151
|
Karami J, Mahmoudi M, Amirzargar A, Gharshasbi M, Jamshidi A, Aslani S, Nicknam MH. Promoter hypermethylation of BCL11B gene correlates with downregulation of gene transcription in ankylosing spondylitis patients. Genes Immun 2017; 18:170-175. [DOI: 10.1038/gene.2017.17] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 01/05/2023]
|
152
|
Wiede F, Dudakov JA, Lu KH, Dodd GT, Butt T, Godfrey DI, Strasser A, Boyd RL, Tiganis T. PTPN2 regulates T cell lineage commitment and αβ versus γδ specification. J Exp Med 2017; 214:2733-2758. [PMID: 28798028 PMCID: PMC5584121 DOI: 10.1084/jem.20161903] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 05/26/2017] [Accepted: 06/28/2017] [Indexed: 01/18/2023] Open
Abstract
During early thymocyte development, coordinated JAK/STAT5 and SFK/pre-TCR signaling is critical for T cell lineage commitment and αβ versus γδ specification. Wiede et al. show a role for the tyrosine phosphatase PTPN2 in attenuating SRC family kinase LCK and STAT5 signaling to regulate αβ and γδ T cell development. In the thymus, hematopoietic progenitors commit to the T cell lineage and undergo sequential differentiation to generate diverse T cell subsets, including major histocompatibility complex (MHC)–restricted αβ T cell receptor (TCR) T cells and non–MHC-restricted γδ TCR T cells. The factors controlling precursor commitment and their subsequent maturation and specification into αβ TCR versus γδ TCR T cells remain unclear. Here, we show that the tyrosine phosphatase PTPN2 attenuates STAT5 (signal transducer and activator of transcription 5) signaling to regulate T cell lineage commitment and SRC family kinase LCK and STAT5 signaling to regulate αβ TCR versus γδ TCR T cell development. Our findings identify PTPN2 as an important regulator of critical checkpoints that dictate the commitment of multipotent precursors to the T cell lineage and their subsequent maturation into αβ TCR or γδ TCR T cells.
Collapse
Affiliation(s)
- Florian Wiede
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia .,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Jarrod A Dudakov
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Kun-Hui Lu
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Garron T Dodd
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Tariq Butt
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Dale I Godfrey
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia.,Department of Microbiology and Immunology and Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Andreas Strasser
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.,The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Richard L Boyd
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia .,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
153
|
Fang D, Zhu J. Dynamic balance between master transcription factors determines the fates and functions of CD4 T cell and innate lymphoid cell subsets. J Exp Med 2017. [PMID: 28630089 PMCID: PMC5502437 DOI: 10.1084/jem.20170494] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fang and Zhu discuss similarities and differences between CD4 T cell and ILC subsets and the master transcription factors that determine the heterogeneity and plasticity of these subsets. CD4 T cells, including T regulatory cells (Treg cells) and effector T helper cells (Th cells), and recently identified innate lymphoid cells (ILCs) play important roles in host defense and inflammation. Both CD4 T cells and ILCs can be classified into distinct lineages based on their functions and the expression of lineage-specific genes, including those encoding effector cytokines, cell surface markers, and key transcription factors. It was first recognized that each lineage expresses a specific master transcription factor and the expression of these factors is mutually exclusive because of cross-regulation among these factors. However, recent studies indicate that the master regulators are often coexpressed. Furthermore, the expression of master regulators can be dynamic and quantitative. In this review, we will first discuss similarities and differences between the development and functions of CD4 T cell and ILC subsets and then summarize recent literature on quantitative, dynamic, and cell type–specific balance between the master transcription factors in determining heterogeneity and plasticity of these subsets.
Collapse
Affiliation(s)
- Difeng Fang
- Molecular and Cellular Immunoregulation Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
154
|
Geng JJ, Tang J, Yang XM, Chen R, Zhang Y, Zhang K, Miao JL, Chen ZN, Zhu P. Targeting CD147 for T to NK Lineage Reprogramming and Tumor Therapy. EBioMedicine 2017; 20:98-108. [PMID: 28571672 PMCID: PMC5478251 DOI: 10.1016/j.ebiom.2017.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 11/18/2022] Open
Abstract
CD147 is highly expressed on the surface of numerous tumor cells to promote invasion and metastasis. Targeting these cells with CD147-specific antibodies has been validated as an effective approach for lung and liver cancer therapy. In the immune system, CD147 is recognized as a co-stimulatory receptor and impacts the outcome of thymic selection. Using T cell-specific deletion, we showed here that in thymus CD147 is indispensable for the stable αβ T cell lineage commitment: loss of CD147 biases both multipotent DN (double negative) and fully committed DP (double positive) cells into innate NK-like lineages. Mechanistically, CD147 deficiency results in impaired Wnt signaling and expression of BCL11b, a master transcription factor in determining T cell identity. In addition, functional blocking of CD147 by antibody phenocopies genetic deletion to enrich NK-like cells in the periphery. Furthermore, using a melanoma model and orthotopic liver cancer transplants, we showed that the augmentation of NK-like cells strongly associates with resistance against tumor growth upon CD147 suppression. Therefore, besides its original function in tumorigenesis, CD147 is also an effective surface target for immune modulation in tumor therapy. DN, DP cells were reprogrammed into innate NK-like cells after thymic CD147 deleted Loss of CD147 results in impaired Bcl11b expression and T-lineages development, which can be rescued by Wnt3a stimulation. CD147 is an vital target for immune modulation via NK-like cells in tumor therapy.
Tumor therapy is a difficult task and many methods have been used. Among them, tumor immunotherapy is a focus in the field and has made great progress. In this study, we found CD147 is an vital target for immune modulation via NK-like cells in tumor therapy, which means CD147 antibody may be through regulating immune cells to achieve tumor therapy. Although CD147 antibody has been used for liver cancer, making clear the mechanism of CD147 antibody mediated tumor therapy may be benefit for guiding clinical treatment.
Collapse
Affiliation(s)
- Jie-Jie Geng
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shan'xi 710032, PR China; Department of Cell Biology, Fourth Military Medical University, Xi'an, Shan'xi 710032, PR China
| | - Juan Tang
- Department of Cell Biology, Fourth Military Medical University, Xi'an, Shan'xi 710032, PR China
| | - Xiang-Min Yang
- Department of Cell Biology, Fourth Military Medical University, Xi'an, Shan'xi 710032, PR China
| | - Ruo Chen
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shan'xi 710032, PR China; Department of Cell Biology, Fourth Military Medical University, Xi'an, Shan'xi 710032, PR China
| | - Yang Zhang
- Department of Cell Biology, Fourth Military Medical University, Xi'an, Shan'xi 710032, PR China
| | - Kui Zhang
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shan'xi 710032, PR China
| | - Jin-Lin Miao
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shan'xi 710032, PR China
| | - Zhi-Nan Chen
- Department of Cell Biology, Fourth Military Medical University, Xi'an, Shan'xi 710032, PR China.
| | - Ping Zhu
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shan'xi 710032, PR China.
| |
Collapse
|
155
|
The development of T cells from stem cells in mice and humans. Future Sci OA 2017; 3:FSO186. [PMID: 28883990 PMCID: PMC5583695 DOI: 10.4155/fsoa-2016-0095] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/20/2017] [Indexed: 12/19/2022] Open
Abstract
T cells develop from hematopoietic stem cells in the specialized microenvironment of the thymus. The main transcriptional players of T-cell differentiation such as Notch, Tcf-1, Gata3 and Bcl11b have been identified, but their role and regulation are not yet completely understood. In humans, functional experiments on T-cell development have traditionally been rather difficult to perform, but novel in vitro culture systems and in vivo xenograft models have allowed detailed studies on human T-cell development. Recent work has allowed the use of human severe combined immunodeficiency stem cells to unravel developmental checkpoints for human thymocyte development.
Collapse
|
156
|
Fu W, Yi S, Qiu L, Sun J, Tu P, Wang Y. BCL11B-Mediated Epigenetic Repression Is a Crucial Target for Histone Deacetylase Inhibitors in Cutaneous T-Cell Lymphoma. J Invest Dermatol 2017; 137:1523-1532. [PMID: 28288848 DOI: 10.1016/j.jid.2017.02.980] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/13/2017] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
Abstract
The treatment options for advanced cutaneous T-cell lymphoma (CTCL) are limited because of its unclear pathogenesis. Histone deacetylase (HDAC) inhibitors (HDACis) are recently developed therapeutics approved for refractory CTCL. However, the response rate is relatively low and unpredictable. Previously, we discovered that BCL11B, a key T-cell development regulator, was aberrantly overexpressed in mycosis fungoides, the most common CTCL, as compared with benign inflammatory skin. In this study, we identified a positive correlation between BCL11B expression and sensitivity to HDACi in CTCL lines. BCL11B suppression in BCL11B-high cells induced cell apoptosis by de-repressing apoptotic pathways and showed synergistic effects with suberoylanilide hydroxamic acid (SAHA), a pan-HDACi. Next, we identified the physical interaction and shared downstream genes between BCL11B and HDAC1/2 in CTCL lines. This interaction was essential in the anti-apoptosis effect of BCL11B, and the synergism between BCL11B suppression and HDACi treatment. Further, in clinical samples from 46 mycosis fungoides patients, BCL11B showed increased but varied expression in advanced tumor stage. Analysis of four patients receiving SAHA treatment suggested a positive correlation between BCL11B expression and favorable response to SAHA treatment. In conclusion, BCL11B may serve as a therapeutic target and a useful marker for improving HDACi efficacy in advanced CTCL.
Collapse
Affiliation(s)
- Wenjing Fu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China; Department of Dermatology and Venerology, Binzhou Medical University Hospital, Binzhou, China
| | - Shengguo Yi
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - Lei Qiu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - Jingru Sun
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - Ping Tu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - Yang Wang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China.
| |
Collapse
|
157
|
Mirlekar B, Gautam D, Chattopadhyay S. Chromatin Remodeling Protein SMAR1 Is a Critical Regulator of T Helper Cell Differentiation and Inflammatory Diseases. Front Immunol 2017; 8:72. [PMID: 28232831 PMCID: PMC5298956 DOI: 10.3389/fimmu.2017.00072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/17/2017] [Indexed: 12/28/2022] Open
Abstract
T cell differentiation from naïve T cells to specialized effector subsets of mature cells is determined by the iterative action of transcription factors. At each stage of specific T cell lineage differentiation, transcription factor interacts not only with nuclear proteins such as histone and histone modifiers but also with other factors that are bound to the chromatin and play a critical role in gene expression. In this review, we focus on one of such nuclear protein known as tumor suppressor and scaffold matrix attachment region-binding protein 1 (SMAR1) in CD4+ T cell differentiation. SMAR1 facilitates Th1 differentiation by negatively regulating T-bet expression via recruiting HDAC1–SMRT complex to its gene promoter. In contrast, regulatory T (Treg) cell functions are dependent on inhibition of Th17-specific genes mainly IL-17 and STAT3 by SMAR1. Here, we discussed a critical role of chromatin remodeling protein SMAR1 in maintaining a fine-tuned balance between effector CD4+ T cells and Treg cells by influencing the transcription factors during allergic and autoimmune inflammatory diseases.
Collapse
Affiliation(s)
- Bhalchandra Mirlekar
- Chromatin and Disease Biology Laboratory, National Centre for Cell Science, Pune, India; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Dipendra Gautam
- Lineberger Comprehensive Cancer Center, University of North Carolina , Chapel Hill, NC , USA
| | - Samit Chattopadhyay
- Chromatin and Disease Biology Laboratory, National Centre for Cell Science, Pune, India; Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
158
|
Roles of RUNX Complexes in Immune Cell Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:395-413. [DOI: 10.1007/978-981-10-3233-2_24] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
159
|
Rothenberg EV, Kueh HY, Yui MA, Zhang JA. Hematopoiesis and T-cell specification as a model developmental system. Immunol Rev 2016; 271:72-97. [PMID: 27088908 DOI: 10.1111/imr.12417] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pathway to generate T cells from hematopoietic stem cells guides progenitors through a succession of fate choices while balancing differentiation progression against proliferation, stage to stage. Many elements of the regulatory system that controls this process are known, but the requirement for multiple, functionally distinct transcription factors needs clarification in terms of gene network architecture. Here, we compare the features of the T-cell specification system with the rule sets underlying two other influential types of gene network models: first, the combinatorial, hierarchical regulatory systems that generate the orderly, synchronized increases in complexity in most invertebrate embryos; second, the dueling 'master regulator' systems that are commonly used to explain bistability in microbial systems and in many fate choices in terminal differentiation. The T-cell specification process shares certain features with each of these prevalent models but differs from both of them in central respects. The T-cell system is highly combinatorial but also highly dose-sensitive in its use of crucial regulatory factors. The roles of these factors are not always T-lineage-specific, but they balance and modulate each other's activities long before any mutually exclusive silencing occurs. T-cell specification may provide a new hybrid model for gene networks in vertebrate developmental systems.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Hao Yuan Kueh
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mary A Yui
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jingli A Zhang
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
160
|
Abstract
There has been speculation as to how bi-potent CD4(+) CD8(+) double-positive precursor thymocytes choose their distinct developmental fate, becoming either CD4(+) helper or CD8(+) cytotoxic T cells. Based on the clear correlation of αβT cell receptor (TCR) specificity to major histocompatibility complex (MHC) classes with this lineage choice, various studies have attempted to resolve this question by examining the cellular signaling events initiated by TCR engagements, a strategy referred to as a 'top-down' approach. On the other hand, based on the other correlation of CD4/CD8 co-receptor expression with its selected fate, other studies have addressed this question by gradually unraveling the sequential mechanisms that control the phenotypic outcome of this fate decision, a method known as the 'bottom-up' approach. Bridging these two approaches will contribute to a more comprehensive understanding of how TCR signals are coupled with developmental programs in the nucleus. Advances made during the last two decades seemed to make these two approaches more closely linked. For instance, identification of two transcription factors, ThPOK and Runx3, which play central roles in the development of helper and cytotoxic lineages, respectively, provided significant insights into the transcriptional network that controls a CD4/CD8 lineage choice. This review summarizes achievements made using the 'bottom-up' approach, followed by a perspective on future pathways toward coupling TCR signaling with nuclear programs.
Collapse
Affiliation(s)
- Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| |
Collapse
|
161
|
Ikawa T, Masuda K, Endo TA, Endo M, Isono K, Koseki Y, Nakagawa R, Kometani K, Takano J, Agata Y, Katsura Y, Kurosaki T, Vidal M, Koseki H, Kawamoto H. Conversion of T cells to B cells by inactivation of polycomb-mediated epigenetic suppression of the B-lineage program. Genes Dev 2016; 30:2475-2485. [PMID: 27913604 PMCID: PMC5159663 DOI: 10.1101/gad.290593.116] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022]
Abstract
Ikawa et al. report that the inactivation of polycomb-mediated epigenetic regulation results in the conversion of T-lineage progenitors to the B-cell fate. This arrest was almost completely cancelled by additional deletion of Pax5. In general, cell fate is determined primarily by transcription factors, followed by epigenetic mechanisms fixing the status. While the importance of transcription factors controlling cell fate has been well characterized, epigenetic regulation of cell fate maintenance remains to be elucidated. Here we provide an obvious fate conversion case, in which the inactivation of polycomb-medicated epigenetic regulation results in conversion of T-lineage progenitors to the B-cell fate. In T-cell-specific Ring1A/B-deficient mice, T-cell development was severely blocked at an immature stage. We found that these developmentally arrested T-cell precursors gave rise to functional B cells upon transfer to immunodeficient mice. We further demonstrated that the arrest was almost completely canceled by additional deletion of Pax5. These results indicate that the maintenance of T-cell fate critically requires epigenetic suppression of the B-lineage gene program.
Collapse
Affiliation(s)
- Tomokatsu Ikawa
- Laboratory for Immune Regeneration, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.,Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama 230-0045, Japan.,PRESTO (Precursory Research for Embryonic Science and Technology), Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Kyoko Masuda
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama 230-0045, Japan.,Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Takaho A Endo
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Mitsuhiro Endo
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Kyoichi Isono
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Yoko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Rinako Nakagawa
- Laboratory for Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Kohei Kometani
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Junichiro Takano
- Laboratory for Immune Regeneration, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.,Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Yasutoshi Agata
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yoshimoto Katsura
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama 230-0045, Japan.,Division of Cell Regeneration and Transplantation, Advanced Medical Research Center, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan.,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Miguel Vidal
- Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas, 28040 Madrid, Spain
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Hiroshi Kawamoto
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama 230-0045, Japan.,Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
162
|
Karimi M, Mohammadi H, Hemmatzadeh M, Mohammadi A, Rafatpanah H, Baradaran B. Role of the HTLV-1 viral factors in the induction of apoptosis. Biomed Pharmacother 2016; 85:334-347. [PMID: 27887847 DOI: 10.1016/j.biopha.2016.11.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 12/22/2022] Open
Abstract
Adult T-cell leukemia (ATL) and HTLV-1-associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) are the two main diseases that are caused by the HTLV-1 virus. One of the features of HTLV-1 infection is its resistance against programmed cell death, which maintains the survival of cells to oncogenic transformation and underlies the viruses' therapeutic resistance. Two main genes by which the virus develops cancer are Tax and HBZ; playing an essential role in angiogenesis in regulating viral transcription and modulating multiple host factors as well as apoptosis pathways. Here we have reviewed by prior research how the apoptosis pathways are suppressed by the Tax and HBZ and new drugs which have been designed to deal with this suppression.
Collapse
Affiliation(s)
- Mohammad Karimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Tabriz University of Medical Sciences, International Branch (Aras), Tabriz, Iran
| | - Hamed Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hemmatzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asadollah Mohammadi
- Inflammation and Inflammatory Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Inflammation and Inflammatory Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
163
|
Abstract
T cell acute lymphoblastic leukaemia (T-ALL) is an aggressive haematological malignancy derived from early T cell progenitors. In recent years genomic and transcriptomic studies have uncovered major oncogenic and tumour suppressor pathways involved in T-ALL transformation and identified distinct biological groups associated with prognosis. An increased understanding of T-ALL biology has already translated into new prognostic biomarkers and improved animal models of leukaemia and has opened opportunities for the development of targeted therapies for the treatment of this disease. In this Review we examine our current understanding of the molecular mechanisms of T-ALL and recent developments in the translation of these results to the clinic.
Collapse
Affiliation(s)
- Laura Belver
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
| | - Adolfo Ferrando
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
- Department of Pathology, Columbia University Medical Center, New York, New York 10032, USA
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10032, USA
| |
Collapse
|
164
|
Induction of Bcl11b during T cell commitment through a tripartite mechanism. Nat Immunol 2016; 17:903-4. [PMID: 27434004 DOI: 10.1038/ni.3520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
165
|
Asynchronous combinatorial action of four regulatory factors activates Bcl11b for T cell commitment. Nat Immunol 2016; 17:956-65. [PMID: 27376470 PMCID: PMC4955789 DOI: 10.1038/ni.3514] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/14/2016] [Indexed: 12/28/2022]
Abstract
During T cell development, multipotent progenitors relinquish competence for other fates and commit to the T cell lineage by turning on the transcription factor Bcl11b. To clarify lineage commitment mechanisms, we followed developing T cells at single-cell level using Bcl11b knock-in fluorescent reporter mice. Notch signaling and Notch-activated transcription factors collaborate to activate Bcl11b expression, irrespective of Notch-dependent proliferation. These inputs work via three distinct, asynchronous mechanisms: an early locus poising function dependent on TCF-1 and GATA-3; a stochastic permissivity function dependent on Notch signaling; and a separate amplitude-control function dependent on Runx1, a factor already present in multipotent progenitors. Despite all being necessary for Bcl11b activation, these inputs act in a stage specific manner, providing a multi-tiered mechanism for developmental gene regulation.
Collapse
|
166
|
Dubuissez M, Loison I, Paget S, Vorng H, Ait-Yahia S, Rohr O, Tsicopoulos A, Leprince D. Protein Kinase C-Mediated Phosphorylation of BCL11B at Serine 2 Negatively Regulates Its Interaction with NuRD Complexes during CD4+ T-Cell Activation. Mol Cell Biol 2016; 36:1881-98. [PMID: 27161321 PMCID: PMC4911745 DOI: 10.1128/mcb.00062-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/16/2016] [Accepted: 05/03/2016] [Indexed: 12/17/2022] Open
Abstract
The transcription factor BCL11B/CTIP2 is a major regulatory protein implicated in various aspects of development, function and survival of T cells. Mitogen-activated protein kinase (MAPK)-mediated phosphorylation and SUMOylation modulate BCL11B transcriptional activity, switching it from a repressor in naive murine thymocytes to a transcriptional activator in activated thymocytes. Here, we show that BCL11B interacts via its conserved N-terminal MSRRKQ motif with endogenous MTA1 and MTA3 proteins to recruit various NuRD complexes. Furthermore, we demonstrate that protein kinase C (PKC)-mediated phosphorylation of BCL11B Ser2 does not significantly impact BCL11B SUMOylation but negatively regulates NuRD recruitment by dampening the interaction with MTA1 or MTA3 (MTA1/3) and RbAp46 proteins. We detected increased phosphorylation of BCL11B Ser2 upon in vivo activation of transformed and primary human CD4(+) T cells. We show that following activation of CD4(+) T cells, BCL11B still binds to IL-2 and Id2 promoters but activates their transcription by recruiting P300 instead of MTA1. Prolonged stimulation results in the direct transcriptional repression of BCL11B by KLF4. Our results unveil Ser2 phosphorylation as a new BCL11B posttranslational modification linking PKC signaling pathway to T-cell receptor (TCR) activation and define a simple model for the functional switch of BCL11B from a transcriptional repressor to an activator during TCR activation of human CD4(+) T cells.
Collapse
Affiliation(s)
- Marion Dubuissez
- Université Lille, CNRS, Institut Pasteur de Lille, UMR 8161, Mechanisms of Tumorigenesis and Targeted Therapies (M3T), Lille, France
| | - Ingrid Loison
- Université Lille, CNRS, Institut Pasteur de Lille, UMR 8161, Mechanisms of Tumorigenesis and Targeted Therapies (M3T), Lille, France
| | - Sonia Paget
- Université Lille, CNRS, Institut Pasteur de Lille, UMR 8161, Mechanisms of Tumorigenesis and Targeted Therapies (M3T), Lille, France
| | - Han Vorng
- Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019, UMR8204, Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Saliha Ait-Yahia
- Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019, UMR8204, Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Olivier Rohr
- University of Strasbourg, IUT Louis Pasteur, EA7292, Dynamic of Host Pathogen Interactions, Institute of Parasitology and Tropical Pathology, Strasbourg, France Institut Universitaire de France, Paris, France
| | - Anne Tsicopoulos
- Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019, UMR8204, Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Dominique Leprince
- Université Lille, CNRS, Institut Pasteur de Lille, UMR 8161, Mechanisms of Tumorigenesis and Targeted Therapies (M3T), Lille, France
| |
Collapse
|
167
|
Transcription factor Bcl11b sustains iNKT1 and iNKT2 cell programs, restricts iNKT17 cell program, and governs iNKT cell survival. Proc Natl Acad Sci U S A 2016; 113:7608-13. [PMID: 27330109 DOI: 10.1073/pnas.1521846113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are innate-like T cells that recognize glycolipid antigens and play critical roles in regulation of immune responses. Based on expression of the transcription factors (TFs) Tbet, Plzf, and Rorγt, iNKT cells have been classified in effector subsets that emerge in the thymus, namely, iNKT1, iNKT2, and iNKT17. Deficiency in the TF Bcl11b in double-positive (DP) thymocytes has been shown to cause absence of iNKT cells in the thymus and periphery due to defective self glycolipid processing and presentation by DP thymocytes and undefined intrinsic alterations in iNKT precursors. We used a model of cre-mediated postselection deletion of Bcl11b in iNKT cells to determine its intrinsic role in these cells. We found that Bcl11b is expressed equivalently in all three effector iNKT subsets, and its removal caused a reduction in the numbers of iNKT1 and iNKT2 cells, but not in the numbers of iNKT17 cells. Additionally, we show that Bcl11b sustains subset-specific cytokine production by iNKT1 and iNKT2 cells and restricts expression of iNKT17 genes in iNKT1 and iNKT2 subsets, overall restraining the iNKT17 program in iNKT cells. The total numbers of iNKT cells were reduced in the absence of Bcl11b both in the thymus and periphery, associated with the decrease in iNKT1 and iNKT2 cell numbers and decrease in survival, related to changes in survival/apoptosis genes. Thus, these results extend our understanding of the role of Bcl11b in iNKT cells beyond their selection and demonstrate that Bcl11b is a key regulator of iNKT effector subsets, their function, identity, and survival.
Collapse
|
168
|
Nishiguchi Y, Ohmoto M, Koki J, Enomoto T, Kominami R, Matsumoto I, Hirota J. Bcl11b/Ctip2 is required for development of lingual papillae in mice. Dev Biol 2016; 416:98-110. [PMID: 27287879 DOI: 10.1016/j.ydbio.2016.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 06/01/2016] [Accepted: 06/01/2016] [Indexed: 11/26/2022]
Abstract
Molecular mechanisms underlying the development and morphogenesis of oral epithelia, comprising the gustatory and nongustatory epithelium, remain unclear. Here, we show that Bcl11b, a zinc finger transcription factor, plays an important role in the development of lingual papillae, especially filiform papillae. In both gustatory and nongustatory epithelium, Bcl11b was expressed in keratin 14-positive epithelial basal cells, which differentiate into keratinocytes and/or taste cells. Loss of Bcl11b function resulted in abnormal morphology of the gustatory papillae: flattened fungiform papillae, shorter trench wall in the foliate and circumvallate papillae, and ectopic invagination in more than half of circumvallate papillae. However, Bcl11b loss caused no effect on differentiation of taste receptor cells. In nongustatory epithelium, the impact of Bcl11b deficiency was much more striking, resulting in a smooth surface on the tongue tip and hypoplastic filiform papillae in the dorsal lingual epithelium. Immunohistochemical analyses revealed that a keratinocyte differentiation marker, Tchh expression was severely decreased in the Bcl11b(-/-) filiform papillae. In addition, expression of Pax9, required for morphogenesis of filiform papillae and its downstream target genes, hard keratins, almost disappeared in the tongue tip and was decreased in the dorsal tongue of Bcl11b(-/-) mice. Gene expression analyses demonstrated a delayed onset of expression of epithelial differentiation complex genes, which disturbed barrier formation in the mutant tongue. These results indicate that Bcl11b regulates the differentiation of keratinocytes in the tongue and identify Bcl11b as an essential factor for the lingual papilla morphogenesis.
Collapse
Affiliation(s)
- Yugo Nishiguchi
- Department of Bioengineering, Graduate School of Bioscience and Bioengineering, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Makoto Ohmoto
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| | - Jun Koki
- Center for Advanced Materials Analysis, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Takayuki Enomoto
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Ryo Kominami
- Department of Molecular Genetics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8122, Japan
| | | | - Junji Hirota
- Department of Bioengineering, Graduate School of Bioscience and Bioengineering, Tokyo Institute of Technology, Yokohama 226-8501, Japan; Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama 226-8501, Japan.
| |
Collapse
|
169
|
GATA3 induces human T-cell commitment by restraining Notch activity and repressing NK-cell fate. Nat Commun 2016; 7:11171. [PMID: 27048872 PMCID: PMC4823830 DOI: 10.1038/ncomms11171] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 02/25/2016] [Indexed: 01/03/2023] Open
Abstract
The gradual reprogramming of haematopoietic precursors into the T-cell fate is characterized by at least two sequential developmental stages. Following Notch1-dependent T-cell lineage specification during which the first T-cell lineage genes are expressed and myeloid and dendritic cell potential is lost, T-cell specific transcription factors subsequently induce T-cell commitment by repressing residual natural killer (NK)-cell potential. How these processes are regulated in human is poorly understood, especially since efficient T-cell lineage commitment requires a reduction in Notch signalling activity following T-cell specification. Here, we show that GATA3, in contrast to TCF1, controls human T-cell lineage commitment through direct regulation of three distinct processes: repression of NK-cell fate, upregulation of T-cell lineage genes to promote further differentiation and restraint of Notch activity. Repression of the Notch1 target gene DTX1 hereby is essential to prevent NK-cell differentiation. Thus, GATA3-mediated positive and negative feedback mechanisms control human T-cell lineage commitment. Strong Notch signalling promotes initial T cell lineage specification of lymphoid progenitors but is also permissive for thymic natural killer (NK) cell development. Here the authors show that GATA3 directs human T-lineage commitment by modulating Notch activity and repressing the NK programme.
Collapse
|
170
|
Geiger TL, Sun JC. Development and maturation of natural killer cells. Curr Opin Immunol 2016; 39:82-9. [PMID: 26845614 PMCID: PMC4801705 DOI: 10.1016/j.coi.2016.01.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 12/21/2022]
Abstract
Natural killer (NK) cells are innate lymphocytes that are critical for host protection against pathogens and cancer due to their ability to rapidly release inflammatory cytokines and kill infected or transformed cells. In the 40 years since their initial discovery, much has been learned about how this important cellular lineage develops and functions. We now know that NK cells are the founding members of an expanded family of lymphocyte known as innate lymphoid cells (ILC). Furthermore, we have recently discovered that NK cells can possess features of adaptive immunity such as antigen specificity and long-lived memory responses. Here we will review our current understanding of the molecular mechanisms driving development of NK cells from the common lymphoid progenitor (CLP) to mature NK cells, and from activated effectors to long-lived memory NK cells.
Collapse
Affiliation(s)
- Theresa L Geiger
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, New York, NY 10065, United States; Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Joseph C Sun
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, New York, NY 10065, United States; Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, United States.
| |
Collapse
|
171
|
Seo W, Taniuchi I. Transcriptional regulation of early T-cell development in the thymus. Eur J Immunol 2016; 46:531-8. [DOI: 10.1002/eji.201545821] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/30/2015] [Accepted: 01/08/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Wooseok Seo
- Laboratory for Transcriptional Regulation; RIKEN Center for Integrative Medical Sciences; Yokohama Kanagawa Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation; RIKEN Center for Integrative Medical Sciences; Yokohama Kanagawa Japan
| |
Collapse
|
172
|
Yang Q, Bhandoola A. The development of adult innate lymphoid cells. Curr Opin Immunol 2016; 39:114-20. [PMID: 26871595 DOI: 10.1016/j.coi.2016.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 01/21/2023]
Abstract
Innate lymphoid cells (ILC) are a specialized family of effector lymphocytes that transcriptionally and functionally mirror effector subsets of T cells, but differ from T cells in that they lack clonally distributed adaptive antigen receptors. Our understanding of this family of lymphocytes is still in its infancy. In this review, we summarize current understanding and discuss recent insights into the cellular and molecular events that occur during early ILC development in adult mice. We discuss how these events overlap and diverge with the early development of adaptive T cells, and how they may influence the molecular and functional properties of mature ILC.
Collapse
Affiliation(s)
- Qi Yang
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Avinash Bhandoola
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States.
| |
Collapse
|
173
|
Staal FJT, Wiekmeijer AS, Brugman MH, Pike-Overzet K. The functional relationship between hematopoietic stem cells and developing T lymphocytes. Ann N Y Acad Sci 2016; 1370:36-44. [PMID: 26773328 DOI: 10.1111/nyas.12995] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In contrast to all other blood and immune cells, T lymphocytes do not develop in the bone marrow (BM), but in the specialized microenvironment provided by the thymus. Similar to the other lineages, however, all T cells arise from multipotent hematopoietic stem cells (HSCs) that reside in the BM. Not all HSCs give rise to T cells; but how many and what kind of developmental checkpoints are located along this intricate differentiation path is the subject of intense research. Traditionally, this process has been studied almost exclusively using mouse cells, but recent advances in immunodeficient mouse models, high-speed cell sorting, lentiviral transduction protocols, and deep sequencing techniques have allowed these questions to be addressed using human cells. Here we review the process of thymic seeding by BM-derived cells and T cell commitment in humans, discussing recent insights into the clonal composition of the thymus and the definition of developmental checkpoints, on the basis of insights from human severe combined immunodeficiency patients.
Collapse
Affiliation(s)
- Frank J T Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Anna-Sophia Wiekmeijer
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Martijn H Brugman
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Karin Pike-Overzet
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
174
|
Rothenberg EV, Ungerbäck J, Champhekar A. Forging T-Lymphocyte Identity: Intersecting Networks of Transcriptional Control. Adv Immunol 2015; 129:109-74. [PMID: 26791859 DOI: 10.1016/bs.ai.2015.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T-lymphocyte development branches off from other lymphoid developmental programs through its requirement for sustained environmental signals through the Notch pathway. In the thymus, Notch signaling induces a succession of T-lineage regulatory factors that collectively create the T-cell identity through distinct steps. This process involves both the staged activation of T-cell identity genes and the staged repression of progenitor-cell-inherited regulatory genes once their roles in self-renewal and population expansion are no longer needed. With the recent characterization of innate lymphoid cells (ILCs) that share transcriptional regulation programs extensively with T-cell subsets, T-cell identity can increasingly be seen as defined in modular terms, as the processes selecting and actuating effector function are potentially detachable from the processes generating and selecting clonally unique T-cell receptor structures. The developmental pathways of different classes of T cells and ILCs are distinguished by the numbers of prerequisites of gene rearrangement, selection, and antigen contact before the cells gain access to nearly common regulatory mechanisms for choosing effector function. Here, the major classes of transcription factors that interact with Notch signals during T-lineage specification are discussed in terms of their roles in these programs, the evidence for their spectra of target genes at different stages, and their cross-regulatory and cooperative actions with each other. Specific topics include Notch modulation of PU.1 and GATA-3, PU.1-Notch competition, the relationship between PU.1 and GATA-3, and the roles of E proteins, Bcl11b, and GATA-3 in guiding acquisition of T-cell identity while avoiding redirection to an ILC fate.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, USA.
| | - Jonas Ungerbäck
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, USA; Department of Clinical and Experimental Medicine, Experimental Hematopoiesis Unit, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Ameya Champhekar
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
175
|
Mendoza L, Méndez A. A dynamical model of the regulatory network controlling lymphopoiesis. Biosystems 2015; 137:26-33. [PMID: 26408858 DOI: 10.1016/j.biosystems.2015.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 08/22/2015] [Accepted: 09/21/2015] [Indexed: 12/22/2022]
Abstract
Due to the large number of diseases associated to a malfunction of the hematopoietic system, there is an interest in knowing the molecular mechanisms controlling the differentiation of blood cell lineages. However, the structure and dynamical properties of the underlying regulatory network controlling this process is not well understood. This manuscript presents a regulatory network of 81 nodes, representing several types of molecules that regulate each other during the process of lymphopoiesis. The regulatory interactions were inferred mostly from published experimental data. However, 15 out of 159 regulatory interactions are predictions arising from the present study. The network is modelled as a continuous dynamical system, in the form of a set of differential equations. The dynamical behaviour of the model describes the differentiation process from the common lymphocyte precursor (CLP) to several mature B and T cell types; namely, plasma cell (PC), cytotoxic T lymphocyte (CTL), T helper 1 (Th1), Th2, Th17, and T regulatory (Treg) cells. The model qualitatively recapitulates key cellular differentiation events, being able to represent the directional and branched nature of lymphopoiesis, going from a multipotent progenitor to fully differentiated cell types.
Collapse
Affiliation(s)
- Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, Mexico.
| | - Akram Méndez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, Mexico; Programa de Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, México, Mexico
| |
Collapse
|
176
|
Lu Y, Cao X, Zhang X, Kovalovsky D. PLZF Controls the Development of Fetal-Derived IL-17+Vγ6+ γδ T Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:4273-81. [PMID: 26408661 DOI: 10.4049/jimmunol.1500939] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/31/2015] [Indexed: 01/15/2023]
Abstract
Expression of promyelocytic leukemia zinc finger (PLZF) protein directs the effector differentiation of invariant NKT (iNKT) cells and IL-4(+) γδ NKT cells. In this study, we show that PLZF is also required for the development and function of IL-17(+) γδ T cells. We observed that PLZF is expressed in fetal-derived invariant Vγ5(+) and Vγ6(+) γδ T cells, which secrete IFN-γ and IL-17, respectively. PLZF deficiency specifically affected the effector differentiation of Vγ6(+) cells, leading to reduced numbers of mature CD27(-)CD44(+) phenotype capable of secreting IL-17. Although PLZF was not required for Vγ5(+) γδ T cells to develop, when these cells were reprogrammed into IL-17-secreting cells in Skint-1 mutant mice, they required PLZF for their effector maturation, similarly to Vγ6(+) γδ T cells. The impaired effector differentiation of PLZF-deficient Vγ6(+) γδ T cells was not due to increased apoptosis and it was related to reduced proliferation of immature CD27(+)CD44(-) Vγ6(+) γδ T cells, which was required for their differentiation into mature CD27(-)CD44(+) IL-17-secreting cells. Thus, the present study identifies that PLZF function is not restricted to NKT or IL-4(+) T cells, but it also controls the development of IL-17(+) γδ T cells.
Collapse
Affiliation(s)
- Ying Lu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Xin Cao
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Xianyu Zhang
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Damian Kovalovsky
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
177
|
Wang S, He Q, Ma D, Xue Y, Liu F. Irf4 Regulates the Choice between T Lymphoid-Primed Progenitor and Myeloid Lineage Fates during Embryogenesis. Dev Cell 2015; 34:621-31. [DOI: 10.1016/j.devcel.2015.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/21/2015] [Accepted: 07/16/2015] [Indexed: 10/23/2022]
|
178
|
Tserel L, Kolde R, Limbach M, Tretyakov K, Kasela S, Kisand K, Saare M, Vilo J, Metspalu A, Milani L, Peterson P. Age-related profiling of DNA methylation in CD8+ T cells reveals changes in immune response and transcriptional regulator genes. Sci Rep 2015; 5:13107. [PMID: 26286994 PMCID: PMC4541364 DOI: 10.1038/srep13107] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/14/2015] [Indexed: 12/25/2022] Open
Abstract
Human ageing affects the immune system resulting in an overall decline in immunocompetence. Although all immune cells are affected during aging, the functional capacity of T cells is most influenced and is linked to decreased responsiveness to infections and impaired differentiation. We studied age-related changes in DNA methylation and gene expression in CD4+ and CD8+ T cells from younger and older individuals. We observed marked difference between T cell subsets, with increased number of methylation changes and higher methylome variation in CD8+ T cells with age. The majority of age-related hypermethylated sites were located at CpG islands of silent genes and enriched for repressive histone marks. Specifically, in CD8+ T cell subset we identified strong inverse correlation between methylation and expression levels in genes associated with T cell mediated immune response (LGALS1, IFNG, CCL5, GZMH, CCR7, CD27 and CD248) and differentiation (SATB1, TCF7, BCL11B and RUNX3). Our results thus suggest the link between age-related epigenetic changes and impaired T cell function.
Collapse
Affiliation(s)
- Liina Tserel
- Molecular Pathology, Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Raivo Kolde
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Maia Limbach
- Molecular Pathology, Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia
| | | | - Silva Kasela
- 1] Estonian Genome Center, University of Tartu, Tartu, Estonia [2] Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Kai Kisand
- Molecular Pathology, Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Mario Saare
- Molecular Pathology, Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Jaak Vilo
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Andres Metspalu
- 1] Estonian Genome Center, University of Tartu, Tartu, Estonia [2] Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Lili Milani
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Pärt Peterson
- Molecular Pathology, Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
179
|
Affiliation(s)
- Suzanne Cory
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| |
Collapse
|
180
|
Pinkney KA, Jiang W, Lee BJ, Loredan DG, Li C, Bhagat G, Zha S. Haploinsufficiency of Bcl11b suppresses the progression of ATM-deficient T cell lymphomas. J Hematol Oncol 2015. [PMID: 26219558 PMCID: PMC4518599 DOI: 10.1186/s13045-015-0191-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bcl11b is a transcription factor important for T cell development and also a tumor-suppressor gene that is hemizygously inactivated in ~10% human T cell acute lymphoblastic leukemia (T-ALL) and several murine T-ALL models, including ATM(-/-) thymic lymphomas. Here we report that heterozygous loss of Bcl11b (Bcl11b(+/-)) unexpectedly reduced lethal thymic lymphoma in ATM(-/-) mice by suppressing lymphoma progression, but not initiation. The suppression was associated with a T cell-mediated immune response in ATM(-/-)Bcl11b(+/-) mice, revealing a haploid insufficient function of Bcl11b in immune modulation against lymphoma and offering an explanation for the complex relationship between Bcl11b status with T-ALL prognosis.
Collapse
Affiliation(s)
- Kerice A Pinkney
- Department of Pediatrics, Division of Hematology, Oncology and Stem Cell Transplantation, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA. .,Current address: Joe DiMaggio's Children's Hospital, 1150 North 35th Avenue, Suite 100, Hollywood, FL, 33021, USA.
| | - Wenxia Jiang
- Institute for Cancer Genetics, Columbia University, 1130 St Nicholas Ave, RM 503B, New York, NY, 10032, USA. .,Herbert Irving Comprehensive Cancer Research Center, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA.
| | - Brian J Lee
- Institute for Cancer Genetics, Columbia University, 1130 St Nicholas Ave, RM 503B, New York, NY, 10032, USA.
| | - Denis G Loredan
- Institute for Cancer Genetics, Columbia University, 1130 St Nicholas Ave, RM 503B, New York, NY, 10032, USA.
| | - Chen Li
- Institute for Cancer Genetics, Columbia University, 1130 St Nicholas Ave, RM 503B, New York, NY, 10032, USA.
| | - Govind Bhagat
- Herbert Irving Comprehensive Cancer Research Center, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA. .,Department of Pathology and Cell Biology, College for Physicians and Surgeons, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA.
| | - Shan Zha
- Institute for Cancer Genetics, Columbia University, 1130 St Nicholas Ave, RM 503B, New York, NY, 10032, USA. .,Herbert Irving Comprehensive Cancer Research Center, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA. .,Department of Pediatrics, Division of Hematology, Oncology and Stem Cell Transplantation, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA. .,Department of Pathology and Cell Biology, College for Physicians and Surgeons, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA.
| |
Collapse
|
181
|
Califano D, Cho JJ, Uddin MN, Lorentsen KJ, Yang Q, Bhandoola A, Li H, Avram D. Transcription Factor Bcl11b Controls Identity and Function of Mature Type 2 Innate Lymphoid Cells. Immunity 2015; 43:354-68. [PMID: 26231117 DOI: 10.1016/j.immuni.2015.07.005] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 04/23/2015] [Accepted: 05/15/2015] [Indexed: 12/22/2022]
Abstract
Type 2 innate lymphoid cells (ILC2s) promote anti-helminth responses and contribute to allergies. Here, we report that Bcl11b, previously considered a T-cell-specific transcription factor, acted directly upstream of the key ILC2 transcription factor Gfi1 to maintain its expression in mature ILC2s. Consequently, Bcl11b(-/-) ILC2s downregulated Gata3 and downstream genes, including Il1rl1 (encoding IL-33 receptor), and upregulated Rorc and type 3 ILC (ILC3) genes. Additionally, independent of Gfi1, Bcl11b directly repressed expression of the gene encoding the ILC3 transcription factor Ahr, further contributing to silencing of ILC3 genes in ILC2s. Thus, Bcl11b(-/-) ILC2s lost their functions and gained ILC3 functions, and although they expanded in response to the protease allergen papain, they produced ILC3 but not ILC2 cytokines and caused increased airway infiltration of neutrophils instead of eosinophils. Our results demonstrate that Bcl11b is more than just a T-cell-only transcription factor and establish that Bcl11b sustains mature ILC2 genetic and functional programs and lineage fidelity.
Collapse
Affiliation(s)
- Danielle Califano
- Center for Immunology and Microbial Disease, Albany Medical Center, 47 New Scotland Avenue, MC-165, Albany, NY 12208, USA
| | - Jonathan J Cho
- Center for Immunology and Microbial Disease, Albany Medical Center, 47 New Scotland Avenue, MC-165, Albany, NY 12208, USA; Department of Medicine, College of Medicine, University of Florida, 1600 Southwest Archer Road, MSB, Gainesville, FL 32610-0225, USA
| | - Mohammad N Uddin
- Center for Immunology and Microbial Disease, Albany Medical Center, 47 New Scotland Avenue, MC-165, Albany, NY 12208, USA; Department of Medicine, College of Medicine, University of Florida, 1600 Southwest Archer Road, MSB, Gainesville, FL 32610-0225, USA
| | - Kyle J Lorentsen
- Center for Immunology and Microbial Disease, Albany Medical Center, 47 New Scotland Avenue, MC-165, Albany, NY 12208, USA; Department of Medicine, College of Medicine, University of Florida, 1600 Southwest Archer Road, MSB, Gainesville, FL 32610-0225, USA
| | - Qi Yang
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Avinash Bhandoola
- T-Cell Biology and Development Section, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Dorina Avram
- Center for Immunology and Microbial Disease, Albany Medical Center, 47 New Scotland Avenue, MC-165, Albany, NY 12208, USA; Department of Medicine, College of Medicine, University of Florida, 1600 Southwest Archer Road, MSB, Gainesville, FL 32610-0225, USA.
| |
Collapse
|
182
|
Kitajima K, Kawaguchi M, Miyashita K, Nakajima M, Kanokoda M, Hara T. Efficient production of T cells from mouse pluripotent stem cells by controlled expression of Lhx2. Genes Cells 2015; 20:720-38. [PMID: 26153538 DOI: 10.1111/gtc.12266] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 06/03/2015] [Indexed: 01/01/2023]
Abstract
LIM-homeobox transcription factor Lhx2 induces ex vivo amplification of adult hematopoietic stem cells (HSCs) in mice. We previously showed that engraftable HSC-like cells are generated from mouse embryonic stem cells (ESCs) and induced pluripotent stem cells by enforced expression of Lhx2. However, when these HSC-like cells were transplanted into irradiated congenic mice, donor-derived T cells were barely detectable, whereas other lineages of hematopoietic cells were continuously produced. Here we investigated T-cell differentiation potential of the Lhx2-induced HSC-like cells using ESCs carrying doxycycline (dox)-inducible Lhx2 expression cassette. Dox-mediated over-expression of Lhx2 conferred a self-renewing activity to ESC-derived c-Kit(+) CD41(+) embryonic hematopoietic progenitor cells (HPCs), thereby converting them to HSC-like cells. When these HSC-like cells were transplanted into irradiated immunodeficient mice and they were supplied with a dox-containing water, CD4/8 double negative T cells were detected in their thymi. Once the Lhx2 expression was terminated, differentiation of CD4/8 double positive and single positive T cells was initiated in the thymi of transplanted mice and mature T cells were released in the peripheral blood. These results showed that engraftable HSC-like cells with full hematopoietic potential can be obtained from ESCs by the conditional expression of Lhx2.
Collapse
Affiliation(s)
- Kenji Kitajima
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Manami Kawaguchi
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kazuya Miyashita
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Marino Nakajima
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Mai Kanokoda
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Takahiko Hara
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
183
|
Hirano KI, Negishi N, Yazawa M, Yagita H, Habu S, Hozumi K. Delta-like 4-mediated Notch signaling is required for early T-cell development in a three-dimensional thymic structure. Eur J Immunol 2015; 45:2252-62. [DOI: 10.1002/eji.201445123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 05/05/2015] [Accepted: 05/12/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Ken-ichi Hirano
- Department of Immunology; Tokai University School of Medicine; Isehara Kanagawa Japan
| | - Naoko Negishi
- Department of Immunology; Juntendo University School of Medicine; Bunkyo-ku, Tokyo Japan
| | - Masaki Yazawa
- Department of Immunology; Tokai University School of Medicine; Isehara Kanagawa Japan
- Department of Biochemistry; Tokai University; Hiratsuka Kanagawa Japan
| | - Hideo Yagita
- Department of Immunology; Juntendo University School of Medicine; Bunkyo-ku, Tokyo Japan
| | - Sonoko Habu
- Department of Immunology; Juntendo University School of Medicine; Bunkyo-ku, Tokyo Japan
| | - Katsuto Hozumi
- Department of Immunology; Tokai University School of Medicine; Isehara Kanagawa Japan
| |
Collapse
|
184
|
López-Rodríguez C, Aramburu J, Berga-Bolaños R. Transcription factors and target genes of pre-TCR signaling. Cell Mol Life Sci 2015; 72:2305-21. [PMID: 25702312 PMCID: PMC11113633 DOI: 10.1007/s00018-015-1864-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/22/2015] [Accepted: 02/16/2015] [Indexed: 11/27/2022]
Abstract
Almost 30 years ago pioneering work by the laboratories of Harald von Boehmer and Susumo Tonegawa provided the first indications that developing thymocytes could assemble a functional TCRβ chain-containing receptor complex, the pre-TCR, before TCRα expression. The discovery and study of the pre-TCR complex revealed paradigms of signaling pathways in control of cell survival and proliferation, and culminated in the recognition of the multifunctional nature of this receptor. As a receptor integrated in a dynamic developmental process, the pre-TCR must be viewed not only in the light of the biological outcomes it promotes, but also in context with those molecular processes that drive its expression in thymocytes. This review article focuses on transcription factors and target genes activated by the pre-TCR to drive its different outcomes.
Collapse
Affiliation(s)
- Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences and Barcelona Biomedical Research Park, Universitat Pompeu Fabra, C/Doctor Aiguader Nº88, 08003, Barcelona, Barcelona, Spain,
| | | | | |
Collapse
|
185
|
Yu Y, Wang C, Clare S, Wang J, Lee SC, Brandt C, Burke S, Lu L, He D, Jenkins NA, Copeland NG, Dougan G, Liu P. The transcription factor Bcl11b is specifically expressed in group 2 innate lymphoid cells and is essential for their development. ACTA ACUST UNITED AC 2015; 212:865-74. [PMID: 25964371 PMCID: PMC4451136 DOI: 10.1084/jem.20142318] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/31/2015] [Indexed: 01/08/2023]
Abstract
Yu et al. demonstrate that the transcription factor Bcl11b is specifically expressed in mouse innate lymphoid progenitors committed to the ILC2 lineage and is required for their development. Bcl11b-deficient mice exhibit a complete lack of ILC2 development, which is confirmed by immune challenges with either papain treatment or influenza virus infection. Group 2 innate lymphoid cells (ILCs), or ILC2s, are a subset of recently identified ILCs, which play important roles in innate immunity by producing type 2 effector cytokines. Several transcription factors have been found to have critical functions in the development of both ILC2s and T cells. We report here that Bcl11b, a transcription factor essential in T cell lineage commitment and maintenance, is specifically expressed in progenitors committed to the ILC2 lineage and is required for ILC2 development. The Bcl11b gene is expressed in ∼28% of ILC progenitors (ILCPs; common helper innate lymphoid progenitors or ILCPs expressing either ID2 or promyelocytic leukemia zinc finger, respectively). Both in vitro and in vivo, these Bcl11b-expressing early ILCPs generate only ILC2s. Inactivation of Bcl11b causes a complete loss of ILC2 development from hematopoietic progenitors, which is confirmed upon immune challenge with either papain administration or influenza virus infection.
Collapse
Affiliation(s)
- Yong Yu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, England, UK
| | - Cui Wang
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, England, UK Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Simon Clare
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, England, UK
| | - Juexuan Wang
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, England, UK
| | - Song-Choon Lee
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, England, UK
| | - Cordelia Brandt
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, England, UK
| | - Shannon Burke
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, England, UK
| | - Liming Lu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, England, UK Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Daqian He
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Nancy A Jenkins
- The Methodist Hospital Research Institute, Houston, TX 77030
| | - Neal G Copeland
- The Methodist Hospital Research Institute, Houston, TX 77030
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, England, UK
| | - Pentao Liu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, England, UK
| |
Collapse
|
186
|
Di Santo JP. Staying innate: transcription factor maintenance of innate lymphoid cell identity. Immunol Rev 2015; 261:169-76. [PMID: 25123284 DOI: 10.1111/imr.12202] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Innate and adaptive lymphocytes are characterized by phenotypic and functional characteristics that result from genomic rearrangements (in the case of antigen-specific B and T cells) coupled with selective gene expression patterns that are generated in a context-dependent fashion. Cell-intrinsic expression of transcription factors (TFs) play a critical role in the regulation of gene expression that establish the distinct lymphoid subsets but also have been proposed to play an ongoing role in the maintenance of lineage-associated transcriptional signatures that comprise lymphocyte identity. This is the case for CD19(+) B cells that require Pax5 expression throughout their lifespan, as well as for diverse T-helper subsets that have specialized immune functions. Innate lymphoid cells (ILCs) comprise diverse effectors cells that differentiate under TF control and have critical roles in the early stages of immune responses. In this review, ILC development is reviewed and the requirement for persistent TF expression in the maintenance of transcriptional signatures that define ILC identity is explored.
Collapse
Affiliation(s)
- James P Di Santo
- Innate Immunity Unit, Institut Pasteur, Paris, France; Inserm U668, Institut Pasteur, Paris, France
| |
Collapse
|
187
|
Walker JA, Oliphant CJ, Englezakis A, Yu Y, Clare S, Rodewald HR, Belz G, Liu P, Fallon PG, McKenzie ANJ. Bcl11b is essential for group 2 innate lymphoid cell development. ACTA ACUST UNITED AC 2015; 212:875-82. [PMID: 25964370 PMCID: PMC4451131 DOI: 10.1084/jem.20142224] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/14/2015] [Indexed: 11/23/2022]
Abstract
Walker et al. demonstrate that the transcription factor Bcl11b is expressed in mouse lymphoid ILC2 precursors in the bone marrow and is required for their development. Mice deficient in Bcl11b exhibit a lack of ILC2 development and an expansion of RORγt+ ILC3s and are unable to clear Nippostrongylus brasiliensis worm infection, but can clear Citrobacter rodentium. Group 2 innate lymphoid cells (ILC2s) are often found associated with mucosal surfaces where they contribute to protective immunity, inappropriate allergic responses, and tissue repair. Although we know they develop from a common lymphoid progenitor in the bone marrow (BM), the specific lineage path and transcriptional regulators that are involved are only starting to emerge. After ILC2 gene expression analysis we investigated the role of Bcl11b, a factor previously linked to T cell commitment, in ILC2 development. Using combined Bcl11b-tom and Id2-gfp reporter mice, we show that Bcl11b is expressed in ILC2 precursors in the BM and maintained in mature ILC2s. In vivo deletion of Bcl11b, by conditional tamoxifen-induced depletion or by Bcl11b−/− fetal liver chimera reconstitution, demonstrates that ILC2s are wholly dependent on Bcl11b for their development. Notably, in the absence of Bcl11b there is a concomitant expansion of the RORγt+ ILC3 population, suggesting that Bcl11b may negatively regulate this lineage. Using Nippostrongylus brasiliensis infection, we reveal that the absence of Bcl11b leads to impaired worm expulsion, caused by a deficit in ILC2s, whereas Citrobacter rodentium infection is cleared efficiently. These data clearly establish Bcl11b as a new factor in the differentiation of ILC2s.
Collapse
Affiliation(s)
- Jennifer A Walker
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| | - Christopher J Oliphant
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| | - Alexandros Englezakis
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| | - Yong Yu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, England, UK
| | - Simon Clare
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, England, UK
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Gabrielle Belz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Pentao Liu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, England, UK
| | - Padraic G Fallon
- Trinity Biomedical Sciences Institute and Institute of Molecular Medicine, Trinity College Dublin, Dublin 2, Ireland Trinity Biomedical Sciences Institute and Institute of Molecular Medicine, Trinity College Dublin, Dublin 2, Ireland National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Andrew N J McKenzie
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| |
Collapse
|
188
|
Adiningrat A, Tanimura A, Miyoshi K, Yanuaryska RD, Hagita H, Horiguchi T, Noma T. Ctip2-mediated Sp6 transcriptional regulation in dental epithelium-derived cells. THE JOURNAL OF MEDICAL INVESTIGATION 2015; 61:126-36. [PMID: 24705758 DOI: 10.2152/jmi.61.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Tooth development relies on the interaction between the oral ectoderm and underlying mesenchyme, and is regulated by a complex genetic cascade. This transcriptional cascade is regulated by the spatiotemporal activation and deactivation of transcription factors. The specificity proteins 6 (Sp6) and chicken ovalbumin upstream promoter transcription factor-interacting protein 2 (Ctip2) were identified in loss-of-function studies as key transcription factors required for tooth development. Ctip2 binds to the Sp6 promoter in vivo; however, its role in Sp6 expression remains unclear. In this study, we investigated Sp6 transcriptional regulation by Ctip2. Immunohistochemical analysis revealed that Sp6 and Ctip2 colocalize in the rat incisor during tooth development. We examined whether Ctip2 regulates Sp6 promoter activity in dental epithelial cells. Cotransfection experiments using serial Sp6 promoter-luciferase constructs and Ctip2 expression plasmids showed that Ctip2 significantly suppressed the Sp6 second promoter activity, although the Sp6 first promoter activity was unaffected. Ctip2 was able to bind to the proximal region of the Sp6 first promoter, as previously demonstrated, and also to the novel distal region of the first, and second promoter regions. Our findings indicate that Ctip2 regulates Sp6 gene expression through direct binding to the Sp6 second promoter region. J. Med. Invest. 61: 126-136, February, 2014.
Collapse
Affiliation(s)
- Arya Adiningrat
- Department of Molecular Biology, Institute of Health Biosciences, the University of Tokushima Graduate School
| | | | | | | | | | | | | |
Collapse
|
189
|
Champhekar A, Damle SS, Freedman G, Carotta S, Nutt SL, Rothenberg EV. Regulation of early T-lineage gene expression and developmental progression by the progenitor cell transcription factor PU.1. Genes Dev 2015; 29:832-48. [PMID: 25846797 PMCID: PMC4403259 DOI: 10.1101/gad.259879.115] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/17/2015] [Indexed: 12/28/2022]
Abstract
In the thymus, high PU.1 expression persists through multiple cell divisions in early stages but then falls sharply during T-cell lineage commitment. Here, Champhekar et al. show that PU.1 is needed for full proliferation, restricting access to some non-T fates, and controlling the timing of T-cell developmental progression. Genome-wide transcriptome analysis identifies novel targets of PU.1-positive and PU.1-negative regulation affecting progenitor cell signaling and cell biology and indicating distinct regulatory effects on different subsets of progenitor cell transcription factors. The ETS family transcription factor PU.1 is essential for the development of several blood lineages, including T cells, but its function in intrathymic T-cell precursors has been poorly defined. In the thymus, high PU.1 expression persists through multiple cell divisions in early stages but then falls sharply during T-cell lineage commitment. PU.1 silencing is critical for T-cell commitment, but it has remained unknown how PU.1 activities could contribute positively to T-cell development. Here we employed conditional knockout and modified antagonist PU.1 constructs to perturb PU.1 function stage-specifically in early T cells. We show that PU.1 is needed for full proliferation, restricting access to some non-T fates, and controlling the timing of T-cell developmental progression such that removal or antagonism of endogenous PU.1 allows precocious access to T-cell differentiation. Dominant-negative effects reveal that this repression by PU.1 is mediated indirectly. Genome-wide transcriptome analysis identifies novel targets of PU.1 positive and negative regulation affecting progenitor cell signaling and cell biology and indicating distinct regulatory effects on different subsets of progenitor cell transcription factors. Thus, in addition to supporting early T-cell proliferation, PU.1 regulates the timing of activation of the core T-lineage developmental program.
Collapse
Affiliation(s)
- Ameya Champhekar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Sagar S Damle
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - George Freedman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Sebastian Carotta
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stephen L Nutt
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| |
Collapse
|
190
|
Abstract
The lymphocyte family has expanded significantly in recent years to include not only the adaptive lymphocytes (T cells, B cells) and NK cells, but also several additional innate lymphoid cell (ILC) types. ILCs lack clonally distributed antigen receptors characteristic of adaptive lymphocytes and instead respond exclusively to signaling via germline-encoded receptors. ILCs resemble T cells more closely than any other leukocyte lineage at the transcriptome level and express many elements of the core T cell transcriptional program, including Notch, Gata3, Tcf7, and Bcl11b. We present our current understanding of the shared and distinct transcriptional regulatory mechanisms involved in the development of adaptive T lymphocytes and closely related ILCs. We discuss the possibility that a core set of transcriptional regulators common to ILCs and T cells establish enhancers that enable implementation of closely aligned effector pathways. Studies of the transcriptional regulation of lymphopoiesis will support the development of novel therapeutic approaches to correct early lymphoid developmental defects and aberrant lymphocyte function.
Collapse
Affiliation(s)
- Maria Elena De Obaldia
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | |
Collapse
|
191
|
Kang J, Malhotra N. Transcription factor networks directing the development, function, and evolution of innate lymphoid effectors. Annu Rev Immunol 2015; 33:505-38. [PMID: 25650177 PMCID: PMC4674156 DOI: 10.1146/annurev-immunol-032414-112025] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mammalian lymphoid immunity is mediated by fast and slow responders to pathogens. Fast innate lymphocytes are active within hours after infections in mucosal tissues. Slow adaptive lymphocytes are conventional T and B cells with clonal antigen receptors that function days after pathogen exposure. A transcription factor (TF) regulatory network guiding early T cell development is at the core of effector function diversification in all innate lymphocytes, and the kinetics of immune responses is set by developmental programming. Operational units within the innate lymphoid system are not classified by the types of pathogen-sensing machineries but rather by discrete effector functions programmed by regulatory TF networks. Based on the evolutionary history of TFs of the regulatory networks, fast effectors likely arose earlier in the evolution of animals to fortify body barriers, and in mammals they often develop in fetal ontogeny prior to the establishment of fully competent adaptive immunity.
Collapse
Affiliation(s)
- Joonsoo Kang
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655;
| | | |
Collapse
|
192
|
Lim AWY, McKenzie ANJ. Deciphering the transcriptional switches of innate lymphoid cell programming: the right factors at the right time. Genes Immun 2015; 16:177-86. [PMID: 25611557 PMCID: PMC4409422 DOI: 10.1038/gene.2014.83] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 12/17/2022]
Abstract
Innate lymphoid cells (ILCs) are increasingly recognised as an innate immune counterpart of adaptive TH cells. In addition to their similar effector cytokine production, there is a strong parallel between the transcription factors that control the differentiation of TH1, TH2 and TH17 cells and ILC Groups 1, 2 and 3, respectively. Here, we review the transcriptional circuit that specifies the development of a common ILC progenitor and its subsequent programming into distinct ILC groups. Notch, GATA-3, Nfil3 and Id2 are identified as early factors that suppress B and T cell potentials and are turned on in favour of ILC commitment. Natural killer cells, which are the cytotoxic ILCs, develop along a pathway distinct from the rest of the helper-like ILCs that are derived from a common progenitor to all helper-like innate lymphoid cells (CHILPs). PLZF− CHILPs give rise to lymphoid tissue inducer cells while PLZF+ CHILPs have multi-lineage potential and could give rise to ILCs 1, 2 and 3. Such lineage specificity is dictated by the controlled expression of T-bet, RORα, RORγt and AHR. In addition to the type of transcription factors, the developmental stages at which these factors are expressed are crucial in specifying the fate of the ILCs.
Collapse
Affiliation(s)
- A W Y Lim
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - A N J McKenzie
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
193
|
Abstract
Natural killer (NK) cells are innate lymphocytes that survey the environment and protect the host from infected and cancerous cells. As their name implies, NK cells represent an early line of defense during pathogen invasion by directly killing infected cells and secreting inflammatory cytokines. Although the function of NK cells was first described more than four decades ago, the development of this cytotoxic lineage is not well understood. In recent years, we have begun to identify specific transcription factors that control each stage of development and maturation, from ontogeny of the NK cell progenitor to the effector functions of activated NK cells in peripheral organs. This chapter highlights the transcription factors that are unique to NK cells, or shared between NK cells and other hematopoietic cell lineages, but govern the biology of this cytolytic lymphocyte.
Collapse
Affiliation(s)
- Joseph C Sun
- Memorial Sloan Kettering Cancer Center, Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, 408 East 69th Street, ZRC-1402, New York, NY, 10065, USA.
| |
Collapse
|
194
|
Abstract
During blood cell development, hematopoietic stem cells generate diverse mature populations via several rounds of binary fate decisions. At each bifurcation, precursors adopt one fate and inactivate the alternative fate either stochastically or in response to extrinsic stimuli and stably maintain the selected fates. Studying of these processes would contribute to better understanding of etiology of immunodeficiency and leukemia, which are caused by abnormal gene regulation during the development of hematopoietic cells. The CD4(+) helper versus CD8(+) cytotoxic T-cell fate decision serves as an excellent model to study binary fate decision processes. These two cell types are derived from common precursors in the thymus. Positive selection of their TCRs by self-peptide presented on either MHC class I or class II triggers their fate decisions along with mutually exclusive retention and silencing of two coreceptors, CD4 and CD8. In the past few decades, extensive effort has been made to understand the T-cell fate decision processes by studying regulation of genes encoding the coreceptors and selection processes. These studies have identified several key transcription factors and gene regulatory networks. In this chapter, I will discuss recent advances in our understanding of the binary cell fate decision processes of T cells.
Collapse
Affiliation(s)
- Takeshi Egawa
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA.
| |
Collapse
|
195
|
Avram D, Califano D. The multifaceted roles of Bcl11b in thymic and peripheral T cells: impact on immune diseases. THE JOURNAL OF IMMUNOLOGY 2014; 193:2059-65. [PMID: 25128552 DOI: 10.4049/jimmunol.1400930] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The transcription factor Bcl11b is expressed in all T cell subsets and progenitors, starting from the DN2 stage of T cell development, and it regulates critical processes implicated in the development, function, and survival of many of these cells. Among the common roles of Bcl11b in T cell progenitors and mature T cell subsets are the repression of the innate genetic program and, to some extent, expression maintenance of TCR-signaling components. However, Bcl11b also has unique roles in specific T cell populations, suggesting that its functions depend on cell type and activation state of the cell. In this article, we provide a comprehensive review of the roles of Bcl11b in progenitors, effector T cells, regulatory T cells, and invariant NKT cells, as well as its impact on immune diseases. While emphasizing common themes, including some that might be extended to skin and neurons, we also describe the control of specific functions in different T cell subsets.
Collapse
Affiliation(s)
- Dorina Avram
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Danielle Califano
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| |
Collapse
|
196
|
Vogel WK, Gafken PR, Leid M, Filtz TM. Kinetic analysis of BCL11B multisite phosphorylation-dephosphorylation and coupled sumoylation in primary thymocytes by multiple reaction monitoring mass spectroscopy. J Proteome Res 2014; 13:5860-8. [PMID: 25423098 PMCID: PMC4261940 DOI: 10.1021/pr5007697] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Transcription factors with multiple post-translational modifications (PTMs) are not uncommon, but comprehensive information on site-specific dynamics and interdependence is comparatively rare. Assessing dynamic changes in the extent of PTMs has the potential to link multiple sites both to each other and to biological effects observable on the same time scale. The transcription factor and tumor suppressor BCL11B is critical to three checkpoints in T-cell development and is a target of a T-cell receptor-mediated MAP kinase signaling. Multiple reaction monitoring (MRM) mass spectroscopy was used to assess changes in relative phosphorylation on 18 of 23 serine and threonine residues and sumoylation on one of two lysine resides in BCL11B. We have resolved the composite phosphorylation-dephosphorylation and sumoylation changes of BCL11B in response to MAP kinase activation into a complex pattern of site-specific PTM changes in primary mouse thymocytes. The site-specific resolution afforded by MRM analyses revealed four kinetic patterns of phosphorylation and one of sumoylation, including both rapid simultaneous site-specific increases and decreases at putative MAP kinase proline-directed phosphorylation sites, following stimulation. These data additionally revealed a novel spatiotemporal bisphosphorylation motif consisting of two kinetically divergent proline-directed phosphorylation sites spaced five residues apart.
Collapse
Affiliation(s)
- Walter K Vogel
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University , Corvallis, Oregon 97331, United States
| | | | | | | |
Collapse
|
197
|
Hirose S, Touma M, Go R, Katsuragi Y, Sakuraba Y, Gondo Y, Abe M, Sakimura K, Mishima Y, Kominami R. Bcl11b prevents the intrathymic development of innate CD8 T cells in a cell intrinsic manner. Int Immunol 2014; 27:205-15. [PMID: 25422283 DOI: 10.1093/intimm/dxu104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
If Bcl11b activity is compromised, CD4(+)CD8(+) double-positive (DP) thymocytes produce a greatly increased fraction of innate CD8(+) single-positive (SP) cells highly producing IFN-γ, which are also increased in mice deficient of genes such as Itk, Id3 and NF-κB1 that affect TCR signaling. Of interest, the increase in the former two is due to the bystander effect of IL-4 that is secreted by promyelocytic leukemia zinc finger-expressing NKT and γδT cells whereas the increase in the latter is cell intrinsic. Bcl11b zinc-finger proteins play key roles in T cell development and T cell-mediated immune response likely through TCR signaling. We examined thymocytes at and after the DP stage in Bcl11b (F/S826G) CD4cre, Bcl11b (F/+) CD4cre and Bcl11b (+/S826G) mice, carrying the allele that substituted serine for glycine at the position of 826. Here we show that Bcl11b impairment leads to an increase in the population of TCRαβ(high)CD44(high)CD122(high) innate CD8SP thymocytes, together with two different developmental abnormalities: impaired positive and negative selection accompanying a reduction in the number of CD8SP cells, and developmental arrest of NKT cells at multiple steps. The innate CD8SP thymocytes express Eomes and secrete IFN-γ after stimulation with PMA and ionomycin, and in this case their increase is not due to a bystander effect of IL-4 but cell intrinsic. Those results indicate that Bcl11b regulates development of different thymocyte subsets at multiple stages and prevents an excess of innate CD8SP thymocytes.
Collapse
Affiliation(s)
- Satoshi Hirose
- Division of Molecular Biology, Department of Molecular Genetics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Maki Touma
- Department of Biology, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Rieka Go
- Division of Molecular Biology, Department of Molecular Genetics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Yoshinori Katsuragi
- Division of Molecular Biology, Department of Molecular Genetics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Yoshiyuki Sakuraba
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Ibaragi 305-0074, Japan
| | - Yoichi Gondo
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Ibaragi 305-0074, Japan
| | - Manabu Abe
- Basic Neuroscience Branch, Brain Research Institute, Niigata University, Niigata 951-8510, Japan
| | - Kenji Sakimura
- Basic Neuroscience Branch, Brain Research Institute, Niigata University, Niigata 951-8510, Japan
| | - Yukio Mishima
- Division of Molecular Biology, Department of Molecular Genetics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Ryo Kominami
- Division of Molecular Biology, Department of Molecular Genetics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| |
Collapse
|
198
|
Tindemans I, Serafini N, Di Santo JP, Hendriks RW. GATA-3 function in innate and adaptive immunity. Immunity 2014; 41:191-206. [PMID: 25148023 DOI: 10.1016/j.immuni.2014.06.006] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/19/2014] [Indexed: 02/07/2023]
Abstract
The zinc-finger transcription factor GATA-3 has received much attention as a master regulator of T helper 2 (Th2) cell differentiation, during which it controls interleukin-4 (IL-4), IL-5, and IL-13 expression. More recently, GATA-3 was shown to contribute to type 2 immunity through regulation of group 2 innate lymphoid cell (ILC2) development and function. Furthermore, during thymopoiesis, GATA-3 represses B cell potential in early T cell precursors, activates TCR signaling in pre-T cells, and promotes the CD4(+) T cell lineage after positive selection. GATA-3 also functions outside the thymus in hematopoietic stem cells, regulatory T cells, CD8(+) T cells, thymic natural killer cells, and ILC precursors. Here we discuss the varied functions of GATA-3 in innate and adaptive immune cells, with emphasis on its activity in T cells and ILCs, and examine the mechanistic basis for the dose-dependent, developmental-stage- and cell-lineage-specific activity of this transcription factor.
Collapse
Affiliation(s)
- Irma Tindemans
- Department of Pulmonary Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Nicolas Serafini
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France; INSERM U668, 75724 Paris, France
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France; INSERM U668, 75724 Paris, France
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
199
|
Itoh-Nakadai A, Hikota R, Muto A, Kometani K, Watanabe-Matsui M, Sato Y, Kobayashi M, Nakamura A, Miura Y, Yano Y, Tashiro S, Sun J, Ikawa T, Ochiai K, Kurosaki T, Igarashi K. The transcription repressors Bach2 and Bach1 promote B cell development by repressing the myeloid program. Nat Immunol 2014; 15:1171-80. [PMID: 25344725 DOI: 10.1038/ni.3024] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/01/2014] [Indexed: 12/18/2022]
Abstract
Mature lymphoid cells express the transcription repressor Bach2, which imposes regulation on humoral and cellular immunity. Here we found critical roles for Bach2 in the development of cells of the B lineage, commencing from the common lymphoid progenitor (CLP) stage, with Bach1 as an auxiliary. Overexpression of Bach2 in pre-pro-B cells deficient in the transcription factor EBF1 and single-cell analysis of CLPs revealed that Bach2 and Bach1 repressed the expression of genes important for myeloid cells ('myeloid genes'). Bach2 and Bach1 bound to presumptive regulatory regions of the myeloid genes. Bach2(hi) CLPs showed resistance to myeloid differentiation even when cultured under myeloid conditions. Our results suggest that Bach2 functions with Bach1 and EBF1 to promote B cell development by repressing myeloid genes in CLPs.
Collapse
Affiliation(s)
- Ari Itoh-Nakadai
- 1] Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan. [2] CREST, Japan Science and Technology Agency, Sendai, Japan
| | - Reina Hikota
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akihiko Muto
- 1] Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan. [2] CREST, Japan Science and Technology Agency, Sendai, Japan
| | - Kohei Kometani
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Miki Watanabe-Matsui
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuki Sato
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masahiro Kobayashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Nakamura
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuichi Miura
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoko Yano
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Japan
| | - Satoshi Tashiro
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Japan
| | - Jiying Sun
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Japan
| | - Tomokatsu Ikawa
- Laboratory for Immune Regeneration RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kyoko Ochiai
- 1] Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan. [2] CREST, Japan Science and Technology Agency, Sendai, Japan. [3] Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Kurosaki
- 1] RIKEN Center for Integrative Medical Sciences, Yokohama, Japan. [2] WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Kazuhiko Igarashi
- 1] Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan. [2] CREST, Japan Science and Technology Agency, Sendai, Japan. [3] Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
200
|
Scripture-Adams DD, Damle SS, Li L, Elihu KJ, Qin S, Arias AM, Butler RR, Champhekar A, Zhang JA, Rothenberg EV. GATA-3 dose-dependent checkpoints in early T cell commitment. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:3470-91. [PMID: 25172496 PMCID: PMC4170028 DOI: 10.4049/jimmunol.1301663] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GATA-3 expression is crucial for T cell development and peaks during commitment to the T cell lineage, midway through the CD4(-)CD8(-) (double-negative [DN]) stages 1-3. We used RNA interference and conditional deletion to reduce GATA-3 protein acutely at specific points during T cell differentiation in vitro. Even moderate GATA-3 reduction killed DN1 cells, delayed progression to the DN2 stage, skewed DN2 gene regulation, and blocked appearance of the DN3 phenotype. Although a Bcl-2 transgene rescued DN1 survival and improved DN2 cell generation, it did not restore DN3 differentiation. Gene expression analyses (quantitative PCR, RNA sequencing) showed that GATA-3-deficient DN2 cells quickly upregulated genes, including Spi1 (PU.1) and Bcl11a, and downregulated genes, including Cpa3, Ets1, Zfpm1, Bcl11b, Il9r, and Il17rb with gene-specific kinetics and dose dependencies. These targets could mediate two distinct roles played by GATA-3 in lineage commitment, as revealed by removing wild-type or GATA-3-deficient early T lineage cells from environmental Notch signals. GATA-3 worked as a potent repressor of B cell potential even at low expression levels, so that only full deletion of GATA-3 enabled pro-T cells to reveal B cell potential. The ability of GATA-3 to block B cell development did not require T lineage commitment factor Bcl11b. In prethymic multipotent precursors, however, titration of GATA-3 activity using tamoxifen-inducible GATA-3 showed that GATA-3 inhibits B and myeloid developmental alternatives at different threshold doses. Furthermore, differential impacts of a GATA-3 obligate repressor construct imply that B and myeloid development are inhibited through distinct transcriptional mechanisms. Thus, the pattern of GATA-3 expression sequentially produces B lineage exclusion, T lineage progression, and myeloid-lineage exclusion for commitment.
Collapse
Affiliation(s)
- Deirdre D Scripture-Adams
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Sagar S Damle
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Long Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Koorosh J Elihu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Shuyang Qin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Alexandra M Arias
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Robert R Butler
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Ameya Champhekar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Jingli A Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|