151
|
Besley NA. Modeling of the spectroscopy of core electrons with density functional theory. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1527] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nicholas A. Besley
- School of Chemistry, University of Nottingham University Park Nottingham UK
| |
Collapse
|
152
|
Kuriyama S, Nishibayashi Y. Development of catalytic nitrogen fixation using transition metal complexes not relevant to nitrogenases. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131986] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
153
|
Joseph C, Cobb CR, Rose MJ. Single-Step Sulfur Insertions into Iron Carbide Carbonyl Clusters: Unlocking the Synthetic Door to FeMoco Analogues. Angew Chem Int Ed Engl 2021; 60:3433-3437. [PMID: 33089646 DOI: 10.1002/anie.202011517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/09/2020] [Indexed: 11/09/2022]
Abstract
The one-step syntheses, X-ray structures, and spectroscopic characterization of synthetic iron clusters, bearing either inorganic sulfides or thiolate with interstitial carbide motifs, are reported. Treatment of iron carbide carbonyl clusters [Fen (μn -C)(CO)m ]x (n=5,6; m=15,16; x=0,-2) with electrophilic sulfur sources (S2 Cl2 , S8 ) results in the formation of several μ4 -S dimers of clusters, and moreover, iron-sulfide-(sulfocarbide) clusters. The core sulfocarbide unit {C-S}4- serves as a structural model for a proposed intermediate in the radical S-adenosyl-L-methionine biogenesis of the M-cluster. Furthermore, the electrophilic sulfur strategy has been extended to provide the first ever thiolato-iron-carbide complex: an analogous reaction with toluylsulfenyl chloride affords the cluster [Fe5 (μ5 -C)(SC7 H7 )(CO)13 ]- . The strategy described herein provides a breakthrough towards developing syntheses of biomimetic iron-sulfur-carbide clusters like FeMoco.
Collapse
Affiliation(s)
- Chris Joseph
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Caitlyn R Cobb
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Michael J Rose
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
154
|
Joseph C, Cobb CR, Rose MJ. Single‐Step Sulfur Insertions into Iron Carbide Carbonyl Clusters: Unlocking the Synthetic Door to FeMoco Analogues. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chris Joseph
- Department of Chemistry The University of Texas at Austin Austin TX 78712 USA
| | - Caitlyn R. Cobb
- Department of Chemistry The University of Texas at Austin Austin TX 78712 USA
| | - Michael J. Rose
- Department of Chemistry The University of Texas at Austin Austin TX 78712 USA
| |
Collapse
|
155
|
Molybdenum-Containing Metalloenzymes and Synthetic Catalysts for Conversion of Small Molecules. Catalysts 2021. [DOI: 10.3390/catal11020217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The energy deficiency and environmental problems have motivated researchers to develop energy conversion systems into a sustainable pathway, and the development of catalysts holds the center of the research endeavors. Natural catalysts such as metalloenzymes have maintained energy cycles on Earth, thus proving themselves the optimal catalysts. In the previous research results, the structural and functional analogs of enzymes and nano-sized electrocatalysts have shown promising activities in energy conversion reactions. Mo ion plays essential roles in natural and artificial catalysts, and the unique electrochemical properties render its versatile utilization as an electrocatalyst. In this review paper, we show the current understandings of the Mo-enzyme active sites and the recent advances in the synthesis of Mo-catalysts aiming for high-performing catalysts.
Collapse
|
156
|
Speelman AL, Skubi KL, Mercado BQ, Holland PL. Synthesis and Reactivity of Iron Complexes with a Biomimetic SCS Pincer Ligand. Inorg Chem 2021; 60:1965-1974. [PMID: 33443404 DOI: 10.1021/acs.inorgchem.0c03427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent experimental evidence suggests that the FeMoco of nitrogenase undergoes structural rearrangement during N2 reduction, which may result in the generation of coordinatively unsaturated iron sites with two sulfur donors and a carbon donor. In an effort to synthesize and study small-molecule model complexes with a one-carbon/two-sulfur coordination environment, we have designed two new SCS pincer ligands containing a central NHC donor accompanied by thioether- or thiolate-functionalized aryl groups. Metalation of the thioether ligand with Fe(OTf)2 gives 6-coordinate complexes in which the SCS ligand binds meridionally. In contrast, metalation of the thiolate ligand with Fe(HMDS)2 gives a four-coordinate pseudotetrahedral amide complex in which the ligand binds facially, illustrating the potential structural flexibility of these ligands. Reaction of the amide complex with a bulky monothiol gives a four-coordinate complex with a one-carbon/three-sulfur coordination environment that resembles the resting state of nitrogenase. Reaction of the amide complex with phenylhydrazine gives a product with a rare κ1-bound phenylhydrazido group which undergoes N-N cleavage to give a phenylamido complex.
Collapse
Affiliation(s)
- Amy L Speelman
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Kazimer L Skubi
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Patrick L Holland
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
157
|
Van Stappen C, Decamps L, DeBeer S. Preparation and spectroscopic characterization of lyophilized Mo nitrogenase. J Biol Inorg Chem 2021; 26:81-91. [PMID: 33381859 PMCID: PMC8038959 DOI: 10.1007/s00775-020-01838-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/22/2020] [Indexed: 11/30/2022]
Abstract
Mo nitrogenase is the primary source of biologically fixed nitrogen, making this system highly interesting for developing new, energy efficient ways of ammonia production. Although heavily investigated, studies of the active site of this enzyme have generally been limited to spectroscopic methods that are compatible with the presence of water and relatively low protein concentrations. One method of overcoming this limitation is through lyophilization, which allows for measurements to be performed on solvent free, high concentration samples. This method also has the potential for allowing efficient protein storage and solvent exchange. To investigate the viability of this preparatory method with Mo nitrogenase, we employ a combination of electron paramagnetic resonance, Mo and Fe K-edge X-ray absorption spectroscopy, and acetylene reduction assays. Our results show that while some small distortions in the metallocofactors occur, oxidation and spin states are maintained through the lyophilization process and that reconstitution of either lyophilized protein component into buffer restores acetylene reducing activity.
Collapse
Affiliation(s)
- Casey Van Stappen
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany.
| | - Laure Decamps
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
158
|
Phu PN, Gutierrez CE, Kundu S, Sokaras D, Kroll T, Warren TH, Stieber SCE. Quantification of Ni-N-O Bond Angles and NO Activation by X-ray Emission Spectroscopy. Inorg Chem 2021; 60:736-744. [PMID: 33373520 DOI: 10.1021/acs.inorgchem.0c02724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of β-diketiminate Ni-NO complexes with a range of NO binding modes and oxidation states were studied by X-ray emission spectroscopy (XES). The results demonstrate that XES can directly probe and distinguish end-on vs side-on NO coordination modes as well as one-electron NO reduction. Density functional theory (DFT) calculations show that the transition from the NO 2s2s σ* orbital has higher intensity for end-on NO coordination than for side-on NO coordination, whereas the 2s2s σ orbital has lower intensity. XES calculations in which the Ni-N-O bond angle was fixed over the range from 80° to 176° suggest that differences in NO coordination angles of ∼10° could be experimentally distinguished. Calculations of Cu nitrite reductase (NiR) demonstrate the utility of XES for characterizing NO intermediates in metalloenzymes. This work shows the capability of XES to distinguish NO coordination modes and oxidation states at Ni and highlights applications in quantifying small molecule activation in enzymes.
Collapse
Affiliation(s)
- Phan N Phu
- Department of Chemistry & Biochemistry, California State Polytechnic University, Pomona, California 91768, United States
| | - Carlos E Gutierrez
- Department of Chemistry & Biochemistry, California State Polytechnic University, Pomona, California 91768, United States
| | - Subrata Kundu
- Department of Chemistry, Georgetown University, Box 571227, Washington, D.C. 20057, United States.,School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Timothy H Warren
- Department of Chemistry, Georgetown University, Box 571227, Washington, D.C. 20057, United States
| | - S Chantal E Stieber
- Department of Chemistry & Biochemistry, California State Polytechnic University, Pomona, California 91768, United States
| |
Collapse
|
159
|
Parison K, Gies-Elterlein J, Trncik C, Einsle O. Expression, Isolation, and Characterization of Vanadium Nitrogenase from Azotobacter vinelandii. Methods Mol Biol 2021; 2353:97-121. [PMID: 34292546 DOI: 10.1007/978-1-0716-1605-5_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitrogenases are the sole enzymes known to mediate biological nitrogen fixation, an essential process for sustaining life on earth. Among the three known variants, molybdenum nitrogenase is the best-studied to date. Recent work on the alternative vanadium nitrogenase provided important insights into the mechanism of nitrogen fixation since this enzyme differs from its molybdenum counterpart in some important aspects. Here, we present a protocol to obtain unmodified vanadium nitrogenase in high yield and purity from the paradigmatic diazotroph Azotobacter vinelandii, including procedures for cell cultivation, purification, and protein characterization.
Collapse
Affiliation(s)
- Katharina Parison
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | | | - Christian Trncik
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
160
|
Siegbahn PEM. A quantum chemical approach for the mechanisms of redox-active metalloenzymes. RSC Adv 2021; 11:3495-3508. [PMID: 35424322 PMCID: PMC8694229 DOI: 10.1039/d0ra10412d] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/04/2021] [Indexed: 11/23/2022] Open
Abstract
During the past 20 years, quantum chemistry has grown to be a significant part in the investigation of mechanisms for redox-active enzymes. In our group we have developed an approach that has been applied to a large number of such systems. Hybrid density functional theory (hybrid DFT) has from the start of these investigations been the leading electronic structure tool. An understanding of how the method works in practice has significantly improved the accuracy and applicability. During the past ten years, it has been found that the results for redox enzymes mainly depend on the chosen fraction of exact exchange in the functional, and that a choice of 15% has worked best. The idea has therefore been to vary that fraction over a reasonable range and study the relative energy dependence. For modeling the enzymes, a cluster approach has been developed. In the present review the development of the method we used is described from its start in work on photosystem II, fifteen years ago. Examples from a few recent applications are described, where the metals have been iron, nickel, copper, cobalt or manganese. The results are in excellent agreement with available experiments, and a large number of new predictions have been made. During the past 20 years, quantum chemistry has grown to be a significant part in the investigation of mechanisms for redox-active enzymes.![]()
Collapse
Affiliation(s)
- Per E. M. Siegbahn
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- Stockholm
- Sweden
| |
Collapse
|
161
|
Rohde M, Grunau K, Einsle O. CO Binding to the FeV Cofactor of CO-Reducing Vanadium Nitrogenase at Atomic Resolution. Angew Chem Int Ed Engl 2020; 59:23626-23630. [PMID: 32915491 PMCID: PMC7756900 DOI: 10.1002/anie.202010790] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Indexed: 11/24/2022]
Abstract
Nitrogenases reduce N2 , the most abundant element in Earth's atmosphere that is otherwise resistant to chemical conversions due to its stable triple bond. Vanadium nitrogenase stands out in that it additionally processes carbon monoxide, a known inhibitor of the reduction of all substrates other than H+ . The reduction of CO leads to the formation of hydrocarbon products, holding the potential for biotechnological applications in analogy to the industrial Fischer-Tropsch process. Here we report the most highly resolved structure of vanadium nitrogenase to date at 1.0 Å resolution, with CO bound to the active site cofactor after catalytic turnover. CO bridges iron ions Fe2 and Fe6, replacing sulfide S2B, in a binding mode that is in line with previous reports on the CO complex of molybdenum nitrogenase. We discuss the structural consequences of continued turnover when CO is removed, which involve the replacement of CO possibly by OH- , the movement of Q176D and K361D , the return of sulfide and the emergence of two additional water molecules that are absent in the CO-bound state.
Collapse
Affiliation(s)
- Michael Rohde
- Institut für BiochemieFakultät für Chemie und PharmazieAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179104Freiburg im BreisgauGermany
| | - Katharina Grunau
- Institut für BiochemieFakultät für Chemie und PharmazieAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179104Freiburg im BreisgauGermany
| | - Oliver Einsle
- Institut für BiochemieFakultät für Chemie und PharmazieAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179104Freiburg im BreisgauGermany
| |
Collapse
|
162
|
Lim H, Baker ML, Cowley RE, Kim S, Bhadra M, Siegler MA, Kroll T, Sokaras D, Weng TC, Biswas DR, Dooley DM, Karlin KD, Hedman B, Hodgson KO, Solomon EI. Kβ X-ray Emission Spectroscopy as a Probe of Cu(I) Sites: Application to the Cu(I) Site in Preprocessed Galactose Oxidase. Inorg Chem 2020; 59:16567-16581. [PMID: 33136386 DOI: 10.1021/acs.inorgchem.0c02495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cu(I) active sites in metalloproteins are involved in O2 activation, but their O2 reactivity is difficult to study due to the Cu(I) d10 closed shell which precludes the use of conventional spectroscopic methods. Kβ X-ray emission spectroscopy (XES) is a promising technique for investigating Cu(I) sites as it detects photons emitted by electronic transitions from occupied orbitals. Here, we demonstrate the utility of Kβ XES in probing Cu(I) sites in model complexes and a metalloprotein. Using Cu(I)Cl, emission features from double-ionization (DI) states are identified using varying incident X-ray photon energies, and a reasonable method to correct the data to remove DI contributions is presented. Kβ XES spectra of Cu(I) model complexes, having biologically relevant N/S ligands and different coordination numbers, are compared and analyzed, with the aid of density functional theory (DFT) calculations, to evaluate the sensitivity of the spectral features to the ligand environment. While the low-energy Kβ2,5 emission feature reflects the ionization energy of ligand np valence orbitals, the high-energy Kβ2,5 emission feature corresponds to transitions from molecular orbitals (MOs) having mainly Cu 3d character with the intensities determined by ligand-mediated d-p mixing. A Kβ XES spectrum of the Cu(I) site in preprocessed galactose oxidase (GOpre) supports the 1Tyr/2His structural model that was determined by our previous X-ray absorption spectroscopy and DFT study. The high-energy Kβ2,5 emission feature in the Cu(I)-GOpre data has information about the MO containing mostly Cu 3dx2-y2 character that is the frontier molecular orbital (FMO) for O2 activation, which shows the potential of Kβ XES in probing the Cu(I) FMO associated with small-molecule activation in metalloproteins.
Collapse
Affiliation(s)
- Hyeongtaek Lim
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael L Baker
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Ryan E Cowley
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Sunghee Kim
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Mayukh Bhadra
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Tsu-Chien Weng
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Dalia R Biswas
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - David M Dooley
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States.,University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Kenneth D Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Keith O Hodgson
- Department of Chemistry, Stanford University, Stanford, California 94305, United States.,Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States.,Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| |
Collapse
|
163
|
Construction of Synthetic Models for Nitrogenase-Relevant NifB Biogenesis Intermediates and Iron-Carbide-Sulfide Clusters. Catalysts 2020. [DOI: 10.3390/catal10111317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The family of nitrogenase enzymes catalyzes the reduction of atmospheric dinitrogen (N2) to ammonia under remarkably benign conditions of temperature, pressure, and pH. Therefore, the development of synthetic complexes or materials that can similarly perform this reaction is of critical interest. The primary obstacle for obtaining realistic synthetic models of the active site iron-sulfur-carbide cluster (e.g., FeMoco) is the incorporation of a truly inorganic carbide. This review summarizes the present state of knowledge regarding biological and chemical (synthetic) incorporation of carbide into iron-sulfur clusters. This includes the Nif cluster of proteins and associated biochemistry involved in the endogenous biogenesis of FeMoco. We focus on the chemical (synthetic) incorporation portion of our own efforts to incorporate and modify C1 units in iron/sulfur clusters. We also highlight recent contributions from other research groups in the area toward C1 and/or inorganic carbide insertion.
Collapse
|
164
|
Zheng J, Wu S, Lu L, Huang C, Ho PL, Kirkland A, Sudmeier T, Arrigo R, Gianolio D, Edman Tsang SC. Structural insight into [Fe-S 2-Mo] motif in electrochemical reduction of N 2 over Fe 1-supported molecular MoS 2. Chem Sci 2020; 12:688-695. [PMID: 34163801 PMCID: PMC8178972 DOI: 10.1039/d0sc04575f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The catalytic synthesis of NH3 from the thermodynamically challenging N2 reduction reaction under mild conditions is currently a significant problem for scientists. Accordingly, herein, we report the development of a nitrogenase-inspired inorganic-based chalcogenide system for the efficient electrochemical conversion of N2 to NH3, which is comprised of the basic structure of [Fe-S2-Mo]. This material showed high activity of 8.7 mgNH3 mgFe -1 h-1 (24 μgNH3 cm-2 h-1) with an excellent faradaic efficiency of 27% for the conversion of N2 to NH3 in aqueous medium. It was demonstrated that the Fe1 single atom on [Fe-S2-Mo] under the optimal negative potential favors the reduction of N2 to NH3 over the competitive proton reduction to H2. Operando X-ray absorption and simulations combined with theoretical DFT calculations provided the first and important insights on the particular electron-mediating and catalytic roles of the [Fe-S2-Mo] motifs and Fe1, respectively, on this two-dimensional (2D) molecular layer slab.
Collapse
Affiliation(s)
- Jianwei Zheng
- Wolfson Catalysis Centre, Department of Chemistry University of Oxford Oxford OX1 3QR UK
| | - Simson Wu
- Wolfson Catalysis Centre, Department of Chemistry University of Oxford Oxford OX1 3QR UK
| | - Lilin Lu
- College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology China
| | - Chen Huang
- Department of Materials, University of Oxford Oxford OX1 PH UK
| | - Ping-Luen Ho
- Wolfson Catalysis Centre, Department of Chemistry University of Oxford Oxford OX1 3QR UK
| | - Angus Kirkland
- Department of Materials, University of Oxford Oxford OX1 PH UK
| | - Tim Sudmeier
- Wolfson Catalysis Centre, Department of Chemistry University of Oxford Oxford OX1 3QR UK
| | - Rosa Arrigo
- Diamond Light Source Harwell Campus, Chilton Oxfordshire OX11 0DE UK.,School of Science, Engineering and Environment, University of Salford Manchester M5 4WT UK
| | - Diego Gianolio
- Diamond Light Source Harwell Campus, Chilton Oxfordshire OX11 0DE UK
| | - Shik Chi Edman Tsang
- Wolfson Catalysis Centre, Department of Chemistry University of Oxford Oxford OX1 3QR UK
| |
Collapse
|
165
|
Arnett CH, Bogacz I, Chatterjee R, Yano J, Oyala PH, Agapie T. Mixed-Valent Diiron μ-Carbyne, μ-Hydride Complexes: Implications for Nitrogenase. J Am Chem Soc 2020; 142:18795-18813. [PMID: 32976708 DOI: 10.1021/jacs.0c05920] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Binding of N2 by the FeMo-cofactor of nitrogenase is believed to occur after transfer of 4 e- and 4 H+ equivalents to the active site. Although pulse EPR studies indicate the presence of two Fe-(μ-H)-Fe moieties, the structural and electronic features of this mixed valent intermediate remain poorly understood. Toward an improved understanding of this bioorganometallic cluster, we report herein that diiron μ-carbyne complex (P6ArC)Fe2(μ-H) can be oxidized and reduced, allowing for the first time spectral characterization of two EPR-active Fe(μ-C)(μ-H)Fe model complexes linked by a 2 e- transfer which bear some resemblance to a pair of En and En+2 states of nitrogenase. Both species populate S = 1/2 states at low temperatures, and the influence of valence (de)localization on the spectroscopic signature of the μ-hydride ligand was evaluated by pulse EPR studies. Compared to analogous data for the {Fe2(μ-H)}2 state of FeMoco (E4(4H)), the data and analysis presented herein suggest that the hydride ligands in E4(4H) bridge isovalent (most probably FeIII) metal centers. Although electron transfer involves metal-localized orbitals, investigations of [(P6ArC)Fe2(μ-H)]+1 and [(P6ArC)Fe2(μ-H)]-1 by pulse EPR revealed that redox chemistry induces significant changes in Fe-C covalency (-50% upon 2 e- reduction), a conclusion further supported by X-ray absorption spectroscopy, 57Fe Mössbauer studies, and DFT calculations. Combined, our studies demonstrate that changes in covalency buffer against the accumulation of excess charge density on the metals by partially redistributing it to the bridging carbon, thereby facilitating multielectron transformations.
Collapse
Affiliation(s)
- Charles H Arnett
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Isabel Bogacz
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
166
|
Assignment of protonated R-homocitrate in extracted FeMo-cofactor of nitrogenase via vibrational circular dichroism spectroscopies. Commun Chem 2020; 3:145. [PMID: 34337161 PMCID: PMC8323615 DOI: 10.1038/s42004-020-00392-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Protonation of FeMo-cofactor is important for the process of substrate hydrogenation. Its structure has been clarified as Δ-Mo*Fe7S9C(R-homocit*)(cys)(Hhis) for the efforts of nearly 30 years, while it remains controversial whether FeMo-cofactor is protonated or deprotonated with chelated ≡C-O(H) homocitrate. We have used protonated molybdenum(V) lactates 1 and its enantiomer as model compounds for R-homocitrate in FeMo-cofactor of nitrogenase. Vibrational circular dichroism (VCD) spectrum of 1 at 1051 cm-1 is attributed to ≡C-OH vibration, and molybdenum(VI) R-lactate at 1086 cm-1 is assigned as ≡C-O α-alkoxy vibration. These vibrations set up labels for the protonation state of coordinated α-hydroxycarboxylates. The characteristic VCD band of NMF-extracted FeMo-cofactor is assigned to ν(C-OH), which is based on the comparison of molybdenum(VI) R-homocitrate. Density Functional Theory calculations are in consistent with these assignments. To the best of our knowledge, this is the first time that protonated R-homocitrate in FeMo-cofactor is confirmed by VCD spectra.
Collapse
|
167
|
Wang P, Douair I, Zhao Y, Wang S, Zhu J, Maron L, Zhu C. Facile Dinitrogen and Dioxygen Cleavage by a Uranium(III) Complex: Cooperativity Between the Non‐Innocent Ligand and the Uranium Center. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Penglong Wang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Iskander Douair
- LPCNO, CNRS & INSA Université Paul Sabatier 135 Avenue de Rangueil 31077 Toulouse France
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Laurent Maron
- LPCNO, CNRS & INSA Université Paul Sabatier 135 Avenue de Rangueil 31077 Toulouse France
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
168
|
Wang P, Douair I, Zhao Y, Wang S, Zhu J, Maron L, Zhu C. Facile Dinitrogen and Dioxygen Cleavage by a Uranium(III) Complex: Cooperativity Between the Non‐Innocent Ligand and the Uranium Center. Angew Chem Int Ed Engl 2020; 60:473-479. [DOI: 10.1002/anie.202012198] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Penglong Wang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Iskander Douair
- LPCNO, CNRS & INSA Université Paul Sabatier 135 Avenue de Rangueil 31077 Toulouse France
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Laurent Maron
- LPCNO, CNRS & INSA Université Paul Sabatier 135 Avenue de Rangueil 31077 Toulouse France
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
169
|
Bauer B, Bravyi S, Motta M, Chan GKL. Quantum Algorithms for Quantum Chemistry and Quantum Materials Science. Chem Rev 2020; 120:12685-12717. [DOI: 10.1021/acs.chemrev.9b00829] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Bela Bauer
- Microsoft Quantum, Station Q, University of California
, Santa Barbara, California 93106, United States
| | - Sergey Bravyi
- IBM Quantum, IBM T. J. Watson Research Center
, Yorktown Heights, New York 10598, United States
| | - Mario Motta
- IBM Quantum, IBM Research Almaden
, San Jose, California 95120, United States
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology
, Pasadena, California 91125, United States
| |
Collapse
|
170
|
Kondo M, Masaoka S. Pentanuclear Scaffold: A Molecular Platform for Small-Molecule Conversions. Acc Chem Res 2020; 53:2140-2151. [PMID: 32870647 DOI: 10.1021/acs.accounts.0c00186] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Small-molecule conversions involving multielectron transfer processes enable the conversion of earth-abundant materials into valuable chemicals and are regarded as a solution for environmental and energy shortage problems. In this context, the development of artificial catalysts that promote these reactions is an important research target. In nature, metalloenzymes that contain multinuclear metal complexes as active sites are known to efficiently catalyze reactions under mild conditions. Therefore, using multinuclear metal complexes as artificial catalysts can be an attractive strategy for small-molecule conversions involving multielectron transfer processes. However, multinuclear-metal-complex-based catalysts for these reactions have not been well established. In this Account, we describe our recent advances in the development of multinuclear metal complexes as catalysts for small-molecule conversion, mainly focusing on water oxidation. As small-molecule conversions involving multielectron transfer processes consists of two essential processes, (1) the transfer of multiple electrons and (2) the formation/cleavage of covalent bond(s), catalysts for these reactions should facilitate both steps. Therefore, we assumed that the assembly of redox-active metal ions and the cooperative effect of neighboring coordinatively unsaturated metal ions can promote these processes. On the basis of this assumption, we employed a pentanuclear metal complex as a molecular scaffold for the catalyst. The scaffold has a pentanuclear structure with quasi-D3 symmetry and consists of a [M3(μ3-X)] core (X = O2- or OH-) wrapped by two [M(μ-bpp)3] units (Hbpp = 3,5-bis(2-pyridyl)pyrazole). The metal ions in the triangular core are coordinatively unsaturated, whereas the metal ions at the apical positions are coordinatively saturated. In other words, the pentanuclear scaffold possesses multiple redox-active centers and coordinatively unsaturated sites. It should also be noted that the electron transfer ability of the complex changes dramatically depending on the identity of the constituent metal ions. The iron derivative of the pentanuclear scaffold was found to serve as an electrocatalyst for water oxidation (2H2O → O2 + 4e- + 4H+) with a high reaction rate and excellent robustness. The substitution of metal ions in the pentanuclear scaffold to cobalt ions resulted in the development of a catalyst for CO2 reduction. Furthermore, we investigated the effect of substituents on the ligands of the pentanuclear iron complex and succeeded in precisely manipulating the electron transfer possess. These results clearly demonstrate that the pentanuclear scaffold is an attractive platform for catalysts for small-molecule conversions. Additionally, the intrinsic features of the multinuclear catalytic system, which are totally different from those of conventional mononuclear-metal-complex-based catalysts, are disclosed. In reactions mediated by multinuclear complexes, the multinuclear core can initially accumulate the charge required for catalysis to reach the catalytically active state. Subsequently, the catalyst in the active state reacts with the substrate, initiating electron transfer to the substrate and rearrangement of covalent bonds in the substrate to afford the product. In such a mechanism, the desired number of electrons can be transferred to the substrates in an on-demand fashion, and the formation of undesired chemical species in the targeted catalysis may be prevented. This feature of multinuclear-metal-complex-based catalysts will achieve demanding small-molecule conversions with a high reaction rate, selectivity, and durability.
Collapse
Affiliation(s)
- Mio Kondo
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigeyuki Masaoka
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
171
|
Rohde M, Grunau K, Einsle O. Bindung von CO am FeV‐Cofaktor der CO‐reduzierenden Vanadium‐Nitrogenase bei atomarer Auflösung. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Michael Rohde
- Institut für Biochemie Fakultät für Chemie und Pharmazie Albert-Ludwigs-Universität Freiburg Albertstrasse 21 79104 Freiburg im Breisgau Deutschland
| | - Katharina Grunau
- Institut für Biochemie Fakultät für Chemie und Pharmazie Albert-Ludwigs-Universität Freiburg Albertstrasse 21 79104 Freiburg im Breisgau Deutschland
| | - Oliver Einsle
- Institut für Biochemie Fakultät für Chemie und Pharmazie Albert-Ludwigs-Universität Freiburg Albertstrasse 21 79104 Freiburg im Breisgau Deutschland
| |
Collapse
|
172
|
Pence N, Lewis N, Alleman AB, Seefeldt LC, Peters JW. Revealing a role for the G subunit in mediating interactions between the nitrogenase component proteins. J Inorg Biochem 2020; 214:111273. [PMID: 33086169 DOI: 10.1016/j.jinorgbio.2020.111273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/16/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Abstract
Azotobacter vinelandii contains three forms of nitrogenase known as the Mo-, V-, and Fe-nitrogenases. They are all two-component enzyme systems, where the catalytic component, referred to as NifDK, VnfDGK, and AnfDGK, associates with the reductase component, the Fe protein or NifH, VnfH, and AnfH respectively. AnfDGK and VnfDGK have an additional subunit compared to NifDK, termed gamma or AnfG and VnfG, whose role is unknown. The expression of each nitrogenase is tightly regulated by metal availability, however it is known that there is crosstalk between the Mo- and V‑nitrogenases but the Fe‑nitrogenase components cannot support substrate reduction with its Mo‑nitrogenase counterparts. Here, docking models for the nitrogenase complexes were generated in ClusPro 2.0 based on the crystal structure of the Mo‑nitrogenase and refined using the HADDOCK 2.2 refinement interface to identify structural determinants that enable crosstalk between the Mo- and V‑nitrogenase but not the Fe‑nitrogenase. Differing salt bridge interactions were identified at the binding interface of each complex. Specifically, positively charged residues of VnfG enable complementary interactions with NifH and VnfH but not AnfH. Similarly, negatively charged residues of AnfG enable interactions with AnfH but not NifH or VnfH. A role for the G subunit is revealed where VnfG could be mediating crosstalk between the Mo- and V‑nitrogenases while the AnfG subunit on AnfDGK makes interactions with NifH and VnfH unfavorable, reducing competition with NifDK and funneling electrons to the most efficient nitrogenase.
Collapse
Affiliation(s)
- Natasha Pence
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, United States of America; Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States of America
| | - Nathan Lewis
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, United States of America
| | - Alexander B Alleman
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, United States of America
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, United States of America
| | - John W Peters
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, United States of America.
| |
Collapse
|
173
|
Martin WF. Carbon-Metal Bonds: Rare and Primordial in Metabolism. Trends Biochem Sci 2020; 44:807-818. [PMID: 31104860 DOI: 10.1016/j.tibs.2019.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
Abstract
Submarine hydrothermal vents are rich in hydrogen (H2), an ancient source of electrons and chemical energy for life. Geochemical H2 stems from serpentinization, a process in which rock-bound iron reduces water to H2. Reactions involving H2 and carbon dioxide (CO2) in hydrothermal systems generate abiotic methane and formate; these reactions resemble the core energy metabolism of methanogens and acetogens. These organisms are strict anaerobic autotrophs that inhabit hydrothermal vents and harness energy via H2-dependent CO2 reduction. Serpentinization also generates native metals, which can reduce CO2 to formate and acetate in the laboratory. The enzymes that channel H2, CO2, and dinitrogen (N2) into methanogen and acetogen metabolism are the backbone of the most ancient metabolic pathways. Their active sites share carbon-metal bonds which, although rare in biology, are conserved relics of primordial biochemistry present at the origin of life.
Collapse
Affiliation(s)
- William F Martin
- Institute for Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
174
|
Jiang GD, Mou LH, Chen JJ, Li ZY, He SG. Reactivity of Neutral Tantalum Sulfide Clusters Ta 3S n ( n = 0-4) with N 2. J Phys Chem A 2020; 124:7749-7755. [PMID: 32840105 DOI: 10.1021/acs.jpca.0c06462] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nitrogen (N2) fixation is a challenging and vital issue in chemistry. Inspired by the fact that the active sites of nitrogenases are polynuclear metal sulfide clusters, the reactivity of gas-phase metal sulfide clusters toward N2 has received considerable attention to gain fundamental insights into nitrogen fixation. Herein, neutral tantalum sulfide clusters have been prepared and their reactivity toward N2 has been investigated by mass spectrometry in conjunction with density functional theory (DFT) calculations. The experimental results showed that Ta3Sn (n = 0-3) could adsorb N2, while Ta3S4 was inert to N2. The DFT calculations revealed that the complete cleavage of the N≡N bond on the trinuclear metal center in the Ta3S0-3/N2 reaction systems was overall barrierless under thermal collision conditions. The sulfur ligands can facilitate the approaching of N2 toward the metal center but weaken the electron-donating ability of the metal center. The inertness of Ta3S4 is ascribed to the electron-deficient state of Ta3 in Ta3S4 and the least effective orbital interaction in the Ta3S4/N2 couple. This study provides new insights into the ligand effect on the interaction of the metal clusters with N2.
Collapse
Affiliation(s)
- Gui-Duo Jiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Li-Hui Mou
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Zi-Yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
175
|
Lafuerza S, Carlantuono A, Retegan M, Glatzel P. Chemical Sensitivity of Kβ and Kα X-ray Emission from a Systematic Investigation of Iron Compounds. Inorg Chem 2020; 59:12518-12535. [PMID: 32830953 DOI: 10.1021/acs.inorgchem.0c01620] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
K-fluorescence X-ray emission spectroscopy (XES) is receiving growing interest in all fields of natural sciences to investigate the local spin. The spin sensitivity in Kβ (Kα) XES stems from the exchange interaction between the unpaired 3p (2p) and the 3d electrons, which is greater for Kβ than for Kα. We present a thorough investigation of a large number of iron-bearing compounds. The experimental spectra were analyzed in terms of commonly used quantitative parameters (Kβ1,3-first moment, Kα1-full width at half-maximum, and integrated absolute difference -IAD-), and we carefully examined the difference spectra. Multiplet calculations were also performed to elucidate the underlying mechanisms that lead to the chemical sensitivity. Our results confirm a strong influence of covalency on both Kβ and Kα lines. We establish a reliable spin sensitivity of Kβ XES as it is dominated by the exchange interaction, whose variations can be quantified by either Kβ1,3-first moment or Kβ-IAD and result in a systematic difference signal line shape. We find an exception in the Kβ XES of Fe3+ and Fe2+ in water solution, where a new difference spectrum is identified that cannot be reproduced by scaling the exchange integrals. We explain this by strong differences in orbital mixing between the valence orbitals. This result calls for caution in the interpretation of Kβ XES spectral changes as due to spin variations without a careful analysis of the line shape. For Kα XES, the smaller exchange interaction and the influence of other electron-electron interactions make it difficult to extract a quantity that directly relates to the spin.
Collapse
Affiliation(s)
- Sara Lafuerza
- ESRF-The European Synchrotron, 71, Avenue des Martyrs, Grenoble, France
| | - Andrea Carlantuono
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Marius Retegan
- ESRF-The European Synchrotron, 71, Avenue des Martyrs, Grenoble, France
| | - Pieter Glatzel
- ESRF-The European Synchrotron, 71, Avenue des Martyrs, Grenoble, France
| |
Collapse
|
176
|
Xin X, Douair I, Zhao Y, Wang S, Maron L, Zhu C. Dinitrogen Cleavage by a Heterometallic Cluster Featuring Multiple Uranium–Rhodium Bonds. J Am Chem Soc 2020; 142:15004-15011. [DOI: 10.1021/jacs.0c05788] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiaoqing Xin
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Iskander Douair
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
177
|
Castillo RG, Henthorn JT, McGale J, Maganas D, DeBeer S. Kβ X-Ray Emission Spectroscopic Study of a Second-Row Transition Metal (Mo) and Its Application to Nitrogenase-Related Model Complexes. Angew Chem Int Ed Engl 2020; 59:12965-12975. [PMID: 32363668 PMCID: PMC7496169 DOI: 10.1002/anie.202003621] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Indexed: 01/03/2023]
Abstract
In recent years, X-ray emission spectroscopy (XES) in the Kβ (3p-1s) and valence-to-core (valence-1s) regions has been increasingly used to study metal active sites in (bio)inorganic chemistry and catalysis, providing information about the metal spin state, oxidation state and the identity of coordinated ligands. However, to date this technique has been limited almost exclusively to first-row transition metals. In this work, we present an extension of Kβ XES (in both the 4p-1s and valence-to-1s [or VtC] regions) to the second transition row by performing a detailed experimental and theoretical analysis of the molybdenum emission lines. It is demonstrated in this work that Kβ2 lines are dominated by spin state effects, while VtC XES of a 4d transition metal provides access to metal oxidation state and ligand identity. An extension of Mo Kβ XES to nitrogenase-relevant model complexes shows that the method is sufficiently sensitive to act as a spectator probe for redox events that are localized at the Fe atoms. Mo VtC XES thus has promise for future applications to nitrogenase, as well as a range of other Mo-containing biological cofactors. Further, the clear assignment of the origins of Mo VtC XES features opens up the possibility of applying this method to a wide range of second-row transition metals, thus providing chemists with a site-specific tool for the elucidation of 4d transition metal electronic structure.
Collapse
Affiliation(s)
- Rebeca G. Castillo
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Justin T. Henthorn
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Jeremy McGale
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Dimitrios Maganas
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Serena DeBeer
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| |
Collapse
|
178
|
Castillo RG, Henthorn JT, McGale J, Maganas D, DeBeer S. Kβ X‐Ray Emission Spectroscopic Study of a Second‐Row Transition Metal (Mo) and Its Application to Nitrogenase‐Related Model Complexes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rebeca G. Castillo
- Department of Inorganic Spectroscopy Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Justin T. Henthorn
- Department of Inorganic Spectroscopy Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Jeremy McGale
- Department of Inorganic Spectroscopy Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Dimitrios Maganas
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Serena DeBeer
- Department of Inorganic Spectroscopy Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
179
|
Reiners M, Baabe D, Münster K, Zaretzke MK, Freytag M, Jones PG, Coppel Y, Bontemps S, Rosal ID, Maron L, Walter MD. NH 3 formation from N 2 and H 2 mediated by molecular tri-iron complexes. Nat Chem 2020; 12:740-746. [PMID: 32601410 DOI: 10.1038/s41557-020-0483-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 05/05/2020] [Indexed: 01/27/2023]
Abstract
Living systems carry out the reduction of N2 to ammonia (NH3) through a series of protonation and electron transfer steps under ambient conditions using the enzyme nitrogenase. In the chemical industry, the Haber-Bosch process hydrogenates N2 but requires high temperatures and pressures. Both processes rely on iron-based catalysts, but molecular iron complexes that promote the formation of NH3 on addition of H2 to N2 have remained difficult to devise. Here, we isolate the tri(iron)bis(nitrido) complex [(Cp'Fe)3(μ3-N)2] (in which Cp' = η5-1,2,4-(Me3C)3C5H2), which is prepared by reduction of [Cp'Fe(μ-I)]2 under an N2 atmosphere and comprises three iron centres bridged by two μ3-nitrido ligands. In solution, this complex reacts with H2 at ambient temperature (22 °C) and low pressure (1 or 4 bar) to form NH3. In the solid state, it is converted into the tri(iron)bis(imido) species, [(Cp'Fe)3(μ3-NH)2], by addition of H2 (10 bar) through an unusual solid-gas, single-crystal-to-single-crystal transformation. In solution, [(Cp'Fe)3(μ3-NH)2] further reacts with H2 or H+ to form NH3.
Collapse
Affiliation(s)
- Matthias Reiners
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Braunschweig, Germany
| | - Dirk Baabe
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Braunschweig, Germany
| | - Katharina Münster
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Braunschweig, Germany
| | - Marc-Kevin Zaretzke
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Braunschweig, Germany
| | - Matthias Freytag
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Braunschweig, Germany
| | - Peter G Jones
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Braunschweig, Germany
| | - Yannick Coppel
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Toulouse, France
| | - Sébastien Bontemps
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Toulouse, France
| | - Iker Del Rosal
- Université de Toulouse, INSA-UPS-LPCNO and CNRS-LPCNO, Toulouse, France
| | - Laurent Maron
- Université de Toulouse, INSA-UPS-LPCNO and CNRS-LPCNO, Toulouse, France
| | - Marc D Walter
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Braunschweig, Germany.
| |
Collapse
|
180
|
Burén S, Jiménez-Vicente E, Echavarri-Erasun C, Rubio LM. Biosynthesis of Nitrogenase Cofactors. Chem Rev 2020; 120:4921-4968. [PMID: 31975585 PMCID: PMC7318056 DOI: 10.1021/acs.chemrev.9b00489] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Indexed: 12/30/2022]
Abstract
Nitrogenase harbors three distinct metal prosthetic groups that are required for its activity. The simplest one is a [4Fe-4S] cluster located at the Fe protein nitrogenase component. The MoFe protein component carries an [8Fe-7S] group called P-cluster and a [7Fe-9S-C-Mo-R-homocitrate] group called FeMo-co. Formation of nitrogenase metalloclusters requires the participation of the structural nitrogenase components and many accessory proteins, and occurs both in situ, for the P-cluster, and in external assembly sites for FeMo-co. The biosynthesis of FeMo-co is performed stepwise and involves molecular scaffolds, metallochaperones, radical chemistry, and novel and unique biosynthetic intermediates. This review provides a critical overview of discoveries on nitrogenase cofactor structure, function, and activity over the last four decades.
Collapse
Affiliation(s)
- Stefan Burén
- Centro
de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto
Nacional de Investigación y Tecnología Agraria
y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Emilio Jiménez-Vicente
- Department
of Biochemistry, Virginia Polytechnic Institute, Blacksburg, Virginia 24061, United States
| | - Carlos Echavarri-Erasun
- Centro
de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto
Nacional de Investigación y Tecnología Agraria
y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Luis M. Rubio
- Centro
de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto
Nacional de Investigación y Tecnología Agraria
y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
181
|
Abstract
Nitrogenase is the only enzyme capable of reducing N2 to NH3. This challenging reaction requires the coordinated transfer of multiple electrons from the reductase, Fe-protein, to the catalytic component, MoFe-protein, in an ATP-dependent fashion. In the last two decades, there have been significant advances in our understanding of how nitrogenase orchestrates electron transfer (ET) from the Fe-protein to the catalytic site of MoFe-protein and how energy from ATP hydrolysis transduces the ET processes. In this review, we summarize these advances, with focus on the structural and thermodynamic redox properties of nitrogenase component proteins and their complexes, as well as on new insights regarding the mechanism of ET reactions during catalysis and how they are coupled to ATP hydrolysis. We also discuss recently developed chemical, photochemical, and electrochemical methods for uncoupling substrate reduction from ATP hydrolysis, which may provide new avenues for studying the catalytic mechanism of nitrogenase.
Collapse
Affiliation(s)
- Hannah L Rutledge
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
182
|
Jasniewski AJ, Lee CC, Ribbe MW, Hu Y. Reactivity, Mechanism, and Assembly of the Alternative Nitrogenases. Chem Rev 2020; 120:5107-5157. [PMID: 32129988 PMCID: PMC7491575 DOI: 10.1021/acs.chemrev.9b00704] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biological nitrogen fixation is catalyzed by the enzyme nitrogenase, which facilitates the cleavage of the relatively inert triple bond of N2. Nitrogenase is most commonly associated with the molybdenum-iron cofactor called FeMoco or the M-cluster, and it has been the subject of extensive structural and spectroscopic characterization over the past 60 years. In the late 1980s and early 1990s, two "alternative nitrogenase" systems were discovered, isolated, and found to incorporate V or Fe in place of Mo. These systems are regulated by separate gene clusters; however, there is a high degree of structural and functional similarity between each nitrogenase. Limited studies with the V- and Fe-nitrogenases initially demonstrated that these enzymes were analogously active as the Mo-nitrogenase, but more recent investigations have found capabilities that are unique to the alternative systems. In this review, we will discuss the reactivity, biosynthetic, and mechanistic proposals for the alternative nitrogenases as well as their electronic and structural properties in comparison to the well-characterized Mo-dependent system. Studies over the past 10 years have been particularly fruitful, though key aspects about V- and Fe-nitrogenases remain unexplored.
Collapse
Affiliation(s)
- Andrew J Jasniewski
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Markus W Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| |
Collapse
|
183
|
Van Stappen C, Decamps L, Cutsail GE, Bjornsson R, Henthorn JT, Birrell JA, DeBeer S. The Spectroscopy of Nitrogenases. Chem Rev 2020; 120:5005-5081. [PMID: 32237739 PMCID: PMC7318057 DOI: 10.1021/acs.chemrev.9b00650] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Indexed: 01/08/2023]
Abstract
Nitrogenases are responsible for biological nitrogen fixation, a crucial step in the biogeochemical nitrogen cycle. These enzymes utilize a two-component protein system and a series of iron-sulfur clusters to perform this reaction, culminating at the FeMco active site (M = Mo, V, Fe), which is capable of binding and reducing N2 to 2NH3. In this review, we summarize how different spectroscopic approaches have shed light on various aspects of these enzymes, including their structure, mechanism, alternative reactivity, and maturation. Synthetic model chemistry and theory have also played significant roles in developing our present understanding of these systems and are discussed in the context of their contributions to interpreting the nature of nitrogenases. Despite years of significant progress, there is still much to be learned from these enzymes through spectroscopic means, and we highlight where further spectroscopic investigations are needed.
Collapse
Affiliation(s)
- Casey Van Stappen
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Laure Decamps
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - George E. Cutsail
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Ragnar Bjornsson
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Justin T. Henthorn
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - James A. Birrell
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
184
|
Lv ZJ, Wei J, Zhang WX, Chen P, Deng D, Shi ZJ, Xi Z. Direct transformation of dinitrogen: synthesis of N-containing organic compounds via N−C bond formation. Natl Sci Rev 2020; 7:1564-1583. [PMID: 34691489 PMCID: PMC8288816 DOI: 10.1093/nsr/nwaa142] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/21/2020] [Accepted: 06/21/2020] [Indexed: 01/08/2023] Open
Abstract
N-containing organic compounds are of vital importance to lives. Practical synthesis of valuable N-containing organic compounds directly from dinitrogen (N2), not through ammonia (NH3), is a holy-grail in chemistry and chemical industry. An essential step for this transformation is the functionalization of the activated N2 units/ligands to generate N−C bonds. Pioneering works of transition metal-mediated direct conversion of N2 into organic compounds via N−C bond formation at metal-dinitrogen [N2-M] complexes have generated diversified coordination modes and laid the foundation of understanding for the N−C bond formation mechanism. This review summarizes those major achievements and is organized by the coordination modes of the [N2-M] complexes (end-on, side-on, end-on-side-on, etc.) that are involved in the N−C bond formation steps, and each part is arranged in terms of reaction types (N-alkylation, N-acylation, cycloaddition, insertion, etc.) between [N2-M] complexes and carbon-based substrates. Additionally, earlier works on one-pot synthesis of organic compounds from N2 via ill-defined intermediates are also briefed. Although almost all of the syntheses of N-containing organic compounds via direct transformation of N2 so far in the literature are realized in homogeneous stoichiometric thermochemical reaction systems and are discussed here in detail, the sporadically reported syntheses involving photochemical, electrochemical, heterogeneous thermo-catalytic reactions, if any, are also mentioned. This review aims to provide readers with an in-depth understanding of the state-of-the-art and perspectives of future research particularly in direct catalytic and efficient conversion of N2 into N-containing organic compounds under mild conditions, and to stimulate more research efforts to tackle this long-standing and grand scientific challenge.
Collapse
Affiliation(s)
- Ze-Jie Lv
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Ping Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dehui Deng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhang-Jie Shi
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Zhenfeng Xi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
185
|
Holden WM, Jahrman EP, Govind N, Seidler GT. Probing Sulfur Chemical and Electronic Structure with Experimental Observation and Quantitative Theoretical Prediction of Kα and Valence-to-Core Kβ X-ray Emission Spectroscopy. J Phys Chem A 2020; 124:5415-5434. [PMID: 32486638 DOI: 10.1021/acs.jpca.0c04195] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An extensive experimental and theoretical study of the Kα and Kβ high-resolution X-ray emission spectroscopy (XES) of sulfur-bearing systems is presented. This study encompasses a wide range of organic and inorganic compounds, including numerous experimental spectra from both prior published work and new measurements. Employing a linear-response time-dependent density functional theory (LR-TDDFT) approach, strong quantitative agreement is found in the calculation of energy shifts of the core-to-core Kα as well as the full range of spectral features in the valence-to-core Kβ spectrum. The ability to accurately calculate the sulfur Kα energy shift supports the use of sulfur Kα XES as a bulk-sensitive tool for assessing sulfur speciation. The fine structure of the sulfur Kβ spectrum, in conjunction with the theoretical results, is shown to be sensitive to the local electronic structure including effects of symmetry, ligand type and number, and, in the case of organosulfur compounds, to the nature of the bonded organic moiety. This agreement between theory and experiment, augmented by the potential for high-access XES measurements with the latest generation of laboratory-based spectrometers, demonstrates the possibility of broad analytical use of XES for sulfur and nearby third-row elements. The effective solution of the forward problem, i.e., successful prediction of detailed spectra from known molecular structure, also suggests future use of supervised machine learning approaches to experimental inference, as has seen recent interest for interpretation of X-ray absorption near-edge structure (XANES).
Collapse
Affiliation(s)
- William M Holden
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Evan P Jahrman
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Niranjan Govind
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Gerald T Seidler
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
186
|
Abstract
The nitrogenase superfamily comprises homologous enzyme systems that carry out fundamentally important processes, including the reduction of N2 and CO, and the biosynthesis of bacteriochlorophyll and coenzyme F430. This special issue provides a cross-disciplinary overview of the ongoing research in this highly diverse and unique research area of metalloprotein biochemistry.
Collapse
Affiliation(s)
- Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697-3900, USA
| | - Markus W Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697-3900, USA
- Department Chemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA
| |
Collapse
|
187
|
Affiliation(s)
- Oliver Einsle
- Institute for Biochemistry, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Douglas C. Rees
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena California 91125, United States
| |
Collapse
|
188
|
Neese F, Wennmohs F, Becker U, Riplinger C. The ORCA quantum chemistry program package. J Chem Phys 2020; 152:224108. [DOI: 10.1063/5.0004608] [Citation(s) in RCA: 2072] [Impact Index Per Article: 414.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Frank Neese
- Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany
- FAccTs GmbH, Rolandstr. 67, 50677 Köln, Germany
| | - Frank Wennmohs
- Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Ute Becker
- Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | | |
Collapse
|
189
|
Tanifuji K, Ohki Y. Metal–Sulfur Compounds in N2 Reduction and Nitrogenase-Related Chemistry. Chem Rev 2020; 120:5194-5251. [DOI: 10.1021/acs.chemrev.9b00544] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kazuki Tanifuji
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Yasuhiro Ohki
- Department of Chemsitry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
190
|
Qing G, Ghazfar R, Jackowski ST, Habibzadeh F, Ashtiani MM, Chen CP, Smith MR, Hamann TW. Recent Advances and Challenges of Electrocatalytic N2 Reduction to Ammonia. Chem Rev 2020; 120:5437-5516. [DOI: 10.1021/acs.chemrev.9b00659] [Citation(s) in RCA: 370] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Geletu Qing
- Department of Chemistry, Michigan State University 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Reza Ghazfar
- Department of Chemistry, Michigan State University 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Shane T. Jackowski
- Department of Chemistry, Michigan State University 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Faezeh Habibzadeh
- Department of Chemistry, Michigan State University 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Mona Maleka Ashtiani
- Department of Chemistry, Michigan State University 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Chuan-Pin Chen
- Department of Chemistry, Michigan State University 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Milton R. Smith
- Department of Chemistry, Michigan State University 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Thomas W. Hamann
- Department of Chemistry, Michigan State University 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
191
|
Miyagawa K, Shoji M, Isobe H, Yamanaka S, Kawakami T, Okumura M, Yamaguchi K. Theory of chemical bonds in metalloenzymes XXIV electronic and spin structures of FeMoco and Fe-S clusters by classical and quantum computing. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1760388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Koichi Miyagawa
- The Institute for Scientific and Industrial Research, Osaka University, Ibaraki, Japan
| | - Mitsuo Shoji
- Center of Computational Sciences, Tsukuba University, Tsukuba, Japan
| | - Hiroshi Isobe
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Shusuke Yamanaka
- Graduate School of Science, Osaka University, Toyonaka, Japan
- Division of Quantum Information and Quantum Biology (QIQB), Osaka University, Toyonaka, Japan
| | - Takashi Kawakami
- Graduate School of Science, Osaka University, Toyonaka, Japan
- RIKEN Center for Computational Science, Kobe, Japan
| | | | - Kizashi Yamaguchi
- The Institute for Scientific and Industrial Research, Osaka University, Ibaraki, Japan
- Division of Quantum Information and Quantum Biology (QIQB), Osaka University, Toyonaka, Japan
- RIKEN Center for Computational Science, Kobe, Japan
- Institute for Nanoscience Design, Osaka University, Toyonaka, Japan
| |
Collapse
|
192
|
Levin N, Peredkov S, Weyhermüller T, Rüdiger O, Pereira NB, Grötzsch D, Kalinko A, DeBeer S. Ruthenium 4d-to-2p X-ray Emission Spectroscopy: A Simultaneous Probe of the Metal and the Bound Ligands. Inorg Chem 2020; 59:8272-8283. [PMID: 32390417 PMCID: PMC7298721 DOI: 10.1021/acs.inorgchem.0c00663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Ruthenium 4d-to-2p
X-ray emission spectroscopy (XES) was systematically
explored for a series of Ru2+ and Ru3+ species.
Complementary density functional theory calculations were utilized
to allow for a detailed assignment of the experimental spectra. The
studied complexes have a range of different coordination spheres,
which allows the influence of the ligand donor/acceptor properties
on the spectra to be assessed. Similarly, the contributions of the
site symmetry and the oxidation state of the metal were analyzed.
Because the 4d-to-2p emission lines are dipole-allowed, the spectral
features are intense. Furthermore, in contrast with K- or L-edge X-ray
absorption of 4d transition metals, which probe the unoccupied levels,
the observed 4p-to-2p XES arises from electrons in filled-ligand-
and filled-metal-based orbitals, thus providing simultaneous access
to the ligand and metal contributions to bonding. As such, 4d-to-2p
XES should be a promising tool for the study of a wide range of 4d
transition-metal compounds. Ruthenium 4d-to-2p
XES was applied to a series of molecular
Ru complexes with varied coordination environment, oxidation state
and site symmetry. Through correlations to calculations, it is demonstrated
the Ru 4d-to-2p XES provides a unique probe of both the filled ligand np and filled metal 4d orbitals, providing a promising new
tool for the study of a wide range of 4d transition metals.
Collapse
Affiliation(s)
- Natalia Levin
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Sergey Peredkov
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Thomas Weyhermüller
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Nilson B Pereira
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Daniel Grötzsch
- Institut für Optik und Atomare Physik (IOAP), TU-Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Aleksandr Kalinko
- Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany.,DESY Photon Science, Notkestrasse 85, 22603 Hamburg, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
193
|
Synthesis, spectral and structural characterization of vanadium lactate, malate and citrate with large counter cation. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
194
|
Jin WT, Yang M, Zhu SS, Zhou ZH. Bond-valence analyses of the crystal structures of FeMo/V cofactors in FeMo/V proteins. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:428-437. [PMID: 32355039 DOI: 10.1107/s2059798320003952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/18/2020] [Indexed: 12/15/2022]
Abstract
The bond-valence method has been used for valence calculations of FeMo/V cofactors in FeMo/V proteins using 51 crystallographic data sets of FeMo/V proteins from the Protein Data Bank. The calculations show molybdenum(III) to be present in MoFe7S9C(Cys)(HHis)[R-(H)homocit] (where H4homocit is homocitric acid, HCys is cysteine and HHis is histidine) in FeMo cofactors, while vanadium(III) with a more reduced iron complement is obtained for FeV cofactors. Using an error analysis of the calculated valences, it was found that in FeMo cofactors Fe1, Fe6 and Fe7 can be unambiguously assigned as iron(III), while Fe2, Fe3, Fe4 and Fe5 show different degrees of mixed valences for the individual Fe atoms. For the FeV cofactors in PDB entry 5n6y, Fe4, Fe5 and Fe6 correspond to iron(II), iron(II) and iron(III), respectively, while Fe1, Fe2, Fe3 and Fe7 exhibit strongly mixed valences. Special situations such as CO-bound and selenium-substituted FeMo cofactors and O(N)H-bridged FeV cofactors are also discussed and suggest rearrangement of the electron configuration on the substitution of the bridging S atoms.
Collapse
Affiliation(s)
- Wan Ting Jin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Min Yang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Shuang Shuang Zhu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Zhao Hui Zhou
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
195
|
Yin H, Dou Y, Chen S, Zhu Z, Liu P, Zhao H. 2D Electrocatalysts for Converting Earth-Abundant Simple Molecules into Value-Added Commodity Chemicals: Recent Progress and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904870. [PMID: 31573704 DOI: 10.1002/adma.201904870] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/05/2019] [Indexed: 06/10/2023]
Abstract
The electrocatalytic conversion of earth-abundant simple molecules into value-added commodity chemicals can transform current chemical production regimes with enormous socioeconomic and environmental benefits. For these applications, 2D electrocatalysts have emerged as a new class of high-performance electrocatalyst with massive forward-looking potential. Recent advances in 2D electrocatalysts are reviewed for emerging applications that utilize naturally existing H2 O, N2 , O2 , Cl- (seawater) and CH4 (natural gas) as reactants for nitrogen reduction (N2 → NH3 ), two-electron oxygen reduction (O2 → H2 O2 ), chlorine evolution (Cl- → Cl2 ), and methane partial oxidation (CH4 → CH3 OH) reactions to generate NH3 , H2 O2 , Cl2 , and CH3 OH. The unique 2D features and effective approaches that take advantage of such features to create high-performance 2D electrocatalysts are articulated with emphasis. To benefit the readers and expedite future progress, the challenges facing the future development of 2D electrocatalysts for each of the above reactions and the related perspectives are provided.
Collapse
Affiliation(s)
- Huajie Yin
- Centre for Clean Environment and Energy, Griffith University, Southport, Queensland, 4222, Australia
| | - Yuhai Dou
- Centre for Clean Environment and Energy, Griffith University, Southport, Queensland, 4222, Australia
| | - Shan Chen
- Centre for Clean Environment and Energy, Griffith University, Southport, Queensland, 4222, Australia
| | - Zhengju Zhu
- Centre for Clean Environment and Energy, Griffith University, Southport, Queensland, 4222, Australia
| | - Porun Liu
- Centre for Clean Environment and Energy, Griffith University, Southport, Queensland, 4222, Australia
| | - Huijun Zhao
- Centre for Clean Environment and Energy, Griffith University, Southport, Queensland, 4222, Australia
- Centre for Environmental and Energy Nanomaterials, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| |
Collapse
|
196
|
Chalkley MJ, Drover MW, Peters JC. Catalytic N 2-to-NH 3 (or -N 2H 4) Conversion by Well-Defined Molecular Coordination Complexes. Chem Rev 2020; 120:5582-5636. [PMID: 32352271 DOI: 10.1021/acs.chemrev.9b00638] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nitrogen fixation, the six-electron/six-proton reduction of N2, to give NH3, is one of the most challenging and important chemical transformations. Notwithstanding the barriers associated with this reaction, significant progress has been made in developing molecular complexes that reduce N2 into its bioavailable form, NH3. This progress is driven by the dual aims of better understanding biological nitrogenases and improving upon industrial nitrogen fixation. In this review, we highlight both mechanistic understanding of nitrogen fixation that has been developed, as well as advances in yields, efficiencies, and rates that make molecular alternatives to nitrogen fixation increasingly appealing. We begin with a historical discussion of N2 functionalization chemistry that traverses a timeline of events leading up to the discovery of the first bona fide molecular catalyst system and follow with a comprehensive overview of d-block compounds that have been targeted as catalysts up to and including 2019. We end with a summary of lessons learned from this significant research effort and last offer a discussion of key remaining challenges in the field.
Collapse
Affiliation(s)
- Matthew J Chalkley
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Marcus W Drover
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
197
|
Abstract
As the only enzyme currently known to reduce dinitrogen (N2) to ammonia (NH3), nitrogenase is of significant interest for bio-inspired catalyst design and for new biotechnologies aiming to produce NH3 from N2. In order to reduce N2, nitrogenase must also hydrolyze at least 16 equivalents of adenosine triphosphate (MgATP), representing the consumption of a significant quantity of energy available to biological systems. Here, we review natural and engineered electron transfer pathways to nitrogenase, including strategies to redirect or redistribute electron flow in vivo towards NH3 production. Further, we also review strategies to artificially reduce nitrogenase in vitro, where MgATP hydrolysis is necessary for turnover, in addition to strategies that are capable of bypassing the requirement of MgATP hydrolysis to achieve MgATP-independent N2 reduction.
Collapse
|
198
|
Solomon JB, Lee CC, Jasniewski AJ, Rasekh MF, Ribbe MW, Hu Y. Heterologous Expression and Engineering of the Nitrogenase Cofactor Biosynthesis Scaffold NifEN. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Joseph B. Solomon
- Department of Molecular Biology & Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
- Department Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| | - Chi Chung Lee
- Department of Molecular Biology & Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
| | - Andrew J. Jasniewski
- Department of Molecular Biology & Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
| | - Mahtab F. Rasekh
- Department of Molecular Biology & Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
- Department Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| | - Markus W. Ribbe
- Department of Molecular Biology & Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
- Department Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| | - Yilin Hu
- Department of Molecular Biology & Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
| |
Collapse
|
199
|
Arnett CH, Agapie T. Activation of an Open Shell, Carbyne-Bridged Diiron Complex Toward Binding of Dinitrogen. J Am Chem Soc 2020; 142:10059-10068. [DOI: 10.1021/jacs.0c01896] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Charles H. Arnett
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
200
|
Rettberg LA, Wilcoxen J, Jasniewski AJ, Lee CC, Tanifuji K, Hu Y, Britt RD, Ribbe MW. Identity and function of an essential nitrogen ligand of the nitrogenase cofactor biosynthesis protein NifB. Nat Commun 2020; 11:1757. [PMID: 32273505 PMCID: PMC7145814 DOI: 10.1038/s41467-020-15627-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/19/2020] [Indexed: 01/24/2023] Open
Abstract
NifB is a radical S-adenosyl-L-methionine (SAM) enzyme that is essential for nitrogenase cofactor assembly. Previously, a nitrogen ligand was shown to be involved in coupling a pair of [Fe4S4] clusters (designated K1 and K2) concomitant with carbide insertion into an [Fe8S9C] cofactor core (designated L) on NifB. However, the identity and function of this ligand remain elusive. Here, we use combined mutagenesis and pulse electron paramagnetic resonance analyses to establish histidine-43 of Methanosarcina acetivorans NifB (MaNifB) as the nitrogen ligand for K1. Biochemical and continuous wave electron paramagnetic resonance data demonstrate the inability of MaNifB to serve as a source for cofactor maturation upon substitution of histidine-43 with alanine; whereas x-ray absorption spectroscopy/extended x-ray fine structure experiments further suggest formation of an intermediate that lacks the cofactor core arrangement in this MaNifB variant. These results point to dual functions of histidine-43 in structurally assisting the proper coupling between K1 and K2 and concurrently facilitating carbide formation via deprotonation of the initial carbon radical. NifB is a radical SAM enzyme involved in the biosynthesis of the Mo-nitrogenase cofactor, which is responsible for the ambient conversion of N2 to NH3. Here, the authors identify and uncover the function of a His43 residue as an essential nitrogen ligand of NifB in cofactor biosynthesis.
Collapse
Affiliation(s)
- Lee A Rettberg
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3900, USA
| | - Jarett Wilcoxen
- Department of Chemistry, University of California, Davis, CA, 95695, USA.,Department of Chemistry and Biochemistry, University of Wisconsin, Milwaukee, WI, 53211, USA
| | - Andrew J Jasniewski
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3900, USA
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3900, USA
| | - Kazuki Tanifuji
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3900, USA
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3900, USA.
| | - R David Britt
- Department of Chemistry, University of California, Davis, CA, 95695, USA.
| | - Markus W Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3900, USA. .,Department of Chemistry, University of California, Irvine, CA, 92697-2025, USA.
| |
Collapse
|