151
|
AraC-like transcriptional activator CuxR binds c-di-GMP by a PilZ-like mechanism to regulate extracellular polysaccharide production. Proc Natl Acad Sci U S A 2017; 114:E4822-E4831. [PMID: 28559336 DOI: 10.1073/pnas.1702435114] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyclic dimeric GMP (c-di-GMP) has emerged as a key regulatory player in the transition between planktonic and sedentary biofilm-associated bacterial lifestyles. It controls a multitude of processes including production of extracellular polysaccharides (EPSs). The PilZ domain, consisting of an N-terminal "RxxxR" motif and a β-barrel domain, represents a prototype c-di-GMP receptor. We identified a class of c-di-GMP-responsive proteins, represented by the AraC-like transcription factor CuxR in plant symbiotic α-proteobacteria. In Sinorhizobium meliloti, CuxR stimulates transcription of an EPS biosynthesis gene cluster at elevated c-di-GMP levels. CuxR consists of a Cupin domain, a helical hairpin, and bipartite helix-turn-helix motif. Although unrelated in sequence, the mode of c-di-GMP binding to CuxR is highly reminiscent to that of PilZ domains. c-di-GMP interacts with a conserved N-terminal RxxxR motif and the Cupin domain, thereby promoting CuxR dimerization and DNA binding. We unravel structure and mechanism of a previously unrecognized c-di-GMP-responsive transcription factor and provide insights into the molecular evolution of c-di-GMP binding to proteins.
Collapse
|
152
|
Xu M, Wang YZ, Yang XA, Jiang T, Xie W. Structural studies of the periplasmic portion of the diguanylate cyclase CdgH from Vibrio cholerae. Sci Rep 2017; 7:1861. [PMID: 28500346 PMCID: PMC5431781 DOI: 10.1038/s41598-017-01989-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 04/06/2017] [Indexed: 01/07/2023] Open
Abstract
Cyclic diguanylate monophosphate (c-di-GMP) is a second messenger involved in bacterial signal transduction and produced by diguanylate cyclases (DGCs) generally containing highly variable periplasmic signal-recognition domains. CdgH is a DGC enzyme that regulates rugosity associated phenotypes in Vibrio cholerae. CdgH has two N-terminal tandem periplasmic substrate-binding (PBPb) domains for its signal recognition; however, the role of the tandem PBPb domains remains unclear. Here, we reported the crystal structure of the periplasmic portion of CdgH, which indicated that both tandem PBPb domains consist of typical interlobe ligand-binding architecture. Unexpectedly, the PBPb-I domain binds an L-arginine which apparently has been co-purified from the E. coli expression system, whereas the PBPb-II domain is in an unliganded open state. Structural comparison with other amino acid-binding proteins indicated that despite similar ligand-binding pockets, the PBPb-I domain possesses two ligand-binding residues (E122 and Y148) not conserved in homologs and involved in hydrophilic and hydrophobic interactions with L-arginine. Isothermal titration calorimetry indicated that the PBPb-I is primarily an L-arginine/L-lysine/L-ornithine-binding domain, whereas the PBPb-II domain exhibits a preference for L-glutamine and L-histidine. Remarkably, we found that the periplasmic portion of CdgH forms a stable dimer in solution and L-arginine binding would cause conformational changes of the dimer.
Collapse
Affiliation(s)
- Min Xu
- 0000 0004 1792 5640grid.418856.6National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yi-Zhi Wang
- 0000 0004 1792 5640grid.418856.6National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China ,0000 0004 1797 8419grid.410726.6University of Chinese Academy of Sciences, Beijing, China
| | - Xiu-An Yang
- 0000 0004 1792 5640grid.418856.6National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tao Jiang
- 0000 0004 1792 5640grid.418856.6National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China ,0000 0004 1797 8419grid.410726.6University of Chinese Academy of Sciences, Beijing, China
| | - Wei Xie
- 0000 0004 1761 2484grid.33763.32School of Life Sciences, Tianjin University, Tianjin, China
| |
Collapse
|
153
|
Krasteva PV, Sondermann H. Versatile modes of cellular regulation via cyclic dinucleotides. Nat Chem Biol 2017; 13:350-359. [PMID: 28328921 DOI: 10.1038/nchembio.2337] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 01/17/2017] [Indexed: 02/06/2023]
Abstract
Since the discovery of c-di-GMP almost three decades ago, cyclic dinucleotides (CDNs) have emerged as widely used signaling molecules in most kingdoms of life. The family of second messengers now includes c-di-AMP and distinct versions of mixed cyclic GMP-AMP (cGAMP) compounds. In addition to these nucleotides, a vast number of proteins for the production and turnover of these molecules have been described, as well as effectors that translate the signals into physiological responses. The latter include, but are not limited to, mechanisms for adaptation and survival in prokaryotes, persistence and virulence of bacterial pathogens, and immune responses to viral and bacterial invasion in eukaryotes. In this review, we will focus on recent discoveries and emerging themes that illustrate the ubiquity and versatility of cyclic dinucleotide function at the transcriptional and post-translational levels and, in particular, on insights gained through mechanistic structure-function analyses.
Collapse
Affiliation(s)
- Petya Violinova Krasteva
- Unité G5 Biologie Structurale de la Sécrétion Bactérienne, UMR 3528 - CNRS, Institut Pasteur, Paris, France.,Structural Biology of Biofilms Group, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Gif sur Yvette, France
| | - Holger Sondermann
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
154
|
Velmourougane K, Prasanna R, Saxena AK. Agriculturally important microbial biofilms: Present status and future prospects. J Basic Microbiol 2017; 57:548-573. [PMID: 28407275 DOI: 10.1002/jobm.201700046] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 11/07/2022]
Abstract
Microbial biofilms are a fascinating subject, due to their significant roles in the environment, industry, and health. Advances in biochemical and molecular techniques have helped in enhancing our understanding of biofilm structure and development. In the past, research on biofilms primarily focussed on health and industrial sectors; however, lately, biofilms in agriculture are gaining attention due to their immense potential in crop production, protection, and improvement. Biofilms play an important role in colonization of surfaces - soil, roots, or shoots of plants and enable proliferation in the desired niche, besides enhancing soil fertility. Although reports are available on microbial biofilms in general; scanty information is published on biofilm formation by agriculturally important microorganisms (bacteria, fungi, bacterial-fungal) and their interactions in the ecosystem. Better understanding of agriculturally important bacterial-fungal communities and their interactions can have several implications on climate change, soil quality, plant nutrition, plant protection, bioremediation, etc. Understanding the factors and genes involved in biofilm formation will help to develop more effective strategies for sustainable and environment-friendly agriculture. The present review brings together fundamental aspects of biofilms, in relation to their formation, regulatory mechanisms, genes involved, and their application in different fields, with special emphasis on agriculturally important microbial biofilms.
Collapse
Affiliation(s)
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau Nath Bhanjan, Uttar Pradesh, India
| |
Collapse
|
155
|
Sadiq FA, Flint S, Li Y, Liu T, Lei Y, Sakandar HA, He G. New mechanistic insights into the motile-to-sessile switch in various bacteria with particular emphasis on Bacillus subtilis and Pseudomonas aeruginosa: a review. BIOFOULING 2017; 33:306-326. [PMID: 28347177 DOI: 10.1080/08927014.2017.1304541] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/04/2017] [Indexed: 06/06/2023]
Abstract
A biofilm is a complex assemblage of microbial communities adhered to a biotic or an abiotic surface which is embedded within a self-produced matrix of extracellular polymeric substances. Many transcriptional regulators play a role in triggering a motile-sessile switch and in consequently producing the biofilm matrix. This review is aimed at highlighting the role of two nucleotide signaling molecules (c-di-GMP and c-di-AMP), toxin antitoxin modules and a novel transcriptional regulator BolA in biofilm formation in various bacteria. In addition, it highlights the common themes that have appeared in recent research regarding the key regulatory components and signal transduction pathways that help Bacillus subtilis and Pseudomonas aeruginosa to acquire the biofilm mode of life.
Collapse
Affiliation(s)
- Faizan A Sadiq
- a College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou , PR China
| | - Steve Flint
- b School of Food and Nutrition , Massey University , Palmerston North , New Zealand
| | - Yun Li
- c School of Life Sciences and Food Technology , Hanshan Normal University , Chaozhou , PR China
| | - TongJie Liu
- a College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou , PR China
| | - Yuan Lei
- a College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou , PR China
| | | | - GuoQing He
- a College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou , PR China
| |
Collapse
|
156
|
Papenfort K, Silpe JE, Schramma KR, Cong JP, Seyedsayamdost MR, Bassler BL. A Vibrio cholerae autoinducer-receptor pair that controls biofilm formation. Nat Chem Biol 2017; 13:551-557. [PMID: 28319101 PMCID: PMC5391282 DOI: 10.1038/nchembio.2336] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/28/2016] [Indexed: 01/22/2023]
Abstract
Quorum sensing (QS) is a cell–cell communication process that enables bacteria to track cell population density and orchestrate collective behaviors. QS relies on production, detection, and response to extracellular signal molecules called autoinducers. In Vibrio cholerae, multiple QS circuits control pathogenesis and biofilm formation. Here, we identify and characterize a new QS autoinducer-receptor pair. The autoinducer is 3,5-dimethylpyrazin-2-ol, which we call DPO. DPO is made from threonine and alanine, and its synthesis depends on threonine dehydrogenase (Tdh). DPO binds to and activates a transcription factor, VqmA. The VqmA-DPO complex activates expression of vqmR, which encodes a small regulatory RNA. VqmR represses genes required for biofilm formation and toxin production. We propose that DPO allows V. cholerae to regulate collective behaviors to, among other possible roles, diversify its QS output during colonization of the human host.
Collapse
Affiliation(s)
- Kai Papenfort
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.,Department of Biology I, Ludwig-Maximilians University Munich, Martinsried, Germany
| | - Justin E Silpe
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Kelsey R Schramma
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Jian-Ping Cong
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Mohammad R Seyedsayamdost
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.,Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
157
|
Abstract
Cyclic dinucleotides (CDNs) are highly versatile signalling molecules that control various important biological processes in bacteria. The best-studied example is cyclic di-GMP (c-di-GMP). Known since the late 1980s, it is now recognized as a near-ubiquitous second messenger that coordinates diverse aspects of bacterial growth and behaviour, including motility, virulence, biofilm formation and cell cycle progression. In this Review, we discuss important new insights that have been gained into the molecular principles of c-di-GMP synthesis and degradation, which are mediated by diguanylate cyclases and c-di-GMP-specific phosphodiesterases, respectively, and the cellular functions that are exerted by c-di-GMP-binding effectors and their diverse targets. Finally, we provide a short overview of the signalling versatility of other CDNs, including c-di-AMP and cGMP-AMP (cGAMP).
Collapse
|
158
|
The ins and outs of cyclic di-GMP signaling in Vibrio cholerae. Curr Opin Microbiol 2017; 36:20-29. [PMID: 28171809 DOI: 10.1016/j.mib.2017.01.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/26/2016] [Accepted: 01/06/2017] [Indexed: 11/20/2022]
Abstract
The second messenger nucleotide cyclic dimeric guanosine monophosphate (c-di-GMP) governs many cellular processes in the facultative human pathogen Vibrio cholerae. This organism copes with changing environmental conditions in aquatic environments and during transitions to and from human hosts. Modulation of c-di-GMP allows V. cholerae to shift between motile and sessile stages of life, thus allowing adaptation to stressors and environmental conditions during its transmission cycle. The V. cholerae genome encodes a large set of proteins predicted to degrade and produce c-di-GMP. A subset of these enzymes has been demonstrated to control cellular processes - particularly motility, biofilm formation, and virulence - through transcriptional, post-transcriptional, and translational mechanisms. Recent studies have identified and characterized enzymes that modulate or sense c-di-GMP levels and have led towards mechanistic understanding of c-di-GMP regulatory circuits in V. cholerae.
Collapse
|
159
|
Impact of Salt and Nutrient Content on Biofilm Formation by Vibrio fischeri. PLoS One 2017; 12:e0169521. [PMID: 28122010 PMCID: PMC5266276 DOI: 10.1371/journal.pone.0169521] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/19/2016] [Indexed: 11/19/2022] Open
Abstract
Vibrio fischeri, a marine bacterium and symbiont of the Hawaiian bobtail squid Euprymna scolopes, depends on biofilm formation for successful colonization of the squid’s symbiotic light organ. Here, we investigated if culture conditions, such as nutrient and salt availability, affect biofilm formation by V. fischeri by testing the formation of wrinkled colonies on solid media. We found that V. fischeri forms colonies with more substantial wrinkling when grown on the nutrient-dense LBS medium containing NaCl relative to those formed on the more nutrient-poor, seawater-salt containing SWT medium. The presence of both tryptone and yeast extract was necessary for the production of “normal” wrinkled colonies; when grown on tryptone alone, the colonies displayed a divoting phenotype and were attached to the agar surface. We also found that the type and concentration of specific seawater salts influenced the timing of biofilm formation. Of the conditions assayed, wrinkled colony formation occurred earliest in LBS(-Tris) media containing 425 mM NaCl, 35 mM MgSO4, and 5 mM CaCl2. Pellicle formation, another measure of biofilm development, was also enhanced in these growth conditions. Therefore, both nutrient and salt availability contribute to V. fischeri biofilm formation. While growth was unaffected, these optimized conditions resulted in increased syp locus expression as measured by a PsypA-lacZ transcriptional reporter. We anticipate these studies will help us understand how the natural environment of V. fischeri affects its ability to form biofilms and, ultimately, colonize E. scolopes.
Collapse
|
160
|
Orr MW, Galperin MY, Lee VT. Sustained sensing as an emerging principle in second messenger signaling systems. Curr Opin Microbiol 2016; 34:119-126. [PMID: 27700990 DOI: 10.1016/j.mib.2016.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 08/25/2016] [Accepted: 08/31/2016] [Indexed: 11/18/2022]
Abstract
Bacteria utilize a diverse set of nucleotide second messengers to regulate cellular responses by binding macromolecular receptors (RNAs and proteins). Recent studies on cyclic di-GMP (c-di-GMP) have shown that this signaling molecule binds multiple receptors to regulate different steps in the same biological process. We propose this property of the same molecule regulating multiple steps in the same process is biologically meaningful and have termed this phenomenon 'sustained sensing'. Here, we discuss the recent findings that support the concept of sustained sensing of c-di-GMP levels and provide additional examples that support the utilization of sustained sensing by other second messengers. Sustained sensing may be widespread in bacteria and provides an additional level of complexity in prokaryotic signal transduction networks.
Collapse
Affiliation(s)
- Mona W Orr
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD, USA; Maryland Pathogen Research Institute, University of Maryland at College Park, College Park, MD, USA
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD, USA; Maryland Pathogen Research Institute, University of Maryland at College Park, College Park, MD, USA.
| |
Collapse
|
161
|
Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging. Proc Natl Acad Sci U S A 2016; 113:E5337-43. [PMID: 27555592 DOI: 10.1073/pnas.1611494113] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Biofilms are surface-associated bacterial communities that are crucial in nature and during infection. Despite extensive work to identify biofilm components and to discover how they are regulated, little is known about biofilm structure at the level of individual cells. Here, we use state-of-the-art microscopy techniques to enable live single-cell resolution imaging of a Vibrio cholerae biofilm as it develops from one single founder cell to a mature biofilm of 10,000 cells, and to discover the forces underpinning the architectural evolution. Mutagenesis, matrix labeling, and simulations demonstrate that surface adhesion-mediated compression causes V. cholerae biofilms to transition from a 2D branched morphology to a dense, ordered 3D cluster. We discover that directional proliferation of rod-shaped bacteria plays a dominant role in shaping the biofilm architecture in V. cholerae biofilms, and this growth pattern is controlled by a single gene, rbmA Competition analyses reveal that the dense growth mode has the advantage of providing the biofilm with superior mechanical properties. Our single-cell technology can broadly link genes to biofilm fine structure and provides a route to assessing cell-to-cell heterogeneity in response to external stimuli.
Collapse
|
162
|
Structures of the activator of K. pneumonia biofilm formation, MrkH, indicates PilZ domains involved in c-di-GMP and DNA binding. Proc Natl Acad Sci U S A 2016; 113:10067-72. [PMID: 27551088 DOI: 10.1073/pnas.1607503113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The pathogenesis of Klebsiella pneumonia is linked to the bacteria's ability to form biofilms. Mannose-resistant Klebsiella-like (Mrk) hemagglutinins are critical for K pneumonia biofilm development, and the expression of the genes encoding these proteins is activated by a 3',5'-cyclic diguanylic acid (c-di-GMP)-regulated transcription factor, MrkH. To gain insight into MrkH function, we performed structural and biochemical analyses. Data revealed MrkH to be a monomer with a two-domain architecture consisting of a PilZ C-domain connected to an N domain that unexpectedly also harbors a PilZ-like fold. Comparison of apo- and c-di-GMP-bound MrkH structures reveals a large 138° interdomain rotation that is induced by binding an intercalated c-di-GMP dimer. c-di-GMP interacts with PilZ C-domain motifs 1 and 2 (RxxxR and D/NxSxxG) and a newly described c-di-GMP-binding motif in the MrkH N domain. Strikingly, these c-di-GMP-binding motifs also stabilize an open state conformation in apo MrkH via contacts from the PilZ motif 1 to residues in the C-domain motif 2 and the c-di-GMP-binding N-domain motif. Use of the same regions in apo structure stabilization and c-di-GMP interaction allows distinction between the states. Indeed, domain reorientation by c-di-GMP complexation with MrkH, which leads to a highly compacted structure, suggests a mechanism by which the protein is activated to bind DNA. To our knowledge, MrkH represents the first instance of specific DNA binding mediated by PilZ domains. The MrkH structures also pave the way for the rational design of inhibitors that target K pneumonia biofilm formation.
Collapse
|
163
|
H-NS: an overarching regulator of the Vibrio cholerae life cycle. Res Microbiol 2016; 168:16-25. [PMID: 27492955 DOI: 10.1016/j.resmic.2016.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/22/2016] [Accepted: 07/24/2016] [Indexed: 12/22/2022]
Abstract
Vibrio cholerae has become a model organism for studies connecting virulence, pathogen evolution and infectious disease ecology. The coordinate expression of motility, virulence and biofilm enhances its pathogenicity, environmental fitness and fecal-oral transmission. The histone-like nucleoid structuring protein negatively regulates gene expression at multiple phases of the V. cholerae life cycle. Here we discuss: (i) the regulatory and structural implications of H-NS chromatin-binding in the two-chromosome cholera bacterium; (ii) the factors that counteract H-NS repression; and (iii) a model for the regulation of the V. cholerae life cycle that integrates H-NS repression, cyclic diguanylic acid signaling and the general stress response.
Collapse
|
164
|
Cyclic di-GMP contributes to adaption and virulence of Bacillus thuringiensis through a riboswitch-regulated collagen adhesion protein. Sci Rep 2016; 6:28807. [PMID: 27381437 PMCID: PMC4933901 DOI: 10.1038/srep28807] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/10/2016] [Indexed: 02/06/2023] Open
Abstract
Cyclic di-GMP is a ubiquitous second messenger that regulates diverse cellular processes in bacteria by binding to various protein or riboswitch effectors. In Bacillus thuringiensis BMB171, a c-di-GMP riboswitch termed Bc2 RNA resides in the 5'-untranslated region (5'-UTR) of an mRNA that encodes a collagen adhesion protein (Cap). The expression of cap was strongly repressed in parent strain BMB171 because of the presence of Bc2 RNA but was significantly promoted in the Bc2 RNA markerless deletion mutant. Bc2 RNA acts as a genetic "on" switch, which forms an anti-terminator structure to promote cap read-through transcription upon c-di-GMP binding. As a result, cap transcription was de-repressed under high c-di-GMP levels. Therefore, Bc2 RNA regulates cap expression using a repression/de-repression model. Bc2 RNA-regulated Cap was also found to be tightly associated with motility, aggregation, exopolysaccharide secretion, biofilm formation, and virulence of B. thuringiensis BMB171 against its host insect Helicoverpa armigera.
Collapse
|
165
|
Response of Vibrio cholerae to Low-Temperature Shifts: CspV Regulation of Type VI Secretion, Biofilm Formation, and Association with Zooplankton. Appl Environ Microbiol 2016; 82:4441-52. [PMID: 27208110 DOI: 10.1128/aem.00807-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/02/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The ability to sense and adapt to temperature fluctuation is critical to the aquatic survival, transmission, and infectivity of Vibrio cholerae, the causative agent of the disease cholera. Little information is available on the physiological changes that occur when V. cholerae experiences temperature shifts. The genome-wide transcriptional profile of V. cholerae upon a shift in human body temperature (37°C) to lower temperatures, 15°C and 25°C, which mimic those found in the aquatic environment, was determined. Differentially expressed genes included those involved in the cold shock response, biofilm formation, type VI secretion, and virulence. Analysis of a mutant lacking the cold shock gene cspV, which was upregulated >50-fold upon a low-temperature shift, revealed that it regulates genes involved in biofilm formation and type VI secretion. CspV controls biofilm formation through modulation of the second messenger cyclic diguanylate and regulates type VI-mediated interspecies killing in a temperature-dependent manner. Furthermore, a strain lacking cspV had significant defects for attachment and type VI-mediated killing on the surface of the aquatic crustacean Daphnia magna Collectively, these studies reveal that cspV is a major regulator of the temperature downshift response and plays an important role in controlling cellular processes crucial to the infectious cycle of V. cholerae IMPORTANCE Little is known about how human pathogens respond and adapt to ever-changing parameters of natural habitats outside the human host and how environmental adaptation alters dissemination. Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, experiences fluctuations in temperature in its natural aquatic habitats and during the infection process. Furthermore, temperature is a critical environmental signal governing the occurrence of V. cholerae and cholera outbreaks. In this study, we showed that V. cholerae reprograms its transcriptome in response to fluctuations in temperature, which results in changes to biofilm formation and type VI secretion system activation. These processes in turn impact environmental survival and the virulence potential of this pathogen.
Collapse
|
166
|
Purcell EB, Tamayo R. Cyclic diguanylate signaling in Gram-positive bacteria. FEMS Microbiol Rev 2016; 40:753-73. [PMID: 27354347 DOI: 10.1093/femsre/fuw013] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2016] [Indexed: 12/14/2022] Open
Abstract
The nucleotide second messenger 3'-5' cyclic diguanylate monophosphate (c-di-GMP) is a central regulator of the transition between motile and non-motile lifestyles in bacteria, favoring sessility. Most research investigating the functions of c-di-GMP has focused on Gram-negative species, especially pathogens. Recent work in Gram-positive species has revealed that c-di-GMP plays similar roles in Gram-positives, though the precise targets and mechanisms of regulation may differ. The majority of bacterial life exists in a surface-associated state, with motility allowing bacteria to disseminate and colonize new environments. c-di-GMP signaling regulates flagellum biosynthesis and production of adherence factors and appears to be a primary mechanism by which bacteria sense and respond to surfaces. Ultimately, c-di-GMP influences the ability of a bacterium to alter its transcriptional program, physiology and behavior upon surface contact. This review discusses how bacteria are able to sense a surface via flagella and type IV pili, and the role of c-di-GMP in regulating the response to surfaces, with emphasis on studies of Gram-positive bacteria.
Collapse
Affiliation(s)
- Erin B Purcell
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
167
|
Opoku-Temeng C, Zhou J, Zheng Y, Su J, Sintim HO. Cyclic dinucleotide (c-di-GMP, c-di-AMP, and cGAMP) signalings have come of age to be inhibited by small molecules. Chem Commun (Camb) 2016; 52:9327-42. [PMID: 27339003 DOI: 10.1039/c6cc03439j] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacteria utilize nucleotide-based second messengers to regulate a myriad of physiological processes. Cyclic dinucleotides have emerged as central regulators of bacterial physiology, controlling processes ranging from cell wall homeostasis to virulence production, and so far over thousands of manuscripts have provided biological insights into c-di-NMP signaling. The development of small molecule inhibitors of c-di-NMP signaling has significantly lagged behind. Recent developments in assays that allow for high-throughput screening of inhibitors suggest that the time is right for a concerted effort to identify inhibitors of these fascinating second messengers. Herein, we review c-di-NMP signaling and small molecules that have been developed to inhibit cyclic dinucleotide-related enzymes.
Collapse
Affiliation(s)
- Clement Opoku-Temeng
- Department of Chemistry, Center for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | |
Collapse
|
168
|
Skotnicka D, Smaldone GT, Petters T, Trampari E, Liang J, Kaever V, Malone JG, Singer M, Søgaard-Andersen L. A Minimal Threshold of c-di-GMP Is Essential for Fruiting Body Formation and Sporulation in Myxococcus xanthus. PLoS Genet 2016; 12:e1006080. [PMID: 27214040 PMCID: PMC4877007 DOI: 10.1371/journal.pgen.1006080] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/04/2016] [Indexed: 11/18/2022] Open
Abstract
Generally, the second messenger bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) regulates the switch between motile and sessile lifestyles in bacteria. Here, we show that c-di-GMP is an essential regulator of multicellular development in the social bacterium Myxococcus xanthus. In response to starvation, M. xanthus initiates a developmental program that culminates in formation of spore-filled fruiting bodies. We show that c-di-GMP accumulates at elevated levels during development and that this increase is essential for completion of development whereas excess c-di-GMP does not interfere with development. MXAN3735 (renamed DmxB) is identified as a diguanylate cyclase that only functions during development and is responsible for this increased c-di-GMP accumulation. DmxB synthesis is induced in response to starvation, thereby restricting DmxB activity to development. DmxB is essential for development and functions downstream of the Dif chemosensory system to stimulate exopolysaccharide accumulation by inducing transcription of a subset of the genes encoding proteins involved in exopolysaccharide synthesis. The developmental defects in the dmxB mutant are non-cell autonomous and rescued by co-development with a strain proficient in exopolysaccharide synthesis, suggesting reduced exopolysaccharide accumulation as the causative defect in this mutant. The NtrC-like transcriptional regulator EpsI/Nla24, which is required for exopolysaccharide accumulation, is identified as a c-di-GMP receptor, and thus a putative target for DmxB generated c-di-GMP. Because DmxB can be-at least partially-functionally replaced by a heterologous diguanylate cyclase, these results altogether suggest a model in which a minimum threshold level of c-di-GMP is essential for the successful completion of multicellular development in M. xanthus.
Collapse
Affiliation(s)
- Dorota Skotnicka
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Gregory T. Smaldone
- Department of Microbiology and Molecular Genetics, University of California - Davis, Davis, California, United States of America
| | - Tobias Petters
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Eleftheria Trampari
- Molecular Microbiology Department, John Innes Centre, Norwich, United Kingdom
| | - Jennifer Liang
- Department of Microbiology and Molecular Genetics, University of California - Davis, Davis, California, United States of America
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Jacob G. Malone
- Molecular Microbiology Department, John Innes Centre, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Mitchell Singer
- Department of Microbiology and Molecular Genetics, University of California - Davis, Davis, California, United States of America
- * E-mail: (MS); (LSA)
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- * E-mail: (MS); (LSA)
| |
Collapse
|
169
|
Abstract
Microbes produce a biofilm matrix consisting of proteins, extracellular DNA, and polysaccharides that is integral in the formation of bacterial communities. Historical studies of polysaccharides revealed that their overproduction often alters the colony morphology and can be diagnostic in identifying certain species. The polysaccharide component of the matrix can provide many diverse benefits to the cells in the biofilm, including adhesion, protection, and structure. Aggregative polysaccharides act as molecular glue, allowing the bacterial cells to adhere to each other as well as surfaces. Adhesion facilitates the colonization of both biotic and abiotic surfaces by allowing the bacteria to resist physical stresses imposed by fluid movement that could separate the cells from a nutrient source. Polysaccharides can also provide protection from a wide range of stresses, such as desiccation, immune effectors, and predators such as phagocytic cells and amoebae. Finally, polysaccharides can provide structure to biofilms, allowing stratification of the bacterial community and establishing gradients of nutrients and waste products. This can be advantageous for the bacteria by establishing a heterogeneous population that is prepared to endure stresses created by the rapidly changing environments that many bacteria encounter. The diverse range of polysaccharide structures, properties, and roles highlight the importance of this matrix constituent to the successful adaptation of bacteria to nearly every niche. Here, we present an overview of the current knowledge regarding the diversity and benefits that polysaccharide production provides to bacterial communities within biofilms.
Collapse
|
170
|
Abstract
The cyclic dinucleotides cyclic 3′,5′-diguanylate (c-di-GMP) and cyclic 3′,5′-diadenylate (c-di-AMP) have emerged as key components of bacterial signal transduction networks. These closely related second messengers follow the classical general principles of nucleotide signaling by integrating diverse signals into regulatory pathways that control cellular responses to changing environments. They impact distinct cellular processes, with c-di-GMP having an established role in promoting bacterial adhesion and inhibiting motility and c-di-AMP being involved in cell wall metabolism, potassium homeostasis, and DNA repair. The involvement of c-dinucleotides in the physiology of the filamentous, nonmotile streptomycetes remained obscure until recent discoveries showed that c-di-GMP controls the activity of the developmental master regulator BldD and that c-di-AMP determines the level of the resuscitation-promoting factor A(RpfA) cell wall-remodelling enzyme. Here, I summarize our current knowledge of c-dinucleotide signaling in Streptomyces species and highlight the important roles of c-di-GMP and c-di-AMP in the biology of these antibiotic-producing, multicellular bacteria.
Collapse
|
171
|
Abstract
Cyclic di-GMP (c-di-GMP) synthetases and hydrolases (GGDEF, EAL, and HD-GYP domains) can be readily identified in bacterial genome sequences by using standard bioinformatic tools. In contrast, identification of c-di-GMP receptors remains a difficult task, and the current list of experimentally characterized c-di-GMP-binding proteins is likely incomplete. Several classes of c-di-GMP-binding proteins have been structurally characterized; for some others, the binding sites have been identified; and for several potential c-di-GMP receptors, the binding sites remain to be determined. We present here a comparative structural analysis of c-di-GMP-protein complexes that aims to discern the common themes in the binding mechanisms that allow c-di-GMP receptors to bind it with (sub)micromolar affinities despite the 1,000-fold excess of GTP. The available structures show that most receptors use their Arg and Asp/Glu residues to bind c-di-GMP monomers, dimers, or tetramers with stacked guanine bases. The only exception is the EAL domains that bind c-di-GMP monomers in an extended conformation. We show that in c-di-GMP-binding signature motifs, Arg residues bind to the O-6 and N-7 atoms at the Hoogsteen edge of the guanine base, while Asp/Glu residues bind the N-1 and N-2 atoms at its Watson-Crick edge. In addition, Arg residues participate in stacking interactions with the guanine bases of c-di-GMP and the aromatic rings of Tyr and Phe residues. This may account for the presence of Arg residues in the active sites of every receptor protein that binds stacked c-di-GMP. We also discuss the implications of these structural data for the improved understanding of the c-di-GMP signaling mechanisms.
Collapse
|
172
|
Architectural transitions in Vibrio cholerae biofilms at single-cell resolution. Proc Natl Acad Sci U S A 2016; 113:E2066-72. [PMID: 26933214 DOI: 10.1073/pnas.1601702113] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many bacterial species colonize surfaces and form dense 3D structures, known as biofilms, which are highly tolerant to antibiotics and constitute one of the major forms of bacterial biomass on Earth. Bacterial biofilms display remarkable changes during their development from initial attachment to maturity, yet the cellular architecture that gives rise to collective biofilm morphology during growth is largely unknown. Here, we use high-resolution optical microscopy to image all individual cells in Vibrio cholerae biofilms at different stages of development, including colonies that range in size from 2 to 4,500 cells. From these data, we extracted the precise 3D cellular arrangements, cell shapes, sizes, and global morphological features during biofilm growth on submerged glass substrates under flow. We discovered several critical transitions of the internal and external biofilm architectures that separate the major phases of V. cholerae biofilm growth. Optical imaging of biofilms with single-cell resolution provides a new window into biofilm formation that will prove invaluable to understanding the mechanics underlying biofilm development.
Collapse
|
173
|
Kariisa AT, Weeks K, Tamayo R. The RNA Domain Vc1 Regulates Downstream Gene Expression in Response to Cyclic Diguanylate in Vibrio cholerae. PLoS One 2016; 11:e0148478. [PMID: 26849223 PMCID: PMC4744006 DOI: 10.1371/journal.pone.0148478] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/19/2016] [Indexed: 11/18/2022] Open
Abstract
In many bacterial species, including the aquatic bacterium and human pathogen Vibrio cholerae, the second messenger cyclic diguanylate (c-di-GMP) modulates processes such as biofilm formation, motility, and virulence factor production. By interacting with various effectors, c-di-GMP regulates gene expression or protein function. One type of c-di-GMP receptor is the class I riboswitch, representatives of which have been shown to bind c-di-GMP in vitro. Herein, we examined the in vitro and in vivo function of the putative class I riboswitch in Vibrio cholerae, Vc1, which lies upstream of the gene encoding GbpA, a colonization factor that contributes to attachment of V. cholerae to environmental and host surfaces containing N-acetylglucosamine moieties. We provide evidence that Vc1 RNA interacts directly with c-di-GMP in vitro, and that nucleotides conserved among this class of riboswitch are important for binding. Yet the mutation of these conserved residues individually in the V. cholerae chromosome inconsistently affects the expression of gbpA and production of the GbpA protein. By isolating the regulatory function of Vc1, we show that the Vc1 element positively regulates downstream gene expression in response to c-di-GMP. Together these data suggest that the Vc1 element responds to c-di-GMP in vivo. Positive regulation of gbpA expression by c-di-GMP via Vc1 may influence the ability of V. cholerae to associate with chitin in the aquatic environment and the host intestinal environment.
Collapse
Affiliation(s)
- Ankunda T. Kariisa
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kevin Weeks
- Department of Chemistry, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
174
|
Abstract
Vibrio cholerae can switch between motile and biofilm lifestyles. The last decades have been marked by a remarkable increase in our knowledge of the structure, regulation, and function of biofilms formed under laboratory conditions. Evidence has grown suggesting that V. cholerae can form biofilm-like aggregates during infection that could play a critical role in pathogenesis and disease transmission. However, the structure and regulation of biofilms formed during infection, as well as their role in intestinal colonization and virulence, remains poorly understood. Here, we review (i) the evidence for biofilm formation during infection, (ii) the coordinate regulation of biofilm and virulence gene expression, and (iii) the host signals that favor V. cholerae transitions between alternative lifestyles during intestinal colonization, and (iv) we discuss a model for the role of V. cholerae biofilms in pathogenicity.
Collapse
|
175
|
Pérez-Mendoza D, Sanjuán J. Exploiting the commons: cyclic diguanylate regulation of bacterial exopolysaccharide production. Curr Opin Microbiol 2016; 30:36-43. [PMID: 26773798 DOI: 10.1016/j.mib.2015.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/09/2015] [Accepted: 12/14/2015] [Indexed: 02/01/2023]
Abstract
Nowadays, there is increasing interest for bacterial polysaccharides in a wide variety of industrial sectors. This is due to their chemical and reological properties, and also the possibility to be obtained by fermentation processes. Biosynthesis of a growing number of exopolysaccharides (EPS) has been reported to be regulated by the ubiquitous second messenger c-di-GMP in a limited number of bacterial species. Since most bacteria are yet unexplored, it is likely that an unsuspected number and variety of EPS structures activated by c-di-GMP await to be uncovered. In the search of new EPS, manipulation of bacterial c-di-GMP metabolism can be combined with high throughput approaches for screening of large collections of bacteria. In addition, c-di-GMP activation of EPS production and promotion of cell aggregation may have direct applications in environmental industries related with biofuel production or wastewater treatments.
Collapse
Affiliation(s)
- Daniel Pérez-Mendoza
- Dpto. Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC. Prof. Albareda N° 1, 18008 Granada, Spain
| | - Juan Sanjuán
- Dpto. Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC. Prof. Albareda N° 1, 18008 Granada, Spain..
| |
Collapse
|
176
|
The LonA Protease Regulates Biofilm Formation, Motility, Virulence, and the Type VI Secretion System in Vibrio cholerae. J Bacteriol 2016; 198:973-85. [PMID: 26755629 DOI: 10.1128/jb.00741-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/05/2016] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED The presence of the Lon protease in all three domains of life hints at its biological importance. The prokaryotic Lon protease is responsible not only for degrading abnormal proteins but also for carrying out the proteolytic regulation of specific protein targets. Posttranslational regulation by Lon is known to affect a variety of physiological traits in many bacteria, including biofilm formation, motility, and virulence. Here, we identify the regulatory roles of LonA in the human pathogen Vibrio cholerae. We determined that the absence of LonA adversely affects biofilm formation, increases swimming motility, and influences intracellular levels of cyclic diguanylate. Whole-genome expression analysis revealed that the message abundance of genes involved in biofilm formation was decreased but that the message abundances of those involved in virulence and the type VI secretion system were increased in a lonA mutant compared to the wild type. We further demonstrated that a lonA mutant displays an increase in type VI secretion system activity and is markedly defective in colonization of the infant mouse. These findings suggest that LonA plays a critical role in the environmental survival and virulence of V. cholerae. IMPORTANCE Bacteria utilize intracellular proteases to degrade damaged proteins and adapt to changing environments. The Lon protease has been shown to be important for environmental adaptation and plays a crucial role in regulating the motility, biofilm formation, and virulence of numerous plant and animal pathogens. We find that LonA of the human pathogen V. cholerae is in line with this trend, as the deletion of LonA leads to hypermotility and defects in both biofilm formation and colonization of the infant mouse. In addition, we show that LonA regulates levels of cyclic diguanylate and the type VI secretion system. Our observations add to the known regulatory repertoire of the Lon protease and the current understanding of V. cholerae physiology.
Collapse
|
177
|
Villa TG, Feijoo-Siota L, Rama JLR, Sánchez-Pérez A, de Miguel-Bouzas T. Fecal Matter Implantation as a Way to Fight Diarrhea-Causing Microorganisms. NEW WEAPONS TO CONTROL BACTERIAL GROWTH 2016:315-352. [DOI: 10.1007/978-3-319-28368-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
178
|
Baraquet C, Harwood CS. FleQ DNA Binding Consensus Sequence Revealed by Studies of FleQ-Dependent Regulation of Biofilm Gene Expression in Pseudomonas aeruginosa. J Bacteriol 2016; 198:178-86. [PMID: 26483521 PMCID: PMC4686206 DOI: 10.1128/jb.00539-15] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/07/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The transcription factor FleQ from Pseudomonas aeruginosa derepresses expression of genes involved in biofilm formation when intracellular levels of the second messenger cyclic diguanosine monophosphate (c-di-GMP) are high. FleQ also activates transcription of flagellar genes, and the expression of these genes is highest at low intracellular c-di-GMP. FleQ thus plays a central role in mediating the transition between planktonic and biofilm lifestyles of P. aeruginosa. Previous work showed that FleQ controls expression of the pel operon for Pel exopolysaccharide biosynthesis by converting from a repressor to an activator upon binding c-di-GMP. To explore the activity of FleQ further, we carried out DNase I footprinting at three additional biofilm gene promoters, those of psl, cdrAB, and PA2440. The expression of cdrAB, encoding a cell surface adhesin, was sufficiently responsive to FleQ to allow us to carry out in vivo promoter assays. The results showed that, similarly to our observations with the pel operon, FleQ switches from a repressor to an activator of cdrAB gene expression in response to c-di-GMP. From the footprinting data, we identified a FleQ DNA binding consensus sequence. A search for this conserved sequence in bacterial genome sequences led to the identification of FleQ binding sites in the promoters of the siaABCD operon, important for cell aggregation, and the bdlA gene, important for biofilm dispersal, in P. aeruginosa. We also identified FleQ binding sites upstream of lapA-like adhesin genes in other Pseudomonas species. IMPORTANCE The transcription factor FleQ is widely distributed in Pseudomonas species. In all species examined, it is a master regulator of flagellar gene expression. It also regulates diverse genes involved in biofilm formation in P. aeruginosa when intracellular levels of the second messenger c-di-GMP are high. Unlike flagellar genes, biofilm-associated genes are not always easy to recognize in genome sequences. Here, we identified a consensus DNA binding sequence for FleQ. This allowed us to survey Pseudomonas strains and find new genes that are likely regulated by FleQ and possibly involved in biofilm formation.
Collapse
Affiliation(s)
- Claudine Baraquet
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Caroline S Harwood
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
179
|
Microbial Surface Colonization and Biofilm Development in Marine Environments. Microbiol Mol Biol Rev 2015; 80:91-138. [PMID: 26700108 DOI: 10.1128/mmbr.00037-15] [Citation(s) in RCA: 539] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration.
Collapse
|
180
|
Expression and Genetic Activation of Cyclic Di-GMP-Specific Phosphodiesterases in Escherichia coli. J Bacteriol 2015; 198:448-62. [PMID: 26553851 DOI: 10.1128/jb.00604-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/02/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Intracellular levels of the bacterial second messenger cyclic di-GMP (c-di-GMP) are controlled by antagonistic activities of diguanylate cyclases and phosphodiesterases. The phosphodiesterase PdeH was identified as a key regulator of motility in Escherichia coli, while deletions of any of the other 12 genes encoding potential phosphodiesterases did not interfere with motility. To analyze the roles of E. coli phosphodiesterases, we demonstrated that most of these proteins are expressed under laboratory conditions. We next isolated suppressor mutations in six phosphodiesterase genes, which reinstate motility in the absence of PdeH by reducing cellular levels of c-di-GMP. Expression of all mutant alleles also led to a reduction of biofilm formation. Thus, all of these proteins are bona fide phosphodiesterases that are capable of interfering with different c-di-GMP-responsive output systems by affecting the global c-di-GMP pool. This argues that E. coli possesses several phosphodiesterases that are inactive under laboratory conditions because they lack appropriate input signals. Finally, one of these phosphodiesterases, PdeL, was studied in more detail. We demonstrated that this protein acts as a transcription factor to control its own expression. Motile suppressor alleles led to a strong increase of PdeL activity and elevated pdeL transcription, suggesting that enzymatic activity and transcriptional control are coupled. In agreement with this, we showed that overall cellular levels of c-di-GMP control pdeL transcription and that this control depends on PdeL itself. We thus propose that PdeL acts both as an enzyme and as a c-di-GMP sensor to couple transcriptional activity to the c-di-GMP status of the cell. IMPORTANCE Most bacteria possess multiple diguanylate cyclases and phosphodiesterases. Genetic studies have proposed that these enzymes show signaling specificity by contributing to distinct cellular processes without much cross talk. Thus, spatial separation of individual c-di-GMP signaling units was postulated. However, since most cyclases and phosphodiesterases harbor N-terminal signal input domains, it is equally possible that most of these enzymes lack their activating signals under laboratory conditions, thereby simulating signaling specificity on a genetic level. We demonstrate that a subset of E. coli phosphodiesterases can be activated genetically to affect the global c-di-GMP pool and thus influence different c-di-GMP-dependent processes. Although this does not exclude spatial confinement of individual phosphodiesterases, this study emphasizes the importance of environmental signals for activation of phosphodiesterases.
Collapse
|
181
|
Systematic Identification of Cyclic-di-GMP Binding Proteins in Vibrio cholerae Reveals a Novel Class of Cyclic-di-GMP-Binding ATPases Associated with Type II Secretion Systems. PLoS Pathog 2015; 11:e1005232. [PMID: 26506097 PMCID: PMC4624772 DOI: 10.1371/journal.ppat.1005232] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/25/2015] [Indexed: 11/30/2022] Open
Abstract
Cyclic-di-GMP (c-di-GMP) is a ubiquitous bacterial signaling molecule that regulates a variety of complex processes through a diverse set of c-di-GMP receptor proteins. We have utilized a systematic approach to identify c-di-GMP receptors from the pathogen Vibrio cholerae using the Differential Radial Capillary Action of Ligand Assay (DRaCALA). The DRaCALA screen identified a majority of known c-di-GMP binding proteins in V. cholerae and revealed a novel c-di-GMP binding protein, MshE (VC0405), an ATPase associated with the mannose sensitive hemagglutinin (MSHA) type IV pilus. The known c-di-GMP binding proteins identified by DRaCALA include diguanylate cyclases, phosphodiesterases, PilZ domain proteins and transcription factors VpsT and VpsR, indicating that the DRaCALA-based screen of open reading frame libraries is a feasible approach to uncover novel receptors of small molecule ligands. Since MshE lacks the canonical c-di-GMP-binding motifs, a truncation analysis was utilized to locate the c-di-GMP binding activity to the N-terminal T2SSE_N domain. Alignment of MshE homologs revealed candidate conserved residues responsible for c-di-GMP binding. Site-directed mutagenesis of these candidate residues revealed that the Arg9 residue is required for c-di-GMP binding. The ability of c-di-GMP binding to MshE to regulate MSHA dependent processes was evaluated. The R9A allele, in contrast to the wild type MshE, was unable to complement the ΔmshE mutant for the production of extracellular MshA to the cell surface, reduction in flagella swimming motility, attachment to surfaces and formation of biofilms. Testing homologs of MshE for binding to c-di-GMP identified the type II secretion ATPase of Pseudomonas aeruginosa (PA14_29490) as a c-di-GMP receptor, indicating that type II secretion and type IV pili are both regulated by c-di-GMP. Cyclic-di-GMP (c-di-GMP) is a ubiquitous bacterial signaling molecule that regulates important bacterial functions, including virulence, antibiotic resistance, biofilm formation and cell division. The list of known c-di-GMP receptors is clearly incomplete. Here we utilized a systematic and unbiased biochemical approach to identify c-di-GMP receptors from the 3,812 genes of the Vibrio cholerae genome. Results from this analysis identified most known c-di-GMP receptors as well as MshE, a protein not known to interact with c-di-GMP. The c-di-GMP binding site was identified at the N-terminus of MshE and requires a conserved arginine residue in the 9th position. MshE is the ATPase that powers the secretion of the MshA pili onto the surface of the bacteria. We show that c-di-GMP binding to MshE is required for MshA export and the function of the pili in attachment and biofilm formation. ATPases responsible for related processes such as type IV pili and type II secretion were also tested for c-di-GMP binding, which identified the P. aeruginosa ATPase PA14_29490 as another c-di-GMP binding protein. These findings reveal a new class of c-di-GMP receptor and raise the possibility that c-di-GMP regulate membrane complexes through direct interaction with related type II secretion and type IV pili ATPases.
Collapse
|
182
|
Fernicola S, Torquati I, Paiardini A, Giardina G, Rampioni G, Messina M, Leoni L, Del Bello F, Petrelli R, Rinaldo S, Cappellacci L, Cutruzzolà F. Synthesis of Triazole-Linked Analogues of c-di-GMP and Their Interactions with Diguanylate Cyclase. J Med Chem 2015; 58:8269-84. [PMID: 26426545 DOI: 10.1021/acs.jmedchem.5b01184] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cyclic di-GMP (c-di-GMP) is a widespread second messenger that plays a key role in bacterial biofilm formation. The compound's ability to assume multiple conformations allows it to interact with a diverse set of target macromolecules. Here, we analyzed the binding mode of c-di-GMP to the allosteric inhibitory site (I-site) of diguanylate cyclases (DGCs) and compared it to the conformation adopted in the catalytic site of the EAL phosphodiesterases (PDEs). An array of novel molecules has been designed and synthesized by simplifying the native c-di-GMP structure and replacing the charged phosphodiester backbone with an isosteric nonhydrolyzable 1,2,3-triazole moiety. We developed the first neutral small molecule able to selectively target DGCs discriminating between the I-site of DGCs and the active site of PDEs; this molecule represents a novel tool for mechanistic studies, particularly on those proteins bearing both DGC and PDE modules, and for future optimization studies to target DGCs in vivo.
Collapse
Affiliation(s)
- Silvia Fernicola
- Department of Biochemical Sciences, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome , 00185 Rome, Italy
| | - Ilaria Torquati
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino , 62032 Camerino, MC, Italy
| | - Alessandro Paiardini
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome , 00185 Rome, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome , 00185 Rome, Italy
| | | | - Marco Messina
- Department of Science, University Roma Tre , 00154 Rome, Italy
| | - Livia Leoni
- Department of Science, University Roma Tre , 00154 Rome, Italy
| | - Fabio Del Bello
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino , 62032 Camerino, MC, Italy
| | - Riccardo Petrelli
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino , 62032 Camerino, MC, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome , 00185 Rome, Italy
| | - Loredana Cappellacci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino , 62032 Camerino, MC, Italy
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome , 00185 Rome, Italy
| |
Collapse
|
183
|
Jones CJ, Utada A, Davis KR, Thongsomboon W, Zamorano Sanchez D, Banakar V, Cegelski L, Wong GCL, Yildiz FH. C-di-GMP Regulates Motile to Sessile Transition by Modulating MshA Pili Biogenesis and Near-Surface Motility Behavior in Vibrio cholerae. PLoS Pathog 2015; 11:e1005068. [PMID: 26505896 PMCID: PMC4624765 DOI: 10.1371/journal.ppat.1005068] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 07/06/2015] [Indexed: 01/11/2023] Open
Abstract
In many bacteria, including Vibrio cholerae, cyclic dimeric guanosine monophosphate (c-di-GMP) controls the motile to biofilm life style switch. Yet, little is known about how this occurs. In this study, we report that changes in c-di-GMP concentration impact the biosynthesis of the MshA pili, resulting in altered motility and biofilm phenotypes in V. cholerae. Previously, we reported that cdgJ encodes a c-di-GMP phosphodiesterase and a ΔcdgJ mutant has reduced motility and enhanced biofilm formation. Here we show that loss of the genes required for the mannose-sensitive hemagglutinin (MshA) pilus biogenesis restores motility in the ΔcdgJ mutant. Mutations of the predicted ATPase proteins mshE or pilT, responsible for polymerizing and depolymerizing MshA pili, impair near surface motility behavior and initial surface attachment dynamics. A ΔcdgJ mutant has enhanced surface attachment, while the ΔcdgJmshA mutant phenocopies the high motility and low attachment phenotypes observed in a ΔmshA strain. Elevated concentrations of c-di-GMP enhance surface MshA pilus production. MshE, but not PilT binds c-di-GMP directly, establishing a mechanism for c-di-GMP signaling input in MshA pilus production. Collectively, our results suggest that the dynamic nature of the MshA pilus established by the assembly and disassembly of pilin subunits is essential for transition from the motile to sessile lifestyle and that c-di-GMP affects MshA pilus assembly and function through direct interactions with the MshE ATPase.
Collapse
Affiliation(s)
- Christopher J. Jones
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Andrew Utada
- Department of Bioengineering, Department of Chemistry and Biochemistry, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Kimberly R. Davis
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Wiriya Thongsomboon
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - David Zamorano Sanchez
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Vinita Banakar
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Gerard C. L. Wong
- Department of Bioengineering, Department of Chemistry and Biochemistry, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Fitnat H. Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
184
|
Application of Synthetic Peptide Arrays To Uncover Cyclic Di-GMP Binding Motifs. J Bacteriol 2015; 198:138-46. [PMID: 26324453 DOI: 10.1128/jb.00377-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/25/2015] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED High levels of the universal bacterial second messenger cyclic di-GMP (c-di-GMP) promote the establishment of surface-attached growth in many bacteria. Not only can c-di-GMP bind to nucleic acids and directly control gene expression, but it also binds to a diverse array of proteins of specialized functions and orchestrates their activity. Since its development in the early 1990s, the synthetic peptide array technique has become a powerful tool for high-throughput approaches and was successfully applied to investigate the binding specificity of protein-ligand interactions. In this study, we used peptide arrays to uncover the c-di-GMP binding site of a Pseudomonas aeruginosa protein (PA3740) that was isolated in a chemical proteomics approach. PA3740 was shown to bind c-di-GMP with a high affinity, and peptide arrays uncovered LKKALKKQTNLR to be a putative c-di-GMP binding motif. Most interestingly, different from the previously identified c-di-GMP binding motif of the PilZ domain (RXXXR) or the I site of diguanylate cyclases (RXXD), two leucine residues and a glutamine residue and not the charged amino acids provided the key residues of the binding sequence. Those three amino acids are highly conserved across PA3740 homologs, and their singular exchange to alanine reduced c-di-GMP binding within the full-length protein. IMPORTANCE In many bacterial pathogens the universal bacterial second messenger c-di-GMP governs the switch from the planktonic, motile mode of growth to the sessile, biofilm mode of growth. Bacteria adapt their intracellular c-di-GMP levels to a variety of environmental challenges. Several classes of c-di-GMP binding proteins have been structurally characterized, and diverse c-di-GMP binding domains have been identified. Nevertheless, for several c-di-GMP receptors, the binding motif remains to be determined. Here we show that the use of a synthetic peptide array allowed the identification of a c-di-GMP binding motif of a putative c-di-GMP receptor protein in the opportunistic pathogen P. aeruginosa. The application of synthetic peptide arrays will facilitate the search for additional c-di-GMP receptor proteins and aid in the characterization of c-di-GMP binding motifs.
Collapse
|
185
|
Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover. Proc Natl Acad Sci U S A 2015; 112:E5048-57. [PMID: 26305945 DOI: 10.1073/pnas.1507245112] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bacterial second messenger cyclic di-GMP (c-di-GMP) controls biofilm formation and other phenotypes relevant to pathogenesis. Cyclic-di-GMP is synthesized by diguanylate cyclases (DGCs). Phosphodiesterases (PDE-As) end signaling by linearizing c-di-GMP to 5'-phosphoguanylyl-(3',5')-guanosine (pGpG), which is then hydrolyzed to two GMP molecules by yet unidentified enzymes termed PDE-Bs. We show that pGpG inhibits a PDE-A from Pseudomonas aeruginosa. In a dual DGC and PDE-A reaction, excess pGpG extends the half-life of c-di-GMP, indicating that removal of pGpG is critical for c-di-GMP homeostasis. Thus, we sought to identify the PDE-B enzyme(s) responsible for pGpG degradation. A differential radial capillary action of ligand assay-based screen for pGpG binding proteins identified oligoribonuclease (Orn), an exoribonuclease that hydrolyzes two- to five-nucleotide-long RNAs. Purified Orn rapidly converts pGpG into GMP. To determine whether Orn is the primary enzyme responsible for degrading pGpG, we assayed cell lysates of WT and ∆orn strains of P. aeruginosa PA14 for pGpG stability. The lysates from ∆orn showed 25-fold decrease in pGpG hydrolysis. Complementation with WT, but not active site mutants, restored hydrolysis. Accumulation of pGpG in the ∆orn strain could inhibit PDE-As, increasing c-di-GMP concentration. In support, we observed increased transcription from the c-di-GMP-regulated pel promoter. Additionally, the c-di-GMP-governed auto-aggregation and biofilm phenotypes were elevated in the ∆orn strain in a pel-dependent manner. Finally, we directly detect elevated pGpG and c-di-GMP in the ∆orn strain. Thus, we identified that Orn serves as the primary PDE-B enzyme that removes pGpG, which is necessary to complete the final step in the c-di-GMP degradation pathway.
Collapse
|
186
|
Kariisa AT, Grube A, Tamayo R. Two nucleotide second messengers regulate the production of the Vibrio cholerae colonization factor GbpA. BMC Microbiol 2015; 15:166. [PMID: 26286031 PMCID: PMC4545359 DOI: 10.1186/s12866-015-0506-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/12/2015] [Indexed: 11/30/2022] Open
Abstract
Background The nucleotide second messengers cAMP and c-di-GMP allow many bacteria, including the human intestinal pathogen Vibrio cholerae, to respond to environmental stimuli with appropriate physiological adaptations. In response to limitation of specific carbohydrates, cAMP and its receptor CRP control the transcription of genes important for nutrient acquisition and utilization; c-di-GMP controls the transition between motile and sessile lifestyles often, but not exclusively, through transcriptional mechanisms. In this study, we investigated the convergence of cAMP and c-di-GMP signaling pathways in regulating the expression of gbpA. GbpA is a colonization factor that participates in the attachment of V. cholerae to N-acetylglucosamine-containing surfaces in its native aquatic environment and the host intestinal tract. Results We show that c-di-GMP inhibits gbpA activation in a fashion independent of the known transcription factors that directly sense c-di-GMP. Interestingly, inhibition of gbpA activation by c-di-GMP only occurs during growth on non-PTS dependent nutrient sources. Consistent with this result, we show that CRP binds to the gbpA promoter in a cAMP-dependent manner in vitro and drives transcription of gbpA in vivo. The interplay between cAMP and c-di-GMP does not broadly impact the CRP-cAMP regulon, but occurs more specifically at the gbpA promoter. Conclusions These findings suggest that c-di-GMP directly interferes with the interaction of CRP-cAMP and the gbpA promoter via an unidentified regulator. The use of two distinct second messenger signaling mechanisms to regulate gbpA transcription may allow V. cholerae to finely modulate GbpA production, and therefore colonization of aquatic and host surfaces, in response to discrete environmental stimuli. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0506-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ankunda T Kariisa
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, 125 Mason Farm Rd, 6th Floor, Chapel Hill, NC, 27599, USA.
| | - Alyssa Grube
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, 125 Mason Farm Rd, 6th Floor, Chapel Hill, NC, 27599, USA. .,Biology Department, Juniata College, Huntingdon, PA, USA.
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill, 125 Mason Farm Rd, 6th Floor, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
187
|
Trampari E, Stevenson CEM, Little RH, Wilhelm T, Lawson DM, Malone JG. Bacterial rotary export ATPases are allosterically regulated by the nucleotide second messenger cyclic-di-GMP. J Biol Chem 2015; 290:24470-83. [PMID: 26265469 PMCID: PMC4591828 DOI: 10.1074/jbc.m115.661439] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Indexed: 01/03/2023] Open
Abstract
The widespread second messenger molecule cyclic di-GMP (cdG) regulates the transition from motile and virulent lifestyles to sessile, biofilm-forming ones in a wide range of bacteria. Many pathogenic and commensal bacterial-host interactions are known to be controlled by cdG signaling. Although the biochemistry of cyclic dinucleotide metabolism is well understood, much remains to be discovered about the downstream signaling pathways that induce bacterial responses upon cdG binding. As part of our ongoing research into the role of cdG signaling in plant-associated Pseudomonas species, we carried out an affinity capture screen for cdG binding proteins in the model organism Pseudomonas fluorescens SBW25. The flagella export AAA+ ATPase FliI was identified as a result of this screen and subsequently shown to bind specifically to the cdG molecule, with a KD in the low micromolar range. The interaction between FliI and cdG appears to be very widespread. In addition to FliI homologs from diverse bacterial species, high affinity binding was also observed for the type III secretion system homolog HrcN and the type VI ATPase ClpB2. The addition of cdG was shown to inhibit FliI and HrcN ATPase activity in vitro. Finally, a combination of site-specific mutagenesis, mass spectrometry, and in silico analysis was used to predict that cdG binds to FliI in a pocket of highly conserved residues at the interface between two FliI subunits. Our results suggest a novel, fundamental role for cdG in controlling the function of multiple important bacterial export pathways, through direct allosteric control of export ATPase proteins.
Collapse
Affiliation(s)
| | - Clare E M Stevenson
- the Biological Chemistry Department, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | | | - Thomas Wilhelm
- the Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, United Kingdom, and
| | - David M Lawson
- the Biological Chemistry Department, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Jacob G Malone
- From the Molecular Microbiology Department and the School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
188
|
Persat A, Nadell CD, Kim MK, Ingremeau F, Siryaporn A, Drescher K, Wingreen NS, Bassler BL, Gitai Z, Stone HA. The mechanical world of bacteria. Cell 2015; 161:988-997. [PMID: 26000479 DOI: 10.1016/j.cell.2015.05.005] [Citation(s) in RCA: 330] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Indexed: 10/23/2022]
Abstract
In the wild, bacteria are predominantly associated with surfaces as opposed to existing as free-swimming, isolated organisms. They are thus subject to surface-specific mechanics, including hydrodynamic forces, adhesive forces, the rheology of their surroundings, and transport rules that define their encounters with nutrients and signaling molecules. Here, we highlight the effects of mechanics on bacterial behaviors on surfaces at multiple length scales, from single bacteria to the development of multicellular bacterial communities such as biofilms.
Collapse
Affiliation(s)
- Alexandre Persat
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Carey D Nadell
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | | | - Francois Ingremeau
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Albert Siryaporn
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Ned S Wingreen
- Lewis Sigler Institute, Princeton University, Princeton, NJ 08544, USA
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
189
|
Liang ZX. The expanding roles of c-di-GMP in the biosynthesis of exopolysaccharides and secondary metabolites. Nat Prod Rep 2015; 32:663-83. [PMID: 25666534 DOI: 10.1039/c4np00086b] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The cyclic dinucleotide c-di-GMP has emerged in the last decade as a prevalent intracellular messenger that orchestrates the transition between the motile and sessile lifestyles of many bacterial species. The motile-to-sessile transition is often associated with the formation of extracellular matrix-encased biofilm, an organized community of bacterial cells that often contributes to antibiotic resistance and host-pathogen interaction. It is increasingly clear that c-di-GMP controls motility, biofilm formation and bacterial pathogenicity partially through regulating the production of exopolysaccharides (EPS) and small-molecule secondary metabolites. This review summarizes our current understanding of the regulation of EPS biosynthesis by c-di-GMP in a diversity of bacterial species and highlights the emerging role of c-di-GMP in the biosynthesis of small-molecule secondary metabolites.
Collapse
Affiliation(s)
- Zhao-Xun Liang
- Division of Structural Biology & Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore 637551.
| |
Collapse
|
190
|
Simm R, Ahmad I, Rhen M, Le Guyon S, Römling U. Regulation of biofilm formation in Salmonella enterica serovar Typhimurium. Future Microbiol 2015; 9:1261-82. [PMID: 25437188 DOI: 10.2217/fmb.14.88] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In animals, plants and the environment, Salmonella enterica serovar Typhimurium forms the red dry and rough (rdar) biofilm characterized by extracellular matrix components curli and cellulose. With complex expression control by at least ten transcription factors, the bistably expressed orphan response regulator CsgD directs rdar morphotype development. CsgD expression is an integral part of the Hfq regulon and the complex cyclic diguanosine monophosphate signaling network partially controlled by the global RNA-binding protein CsrA. Cell wall turnover and the periplasmic redox status regulate csgD expression on a post-transcriptional level by unknown mechanisms. Furthermore, phosphorylation of CsgD is a potential inactivation and degradation signal in biofilm dissolution. Including complex incoherent feed-forward loops, regulation of biofilm formation versus motility and virulence is of recognized complexity.
Collapse
Affiliation(s)
- Roger Simm
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, Oslo, Norway
| | | | | | | | | |
Collapse
|
191
|
Ayala JC, Wang H, Silva AJ, Benitez JA. Repression by H-NS of genes required for the biosynthesis of the Vibrio cholerae biofilm matrix is modulated by the second messenger cyclic diguanylic acid. Mol Microbiol 2015; 97:630-45. [PMID: 25982817 DOI: 10.1111/mmi.13058] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Expression of Vibrio cholerae genes required for the biosynthesis of exopolysacchide (vps) and protein (rbm) components of the biofilm matrix is enhanced by cyclic diguanylate (c-di-GMP). In a previous study, we reported that the histone-like nucleoid structuring (H-NS) protein represses the transcription of vpsA, vpsL and vpsT. Here we demonstrate that the regulator VpsT can disrupt repressive H-NS nucleoprotein complexes at the vpsA and vpsL promoters in the presence of c-di-GMP, while H-NS could disrupt the VpsT-promoter complexes in the absence of c-di-GMP. Chromatin immunoprecipitation-Seq showed a remarkable trend for H-NS to cluster at loci involved in biofilm development such as the rbmABCDEF genes. We show that the antagonistic relationship between VpsT and H-NS regulates the expression of the rbmABCDEF cluster. Epistasis analysis demonstrated that VpsT functions as an antirepressor at the rbmA/F, vpsU and vpsA/L promoters. Deletion of vpsT increased H-NS occupancy at these promoters while increasing the c-di-GMP pool had the opposite effect and included the vpsT promoter. The negative effect of c-di-GMP on H-NS occupancy at the vpsT promoter required the regulator VpsR. These results demonstrate that c-di-GMP activates the transcription of genes required for the biosynthesis of the biofilm matrix by triggering a coordinated VpsR- and VpsT-dependent H-NS antirepression cascade.
Collapse
Affiliation(s)
- Julio C Ayala
- University of Alabama at Birmingham, Department of Microbiology, Birmingham, Alabama.,Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, Atlanta, Georgia
| | - Hongxia Wang
- Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, Atlanta, Georgia.,State Key Laboratory for Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Anisia J Silva
- Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, Atlanta, Georgia
| | - Jorge A Benitez
- Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, Atlanta, Georgia
| |
Collapse
|
192
|
Cyclic Di-GMP Regulates Type IV Pilus-Dependent Motility in Myxococcus xanthus. J Bacteriol 2015; 198:77-90. [PMID: 26124238 PMCID: PMC4686200 DOI: 10.1128/jb.00281-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/18/2015] [Indexed: 12/23/2022] Open
Abstract
The nucleotide-based second messenger bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP) is involved in regulating a plethora of processes in bacteria that are typically associated with lifestyle changes. Myxococcus xanthus undergoes major lifestyle changes in response to nutrient availability, with the formation of spreading colonies in the presence of nutrients and spore-filled fruiting bodies in the absence of nutrients. Here, we investigated the function of c-di-GMP in M. xanthus and show that this bacterium synthesizes c-di-GMP during growth. Manipulation of the c-di-GMP level by expression of either an active, heterologous diguanylate cyclase or an active, heterologous phosphodiesterase correlated with defects in type IV pilus (T4P)-dependent motility, whereas gliding motility was unaffected. An increased level of c-di-GMP correlated with reduced transcription of the pilA gene (which encodes the major pilin of T4P), reduced the assembly of T4P, and altered cell agglutination, whereas a decreased c-di-GMP level correlated with altered cell agglutination. The systematic inactivation of the 24 genes in M. xanthus encoding proteins containing GGDEF, EAL, or HD-GYP domains, which are associated with c-di-GMP synthesis, degradation, or binding, identified three genes encoding proteins important for T4P-dependent motility, whereas all mutants had normal gliding motility. Purified DmxA had diguanylate cyclase activity, whereas the hybrid histidine protein kinases TmoK and SgmT, each of which contains a GGDEF domain, did not have diguanylate cyclase activity. These results demonstrate that c-di-GMP is important for T4P-dependent motility in M. xanthus. IMPORTANCE We provide the first direct evidence that M. xanthus synthesizes c-di-GMP and demonstrate that c-di-GMP is important for T4P-dependent motility, whereas we did not obtain evidence that c-di-GMP regulates gliding motility. The data presented uncovered a novel mechanism for regulation of T4P-dependent motility, in which increased levels of c-di-GMP inhibit transcription of the pilA gene (which encodes the major pilin of T4P), ultimately resulting in the reduced assembly of T4P. Moreover, we identified an enzymatically active diguanylate cyclase that is important for T4P-dependent motility.
Collapse
|
193
|
Dorman CJ. Integrating small molecule signalling and H-NS antagonism in Vibrio cholerae, a bacterium with two chromosomes. Mol Microbiol 2015; 97:612-5. [PMID: 25988304 DOI: 10.1111/mmi.13063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2015] [Indexed: 12/13/2022]
Abstract
H-NS is a well-established silencer of virulence gene transcription in the human pathogen Vibrio cholerae. Biofilm formation aids V. cholerae in colonizing both its host and its external environments, and H-NS silences biofilm gene expression. Cyclic-di-guanosine monophosphate acts through the DNA binding proteins VpsR and VpsT to overcome H-NS-mediated repression of biofilm genes, driving a transition between a planktonic and a colonial/biofilm lifestyle. The H-NS binding pattern has now been charted on both chromosomes in V. cholerae, but whether or not this abundant DNA-binding-and-bridging protein plays any roles in nucleoid organization in this bacterium remains an open question.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
194
|
Santos CL, Nebenzahl-Guimaraes H, Mendes MV, van Soolingen D, Correia-Neves M. To Be or Not to Be a Pseudogene: A Molecular Epidemiological Approach to the mclx Genes and Its Impact in Tuberculosis. PLoS One 2015; 10:e0128983. [PMID: 26035295 PMCID: PMC4452763 DOI: 10.1371/journal.pone.0128983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/04/2015] [Indexed: 11/18/2022] Open
Abstract
Tuberculosis presents a myriad of symptoms, progression routes and propagation patterns not yet fully understood. Whereas for a long time research has focused solely on the patient immunity and overall susceptibility, it is nowadays widely accepted that the genetic diversity of its causative agent, Mycobacterium tuberculosis, plays a key role in this dynamic. This study focuses on a particular family of genes, the mclxs (Mycobacteriumcyclase/LuxR-like genes), which codify for a particular and nearly mycobacterial-exclusive combination of protein domains. mclxs genes were found to be pseudogenized by frameshift-causing insertion(s)/deletion(s) in a considerable number of M. tuberculosis complex strains and clinical isolates. To discern the functional implications of the pseudogenization, we have analysed the pattern of frameshift-causing mutations in a group of M. tuberculosis isolates while taking into account their microbial-, patient- and disease-related traits. Our logistic regression-based analyses have revealed disparate effects associated with the transcriptional inactivation of two mclx genes. In fact, mclx2 (Rv1358) pseudogenization appears to be primarily driven by the microbial phylogenetic background, being mainly related to the Euro-American (EAm) lineage; on the other hand, mclx3 (Rv2488c) presents a higher tendency for pseudogenization among isolates from patients born on the Western Pacific area, and from isolates causing extra-pulmonary infections. These results contribute to the overall knowledge on the biology of M. tuberculosis infection, whereas at the same time launch the necessary basis for the functional assessment of these so far overlooked genes.
Collapse
Affiliation(s)
- Catarina Lopes Santos
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- * E-mail:
| | - Hanna Nebenzahl-Guimaraes
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Marta Vaz Mendes
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Dick van Soolingen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
195
|
Teschler JK, Zamorano-Sánchez D, Utada AS, Warner CJA, Wong GCL, Linington RG, Yildiz FH. Living in the matrix: assembly and control of Vibrio cholerae biofilms. Nat Rev Microbiol 2015; 13:255-68. [PMID: 25895940 PMCID: PMC4437738 DOI: 10.1038/nrmicro3433] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nearly all bacteria form biofilms as a strategy for survival and persistence. Biofilms are associated with biotic and abiotic surfaces and are composed of aggregates of cells that are encased by a self-produced or acquired extracellular matrix. Vibrio cholerae has been studied as a model organism for understanding biofilm formation in environmental pathogens, as it spends much of its life cycle outside of the human host in the aquatic environment. Given the important role of biofilm formation in the V. cholerae life cycle, the molecular mechanisms underlying this process and the signals that trigger biofilm assembly or dispersal have been areas of intense investigation over the past 20 years. In this Review, we discuss V. cholerae surface attachment, various matrix components and the regulatory networks controlling biofilm formation.
Collapse
Affiliation(s)
- Jennifer K. Teschler
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - David Zamorano-Sánchez
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andrew S. Utada
- Bioengineering Department, Chemistry and Biochemistry Department, and NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher J. A. Warner
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Gerard C. L. Wong
- Bioengineering Department, Chemistry and Biochemistry Department, and NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Roger G. Linington
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Fitnat H. Yildiz
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
196
|
Kernell Burke A, Guthrie LTC, Modise T, Cormier G, Jensen RV, McCarter LL, Stevens AM. OpaR controls a network of downstream transcription factors in Vibrio parahaemolyticus BB22OP. PLoS One 2015; 10:e0121863. [PMID: 25901572 PMCID: PMC4406679 DOI: 10.1371/journal.pone.0121863] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/16/2015] [Indexed: 11/22/2022] Open
Abstract
Vibrio parahaemolyticus is an emerging world-wide human pathogen that is associated with food-borne gastroenteritis when raw or undercooked seafood is consumed. Expression of virulence factors in this organism is modulated by the phenomenon known as quorum sensing, which permits differential gene regulation at low versus high cell density. The master regulator of quorum sensing in V. parahaemolyticus is OpaR. OpaR not only controls virulence factor gene expression, but also the colony and cellular morphology associated with growth on a surface and biofilm formation. Whole transcriptome Next Generation sequencing (RNA-Seq) was utilized to determine the OpaR regulon by comparing strains BB22OP (opaR+, LM5312) and BB22TR (∆opaR1, LM5674). This work, using the published V. parahaemolyticus BB22OP genome sequence, confirms and expands upon a previous microarray analysis for these two strains that used an Affymetrix GeneChip designed from the closely related V. parahaemolyticus RIMD2210633 genome sequence. Overall there was excellent correlation between the microarray and RNA-Seq data. Eleven transcription factors under OpaR control were identified by both methods and further confirmed by quantitative reverse transcription PCR (qRT-PCR) analysis. Nine of these transcription factors were demonstrated to be direct OpaR targets via in vitro electrophoretic mobility shift assays with purified hexahistidine-tagged OpaR. Identification of the direct and indirect targets of OpaR, including small RNAs, will enable the construction of a network map of regulatory interactions important for the switch between the nonpathogenic and pathogenic states.
Collapse
Affiliation(s)
- Alison Kernell Burke
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - Leah T. C. Guthrie
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - Thero Modise
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - Guy Cormier
- Georgia Advanced Computing Resource Center, University of Georgia, Athens, GA, United States of America
| | - Roderick V. Jensen
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - Linda L. McCarter
- Department of Microbiology, University of Iowa, Iowa City, IA, United States of America
| | - Ann M. Stevens
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
| |
Collapse
|
197
|
Flores-Valdez MA, de Jesús Aceves-Sánchez M, Pedroza-Roldán C, Vega-Domínguez PJ, Prado-Montes de Oca E, Bravo-Madrigal J, Laval F, Daffé M, Koestler B, Waters CM. The cyclic di-GMP phosphodiesterase geneRv1357c/BCG1419caffects BCG Pellicle production andIn Vivomaintenance. IUBMB Life 2015; 67:129-38. [DOI: 10.1002/iub.1353] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 01/13/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Mario Alberto Flores-Valdez
- Biotecnología Médica y Farmacéutica; Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C; Guadalajara Jalisco México
| | - Michel de Jesús Aceves-Sánchez
- Biotecnología Médica y Farmacéutica; Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C; Guadalajara Jalisco México
| | - César Pedroza-Roldán
- Biotecnología Médica y Farmacéutica; Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C; Guadalajara Jalisco México
| | - Perla Jazmín Vega-Domínguez
- Biotecnología Médica y Farmacéutica; Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C; Guadalajara Jalisco México
| | - Ernesto Prado-Montes de Oca
- Biotecnología Médica y Farmacéutica; Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C; Guadalajara Jalisco México
| | - Jorge Bravo-Madrigal
- Biotecnología Médica y Farmacéutica; Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C; Guadalajara Jalisco México
| | - Françoise Laval
- Département Mécanismes Moléculaires des Infections Mycobactériennes; Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale; Toulouse France
| | - Mamadou Daffé
- Département Mécanismes Moléculaires des Infections Mycobactériennes; Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale; Toulouse France
| | - Ben Koestler
- Department of Microbiology and Molecular Genetics; 5180 Biomedical Physical Sciences, Michigan State University; East Lansing MI USA
| | - Christopher M. Waters
- Department of Microbiology and Molecular Genetics; 5180 Biomedical Physical Sciences, Michigan State University; East Lansing MI USA
| |
Collapse
|
198
|
Whitney JC, Whitfield GB, Marmont LS, Yip P, Neculai AM, Lobsanov YD, Robinson H, Ohman DE, Howell PL. Dimeric c-di-GMP is required for post-translational regulation of alginate production in Pseudomonas aeruginosa. J Biol Chem 2015; 290:12451-62. [PMID: 25817996 DOI: 10.1074/jbc.m115.645051] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Indexed: 11/06/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that secretes the exopolysaccharide alginate during infection of the respiratory tract of individuals afflicted with cystic fibrosis and chronic obstructive pulmonary disease. Among the proteins required for alginate production, Alg44 has been identified as an inner membrane protein whose bis-(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP) binding activity post-translationally regulates alginate secretion. In this study, we report the 1.8 Å crystal structure of the cytoplasmic region of Alg44 in complex with dimeric self-intercalated c-di-GMP and characterize its dinucleotide-binding site using mutational analysis. The structure shows that the c-di-GMP binding region of Alg44 adopts a PilZ domain fold with a dimerization mode not previously observed for this family of proteins. Calorimetric binding analysis of residues in the c-di-GMP binding site demonstrate that mutation of Arg-17 and Arg-95 alters the binding stoichiometry between c-di-GMP and Alg44 from 2:1 to 1:1. Introduction of these mutant alleles on the P. aeruginosa chromosome show that the residues required for binding of dimeric c-di-GMP in vitro are also required for efficient alginate production in vivo. These results suggest that the dimeric form of c-di-GMP represents the biologically active signaling molecule needed for the secretion of an important virulence factor produced by P. aeruginosa.
Collapse
Affiliation(s)
- John C Whitney
- From the Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada, the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Gregory B Whitfield
- From the Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada, the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Lindsey S Marmont
- From the Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada, the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Patrick Yip
- From the Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - A Mirela Neculai
- From the Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Yuri D Lobsanov
- From the Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Howard Robinson
- the Photon Sciences Division, Brookhaven National Laboratory, Upton, New York 11973-5000, and
| | - Dennis E Ohman
- the Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center and McGuire Veterans Affairs Medical Center, Richmond, Virginia 23298-0678
| | - P Lynne Howell
- From the Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada, the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada,
| |
Collapse
|
199
|
Townsley L, Yildiz FH. Temperature affects c-di-GMP signalling and biofilm formation in Vibrio cholerae. Environ Microbiol 2015; 17:4290-305. [PMID: 25684220 DOI: 10.1111/1462-2920.12799] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/19/2015] [Accepted: 01/31/2015] [Indexed: 02/04/2023]
Abstract
Biofilm formation is crucial to the environmental survival and transmission of Vibrio cholerae, the facultative human pathogen responsible for the disease cholera. During its infectious cycle, V. cholerae experiences fluctuations in temperature within the aquatic environment and during the transition between human host and aquatic reservoirs. In this study, we report that biofilm formation is induced at low temperatures through increased levels of the signalling molecule, cyclic diguanylate (c-di-GMP). Strains harbouring in frame deletions of all V. cholerae genes that are predicted to encode diguanylate cyclases (DGCs) or phosphodiesterases (PDEs) were screened for their involvement in low-temperature-induced biofilm formation and Vibrio polysaccharide gene expression. Of the 52 mutants tested, deletions of six DGCs and three PDEs were found to affect these phenotypes at low temperatures. Unlike wild type, a strain lacking all six DGCs did not exhibit a low-temperature-dependent increase in c-di-GMP, indicating that these DGCs are required for temperature modulation of c-di-GMP levels. We also show that temperature modulates c-di-GMP levels in a similar fashion in the Gram-negative pathogen Pseudomonas aeruginosa but not in the Gram-positive pathogen Listeria monocytogenes. This study uncovers the role of temperature in environmental regulation of biofilm formation and c-di-GMP signalling.
Collapse
Affiliation(s)
- Loni Townsley
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| | - Fitnat H Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| |
Collapse
|
200
|
Cyclic-di-GMP signaling in the Gram-positive pathogen Clostridium difficile. Curr Genet 2015; 61:497-502. [PMID: 25800812 DOI: 10.1007/s00294-015-0484-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 03/15/2015] [Indexed: 02/07/2023]
Abstract
The anaerobic Gram-positive bacterium Clostridium difficile causes intestinal infections responsible for symptoms ranging from mild diarrhea to fulminant colitis. Like other bacteria, C. difficile needs to sense and integrate environmental signals in order to adapt to changes and thrive in its environment. The second messenger cyclic diguanosine monophosphate (c-di-GMP) was recently recognized as a quasi-ubiquitous phenotype coordinator in bacteria. Mostly known to be involved in the transition from motile to sessile and multicellular behaviors in Gammaproteobacteria, c-di-GMP is now known to regulate many other phenotypes from cell morphogenesis to virulence, in many Gram-negative and a few Gram-positive bacteria. Herein, we review recent advances in our understanding of c-di-GMP signaling in the lifecycle of C. difficile.
Collapse
|