase encoded by IRREGULAR XYLEM 3, and comparative analysis of this and other cell-wall mutants establishes a link between secondary cell-wall integrity and early chloroplast development, possibly involving altered ABA metabolism or sensing.
Collapse
Affiliation(s)
- Duorong Xu
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Ravi Dhiman
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Adriana Garibay
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK-Gatersleben), Corrensstraße 3, 06466, Stadt Seeland, OT Gatersleben, Germany
| | - Hans-Peter Mock
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK-Gatersleben), Corrensstraße 3, 06466, Stadt Seeland, OT Gatersleben, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
152
|
Baek D, Shin G, Kim MC, Shen M, Lee SY, Yun DJ. Histone Deacetylase HDA9 With ABI4 Contributes to Abscisic Acid Homeostasis in Drought Stress Response. FRONTIERS IN PLANT SCIENCE 2020; 11:143. [PMID: 32158458 PMCID: PMC7052305 DOI: 10.3389/fpls.2020.00143] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/30/2020] [Indexed: 05/18/2023]
Abstract
Drought stress, a major environmental factor, significantly affects plant growth and reproduction. Plants have evolved complex molecular mechanisms to tolerate drought stress. In this study, we investigated the function of the Arabidopsis thaliana RPD3-type HISTONE DEACETYLASE 9 (HDA9) in response to drought stress. The loss-of-function mutants hda9-1 and hda9-2 were insensitive to abscisic acid (ABA) and sensitive to drought stress. The ABA content in the hda9-1 mutant was reduced in wild type (WT) plant. Most histone deacetylases in animals and plants form complexes with other chromatin-remodeling components, such as transcription factors. In this study, we found that HDA9 interacts with the ABA INSENSITIVE 4 (ABI4) transcription factor using a yeast two-hybrid assay and coimmunoprecipitation. The expression of CYP707A1 and CYP707A2, which encode (+)-ABA 8'-hydroxylases, key enzymes in ABA catabolic pathways, was highly induced in hda9-1, hda9-2, abi4, and hda9-1 abi4 mutants upon drought stress. Chromatin immunoprecipitation and quantitative PCR showed that the HDA9 and ABI4 complex repressed the expression of CYP707A1 and CYP707A2 by directly binding to their promoters in response to drought stress. Taken together, these data suggest that HDA9 and ABI4 form a repressive complex to regulate the expression of CYP707A1 and CYP707A2 in response to drought stress in Arabidopsis.
Collapse
Affiliation(s)
- Dongwon Baek
- Division of Applied Life Science (BK21plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Gilok Shin
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Min Chul Kim
- Division of Applied Life Science (BK21plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, South Korea
| | - Mingzhe Shen
- Division of Applied Life Science (BK21plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
- *Correspondence: Dae-Jin Yun,
| |
Collapse
|
153
|
Kretschmer M, Damoo D, Djamei A, Kronstad J. Chloroplasts and Plant Immunity: Where Are the Fungal Effectors? Pathogens 2019; 9:E19. [PMID: 31878153 PMCID: PMC7168614 DOI: 10.3390/pathogens9010019] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/17/2019] [Accepted: 12/21/2019] [Indexed: 12/12/2022] Open
Abstract
Chloroplasts play a central role in plant immunity through the synthesis of secondary metabolites and defense compounds, as well as phytohormones, such as jasmonic acid and salicylic acid. Additionally, chloroplast metabolism results in the production of reactive oxygen species and nitric oxide as defense molecules. The impact of viral and bacterial infections on plastids and chloroplasts has been well documented. In particular, bacterial pathogens are known to introduce effectors specifically into chloroplasts, and many viral proteins interact with chloroplast proteins to influence viral replication and movement, and plant defense. By contrast, clear examples are just now emerging for chloroplast-targeted effectors from fungal and oomycete pathogens. In this review, we first present a brief overview of chloroplast contributions to plant defense and then discuss examples of connections between fungal interactions with plants and chloroplast function. We then briefly consider well-characterized bacterial effectors that target chloroplasts as a prelude to discussing the evidence for fungal effectors that impact chloroplast activities.
Collapse
Affiliation(s)
- Matthias Kretschmer
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (M.K.); (D.D.)
| | - Djihane Damoo
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (M.K.); (D.D.)
| | - Armin Djamei
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben Corrensstrasse 3, D-06466 Stadt Seeland, Germany;
| | - James Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (M.K.); (D.D.)
| |
Collapse
|
154
|
Woodson JD. Chloroplast stress signals: regulation of cellular degradation and chloroplast turnover. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:30-37. [PMID: 31442733 DOI: 10.1016/j.pbi.2019.06.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/02/2019] [Accepted: 06/05/2019] [Indexed: 05/11/2023]
Abstract
For 40 years, it has been known that chloroplasts signal to the nucleus and the cell to coordinate gene expression, maximize photosynthesis, and avoid stress. However, the signaling mechanisms have been challenging to uncover due to the complexity of these signals and the stresses that induce them. New research has shown that many signals are induced by singlet oxygen, a natural by-product of inefficient photosynthesis. Chloroplast singlet oxygen not only regulates nuclear gene expression, but also cellular degradation and cell death. Stressed chloroplasts also induce post-translational mechanisms, including autophagy, that allows individual chloroplasts to regulate their own degradation and turnover. Such chloroplast quality control pathways may allow cells to maintain healthy populations of chloroplasts and to avoid cumulative photo-oxidative stress in stressful environments.
Collapse
Affiliation(s)
- Jesse D Woodson
- University of Arizona, School of Plant Sciences, 303 Forbes Hall, 1140 E. South Campus Drive, Tucson, AZ 85721-0036, United States.
| |
Collapse
|
155
|
Abstract
The signaling pathway between chloroplasts and the nucleus (retrograde signaling) is important for the correct development of the photosynthetic apparatus of plant seedlings. The pathway is still not understood, but the majority of mutants with altered signaling (gun mutants) implicate the tetrapyrrole molecule heme in this process. In this article, we have demonstrated that the major retrograde signaling protein GUN1 can bind tetrapyrroles and regulate the flow through the tetrapyrrole biosynthesis pathway. The results support a role for tetrapyrroles in mediating retrograde signaling and open up the opportunity to develop a unifying hypothesis for this pathway that takes account of all identified gun mutants. The biogenesis of the photosynthetic apparatus in developing seedlings requires the assembly of proteins encoded on both nuclear and chloroplast genomes. To coordinate this process there needs to be communication between these organelles, but the retrograde signals by which the chloroplast communicates with the nucleus at this time are still essentially unknown. The Arabidopsis thaliana genomes uncoupled (gun) mutants, that show elevated nuclear gene expression after chloroplast damage, have formed the basis of our understanding of retrograde signaling. Of the 6 reported gun mutations, 5 are in tetrapyrrole biosynthesis proteins and this has led to the development of a model for chloroplast-to-nucleus retrograde signaling in which ferrochelatase 1 (FC1)-dependent heme synthesis generates a positive signal promoting expression of photosynthesis-related genes. However, the molecular consequences of the strongest of the gun mutants, gun1, are poorly understood, preventing the development of a unifying hypothesis for chloroplast-to-nucleus signaling. Here, we show that GUN1 directly binds to heme and other porphyrins, reduces flux through the tetrapyrrole biosynthesis pathway to limit heme and protochlorophyllide synthesis, and can increase the chelatase activity of FC1. These results raise the possibility that the signaling role of GUN1 may be manifested through changes in tetrapyrrole metabolism, supporting a role for tetrapyrroles as mediators of a single biogenic chloroplast-to-nucleus retrograde signaling pathway.
Collapse
|
156
|
Yi J, Zhao D, Chu J, Yan J, Liu J, Wu M, Cheng J, Jiang H, Zeng Y, Liu D. AtDPG1 is involved in the salt stress response of Arabidopsis seedling through ABI4. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110180. [PMID: 31481194 DOI: 10.1016/j.plantsci.2019.110180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 05/08/2023]
Abstract
Although the genes controlling chloroplast development play important roles in plant responses to environmental stresses, the molecular mechanisms remain largely unclear. In this study, an Arabidopsis mutant dpg1 (delayed pale-greening1) with a chloroplast development defect was studied. By using quantitative RT-PCR and histochemical GUS assays, we demonstrated that AtDPG1 was mainly expressed in the green tissues of Arabidopsis seedlings and could be induced by salt stress. Phenotypic analysis showed that mutation in AtDPG1 lead to an enhanced sensitivity to salt stress in Arabidopsis seedlings. Further studies demonstrated that disruption of the AtDPG1 in Arabidopsis increases its sensitivity to salt stress in an ABA-dependent manner. Moreover, expression levels of various stress-responsive and ABA signal-related genes were remarkably altered in the dpg1 plants under NaCl treatment. Notably, the transcript levels of ABI4 in dpg1 mutant increased more significantly than that in wild type plants under salt conditions. The seedlings of dpg1/abi4 double mutant exhibited stronger resistance to salt stress after salt treatment compared with the dpg1 single mutant, suggesting that the salt-hypersensitive phenotype of dpg1 seedlings could be rescued via loss of ABI4 function. These results reveal that AtDPG1 is involved in the salt stress response of Arabidopsis seedling through ABI4.
Collapse
Affiliation(s)
- Jian Yi
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dongming Zhao
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jijun Yan
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jinsong Liu
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Meijia Wu
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jianfeng Cheng
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Haiyan Jiang
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yongjun Zeng
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dong Liu
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
157
|
Jia Y, Tian H, Zhang S, Ding Z, Ma C. GUN1-Interacting Proteins Open the Door for Retrograde Signaling. TRENDS IN PLANT SCIENCE 2019; 24:884-887. [PMID: 31345690 DOI: 10.1016/j.tplants.2019.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 05/13/2023]
Abstract
Genomes Uncoupled 1 (GUN1) plays a critical role in various retrograde signaling pathways. Despite numerous studies, the precise molecular mechanism underlying GUN1-mediated retrograde signaling remains elusive. Recently, MORF2 and cpHSC70 have been identified as GUN1-interacting proteins, linking retrograde signaling with plastid RNA editing and cytosolic folding stress, respectively.
Collapse
Affiliation(s)
- Yuebin Jia
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong, China
| | - Huiyu Tian
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, Shandong, China
| | - Shuo Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, Shandong, China; The State Key Laboratory of Microbial Technology, Shandong University Qingdao, 266237, Shandong, China.
| | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong, China.
| |
Collapse
|
158
|
He P, Wu S, Jiang Y, Zhang L, Tang M, Xiao G, Yu J. GhYGL1d, a pentatricopeptide repeat protein, is required for chloroplast development in cotton. BMC PLANT BIOLOGY 2019; 19:350. [PMID: 31409298 PMCID: PMC6693126 DOI: 10.1186/s12870-019-1945-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/25/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND The pentatricopeptide repeat (PPR) gene family, which contains multiple 35-amino acid repeats, constitutes one of the largest gene families in plants. PPR proteins function in organelles to target specific transcripts and are involved in plant development and growth. However, the function of PPR proteins in cotton is still unknown. RESULTS In this study, we characterized a PPR gene YELLOW-GREEN LEAF (GhYGL1d) that is required for cotton plastid development. The GhYGL1d gene has a DYW domain in C-terminal and is highly express in leaves, localized to the chloroplast fractions. GhYGL1d share high amino acid-sequence homology with AtECB2. In atecb2 mutant, overexpression of GhYGL1d rescued the seedling lethal phenotype and restored the editing of accD and ndhF transcripts. Silencing of GhYGL1d led to the reduction of chlorophyll and phenotypically yellow-green leaves in cotton. Compared with wild type, GhYGL1d-silenced cotton showed significant deformations of thylakoid structures. Furthermore, the transcription levels of plastid-encoded polymerase (PEP) and nuclear-encoded polymerase (NEP) dependent genes were decreased in GhYGL1d-silenced cotton. CONCLUSIONS Our data indicate that GhYGL1d not only contributes to the editing of accD and ndhF genes, but also affects the expression of NEP- and PEP-dependent genes to regulate the development of thylakoids, and therefore regulates leaf variegation in cotton.
Collapse
Affiliation(s)
- Peng He
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Shuyin Wu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Yanli Jiang
- Shanxi Academy of Agricultural Sciences, Cotton Research Institute, Yucheng, 044000, China
| | - Lihua Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Meiju Tang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Guanghui Xiao
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| | - Jianing Yu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
159
|
Li J, Yang J, Zhu B, Xie G. Overexpressing OsFBN1 enhances plastoglobule formation, reduces grain-filling percent and jasmonate levels under heat stress in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:230-238. [PMID: 31203888 DOI: 10.1016/j.plantsci.2019.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
In higher plants, Fibrillins (FBNs) constitute a conserved plastid-lipid-associated (PAPs) protein family and modulate the metabolite transport and lipid metabolism in plastids of dicot species. However, FBNs have not functionally characterized in monocot species. In this study, the function of rice fibrillin 1 (OsFBN1) was investigated. The subcellular localization assay showed that the N-terminal chloroplast transport peptide (CTP) could facilitate the import of OsFBN1 into chloroplast. OsFBN1 specifically bound C18- and C20- fatty acids in vitro. Overexpressing OsFBN1 increased the tiller number but decreased the panicle length, grain-filling percent and JA levels compared to the wild type and RNAi silencing lines under heat stress. In addition, the overexpressing lines had more plastoglobules (PGs) than the wild type and RNAi silencing lines under both normal and heat stress conditions. Moreover, overexpressing OsFBN1 affected the transcription levels of OsAOS2 in JA synthesis, OsTHF1, OsABC1K7 and OsPsaE in thylakoid stability and photosynthesis, OsABC1-4 and OsSPS2 in ubiquinone-metabolism, OsHDR, OsDXR, and OsFPPS in isoprenoid metabolism. Collectively, these findings suggest the essential role of rice OsFBN1 in PG formation and lipid metabolism in chloroplasts, which coordinately regulate the growth and grain filling of the overexpressing lines under heat stress.
Collapse
Affiliation(s)
- Jiajia Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Jun Yang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Bohua Zhu
- Agricultural Technology Extension Center of Wuhan City, Wuhan, Hubei 430016, China.
| | - Guosheng Xie
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
160
|
Marino G, Naranjo B, Wang J, Penzler JF, Kleine T, Leister D. Relationship of GUN1 to FUG1 in chloroplast protein homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:521-535. [PMID: 31002470 DOI: 10.1111/tpj.14342] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/23/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
GUN1 integrates retrograde signals in chloroplasts but the underlying mechanism is elusive. FUG1, a chloroplast translation initiation factor, and GUN1 are co-expressed at the transcriptional level, and FUG1 co-immunoprecipitates with GUN1. We used mutants of GUN1 (gun1-103) and FUG1 (fug1-3) to analyse their functional relationship at the physiological and system-wide level, the latter including transcriptome and proteome analyses. Absence of GUN1 aggravates the effects of decreased FUG1 levels on chloroplast protein translation, resulting in transiently more pronounced phenotypes regarding photosynthesis, leaf colouration, growth and cold acclimation. The gun1-103 mutation also enhances variegation in the var2 mutant, increasing the fraction of white sectors, while fug1-3 suppresses the var2 phenotype. The transcriptomes of fug1-3 and gun1-103 plants are very similar, but absence of GUN1 alone has almost no effect on protein levels, whereas steady-state levels of chloroplast proteins are markedly decreased in fug1-3. In fug1 gun1 double mutants, effects on transcriptomes and particularly on proteomes are enhanced. Our results show that GUN1 function becomes critical when chloroplast proteostasis is perturbed by decreased rates of synthesis (fug1) or degradation (var2) of chloroplast proteins, or by low temperatures. The functions of FUG1 and GUN1 appear to be related, corroborating the view that GUN1 helps to maintain chloroplast protein homeostasis (proteostasis).
Collapse
Affiliation(s)
- Giada Marino
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Belen Naranjo
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Jing Wang
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Jan-Ferdinand Penzler
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
161
|
Farooq MA, Niazi AK, Akhtar J, Farooq M, Souri Z, Karimi N, Rengel Z. Acquiring control: The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:353-369. [PMID: 31207496 DOI: 10.1016/j.plaphy.2019.04.039] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) - the byproducts of aerobic metabolism - influence numerous aspects of the plant life cycle and environmental response mechanisms. In plants, ROS act like a double-edged sword; they play multiple beneficial roles at low concentrations, whereas at high concentrations ROS and related redox-active compounds cause cellular damage through oxidative stress. To examine the dual role of ROS as harmful oxidants and/or crucial cellular signals, this review elaborates that (i) how plants sense and respond to ROS in various subcellular organelles and (ii) the dynamics of subsequent ROS-induced signaling processes. The recent understanding of crosstalk between various cellular compartments in mediating their redox state spatially and temporally is discussed. Emphasis on the beneficial effects of ROS in maintaining cellular energy homeostasis, regulating diverse cellular functions, and activating acclimation responses in plants exposed to abiotic and biotic stresses are described. The comprehensive view of cellular ROS dynamics covering the breadth and versatility of ROS will contribute to understanding the complexity of apparently contradictory ROS roles in plant physiological responses in less than optimum environments.
Collapse
Affiliation(s)
- Muhammad Ansar Farooq
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad, Pakistan.
| | - Adnan Khan Niazi
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Javaid Akhtar
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Farooq
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Oman
| | - Zahra Souri
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Naser Karimi
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Zed Rengel
- School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| |
Collapse
|
162
|
Upadhyay S, Srivastava Y. Retrograde response by reactive oxygen/nitrogen species in plants involving different cellular organelles. Biol Chem 2019; 400:979-989. [PMID: 31004559 DOI: 10.1515/hsz-2018-0463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/07/2019] [Indexed: 01/17/2023]
Abstract
During oxidative and nitrosative stress conditions cellular organelles convey information to the nucleus to express specific sets of genes to withstand the stress condition and to reorganize their growth and developmental pattern. This organelle to nucleus communication is termed retrograde signaling. In the plant system chloroplast and peroxisomes are mainly involved with little involvement of mitochondria and other organelles in oxidative stress-mediated retrograde signaling. In this review, we will discuss retrograde signaling in plant systems with factors that regulate this signaling cascade.
Collapse
Affiliation(s)
- Swati Upadhyay
- Biotechnology Division (CSIR-CIMAP), Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow 226015, India
| | - Yashdeep Srivastava
- Department of Metabolic and Structural Biology, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India
| |
Collapse
|
163
|
Nair A, Chauhan P, Saha B, Kubatzky KF. Conceptual Evolution of Cell Signaling. Int J Mol Sci 2019; 20:E3292. [PMID: 31277491 PMCID: PMC6651758 DOI: 10.3390/ijms20133292] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/27/2022] Open
Abstract
During the last 100 years, cell signaling has evolved into a common mechanism for most physiological processes across systems. Although the majority of cell signaling principles were initially derived from hormonal studies, its exponential growth has been supported by interdisciplinary inputs, e.g., from physics, chemistry, mathematics, statistics, and computational fields. As a result, cell signaling has grown out of scope for any general review. Here, we review how the messages are transferred from the first messenger (the ligand) to the receptor, and then decoded with the help of cascades of second messengers (kinases, phosphatases, GTPases, ions, and small molecules such as cAMP, cGMP, diacylglycerol, etc.). The message is thus relayed from the membrane to the nucleus where gene expression ns, subsequent translations, and protein targeting to the cell membrane and other organelles are triggered. Although there are limited numbers of intracellular messengers, the specificity of the response profiles to the ligands is generated by the involvement of a combination of selected intracellular signaling intermediates. Other crucial parameters in cell signaling are its directionality and distribution of signaling strengths in different pathways that may crosstalk to adjust the amplitude and quality of the final effector output. Finally, we have reflected upon its possible developments during the coming years.
Collapse
Affiliation(s)
- Arathi Nair
- National Center for Cell Science (NCCS), Ganeshkhind, Pune 411007, India
| | - Prashant Chauhan
- National Center for Cell Science (NCCS), Ganeshkhind, Pune 411007, India
| | - Bhaskar Saha
- National Center for Cell Science (NCCS), Ganeshkhind, Pune 411007, India.
| | - Katharina F Kubatzky
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| |
Collapse
|
164
|
Zhang Y, Lu C. The Enigmatic Roles of PPR-SMR Proteins in Plants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900361. [PMID: 31380188 PMCID: PMC6662315 DOI: 10.1002/advs.201900361] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/03/2019] [Indexed: 05/21/2023]
Abstract
The pentatricopeptide repeat (PPR) protein family, with more than 400 members, is one of the largest and most diverse protein families in land plants. A small subset of PPR proteins contain a C-terminal small MutS-related (SMR) domain. Although there are relatively few PPR-SMR proteins, they play essential roles in embryo development, chloroplast biogenesis and gene expression, and plastid-to-nucleus retrograde signaling. Here, recent advances in understanding the roles of PPR-SMR proteins and the SMR domain based on a combination of genetic, biochemical, and physiological analyses are described. In addition, the potential of the PPR-SMR protein SOT1 to serve as a tool for RNA manipulation is highlighted.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianShandong271018P. R. China
| | - Congming Lu
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianShandong271018P. R. China
| |
Collapse
|
165
|
Shiroma S, Tanaka M, Sasaki T, Ogawa T, Yoshimura K, Sawa Y, Maruta T, Ishikawa T. Chloroplast development activates the expression of ascorbate biosynthesis-associated genes in Arabidopsis roots. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 284:185-191. [PMID: 31084871 DOI: 10.1016/j.plantsci.2019.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/07/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Transcriptional activation of ascorbate biosynthesis-associated genes under illumination is one of the important steps in ascorbate pool size regulation in photosynthetic tissues. Several biological processes within chloroplasts such as photosynthesis are required for this activation, suggesting functional chloroplasts to play a key role. We herein found that when grown on agar plate, ascorbate content in Arabidopsis non-photosynthetic tissues, roots, are unexpectedly almost comparable to that in shoots. The high accumulation of ascorbate was particularly observed in root regions closer to the root-hypocotyl junction, in which chloroplast development occurred because of a direct exposure to light. When chloroplast development in roots were further stimulated by shoot removal, the expression of biosynthetic genes, especially VTC2 gene that encodes GDP-l-galactose phosphorylase, was activated, resulting in an increase in ascorbate pool size. These positive effects were canceled when the roots were treated with a photosynthetic inhibitor. A null mutation in the LONG HYPOCOTYL 5 (HY5) gene almost completely inhibited root greening as well as the VTC2 expression. Overall, these findings show that chloroplast development can trigger the expression of ascorbate biosynthesis-associated genes not only in leaves but also in roots.
Collapse
Affiliation(s)
- Saki Shiroma
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Mio Tanaka
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Tomohiro Sasaki
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Takahisa Ogawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan; Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan; Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Kazuya Yoshimura
- Department of Food and Nutritional Science, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Yoshihiro Sawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Takanori Maruta
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan; Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan; Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan.
| | - Takahiro Ishikawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan; Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan; Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| |
Collapse
|
166
|
Pesaresi P, Kim C. Current understanding of GUN1: a key mediator involved in biogenic retrograde signaling. PLANT CELL REPORTS 2019; 38:819-823. [PMID: 30671650 DOI: 10.1007/s00299-019-02383-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/16/2019] [Indexed: 05/21/2023]
Abstract
Chloroplast-nucleus communication takes place via processes called anterograde and retrograde signaling pathways. Discovery of the retrograde signaling pathways from the chloroplasts to the nucleus also raised an intriguing proposition that chloroplasts may serve as environmental sensors since multitudes of environmental factors disturb chloroplastic homeostasis. Certain chloroplastic perturbations, mostly impairing transcription/translation, are coupled to the repression of photosynthesis-associated nuclear genes (PhANGs), thus finely coordinating photosynthetic and chloroplastic homeostasis. The unbiased forward genetic screen in Arabidopsis leads to the identification of six independent loci called GENOMES UNCOUPLED (GUN), whose inactivation was found to de-repress the expression of PhANGs under certain conditions promoting retrograde signaling. Of the six GUNs, five encode proteins associated with tetrapyrrole biosynthesis and one, namely GUN1, encodes a member of the pentatricopeptide repeat protein family. Despite the fact that GUN1 plays a role as a central signaling mediator for retrograde communication, the molecular details of GUN1 protein still remain to be elucidated. Here, we recapitulate our current understanding of the GUN1-mediated retrograde signaling pathway and propose a possible mode of action of GUN1 in the chloroplasts together with different aspects of GUN1 protein activity that deserve further investigation.
Collapse
Affiliation(s)
- Paolo Pesaresi
- Department of Biosciences, University of Milano, 20133, Milan, Italy
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
167
|
Guo J, Zhang G, Song Y, Ma S, Niu N, Wang J. Comparative transcriptome profiling of multi-ovary wheat under heterogeneous cytoplasm suppression. Sci Rep 2019; 9:8301. [PMID: 31165748 PMCID: PMC6549160 DOI: 10.1038/s41598-019-43277-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 04/17/2019] [Indexed: 11/18/2022] Open
Abstract
DUOII is a multi-ovary wheat line with two or three pistils and three stamens in each floret. The multi-ovary trait of DUOII is controlled by a dominant gene, whose expression can be suppressed by the heterogeneous cytoplasm of TeZhiI (TZI), a line with the nucleus of common wheat and the cytoplasm of Aegilops. DUOII (♀) × TZI (♂) shows multi-ovary trait, while TZI (♀) × DUOII (♂) shows mono-ovary. Observing the developmental process, we found that the critical stage of additional pistil primordium development was when the young spikes were 2–6 mm long. To elucidate the molecular mechanisms that are responsible for the heterogeneous cytoplasmic suppression of the multi-ovary gene, we RNA-sequenced the entire transcriptome of 2–6 mm long young spikes obtained from the reciprocal crosses between DUOII and TZI. A total of 600 differentially expressed genes (DEGs) was identified. Functional annotation of these DEGs showed that the heterogeneous cytoplasmic suppression of additional pistil development mainly involved four pathways, i.e., chloroplast metabolism, DNA replication and repair, hormone signal transduction, and trehalose-6-phosphate in the primordium development stage, which cooperated to modulate the multi-ovary gene expression under heterogeneous cytoplasmic suppression.
Collapse
Affiliation(s)
- Jialin Guo
- College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, P.R. China.,National Yangling Agricultural Biotechnology & Breeding Center, Yangling, Shaanxi, 712100, P.R. China.,Yangling Branch of State Wheat Improvement Centre, Yangling, Shaanxi, 712100, P.R. China.,Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, Shaanxi, 712100, P.R. China.,Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, Shaanxi, 712100, P.R. China
| | - Gaisheng Zhang
- College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, P.R. China. .,National Yangling Agricultural Biotechnology & Breeding Center, Yangling, Shaanxi, 712100, P.R. China. .,Yangling Branch of State Wheat Improvement Centre, Yangling, Shaanxi, 712100, P.R. China. .,Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, Shaanxi, 712100, P.R. China. .,Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, Shaanxi, 712100, P.R. China.
| | - Yulong Song
- College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, P.R. China.,National Yangling Agricultural Biotechnology & Breeding Center, Yangling, Shaanxi, 712100, P.R. China.,Yangling Branch of State Wheat Improvement Centre, Yangling, Shaanxi, 712100, P.R. China.,Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, Shaanxi, 712100, P.R. China.,Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, Shaanxi, 712100, P.R. China
| | - Shoucai Ma
- College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, P.R. China.,National Yangling Agricultural Biotechnology & Breeding Center, Yangling, Shaanxi, 712100, P.R. China.,Yangling Branch of State Wheat Improvement Centre, Yangling, Shaanxi, 712100, P.R. China.,Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, Shaanxi, 712100, P.R. China.,Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, Shaanxi, 712100, P.R. China
| | - Na Niu
- College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, P.R. China.,National Yangling Agricultural Biotechnology & Breeding Center, Yangling, Shaanxi, 712100, P.R. China.,Yangling Branch of State Wheat Improvement Centre, Yangling, Shaanxi, 712100, P.R. China.,Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, Shaanxi, 712100, P.R. China.,Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, Shaanxi, 712100, P.R. China
| | - Junwei Wang
- College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, P.R. China.,National Yangling Agricultural Biotechnology & Breeding Center, Yangling, Shaanxi, 712100, P.R. China.,Yangling Branch of State Wheat Improvement Centre, Yangling, Shaanxi, 712100, P.R. China.,Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, Shaanxi, 712100, P.R. China.,Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, Shaanxi, 712100, P.R. China
| |
Collapse
|
168
|
Guo J, Zhang G, Song Y, Li Z, Ma S, Niu N, Wang J. Comparative proteomic analysis of multi-ovary wheat under heterogeneous cytoplasm suppression. BMC PLANT BIOLOGY 2019; 19:175. [PMID: 31046676 PMCID: PMC6498644 DOI: 10.1186/s12870-019-1778-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND DUOII is a multi-ovary wheat (Triticum aestivum L.) line with two or three pistils and three stamens in each floret. The multi-ovary trait of DUOII is controlled by a dominant gene, whose expression can be suppressed by the heterogeneous cytoplasm of TeZhiI (TZI), a line with the nucleus of common wheat and the cytoplasm of Aegilops. Crosses between female DUOII plants and male TZI plants resulted in multi-ovary F1s; whereas, the reciprocal crosses resulted in mono-ovary F1s. Although the multi-ovary trait is inherited as single trait controlled by a dominant allele in lines with a Triticum cytoplasm, the mechanism by which the special heterogeneous cytoplasm suppresses the expression of multi-ovary is not well understood. RESULTS Observing the developmental process, we found that the critical stage of additional pistil primordium development was when the young spikes were 2-6 mm long. Then, we compared the quantitative proteomic profiles of 2-6 mm long young spikes obtained from the reciprocal crosses between DUOII and TZI. A total of 90 differentially expressed proteins were identified and analyzed based on their biological functions. These proteins had obvious functional pathways mainly implicated in chloroplast metabolism, nuclear and cell division, plant respiration, protein metabolism, and flower development. Importantly, we identified two key proteins, Flowering Locus K Homology Domain and PEPPER, which are known to play an essential role in the specification of pistil organ identity. By drawing relationships between the 90 differentially expressed proteins, we found that these proteins revealed a complex network which is associated with multi-ovary gene expression under heterogeneous cytoplasmic suppression. CONCLUSIONS Our proteomic analysis has identified certain differentially expressed proteins in 2-6 mm long young spikes, which was the critical stage of additional primordium development. This paper provided a universal proteomic profiling involved in the cytoplasmic suppression of wheat floral meristems; and our findings have laid a solid foundation for further mechanistic studies on the underlying mechanisms that control the heterogeneous cytoplasm-induced suppression of the nuclear multi-ovary gene in wheat.
Collapse
Affiliation(s)
- Jialin Guo
- College of Agronomy, National Yangling Agriculture Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Gaisheng Zhang
- College of Agronomy, National Yangling Agriculture Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Yulong Song
- College of Agronomy, National Yangling Agriculture Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Zheng Li
- College of Agronomy, National Yangling Agriculture Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Shoucai Ma
- College of Agronomy, National Yangling Agriculture Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Na Niu
- College of Agronomy, National Yangling Agriculture Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Junwei Wang
- College of Agronomy, National Yangling Agriculture Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
169
|
Krupinska K, Braun S, Nia MS, Schäfer A, Hensel G, Bilger W. The nucleoid-associated protein WHIRLY1 is required for the coordinate assembly of plastid and nucleus-encoded proteins during chloroplast development. PLANTA 2019; 249:1337-1347. [PMID: 30631956 DOI: 10.1007/s00425-018-03085-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/21/2018] [Indexed: 05/08/2023]
Abstract
Chloroplasts deficient in the major chloroplast nucleoid-associated protein WHIRLY1 have an enhanced ratio of LHCs to reaction centers, indicating that WHIRLY1 is required for a coordinate assembly of the photosynthetic apparatus during chloroplast development. Chloroplast development was found to be delayed in barley plants with an RNAi-mediated knockdown of WHIRLY1 encoding a major nucleoid-associated protein of chloroplasts. The plastids of WHIRLY1 deficient plants had a reduced ribosome content. Accordingly, plastid-encoded proteins of the photosynthetic apparatus showed delayed accumulation during chloroplast development coinciding with a delayed increase in photosystem II efficiency measured by chlorophyll fluorescence. In contrast, light harvesting complex proteins being encoded in the nucleus had a high abundance as in the wild type. The unbalanced assembly of the proteins of the photosynthetic apparatus in WHIRLY1-deficient plants coincided with the enhanced contents of chlorophyll b and xanthophylls. The lack of coordination was most obvious at the early stages of development. Overaccumulation of LHC proteins in comparison to reaction center proteins at the early stages of chloroplast development did not correlate with enhanced expression levels of the corresponding genes in the nucleus. This work revealed that WHIRLY1 does not influence LHC abundance at the transcriptional level. Rather, WHIRLY1 in association with nucleoids might play a structural role for both the assembly of ribosomes and the complexes of the photosynthetic apparatus.
Collapse
Affiliation(s)
- Karin Krupinska
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany.
| | - Susanne Braun
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Monireh Saeid Nia
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Anke Schäfer
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, OT Gatersleben, Germany
| | - Wolfgang Bilger
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
170
|
Wu GZ, Meyer EH, Richter AS, Schuster M, Ling Q, Schöttler MA, Walther D, Zoschke R, Grimm B, Jarvis RP, Bock R. Control of retrograde signalling by protein import and cytosolic folding stress. NATURE PLANTS 2019; 5:525-538. [PMID: 31061535 DOI: 10.1038/s41477-019-0415-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 03/22/2019] [Indexed: 05/03/2023]
Abstract
Communication between organelles and the nucleus is essential for fitness and survival. Retrograde signals are cues emitted from the organelles to regulate nuclear gene expression. GENOMES UNCOUPLED1 (GUN1), a protein of unknown function, has emerged as a central integrator, participating in multiple retrograde signalling pathways that collectively regulate the nuclear transcriptome. Here, we show that GUN1 regulates chloroplast protein import through interaction with the import-related chaperone cpHSC70-1. We demonstrated that overaccumulation of unimported precursor proteins (preproteins) in the cytosol causes a GUN phenotype in the wild-type background and enhances the GUN phenotype of the gun1 mutant. Furthermore, we identified the cytosolic HSP90 chaperone complex, induced by overaccumulated preproteins, as a central regulator of photosynthetic gene expression that determines the expression of the GUN phenotype. Taken together, our results suggest a model in which protein import capacity, folding stress and the cytosolic HSP90 complex control retrograde communication.
Collapse
Affiliation(s)
- Guo-Zhang Wu
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Etienne H Meyer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
- Martin-Luther-Universität Halle-Wittenberg, Institute of Plant Physiology, Halle, Germany
| | - Andreas S Richter
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maja Schuster
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Qihua Ling
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Mark A Schöttler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Dirk Walther
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Reimo Zoschke
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - R Paul Jarvis
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany.
| |
Collapse
|
171
|
GUN1 interacts with MORF2 to regulate plastid RNA editing during retrograde signaling. Proc Natl Acad Sci U S A 2019; 116:10162-10167. [PMID: 30988197 PMCID: PMC6525534 DOI: 10.1073/pnas.1820426116] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During development or under stress, chloroplasts generate signals that regulate the expression of a large number of nuclear genes, a process called retrograde signaling. GENOMES UNCOUPLED 1 (GUN1) is an important regulator of this pathway. In this study, we have discovered an unexpected role for GUN1 in plastid RNA editing, as gun1 mutations affect RNA-editing efficiency at multiple sites in plastids during retrograde signaling. GUN1 plays a direct role in RNA editing by physically interacting with MULTIPLE ORGANELLAR RNA EDITING FACTOR 2 (MORF2). MORF2 overexpression causes widespread RNA-editing changes and a strong genomes uncoupled (gun) molecular phenotype similar to gun1 MORF2 further interacts with RNA-editing site-specificity factors: ORGANELLE TRANSCRIPT PROCESSING 81 (OTP81), ORGANELLE TRANSCRIPT PROCESSING 84 (OTP84), and YELLOW SEEDLINGS 1 (YS1). We further show that otp81, otp84, and ys1 single mutants each exhibit a very weak gun phenotype, but combining the three mutations enhances the phenotype. Our study uncovers a role for GUN1 in the regulation of RNA-editing efficiency in damaged chloroplasts and suggests that MORF2 is involved in retrograde signaling.
Collapse
|
172
|
Hollis L, Ivanov AG, Hüner NPA. Chlorella vulgaris integrates photoperiod and chloroplast redox signals in response to growth at high light. PLANTA 2019; 249:1189-1205. [PMID: 30603788 DOI: 10.1007/s00425-018-03070-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/17/2018] [Indexed: 05/28/2023]
Abstract
Photoacclimation to variable light and photoperiod regimes in C. vulgaris represents a complex interplay between "biogenic" phytochrome-mediated sensing and "operational" redox sensing signaling pathways. Chlorella vulgaris Beijerinck UTEX 265 exhibits a yellow-green phenotype when grown under high light (HL) in contrast to a dark green phenotype when grown at low light (LL). The redox state of the photosynthetic electron transport chain (PETC) as estimated by excitation pressure has been proposed to govern this phenotypic response. We hypothesized that if the redox state of the PETC was the sole regulator of the HL phenotype, C. vulgaris should photoacclimate in response to the steady-state excitation pressure during the light period regardless of the length of the photoperiod. As expected, LL-grown cells exhibited a dark green phenotype, low excitation pressure (1 - qP = 0.22 ± 0.02), high chlorophyll (Chl) content (375 ± 77 fg Chl/cell), low Chl a/b ratio (2.97 ± 0.18) as well as high photosynthetic efficiency and photosynthetic capacity regardless of the photoperiod. In contrast, C. vulgaris grown under continuous HL developed a yellow-green phenotype characterized by high excitation pressure (1 - qP = 0.68 ± 0.01), a relatively low Chl content (180 ± 53 fg Chl/cell), high Chl a/b ratio (6.36 ± 0.54) with concomitantly reduced light-harvesting polypeptide abundance, as well as low photosynthetic capacity and efficiency measured on a per cell basis. Although cells grown under HL and an 18 h photoperiod developed a typical yellow-green phenotype, cells grown at HL but a 12 h photoperiod exhibited a dark green phenotype comparable to LL-grown cells despite exhibiting growth under high excitation pressure (1 - qP = 0.80 ± 0.04). The apparent uncoupling of excitation pressure and phenotype in HL-grown cells and a 12 h photoperiod indicates that chloroplast redox status cannot be the sole regulator of photoacclimation in C. vulgaris. We conclude that photoacclimation in C. vulgaris to HL is dependent upon growth history and reflects a complex interaction of endogenous systems that sense changes in photoperiod as well as photosynthetic redox balance.
Collapse
Affiliation(s)
- Lauren Hollis
- Department of Biology and The Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, N6A 5B7, Canada
| | - Alexander G Ivanov
- Department of Biology and The Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, N6A 5B7, Canada
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Norman P A Hüner
- Department of Biology and The Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, N6A 5B7, Canada.
| |
Collapse
|
173
|
Leister D. Piecing the Puzzle Together: The Central Role of Reactive Oxygen Species and Redox Hubs in Chloroplast Retrograde Signaling. Antioxid Redox Signal 2019; 30:1206-1219. [PMID: 29092621 DOI: 10.1089/ars.2017.7392] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) and redox regulation are established components of chloroplast-nucleus retrograde signaling. Recent Advances: In recent years, a complex array of putative retrograde signaling molecules and novel signaling pathways have emerged, including various metabolites, chloroplast translation, mobile transcription factors, calcium, and links to the unfolded protein response. This critical mass of information now permits us to fit individual pieces into a larger picture and outline a few important stimuli and pathways. CRITICAL ISSUES In this review, we summarize how ROS and redox hubs directly (e.g., via hydrogen peroxide [H2O2]) and indirectly (e.g., by triggering the production of signaling metabolites) regulate chloroplast retrograde signaling. Indeed, evidence is accumulating that most of the presumptive signaling metabolites so far identified are produced directly by ROS (such as β-cyclocitral) or indirectly by redox- or ROS-mediated regulation of key enzymes in metabolic pathways, ultimately leading to the accumulation of certain precursors (e.g., methylerythritol cyclodiphosphate and 3'-phosphoadenosine 5'-phosphate) with signal function. Of the ROS generated in the chloroplast, only H2O2 is likely to leave the organelle, and recent results suggest that efficient and specific transfer of information via H2O2 occurs through physical association of chloroplasts with the nucleus. FUTURE DIRECTIONS The impact of ROS and redox regulation on chloroplast-nucleus communication is even greater than previously thought, and it can be expected that further instances of control of retrograde signaling by ROS/redox regulation will be revealed in future, perhaps including the basis for the enigmatic GUN response and translation-dependent signals.
Collapse
Affiliation(s)
- Dario Leister
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich (LMU), Planegg-Martinsried, Germany
| |
Collapse
|
174
|
Thatcher LF, Singh KB. The Arabidopsis altered in stress response2 is Impaired in Resistance to Root and Leaf Necrotrophic Fungal Pathogens. PLANTS (BASEL, SWITZERLAND) 2019; 8:E60. [PMID: 30862010 PMCID: PMC6473459 DOI: 10.3390/plants8030060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/04/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
The Arabidopsis thaliana Glutathione S-transferase Phi8 (GSTF8) gene is recognised as a marker for early defence and stress responses. To identify regulators of these responses, a forward genetic screen for Arabidopsis mutants with up-regulated GSTF8 promoter activity was conducted by screening a mutagenized population containing a GSTF8 promoter fragment fused to the luciferase reporter gene (GSTF8:LUC). We previously identified several enhanced stress response (esr) mutants from this screen that conferred constitutive GSTF8:LUC activity and increased resistance to several pathogens and/or insects pests. Here we identified a further mutant constitutively expressing GSTF8:LUC and termed altered in stress response2 (asr2). Unlike the esr mutants, asr2 was more susceptible to disease symptom development induced by two necrotrophic fungal pathogens; the root pathogen Fusarium oxysporum, and the leaf pathogen Alternaria brassicicola. The asr2 allele was mapped to a 2.1 Mbp region of chromosome 2 and narrowed to four candidate loci.
Collapse
Affiliation(s)
- Louise F Thatcher
- CSIRO Agriculture and Food, Centre for Environment and Life Sciences, Wembley, Western Australia 6913, Australia.
| | - Karam B Singh
- CSIRO Agriculture and Food, Centre for Environment and Life Sciences, Wembley, Western Australia 6913, Australia.
- The Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, Western Australia 6102, Australia.
| |
Collapse
|
175
|
Robles P, Quesada V. Transcriptional and Post-transcriptional Regulation of Organellar Gene Expression (OGE) and Its Roles in Plant Salt Tolerance. Int J Mol Sci 2019; 20:E1056. [PMID: 30823472 PMCID: PMC6429081 DOI: 10.3390/ijms20051056] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 12/26/2022] Open
Abstract
Given their endosymbiotic origin, chloroplasts and mitochondria genomes harbor only between 100 and 200 genes that encode the proteins involved in organellar gene expression (OGE), photosynthesis, and the electron transport chain. However, as the activity of these organelles also needs a few thousand proteins encoded by the nuclear genome, a close coordination of the gene expression between the nucleus and organelles must exist. In line with this, OGE regulation is crucial for plant growth and development, and is achieved mainly through post-transcriptional mechanisms performed by nuclear genes. In this way, the nucleus controls the activity of organelles and these, in turn, transmit information about their functional state to the nucleus by modulating nuclear expression according to the organelles' physiological requirements. This adjusts organelle function to plant physiological, developmental, or growth demands. Therefore, OGE must appropriately respond to both the endogenous signals and exogenous environmental cues that can jeopardize plant survival. As sessile organisms, plants have to respond to adverse conditions to acclimate and adapt to them. Salinity is a major abiotic stress that negatively affects plant development and growth, disrupts chloroplast and mitochondria function, and leads to reduced yields. Information on the effects that the disturbance of the OGE function has on plant tolerance to salinity is still quite fragmented. Nonetheless, many plant mutants which display altered responses to salinity have been characterized in recent years, and interestingly, several are affected in nuclear genes encoding organelle-localized proteins that regulate the expression of organelle genes. These results strongly support a link between OGE and plant salt tolerance, likely through retrograde signaling. Our review analyzes recent findings on the OGE functions required by plants to respond and tolerate salinity, and highlights the fundamental role that chloroplast and mitochondrion homeostasis plays in plant adaptation to salt stress.
Collapse
Affiliation(s)
- Pedro Robles
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain.
| | - Víctor Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain.
| |
Collapse
|
176
|
Shapiguzov A, Vainonen JP, Hunter K, Tossavainen H, Tiwari A, Järvi S, Hellman M, Aarabi F, Alseekh S, Wybouw B, Van Der Kelen K, Nikkanen L, Krasensky-Wrzaczek J, Sipari N, Keinänen M, Tyystjärvi E, Rintamäki E, De Rybel B, Salojärvi J, Van Breusegem F, Fernie AR, Brosché M, Permi P, Aro EM, Wrzaczek M, Kangasjärvi J. Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors. eLife 2019; 8:43284. [PMID: 30767893 PMCID: PMC6414205 DOI: 10.7554/elife.43284] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/14/2019] [Indexed: 01/17/2023] Open
Abstract
Reactive oxygen species (ROS)-dependent signaling pathways from chloroplasts and mitochondria merge at the nuclear protein RADICAL-INDUCED CELL DEATH1 (RCD1). RCD1 interacts in vivo and suppresses the activity of the transcription factors ANAC013 and ANAC017, which mediate a ROS-related retrograde signal originating from mitochondrial complex III. Inactivation of RCD1 leads to increased expression of mitochondrial dysfunction stimulon (MDS) genes regulated by ANAC013 and ANAC017. Accumulating MDS gene products, including alternative oxidases (AOXs), affect redox status of the chloroplasts, leading to changes in chloroplast ROS processing and increased protection of photosynthetic apparatus. ROS alter the abundance, thiol redox state and oligomerization of the RCD1 protein in vivo, providing feedback control on its function. RCD1-dependent regulation is linked to chloroplast signaling by 3'-phosphoadenosine 5'-phosphate (PAP). Thus, RCD1 integrates organellar signaling from chloroplasts and mitochondria to establish transcriptional control over the metabolic processes in both organelles. Most plant cells contain two types of compartments, the mitochondria and the chloroplasts, which work together to supply the chemical energy required by life processes. Genes located in another part of the cell, the nucleus, encode for the majority of the proteins found in these compartments. At any given time, the mitochondria and the chloroplasts send specific, ‘retrograde’ signals to the nucleus to turn on or off the genes they need. For example, mitochondria produce molecules known as reactive oxygen species (ROS) if they are having problems generating energy. These molecules activate several regulatory proteins that move into the nucleus and switch on MDS genes, a set of genes which helps to repair the mitochondria. Chloroplasts also produce ROS that can act as retrograde signals. It is still unclear how the nucleus integrates signals from both chloroplasts and mitochondria to ‘decide’ which genes to switch on, but a protein called RCD1 may play a role in this process. Indeed, previous studies have found that Arabidopsis plants that lack RCD1 have defects in both their mitochondria and chloroplasts. In these mutant plants, the MDS genes are constantly active and the chloroplasts have problems making ROS. To investigate this further, Shapiguzov, Vainonen et al. use biochemical and genetic approaches to study RCD1 in Arabidopsis. The experiments confirm that this protein allows a dialog to take place between the retrograde signals of both mitochondria and chloroplasts. On one hand, RCD1 binds to and inhibits the regulatory proteins that usually activate the MDS genes under the control of mitochondria. This explains why, in the absence of RCD1, the MDS genes are always active, which is ultimately disturbing how these compartments work. On the other hand, RCD1 is also found to be sensitive to the ROS that chloroplasts produce. This means that chloroplasts may be able to affect when mitochondria generate energy by regulating the protein. Finally, further experiments show that MDS genes can affect both mitochondria and chloroplasts: by influencing how these genes are regulated, RCD1 therefore acts on the two types of compartments. Overall, the work by Shapiguzov, Vainonen et al. describes a new way Arabidopsis coordinates its mitochondria and chloroplasts. Further studies will improve our understanding of how plants regulate these compartments in different environments to produce the energy they need. In practice, this may also help plant breeders create new varieties of crops that produce energy more efficiently and which better resist to stress.
Collapse
Affiliation(s)
- Alexey Shapiguzov
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, Helsinki, Finland.,Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Julia P Vainonen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Kerri Hunter
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Helena Tossavainen
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Arjun Tiwari
- Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
| | - Sari Järvi
- Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
| | - Maarit Hellman
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Fayezeh Aarabi
- Max-Planck Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Saleh Alseekh
- Max-Planck Institute for Molecular Plant Physiology, Potsdam, Germany.,Center of Plant System Biology and Biotechnology, Plovdiv, Bulgaria
| | - Brecht Wybouw
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Katrien Van Der Kelen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lauri Nikkanen
- Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
| | - Julia Krasensky-Wrzaczek
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Nina Sipari
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Metabolomics Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Markku Keinänen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Esa Tyystjärvi
- Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
| | - Eevi Rintamäki
- Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Alisdair R Fernie
- Max-Planck Institute for Molecular Plant Physiology, Potsdam, Germany.,Center of Plant System Biology and Biotechnology, Plovdiv, Bulgaria
| | - Mikael Brosché
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, Helsinki, Finland.,Institute of Technology, University of Tartu, Tartu, Estonia
| | - Perttu Permi
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland.,Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Eva-Mari Aro
- Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
| | - Michael Wrzaczek
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
177
|
Qiu Y, Li M, Kim RJA, Moore CM, Chen M. Daytime temperature is sensed by phytochrome B in Arabidopsis through a transcriptional activator HEMERA. Nat Commun 2019; 10:140. [PMID: 30635559 PMCID: PMC6329817 DOI: 10.1038/s41467-018-08059-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 12/14/2018] [Indexed: 11/13/2022] Open
Abstract
Ambient temperature sensing by phytochrome B (PHYB) in Arabidopsis is thought to operate mainly at night. Here we show that PHYB plays an equally critical role in temperature sensing during the daytime. In daytime thermosensing, PHYB signals primarily through the temperature-responsive transcriptional regulator PIF4, which requires the transcriptional activator HEMERA (HMR). HMR does not regulate PIF4 transcription, instead, it interacts directly with PIF4, to activate the thermoresponsive growth-relevant genes and promote warm-temperature-dependent PIF4 accumulation. A missense allele hmr-22, which carries a loss-of-function D516N mutation in HMR’s transcriptional activation domain, fails to induce the thermoresponsive genes and PIF4 accumulation. Both defects of hmr-22 could be rescued by expressing a HMR22 mutant protein fused with the transcriptional activation domain of VP16, suggesting a causal relationship between HMR-mediated activation of PIF4 target-genes and PIF4 accumulation. Together, this study reveals a daytime PHYB-mediated thermosensing mechanism, in which HMR acts as a necessary activator for PIF4-dependent induction of temperature-responsive genes and PIF4 accumulation. The phyB photoreceptor senses nighttime temperature in Arabidopsis plants cultivated in short-day photoperiods. Here the authors show that phyB can also promote thermomorphogenesis during constant light or the daytime, and acts via a HEMERA-dependent mechanism that promotes the activity and accumulation of PIF4.
Collapse
Affiliation(s)
- Yongjian Qiu
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Meina Li
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.,School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Ruth Jean-Ae Kim
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Carisha M Moore
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Meng Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
178
|
Abstract
Cellular homeostasis requires precise communication between various types of organelles. In particular, the communication between nucleus and semiautonomous organelles, mitochondria and chloroplasts, has received widespread attention. Communication from nucleus to other organelles is known as anterograde signaling, whereas communication from mitochondria or chloroplasts to the nucleus is known as retrograde signaling. Here we discuss methods used to study retrograde signaling in Arabidopsis thaliana. These methods may also be modified to study retrograde signaling in other plant species.
Collapse
|
179
|
Poór P, Borbély P, Czékus Z, Takács Z, Ördög A, Popović B, Tari I. Comparison of changes in water status and photosynthetic parameters in wild type and abscisic acid-deficient sitiens mutant of tomato (Solanum lycopersicum cv. Rheinlands Ruhm) exposed to sublethal and lethal salt stress. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:130-140. [PMID: 30537600 DOI: 10.1016/j.jplph.2018.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/14/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
Abscisic acid (ABA) regulates many salt stress-related processes of plants such as water balance, osmotic stress tolerance and photosynthesis. In this study we investigated the responses of wild type (WT) and the ABA-deficient sitiens mutant of tomato (Solanum lycopersicum cv. Rheinlands Ruhm) to sublethal and lethal salt stress elicited by 100 mM and 250 mM NaCl, respectively. Sitiens mutants displayed much higher decrease in water potential, stomatal conductance and net CO2 assimilation rate under high salinity, especially at lethal salt stress, than the WT. However, ABA deficiency in sitiens caused more severe osmotic stress and more moderate ionic stress, higher K+/Na+ ratio, in leaf tissues of plants exposed to salt stress. The higher salt concentration caused irreversible damage to Photosystem II (PSII) reaction centres, severe reduction in the linear photosynthetic electron transport rate and in the effective quantum yields of PSII and PSI in sitiens plants. The cyclic electron transport (CET) around PSI, which is an effective defence mechanism against the damage caused by photoinhibition in PSI, decreased in sitiens mutants, while WT plants were able to increase CET under salt stress. This suggests that the activation of CET needs active ABA synthesis and/or signalling. In spite of ABA deficiency, proline accumulation could alleviate the stress injury at sublethal salt stress in the mutants but its accumulation was not sufficient at lethal salt stress.
Collapse
Affiliation(s)
- Péter Poór
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary.
| | - Péter Borbély
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary; Biological Doctoral School, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Közép fasor 52, Szeged, Hungary
| | - Zalán Czékus
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary; Biological Doctoral School, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Közép fasor 52, Szeged, Hungary
| | - Zoltán Takács
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Attila Ördög
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Boris Popović
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000, Novi Sad, Serbia
| | - Irma Tari
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| |
Collapse
|
180
|
Bobik K, Fernandez JC, Hardin SR, Ernest B, Ganusova EE, Staton ME, Burch-Smith TM. The essential chloroplast ribosomal protein uL15c interacts with the chloroplast RNA helicase ISE2 and affects intercellular trafficking through plasmodesmata. THE NEW PHYTOLOGIST 2019; 221:850-865. [PMID: 30192000 DOI: 10.1111/nph.15427] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/24/2018] [Indexed: 05/07/2023]
Abstract
Chloroplasts retain part of their ancestral genomes and the machinery for expression of those genomes. The nucleus-encoded chloroplast RNA helicase INCREASED SIZE EXCLUSION LIMIT2 (ISE2) is required for chloroplast ribosomal RNA processing and chloro-ribosome assembly. To further elucidate ISE2's role in chloroplast translation, two independent approaches were used to identify its potential protein partners. Both a yeast two-hybrid screen and a pull-down assay identified plastid ribosomal protein L15, uL15c (formerly RPL15), as interacting with ISE2. The interaction was confirmed in vivo by co-immunoprecipitation. Interestingly, we found that rpl15 null mutants do not complete embryogenesis, indicating that RPL15 is an essential gene for autotrophic growth of Arabidopsis thaliana. Arabidopsis and Nicotiana benthamiana plants with reduced expression of RPL15 developed chlorotic leaves, had reduced photosynthetic capacity and exhibited defective chloroplast development. Processing of chloroplast ribosomal RNAs and assembly of ribosomal subunits were disrupted by reduced expression of RPL15. Chloroplast translation was also decreased, reducing accumulation of chloroplast-encoded proteins, in such plants compared to wild-type plants. Notably, knockdown of RPL15 expression increased intercellular trafficking, a phenotype also observed in plants with reduced ISE2 expression. This finding provides further evidence for chloroplast function in modulating intercellular trafficking via plasmodesmata.
Collapse
Affiliation(s)
- Krzysztof Bobik
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jessica C Fernandez
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sara R Hardin
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Ben Ernest
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Elena E Ganusova
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Margaret E Staton
- Department of Entomology and Plant Pathology, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
181
|
Chloroplast-to-Nucleus Signaling Regulates MicroRNA Biogenesis in Arabidopsis. Dev Cell 2018; 48:371-382.e4. [PMID: 30595534 DOI: 10.1016/j.devcel.2018.11.046] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 10/15/2018] [Accepted: 11/28/2018] [Indexed: 01/04/2023]
Abstract
As integral regulators in plant development and stress response, microRNAs (miRNAs) themselves need to be tightly regulated. Here, we show that tocopherols (vitamin E), lipid-soluble antioxidants synthesized from tyrosine in chloroplasts, positively regulate the biogenesis of miRNAs. Tocopherols are required for the accumulation of 3'-phosphoadenosine 5'-phosphate (PAP), a retrograde inhibitor of the nuclear exoribonucleases (XRN), which may protect primary miRNAs from being degraded and promote mature miRNA production. Such regulation is involved in heat-induced accumulation of miR398 and plant acquisition of heat tolerance. Our study reveals a chloroplast-to-nucleus signaling mechanism that favors miRNA biogenesis under heat and possibly other environmental perturbations.
Collapse
|
182
|
Herritt M, Dhanapal AP, Purcell LC, Fritschi FB. Identification of genomic loci associated with 21chlorophyll fluorescence phenotypes by genome-wide association analysis in soybean. BMC PLANT BIOLOGY 2018; 18:312. [PMID: 30497384 DOI: 10.1186/s12870-018-1517-1519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/02/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Photosynthesis is able to convert solar energy into chemical energy in the form of biomass, but the efficiency of photosynthetic solar energy conversion is low. Chlorophyll fluorescence measurements are rapid, non-destructive, and can provide a wealth of information about the efficiencies of the photosynthetic light reaction processes. Efforts aimed at assessing genetic variation and/or mapping of genetic loci associated with chlorophyll fluorescence phenotypes have been rather limited. RESULTS Evaluation of SoySNP50K iSelect SNP Beadchip data from the 189 genotypes phenotyped in this analysis identified 32,453 SNPs with a minor allele frequency (MAF) ≥ 5%. A total of 288 (non-unique) SNPs were significantly associated with one or more of the 21 chlorophyll fluorescence phenotypes. Of these, 155 were unique SNPs and 100 SNPs were only associated with a single fluorescence phenotype, while 28, 11, 2, and 14 SNPs, were associated with two, three, four and five or more fluorescence phenotypes, respectively. The 288 non-unique SNPs represent 155 unique SNPs that mark 53 loci. The 155 unique SNPs included 27 that were associated with three or more phenotypes, and thus were called multi-phenotype SNPs. These 27 multi-phenotype SNPs marked 13 multi-phenotype loci (MPL) identified by individual SNPs associated with multiple chlorophyll fluorescence phenotypes or by more than one SNP located within 0.5 MB of other multi-phenotype SNPs. CONCLUSION A search in the genomic regions highlighted by these 13 MPL identified genes with annotations indicating involvement in photosynthetic light dependent reactions. These, as well as loci associated with only one or two chlorophyll fluorescence traits, should be useful to develop a better understanding of the genetic basis of photosynthetic light dependent reactions as a whole as well as of specific components of the electron transport chain in soybean. Accordingly, additional genetic and physiological analyses are necessary to determine the relevance and effectiveness of the identified loci for crop improvement efforts.
Collapse
Affiliation(s)
- Matthew Herritt
- Division of Plant Science, University of Missouri, Columbia, MO, 65211, USA
| | | | - Larry C Purcell
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, 72704, USA
| | - Felix B Fritschi
- Division of Plant Science, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
183
|
Herritt M, Dhanapal AP, Purcell LC, Fritschi FB. Identification of genomic loci associated with 21chlorophyll fluorescence phenotypes by genome-wide association analysis in soybean. BMC PLANT BIOLOGY 2018; 18:312. [PMID: 30497384 PMCID: PMC6267906 DOI: 10.1186/s12870-018-1517-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/02/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Photosynthesis is able to convert solar energy into chemical energy in the form of biomass, but the efficiency of photosynthetic solar energy conversion is low. Chlorophyll fluorescence measurements are rapid, non-destructive, and can provide a wealth of information about the efficiencies of the photosynthetic light reaction processes. Efforts aimed at assessing genetic variation and/or mapping of genetic loci associated with chlorophyll fluorescence phenotypes have been rather limited. RESULTS Evaluation of SoySNP50K iSelect SNP Beadchip data from the 189 genotypes phenotyped in this analysis identified 32,453 SNPs with a minor allele frequency (MAF) ≥ 5%. A total of 288 (non-unique) SNPs were significantly associated with one or more of the 21 chlorophyll fluorescence phenotypes. Of these, 155 were unique SNPs and 100 SNPs were only associated with a single fluorescence phenotype, while 28, 11, 2, and 14 SNPs, were associated with two, three, four and five or more fluorescence phenotypes, respectively. The 288 non-unique SNPs represent 155 unique SNPs that mark 53 loci. The 155 unique SNPs included 27 that were associated with three or more phenotypes, and thus were called multi-phenotype SNPs. These 27 multi-phenotype SNPs marked 13 multi-phenotype loci (MPL) identified by individual SNPs associated with multiple chlorophyll fluorescence phenotypes or by more than one SNP located within 0.5 MB of other multi-phenotype SNPs. CONCLUSION A search in the genomic regions highlighted by these 13 MPL identified genes with annotations indicating involvement in photosynthetic light dependent reactions. These, as well as loci associated with only one or two chlorophyll fluorescence traits, should be useful to develop a better understanding of the genetic basis of photosynthetic light dependent reactions as a whole as well as of specific components of the electron transport chain in soybean. Accordingly, additional genetic and physiological analyses are necessary to determine the relevance and effectiveness of the identified loci for crop improvement efforts.
Collapse
Affiliation(s)
- Matthew Herritt
- Division of Plant Science, University of Missouri, Columbia, MO 65211 USA
| | | | - Larry C. Purcell
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704 USA
| | - Felix B. Fritschi
- Division of Plant Science, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
184
|
Zhang H, Gannon L, Jones PD, Rundle CA, Hassall KL, Gibbs DJ, Holdsworth MJ, Theodoulou FL. Genetic interactions between ABA signalling and the Arg/N-end rule pathway during Arabidopsis seedling establishment. Sci Rep 2018; 8:15192. [PMID: 30315202 PMCID: PMC6185960 DOI: 10.1038/s41598-018-33630-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/01/2018] [Indexed: 11/25/2022] Open
Abstract
The Arg/N-end rule pathway of ubiquitin-mediated proteolysis has multiple functions throughout plant development, notably in the transition from dormant seed to photoautotrophic seedling. PROTEOLYSIS6 (PRT6), an N-recognin E3 ligase of the Arg/N-end rule regulates the degradation of transcription factor substrates belonging to Group VII of the Ethylene Response Factor superfamily (ERFVIIs). It is not known whether ERFVIIs are associated with all known functions of the Arg/N-end rule, and the downstream pathways influenced by ERFVIIs are not fully defined. Here, we examined the relationship between PRT6 function, ERFVIIs and ABA signalling in Arabidopsis seedling establishment. Physiological analysis of seedlings revealed that N-end rule-regulated stabilisation of three of the five ERFVIIs, RAP2.12, RAP2.2 and RAP2.3, controls sugar sensitivity of seedling establishment and oil body breakdown following germination. ABA signalling components ABA INSENSITIVE (ABI)4 as well as ABI3 and ABI5 were found to enhance ABA sensitivity of germination and sugar sensitivity of establishment in a background containing stabilised ERFVIIs. However, N-end rule regulation of oil bodies was not dependent on canonical ABA signalling. We propose that the N-end rule serves to control multiple aspects of the seed to seedling transition by regulation of ERFVII activity, involving both ABA-dependent and independent signalling pathways.
Collapse
Affiliation(s)
- Hongtao Zhang
- Plant Sciences Department, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Lucy Gannon
- Plant Sciences Department, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Peter D Jones
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK.,Department of Cardiovascular Sciences, University of Leicester, Leicester, LE3 7QP, UK
| | - Chelsea A Rundle
- Plant Sciences Department, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Kirsty L Hassall
- Computational and Analytical Sciences Department, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | | | | |
Collapse
|
185
|
Wang J, Xia H, Zhao SZ, Hou L, Zhao CZ, Ma CL, Wang XJ, Li PC. A role of GUNs-Involved retrograde signaling in regulating Acetyl-CoA carboxylase 2 in Arabidopsis. Biochem Biophys Res Commun 2018; 505:712-719. [PMID: 30292412 DOI: 10.1016/j.bbrc.2018.09.144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/21/2018] [Indexed: 01/01/2023]
Abstract
In Arabidopsis thaliana (Arabidopsis), Acetyl-CoA Carboxylase 2 (ACC2) is a nuclear DNA-encoded and plastid-targeted enzyme that catalyzes the conversion of acetyl-CoA to malonyl-CoA. ACC2 improves plant growth and development when chloroplast translation is impaired. However, little is known about the upstream signals that regulate ACC2. Here, through analyzing the transcriptome changes in brz-insensitive-pale green (bpg) 2-2, a pale-green mutant with impaired chloroplast gene expression resulting from loss of the BPG2 function, we found that the level of ACC2 was significantly up-regulated. Through performing genetic analysis, we further demonstrated that loss of the GENOMES UNCOUPLED 1 (GUN1) or GUN5 function partly perturbed the up-regulation of ACC2 in the bpg2-2 mutant, whereas ABA INSENSITIVE 4 (ABI4)-function-loss had no clear effect on the ACC2 expression. Furthermore, when plants were treated with plastid translation inhibitors, such as lincomycin and spectinomycin, the ACC2 transcriptional level was also markedly increased in a GUN-dependent manner. In conclusion, our results suggested that the GUN-involved plastid-to-nucleus retrograde communication played a role in regulating ACC2 in Arabidopsis.
Collapse
Affiliation(s)
- Juan Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, PR China; College of Life Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Han Xia
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, PR China
| | - Shu-Zhen Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, PR China
| | - Lei Hou
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, PR China
| | - Chuan-Zhi Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, PR China
| | - Chang-Le Ma
- College of Life Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Xing-Jun Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, PR China.
| | - Peng-Cheng Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, PR China.
| |
Collapse
|
186
|
Kramer MC, Anderson SJ, Gregory BD. The nucleotides they are a-changin': function of RNA binding proteins in post-transcriptional messenger RNA editing and modification in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:88-95. [PMID: 29883934 DOI: 10.1016/j.pbi.2018.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/01/2018] [Accepted: 05/15/2018] [Indexed: 05/21/2023]
Abstract
During and after transcription, the fate of an RNA molecule is almost entirely directed by the cohorts of interacting RNA-binding proteins (RBPs). RBPs regulate all stages of the life cycle of a messenger RNA (mRNA) molecule, including splicing, polyadenylation, transport out of the nucleus, RNA stability, and translation. In addition to these functions, RBPs can function to modify or edit the sequences encoded by the RNA. While the sequence for each transcript is determined in the genome, by the time an RNA reaches its final fate, the sequence may have been edited, where one nucleotide is converted to another, or modified, where a chemical group, or sometimes others moieties, are covalently linked to a nucleotide base. These changes to the RNA sequence have major consequences on the function of the RNA. Additionally, variation in the levels of the RBPs that perform the editing or modification can drastically affect the fitness of an organism. Here, we review RBPs that are known to edit or modify RNA ribonucleotides, focusing on the RNA editing ability of the pentatricopeptide repeat (PPR) proteins and the RBPs that modify adenosine to N6- methyladenosine.
Collapse
Affiliation(s)
- Marianne C Kramer
- Department of Biology, University of Pennsylvania School of Arts and Sciences, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Stephen J Anderson
- Department of Biology, University of Pennsylvania School of Arts and Sciences, Philadelphia, PA 19104, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania School of Arts and Sciences, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
187
|
Chen N, Wang P, Li C, Wang Q, Pan J, Xiao F, Wang Y, Zhang K, Li C, Yang B, Sun C, Deng X. A Single Nucleotide Mutation of the IspE Gene Participating in the MEP Pathway for Isoprenoid Biosynthesis Causes a Green-Revertible Yellow Leaf Phenotype in Rice. PLANT & CELL PHYSIOLOGY 2018; 59:1905-1917. [PMID: 29893915 DOI: 10.1093/pcp/pcy108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/03/2018] [Indexed: 05/28/2023]
Abstract
Plant isoprenoids are dependent on two independent pathways, the cytosolic mevalonate (MVA) pathway and the plastidic methylerythritol phosphate (MEP) pathway. IspE is one of seven known enzymes in the MEP pathway. Currently, no IspE gene has been identified in rice. In addition, no virescent mutants have been reported to result from a gene mutation affecting the MEP pathway. In this study, we isolated a green-revertible yellow leaf mutant gry340 in rice. The mutant exhibited a reduced level of photosynthetic pigments, and an arrested development of chloroplasts and mitochondria in its yellow leaves. Map-based cloning revealed a missense mutation in OsIspE (LOC_Os01g58790) in gry340 mutant plants. OsIspE is constitutively expressed in all tissues, and its encoded protein is targeted to the chloroplast. Further, the mutant phenotype of gry340 was rescued by introduction of the wild-type gene. Therefore, we have successfully identified an IspE gene in monocotyledons via map-based cloning, and confirmed that the green-revertible yellow leaf phenotype of gry340 does result from a single nucleotide mutation in the IspE gene. In addition, the ispE ispF double mutant displayed an etiolation lethal phenotype, indicating that the isoprenoid precursors from the cytosol cannot efficiently compensate for the deficiency of the MEP pathway in rice chloroplasts. Furthermore, real-time quantitative reverse transcription-PCR suggested that this functional defect in OsIspE affected the expression of not only other MEP pathway genes but also that of MVA pathway genes, photosynthetic genes and mitochondrial genes.
Collapse
Affiliation(s)
- Nenggang Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Pingrong Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chunmei Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qian Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jihong Pan
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Fuliang Xiao
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Kuan Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Caixia Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Bin Yang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Changhui Sun
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaojian Deng
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
188
|
Wu W, Liu LL, Yang T, Wang JH, Wang JY, Lv P, Yan YC. Gene expression analysis reveals function of TERF1 in plastid-nucleus retrograde signaling under drought stress conditions. BIOLOGIA PLANTARUM 2018. [PMID: 0 DOI: 10.1007/s10535-018-0771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
|
189
|
Zhu J, Xu Z, Huang Y. Novel High-Sensitivity Racetrack Surface Plasmon Resonance Sensor Modified by Graphene. Molecules 2018; 23:molecules23071726. [PMID: 30011941 PMCID: PMC6099627 DOI: 10.3390/molecules23071726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 11/19/2022] Open
Abstract
In order to overcome the existing challenges presented by conventional sensors, including their large size, a complicated preparation process, and difficulties filling the sensing media, a novel high-sensitivity plasmonic resonator sensor which is composed of two graphene-modified straight waveguides, two metallic layers, and a racetrack nanodisk resonator is proposed in this study. The transmission characteristics, which were calculated by the finite element theory, were used to further analyze the sensing properties. The results of quantitative analysis show that the proposed plasmonic sensor generates two resonance peaks for the different incident wavelengths, and both resonance peaks can be tuned by temperature. In addition, after optimizing the structural parameters of the resonator, the Q value and the refractive sensitivity reached 21.5 and 1666.67 nmRIU−1, respectively. Compared with other studies, these values translate to a better performance. Furthermore, a temperature sensitivity of 2.33 nm/5 °C was achieved, which allows the sensor to be easily applied to practical detection. The results of this study can broaden the useful range for a nanometer-scale temperature sensor with ultrafast real-time detection and resistance to electromagnetic interference.
Collapse
Affiliation(s)
- Jun Zhu
- College of Electronic Engineering, Guangxi Normal University, Guilin 541004, China.
| | - Zhengjie Xu
- College of Electronic Engineering, Guangxi Normal University, Guilin 541004, China.
| | - Yuanmin Huang
- College of Mathematics and Statistic, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
190
|
Genetic Analysis of Chloroplast Biogenesis, and Function and Mutant Collections. Methods Mol Biol 2018. [PMID: 29987733 DOI: 10.1007/978-1-4939-8654-5_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Since the time DNA was discovered as the code of life, genetic analysis has greatly advanced our understanding of the relation between genotype and phenotype and associated molecular mechanisms in various organisms including plants and algae. Forward genetics from phenotype to genotype has identified causal genes of interesting phenotypes induced by chemical, ionizing-radiation, or DNA insertional mutagenesis. Meanwhile, reverse genetics from genotype to phenotype has revealed physiological and molecular roles of known gene sequences. During the past dozen years, many molecular genetic tools have been developed to investigate gene functions quickly and efficiently. In this chapter, we introduce several approaches of forward and reverse genetics, including random chemical and DNA insertional mutagenesis, activation tagging, RNA interference, and gene overexpression and induction systems, with some examples of genetic studies of chloroplast biology mainly in Arabidopsis thaliana. We also briefly describe methods for chemical and DNA insertion mutagenesis and how to obtain sequence-tagged mutants from public collections. With greatly improved DNA sequencing and genome-editing technologies, model organisms as well as diverse species can be used for molecular biology. Genetic analysis can play an increasingly important role in elucidating chloroplast biogenesis and functions.
Collapse
|
191
|
Czarnocka W, Karpiński S. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic Biol Med 2018; 122:4-20. [PMID: 29331649 DOI: 10.1016/j.freeradbiomed.2018.01.011] [Citation(s) in RCA: 314] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/17/2017] [Accepted: 01/09/2018] [Indexed: 01/11/2023]
Abstract
In the natural environment, plants are exposed to a variety of biotic and abiotic stress conditions that trigger rapid changes in the production and scavenging of reactive oxygen species (ROS). The production and scavenging of ROS is compartmentalized, which means that, depending on stimuli type, they can be generated and eliminated in different cellular compartments such as the apoplast, plasma membrane, chloroplasts, mitochondria, peroxisomes, and endoplasmic reticulum. Although the accumulation of ROS is generally harmful to cells, ROS play an important role in signaling pathways that regulate acclimatory and defense responses in plants, such as systemic acquired acclimation (SAA) and systemic acquired resistance (SAR). However, high accumulations of ROS can also trigger redox homeostasis disturbance which can lead to cell death, and in consequence, to a limitation in biomass and yield production. Different ROS have various half-lifetimes and degrees of reactivity toward molecular components such as lipids, proteins, and nucleic acids. Thus, they play different roles in intra- and extra-cellular signaling. Despite their possible damaging effect, ROS should mainly be considered as signaling molecules that regulate local and systemic acclimatory and defense responses. Over the past two decades it has been proven that ROS together with non-photochemical quenching (NPQ), hormones, Ca2+ waves, and electrical signals are the main players in SAA and SAR, two physiological processes essential for plant survival and productivity in unfavorable conditions.
Collapse
Affiliation(s)
- Weronika Czarnocka
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland; Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland; The Plant Breeding and Acclimatization Institute (IHAR) - National Research Institute, Radzików, 05-870 Błonie, Poland.
| |
Collapse
|
192
|
Selinski J, Scheibe R, Day DA, Whelan J. Alternative Oxidase Is Positive for Plant Performance. TRENDS IN PLANT SCIENCE 2018; 23:588-597. [PMID: 29665989 DOI: 10.1016/j.tplants.2018.03.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/15/2018] [Accepted: 03/22/2018] [Indexed: 05/02/2023]
Abstract
The alternative pathway of mitochondrial electron transport, which terminates in the alternative oxidase (AOX), uncouples oxidation of substrate from mitochondrial ATP production, yet plant performance is improved under adverse growth conditions. AOX is regulated at different levels. Identification of regulatory transcription factors shows that Arabidopsis thaliana AOX1a is under strong transcriptional suppression. At the protein level, the primary structure is not optimised for activity. Maximal activity requires the presence of various metabolites, such as tricarboxylic acid-cycle intermediates that act in an isoform-specific manner. In this opinion article we propose that the regulatory mechanisms that keep AOX activity suppressed, at both the gene and protein level, are positive for plant performance due to the flexible short- and long-term fine-tuning.
Collapse
Affiliation(s)
- Jennifer Selinski
- Department of Animal, Plant, and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University Bundoora, VIC 3083, Australia.
| | - Renate Scheibe
- Division of Plant Physiology, Department of Biology/Chemistry, University of Osnabrueck, D-49069 Osnabrueck, Germany
| | - David A Day
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - James Whelan
- Department of Animal, Plant, and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University Bundoora, VIC 3083, Australia
| |
Collapse
|
193
|
Locato V, Cimini S, De Gara L. ROS and redox balance as multifaceted players of cross-tolerance: epigenetic and retrograde control of gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3373-3391. [PMID: 29722828 DOI: 10.1093/jxb/ery168] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/27/2018] [Indexed: 05/07/2023]
Abstract
Retrograde pathways occurring between chloroplasts, mitochondria, and the nucleus involve oxidative and antioxidative signals that, working in a synergistic or antagonistic mode, control the expression of specific patterns of genes following stress perception. Increasing evidence also underlines the relevance of mitochondrion-chloroplast-nucleus crosstalk in modulating the whole cellular redox metabolism by a controlled and integrated flux of information. Plants can maintain the acquired tolerance by a stress memory, also operating at the transgenerational level, via epigenetic and miRNA-based mechanisms controlling gene expression. Data discussed in this review strengthen the idea that ROS, redox signals, and shifts in cellular redox balance permeate the signalling network leading to cross-tolerance. The identification of specific ROS/antioxidative signatures leading a plant to different fates under stress is pivotal for identifying strategies to monitor and increase plant fitness in a changing environment. This review provides an update of the plant redox signalling network implicated in stress responses, in particular in cross-tolerance acquisition. The interplay between reactive oxygen species (ROS), ROS-derived signals, and antioxidative pathways is also discussed in terms of plant acclimation to stress in the short and long term.
Collapse
Affiliation(s)
- Vittoria Locato
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University, Rome, Italy
| | - Sara Cimini
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University, Rome, Italy
| | - Laura De Gara
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University, Rome, Italy
| |
Collapse
|
194
|
Sun Q, Li YY, Wang Y, Zhao HH, Zhao TY, Zhang ZY, Li DW, Yu JL, Wang XB, Zhang YL, Han CG. Brassica yellows virus P0 protein impairs the antiviral activity of NbRAF2 in Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3127-3139. [PMID: 29659986 PMCID: PMC5972614 DOI: 10.1093/jxb/ery131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/24/2018] [Indexed: 05/29/2023]
Abstract
In interactions between poleroviruses and their hosts, few cellular proteins have been identified that directly interact with the multifunctional virus P0 protein. To help explore the functions of P0, we identified a Brassica yellows virus genotype A (BrYV-A) P0BrA-interacting protein from Nicotiana benthamiana, Rubisco assembly factor 2 (NbRAF2), which localizes in the nucleus, cell periphery, chloroplasts, and stromules. We found that its C-terminal domain (amino acids 183-211) is required for self-interaction. A split ubiquitin membrane-bound yeast two-hybrid system and co-immunoprecipitation assays showed that NbRAF2 interacted with P0BrA, and co-localized in the nucleus and at the cell periphery. Interestingly, the nuclear pool of NbRAF2 decreased in the presence of P0BrA and during BrYV-A infection, and the P0BrA-mediated reduction of nuclear NbRAF2 required dual localization of NbRAF2 in the chloroplasts and nucleus. Tobacco rattle virus-based virus-induced gene silencing of NbRAF2 promoted BrYV-A infection in N. benthamiana, and the overexpression of nuclear NbRAF2 inhibited BrYV-A accumulation. Potato leafroll virus P0PL also interacted with NbRAF2 and decreased its nuclear accumulation, indicating that NbRAF2 may be a common target of poleroviruses. These results suggest that nuclear NbRAF2 possesses antiviral activity against BrYV-A infection, and that BrYV-A P0BrA interacts with NbRAF2 and alters its localization pattern to facilitate virus infection.
Collapse
Affiliation(s)
- Qian Sun
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Yuan-Yuan Li
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Ying Wang
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Hang-Hai Zhao
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Tian-Yu Zhao
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Zong-Ying Zhang
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Da-Wei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R., China
| | - Jia-Lin Yu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R., China
| | - Xian-Bing Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R., China
| | - Yong-Liang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R., China
| | - Cheng-Gui Han
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
195
|
Crawford T, Lehotai N, Strand Å. The role of retrograde signals during plant stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2783-2795. [PMID: 29281071 DOI: 10.1093/jxb/erx481] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/11/2017] [Indexed: 05/23/2023]
Abstract
Chloroplast and mitochondria not only provide the energy to the plant cell but due to the sensitivity of organellar processes to perturbations caused by abiotic stress, they are also key cellular sensors of environmental fluctuations. Abiotic stresses result in reduced photosynthetic efficiency and thereby reduced energy supply for cellular processes. Thus, in order to acclimate to stress, plants must re-program gene expression and cellular metabolism to divert energy from growth and developmental processes to stress responses. To restore cellular energy homeostasis following exposure to stress, the activities of the organelles must be tightly co-ordinated with the transcriptional re-programming in the nucleus. Thus, communication between the organelles and the nucleus, so-called retrograde signalling, is essential to direct the energy use correctly during stress exposure. Stress-triggered retrograde signals are mediated by reactive oxygen species and metabolites including β-cyclocitral, MEcPP (2-C-methyl-d-erythritol 2,4-cyclodiphosphate), PAP (3'-phosphoadenosine 5'-phosphate), and intermediates of the tetrapyrrole biosynthesis pathway. However, for the plant cell to respond optimally to environmental stress, these stress-triggered retrograde signalling pathways must be integrated with the cytosolic stress signalling network. We hypothesize that the Mediator transcriptional co-activator complex may play a key role as a regulatory hub in the nucleus, integrating the complex stress signalling networks originating in different cellular compartments.
Collapse
Affiliation(s)
- Tim Crawford
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Nóra Lehotai
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Åsa Strand
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| |
Collapse
|
196
|
Gianinetti A, Finocchiaro F, Bagnaresi P, Zechini A, Faccioli P, Cattivelli L, Valè G, Biselli C. Seed Dormancy Involves a Transcriptional Program That Supports Early Plastid Functionality during Imbibition. PLANTS 2018; 7:plants7020035. [PMID: 29671830 PMCID: PMC6026906 DOI: 10.3390/plants7020035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/05/2018] [Accepted: 04/11/2018] [Indexed: 01/18/2023]
Abstract
Red rice fully dormant seeds do not germinate even under favorable germination conditions. In several species, including rice, seed dormancy can be removed by dry-afterripening (warm storage); thus, dormant and non-dormant seeds can be compared for the same genotype. A weedy (red) rice genotype with strong dormancy was used for mRNA expression profiling, by RNA-Seq, of dormant and non-dormant dehulled caryopses (here addressed as seeds) at two temperatures (30 °C and 10 °C) and two durations of incubation in water (8 h and 8 days). Aim of the study was to highlight the differences in the transcriptome of dormant and non-dormant imbibed seeds. Transcript data suggested important differences between these seeds (at least, as inferred by expression-based metabolism reconstruction): dry-afterripening seems to impose a respiratory impairment onto non-dormant seeds, thus glycolysis is deduced to be preferentially directed to alcoholic fermentation in non-dormant seeds but to alanine production in dormant ones; phosphoenolpyruvate carboxykinase, pyruvate phosphate dikinase and alanine aminotransferase pathways appear to have an important gluconeogenetic role associated with the restoration of plastid functions in the dormant seed following imbibition; correspondingly, co-expression analysis pointed out a commitment to guarantee plastid functionality in dormant seeds. At 8 h of imbibition, as inferred by gene expression, dormant seeds appear to preferentially use carbon and nitrogen resources for biosynthetic processes in the plastid, including starch and proanthocyanidins accumulation. Chromatin modification appears to be a possible mechanism involved in the transition from dormancy to germination. Non-dormant seeds show higher expression of genes related to cell wall modification, suggesting they prepare for acrospire/radicle elongation.
Collapse
Affiliation(s)
- Alberto Gianinetti
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Franca Finocchiaro
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Paolo Bagnaresi
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Antonella Zechini
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Primetta Faccioli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Giampiero Valè
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, Italy.
| | - Chiara Biselli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| |
Collapse
|
197
|
Ties that bind: the integration of plastid signalling pathways in plant cell metabolism. Essays Biochem 2018; 62:95-107. [PMID: 29563221 DOI: 10.1042/ebc20170011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 12/11/2022]
Abstract
Plastids are critical organelles in plant cells that perform diverse functions and are central to many metabolic pathways. Beyond their major roles in primary metabolism, of which their role in photosynthesis is perhaps best known, plastids contribute to the biosynthesis of phytohormones and other secondary metabolites, store critical biomolecules, and sense a range of environmental stresses. Accordingly, plastid-derived signals coordinate a host of physiological and developmental processes, often by emitting signalling molecules that regulate the expression of nuclear genes. Several excellent recent reviews have provided broad perspectives on plastid signalling pathways. In this review, we will highlight recent advances in our understanding of chloroplast signalling pathways. Our discussion focuses on new discoveries illuminating how chloroplasts determine life and death decisions in cells and on studies elucidating tetrapyrrole biosynthesis signal transduction networks. We will also examine the role of a plastid RNA helicase, ISE2, in chloroplast signalling, and scrutinize intriguing results investigating the potential role of stromules in conducting signals from the chloroplast to other cellular locations.
Collapse
|
198
|
Karpinska B, Alomrani SO, Foyer CH. Inhibitor-induced oxidation of the nucleus and cytosol in Arabidopsis thaliana: implications for organelle to nucleus retrograde signalling. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0392. [PMID: 28808105 PMCID: PMC5566886 DOI: 10.1098/rstb.2016.0392] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2017] [Indexed: 11/14/2022] Open
Abstract
Concepts of organelle-to-nucleus signalling pathways are largely based on genetic screens involving inhibitors of chloroplast and mitochondrial functions such as norflurazon, lincomycin (LINC), antimycin A (ANT) and salicylhydroxamic acid. These inhibitors favour enhanced cellular oxidation, but their precise effects on the cellular redox state are unknown. Using the in vivo reduction–oxidation (redox) reporter, roGFP2, inhibitor-induced changes in the glutathione redox potentials of the nuclei and cytosol were measured in Arabidopsis thaliana root, epidermal and stomatal guard cells, together with the expression of nuclear-encoded chloroplast and mitochondrial marker genes. All the chloroplast and mitochondrial inhibitors increased the degree of oxidation in the nuclei and cytosol. However, inhibitor-induced oxidation was less marked in stomatal guard cells than in epidermal or root cells. Moreover, LINC and ANT caused a greater oxidation of guard cell nuclei than the cytosol. Chloroplast and mitochondrial inhibitors significantly decreased the abundance of LHCA1 and LHCB1 transcripts. The levels of WHY1, WHY3 and LEA5 transcripts were increased in the presence of inhibitors. Chloroplast inhibitors decreased AOXA1 mRNA levels, while mitochondrial inhibitors had the opposite effect. Inhibitors that are used to characterize retrograde signalling pathways therefore have similar general effects on cellular redox state and gene expression. This article is part of the themed issue ‘Enhancing photosynthesis in crop plants: targets for improvement’.
Collapse
Affiliation(s)
- Barbara Karpinska
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Sarah Owdah Alomrani
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Christine H Foyer
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
199
|
Galpaz N, Gonda I, Shem-Tov D, Barad O, Tzuri G, Lev S, Fei Z, Xu Y, Mao L, Jiao C, Harel-Beja R, Doron-Faigenboim A, Tzfadia O, Bar E, Meir A, Sa'ar U, Fait A, Halperin E, Kenigswald M, Fallik E, Lombardi N, Kol G, Ronen G, Burger Y, Gur A, Tadmor Y, Portnoy V, Schaffer AA, Lewinsohn E, Giovannoni JJ, Katzir N. Deciphering genetic factors that determine melon fruit-quality traits using RNA-Seq-based high-resolution QTL and eQTL mapping. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:169-191. [PMID: 29385635 DOI: 10.1111/tpj.13838] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/19/2017] [Accepted: 01/08/2018] [Indexed: 05/18/2023]
Abstract
Combined quantitative trait loci (QTL) and expression-QTL (eQTL) mapping analysis was performed to identify genetic factors affecting melon (Cucumis melo) fruit quality, by linking genotypic, metabolic and transcriptomic data from a melon recombinant inbred line (RIL) population. RNA sequencing (RNA-Seq) of fruit from 96 RILs yielded a highly saturated collection of > 58 000 single-nucleotide polymorphisms, identifying 6636 recombination events that separated the genome into 3663 genomic bins. Bin-based QTL analysis of 79 RILs and 129 fruit-quality traits affecting taste, aroma and color resulted in the mapping of 241 QTL. Thiol acyltransferase (CmThAT1) gene was identified within the QTL interval of its product, S-methyl-thioacetate, a key component of melon fruit aroma. Metabolic activity of CmThAT1-encoded protein was validated in bacteria and in vitro. QTL analysis of flesh color intensity identified a candidate white-flesh gene (CmPPR1), one of two major loci determining fruit flesh color in melon. CmPPR1 encodes a member of the pentatricopeptide protein family, involved in processing of RNA in plastids, where carotenoid and chlorophyll pigments accumulate. Network analysis of > 12 000 eQTL mapped for > 8000 differentially expressed fruit genes supported the role of CmPPR1 in determining the expression level of plastid targeted genes. We highlight the potential of RNA-Seq-based QTL analysis of small to moderate size, advanced RIL populations for precise marker-assisted breeding and gene discovery. We provide the following resources: a RIL population genotyped with a unique set of SNP markers, confined genomic segments that harbor QTL governing 129 traits and a saturated set of melon eQTLs.
Collapse
Affiliation(s)
- Navot Galpaz
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Itay Gonda
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Doron Shem-Tov
- NRGENE, Park HaMada Ness Ziona, Israel
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Galil Tzuri
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Shery Lev
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
- Institute of Life Science, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
- USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, New York, USA
| | - Yimin Xu
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Linyong Mao
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Chen Jiao
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Rotem Harel-Beja
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Adi Doron-Faigenboim
- Department of Vegetable and Field Crops, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Oren Tzfadia
- VIB Department of Plant Systems Biology, Ghent University, Gent, Belgium
| | - Einat Bar
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Ayala Meir
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Uzi Sa'ar
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Aaron Fait
- The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eran Halperin
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
| | - Merav Kenigswald
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
- Institute of Life Science, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Postharvest Science of Fresh Produce, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Elazar Fallik
- Department of Postharvest Science of Fresh Produce, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Nadia Lombardi
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
- Department of Agricultural Sciences, University of Naples, Portici, Italy
| | - Guy Kol
- NRGENE, Park HaMada Ness Ziona, Israel
| | - Gil Ronen
- NRGENE, Park HaMada Ness Ziona, Israel
| | - Yosef Burger
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Amit Gur
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Ya'akov Tadmor
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Vitaly Portnoy
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Arthur A Schaffer
- Department of Vegetable and Field Crops, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Efraim Lewinsohn
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - James J Giovannoni
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
- USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, New York, USA
| | - Nurit Katzir
- Department of Vegetable and Field Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| |
Collapse
|
200
|
McCormick S. Binding sites for pentatricopeptide repeat proteins differentially activate chloroplast transgenes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:6-7. [PMID: 29575498 DOI: 10.1111/tpj.13886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
|