151
|
Gerlach JP, Emmink BL, Nojima H, Kranenburg O, Maurice MM. Wnt signalling induces accumulation of phosphorylated β-catenin in two distinct cytosolic complexes. Open Biol 2015; 4:140120. [PMID: 25392450 PMCID: PMC4248064 DOI: 10.1098/rsob.140120] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Wnt/β-catenin signalling controls development and adult tissue homeostasis and causes cancer when inappropriately activated. In unstimulated cells, an Axin1-centred multi-protein complex phosphorylates the transcriptional co-activator β-catenin, marking it for degradation. Wnt signalling antagonizes β-catenin proteolysis, leading to its accumulation and target gene expression. How Wnt stimulation alters the size distribution, composition and activity of endogenous Axin1 complexes remains poorly understood. Here, we employed two-dimensional blue native/SDS-PAGE to analyse endogenous Axin1 and β-catenin complexes during Wnt signalling. We show that the size range of Axin1 complexes is conserved between species and remains largely unaffected by Wnt stimulation. We detect a striking Wnt-dependent, cytosolic accumulation of both non-phosphorylated and phosphorylated β-catenin within a 450 kDa Axin1-based complex and in a distinct, Axin1-free complex of 200 kDa. These results argue that during Wnt stimulation, phosphorylated β-catenin is released from the Axin1 complex but fails to undergo immediate degradation. Importantly, in APC-mutant cancer cells, the distribution of Axin1 and β-catenin complexes strongly resembles that of Wnt-stimulated cells. Our findings argue that Wnt signals and APC mutations interfere with the turnover of phosphorylated β-catenin. Furthermore, our results suggest that the accumulation of small-sized β-catenin complexes may serve as an indicator of Wnt pathway activity in primary cancer cells.
Collapse
Affiliation(s)
- Jan P Gerlach
- Department of Cell Biology, Center for Molecular Medicine, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - Benjamin L Emmink
- Department of Surgery, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - Hisashi Nojima
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Onno Kranenburg
- Department of Surgery, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - Madelon M Maurice
- Department of Cell Biology, Center for Molecular Medicine, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| |
Collapse
|
152
|
Kim M, Jho EH. Cross-talk between Wnt/β-catenin and Hippo signaling pathways: a brief review. BMB Rep 2015; 47:540-5. [PMID: 25154721 PMCID: PMC4261510 DOI: 10.5483/bmbrep.2014.47.10.177] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Indexed: 01/13/2023] Open
Abstract
Department of Life Science, The University of Seoul, Seoul 130-743, Korea Balanced cell growth is crucial in animal development as well as tissue homeostasis. Concerted cross-regulation of multiple signaling pathways is essential for those purposes, and the dysregulation of signaling may lead to a variety of human diseases such as cancer. The time-honored Wnt/β-catenin and recently identified Hippo signaling pathways are evolutionarily conserved in both Drosophila and mammals, and are generally considered as having positive and negative roles in cell proliferation, respectively. While most mainstream regulators of the Wnt/β-catenin signaling pathway have been fairly well identified, the regulators of the Hippo pathway need to be more defined. The Hippo pathway controls organ size primarily by regulating cell contact inhibition. Recently, several crossregulations occurring between the Wnt/β-catenin and Hippo signaling pathways were determined through biochemical and genetic approaches. In the present mini-review, we mainly discuss the signal transduction mechanism of the Hippo signaling pathway, along with cross-talk between the regulators of the Wnt/β-catenin and Hippo signaling pathways. [BMB Reports 2014; 47(10): 540-545]
Collapse
Affiliation(s)
- Minseong Kim
- Department of Life Science, The University of Seoul, Seoul 130-743, Korea
| | - Eek-Hoon Jho
- Department of Life Science, The University of Seoul, Seoul 130-743, Korea
| |
Collapse
|
153
|
Selamat W, Tay PLF, Baskaran Y, Manser E. The Cdc42 Effector Kinase PAK4 Localizes to Cell-Cell Junctions and Contributes to Establishing Cell Polarity. PLoS One 2015; 10:e0129634. [PMID: 26068882 PMCID: PMC4466050 DOI: 10.1371/journal.pone.0129634] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 05/11/2015] [Indexed: 01/22/2023] Open
Abstract
The serine/threonine kinase PAK4 is a Cdc42 effector whose role is not well understood; overexpression of PAK4 has been associated with some cancers, and there are reports that correlate kinase level with increased cell migration in vitro. Here we report that PAK4 is primarily associated with cell-cell junctions in all the cell lines we tested, and fails to accumulate at focal adhesions or at the leading edge of migrating cells. In U2OS osteosarcoma and MCF-7 breast cancer cell lines, PAK4 depletion did not affect collective cell migration, but affected cell polarization. By contrast, Cdc42 depletion (as reported by many studies) caused a strong defect in junctional assembly in multiple cells lines. We also report that the depletion of PAK4 protein or treatment of cells with the PAK4 inhibitor PF-3758309 can lead to defects in centrosome reorientation (polarization) after cell monolayer wounding. These experiments are consistent with PAK4 forming part of a conserved cell-cell junctional polarity Cdc42 complex. We also confirm β-catenin as a target for PAK4 in these cells. Treatment of cells with PF-3758309 caused inhibition of β-catenin Ser-675 phosphorylation, which is located predominantly at cell-cell junctions.
Collapse
Affiliation(s)
- Widyawilis Selamat
- small G-protein Signaling and Kinases (sGSK) Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Pei-Ling Felicia Tay
- small G-protein Signaling and Kinases (sGSK) Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yohendran Baskaran
- small G-protein Signaling and Kinases (sGSK) Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ed Manser
- small G-protein Signaling and Kinases (sGSK) Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
154
|
Merhi A, De Mees C, Abdo R, Victoria Alberola J, Marini AM. Wnt/β-Catenin Signaling Regulates the Expression of the Ammonium Permease Gene RHBG in Human Cancer Cells. PLoS One 2015; 10:e0128683. [PMID: 26029888 PMCID: PMC4452261 DOI: 10.1371/journal.pone.0128683] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/29/2015] [Indexed: 11/18/2022] Open
Abstract
Ammonium is a metabolic waste product mainly detoxified by the liver. Hepatic dysfunction can lead to cytotoxic accumulation of circulating ammonium and to subsequent encephalopathy. Transmembrane ammonium transport is a widely spread process ensured by the highly conserved proteins of the Mep-Amt-Rh superfamily, including the mammalian Rhesus (Rh) factors. The regulatory mechanisms involved in the control of RH genes expression remain poorly studied. Here we addressed the expression regulation of one of these factors, RHBG. We identify HepG2 hepatocellular carcinoma cells and SW480 colon adenocarcinoma cells as expressing RHBG and show that its expression relies on β-catenin signaling. siRNA-mediated β-catenin knockdown resulted in significant reduction of RHBG mRNA in both cell lines. Pharmaceutical inhibition of the TCF4/β-catenin interaction or knockdown of the transcription factor TCF4 also downregulated RHBG expression. We identify a minimal RHBG regulatory sequence displaying a promoter activity and show that β-catenin and TCF4 bind to this fragment in vivo. We finally characterize the role of potential TCF4 binding sites in RHBG regulation. Taken together, our results indicate RHBG expression as a direct target of β-catenin regulation, a pathway frequently deregulated in many cancers and associated with tumorigenesis.
Collapse
Affiliation(s)
- Ahmad Merhi
- Biology of Membrane Transport Laboratory, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Christelle De Mees
- Biology of Membrane Transport Laboratory, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Rami Abdo
- Biology of Membrane Transport Laboratory, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | | | - Anna Maria Marini
- Biology of Membrane Transport Laboratory, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
- * E-mail:
| |
Collapse
|
155
|
Swarup S, Pradhan-Sundd T, Verheyen EM. Genome-wide identification of phospho-regulators of Wnt signaling in Drosophila. Development 2015; 142:1502-15. [DOI: 10.1242/dev.116715] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Evolutionarily conserved intercellular signaling pathways regulate embryonic development and adult tissue homeostasis in metazoans. The precise control of the state and amplitude of signaling pathways is achieved in part through the kinase- and phosphatase-mediated reversible phosphorylation of proteins. In this study, we performed a genome-wide in vivo RNAi screen for kinases and phosphatases that regulate the Wnt pathway under physiological conditions in the Drosophila wing disc. Our analyses have identified 54 high-confidence kinases and phosphatases capable of modulating the Wnt pathway, including 22 novel regulators. These candidates were also assayed for a role in the Notch pathway, and numerous phospho-regulators were identified. Additionally, each regulator of the Wnt pathway was evaluated in the wing disc for its ability to affect the mechanistically similar Hedgehog pathway. We identified 29 dual regulators that have the same effect on the Wnt and Hedgehog pathways. As proof of principle, we established that Cdc37 and Gilgamesh/CK1γ inhibit and promote signaling, respectively, by functioning at analogous levels of these pathways in both Drosophila and mammalian cells. The Wnt and Hedgehog pathways function in tandem in multiple developmental contexts, and the identification of several shared phospho-regulators serve as potential nodes of control under conditions of aberrant signaling and disease.
Collapse
Affiliation(s)
- Sharan Swarup
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby V5A1S6, British Columbia, Canada
| | - Tirthadipa Pradhan-Sundd
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby V5A1S6, British Columbia, Canada
| | - Esther M. Verheyen
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby V5A1S6, British Columbia, Canada
| |
Collapse
|
156
|
Zhang MZ, Ferrigno O, Wang Z, Ohnishi M, Prunier C, Levy L, Razzaque M, Horne WC, Romero D, Tzivion G, Colland F, Baron R, Atfi A. TGIF governs a feed-forward network that empowers Wnt signaling to drive mammary tumorigenesis. Cancer Cell 2015; 27:547-60. [PMID: 25873176 PMCID: PMC4398914 DOI: 10.1016/j.ccell.2015.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 12/10/2014] [Accepted: 03/02/2015] [Indexed: 12/11/2022]
Abstract
Many types of human cancers having hyperactivated Wnt signaling display no causative alterations in known effectors of this pathway. Here, we report a function of TGIF in Wnt signaling. TGIF associates with and diverts Axin1 and Axin2 from the β-catenin destruction complex, therefore allowing β-catenin accrual. Intriguingly, activation of Wnt signaling induces the expression of TGIF, which unveils a feed-forward loop that ensures effective integration of Wnt signaling. In triple-negative breast cancers (TNBC), elevated levels of TGIF correlate with high Wnt signaling and poor survival of patients. Moreover, genetic experiments revealed that Tgif1 ablation impeded mammary tumor development in MMTV-Wnt1 mice, further underscoring a requirement of TGIF for oncogenic Wnt signaling.
Collapse
Affiliation(s)
- Ming-Zhu Zhang
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA; Department of Orthopaedics, Tongji University School of Medicine, Shanghai 200065, China
| | - Olivier Ferrigno
- Laboratory of Cell Signaling and Carcinogenesis, INSERM UMRS938, 184 Rue du Faubourg St-Antoine, 75571 Paris, France
| | - Zhe Wang
- Department of Biochemistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - Mutsuko Ohnishi
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Céline Prunier
- Laboratory of Cell Signaling and Carcinogenesis, INSERM UMRS938, 184 Rue du Faubourg St-Antoine, 75571 Paris, France
| | - Laurence Levy
- Laboratory of Cell Signaling and Carcinogenesis, INSERM UMRS938, 184 Rue du Faubourg St-Antoine, 75571 Paris, France
| | - Mohammed Razzaque
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Williams C Horne
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Damian Romero
- Department of Biochemistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - Guri Tzivion
- Department of Biochemistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | | | - Roland Baron
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Azeddine Atfi
- Laboratory of Cell Signaling and Carcinogenesis, INSERM UMRS938, 184 Rue du Faubourg St-Antoine, 75571 Paris, France; Department of Biochemistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| |
Collapse
|
157
|
Mannava AG, Tolwinski NS. Membrane bound GSK-3 activates Wnt signaling through disheveled and arrow. PLoS One 2015; 10:e0121879. [PMID: 25848770 PMCID: PMC4388798 DOI: 10.1371/journal.pone.0121879] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 02/17/2015] [Indexed: 01/22/2023] Open
Abstract
Wnt ligands and their downstream pathway components coordinate many developmental and cellular processes. In adults, they regulate tissue homeostasis through regulation of stem cells. Mechanistically, signal transduction through this pathway is complicated by pathway components having both positive and negative roles in signal propagation. Here we examine the positive role of GSK-3/Zw3 in promoting signal transduction at the plasma membrane. We find that targeting GSK-3 to the plasma membrane activates signaling in Drosophila embryos. This activation requires the presence of the co-receptor Arrow-LRP5/6 and the pathway activating protein Disheveled. Our results provide genetic evidence for evolutionarily conserved, separable roles for GSK-3 at the membrane and in the cytosol, and are consistent with a model where the complex cycles from cytosol to membrane in order to promote signaling at the membrane and to prevent it in the cytosol.
Collapse
Affiliation(s)
- Anirudh G. Mannava
- Yale-NUS College and Department of Biological Sciences, National University of Singapore, Block MD6, Centre for Translational Medicine, Yong Loo Lin School of Medicine, 14 Medical Drive, Level 10 South, 10-02M, Singapore 117599, Singapore
| | - Nicholas S. Tolwinski
- Yale-NUS College and Department of Biological Sciences, National University of Singapore, Block MD6, Centre for Translational Medicine, Yong Loo Lin School of Medicine, 14 Medical Drive, Level 10 South, 10-02M, Singapore 117599, Singapore
- * E-mail:
| |
Collapse
|
158
|
Kakugawa S, Langton PF, Zebisch M, Howell S, Chang TH, Liu Y, Feizi T, Bineva G, O’Reilly N, Snijders AP, Jones EY, Vincent JP. Notum deacylates Wnt proteins to suppress signalling activity. Nature 2015; 519:187-192. [PMID: 25731175 PMCID: PMC4376489 DOI: 10.1038/nature14259] [Citation(s) in RCA: 324] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/26/2015] [Indexed: 01/23/2023]
Abstract
Signalling by Wnt proteins is finely balanced to ensure normal development and tissue homeostasis while avoiding diseases such as cancer. This is achieved in part by Notum, a highly conserved secreted feedback antagonist. Notum has been thought to act as a phospholipase, shedding glypicans and associated Wnt proteins from the cell surface. However, this view fails to explain specificity, as glypicans bind many extracellular ligands. Here we provide genetic evidence in Drosophila that Notum requires glypicans to suppress Wnt signalling, but does not cleave their glycophosphatidylinositol anchor. Structural analyses reveal glycosaminoglycan binding sites on Notum, which probably help Notum to co-localize with Wnt proteins. They also identify, at the active site of human and Drosophila Notum, a large hydrophobic pocket that accommodates palmitoleate. Kinetic and mass spectrometric analyses of human proteins show that Notum is a carboxylesterase that removes an essential palmitoleate moiety from Wnt proteins and thus constitutes the first known extracellular protein deacylase.
Collapse
Affiliation(s)
- Satoshi Kakugawa
- MRC’s National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Paul F. Langton
- MRC’s National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Matthias Zebisch
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Steve Howell
- MRC’s National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Tao-Hsin Chang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Yan Liu
- Glycosciences Laboratory, Imperial College London, Department of Medicine Du Cane Road, London, W12 0NN UK
| | - Ten Feizi
- Glycosciences Laboratory, Imperial College London, Department of Medicine Du Cane Road, London, W12 0NN UK
| | - Ganka Bineva
- Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Nicola O’Reilly
- Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Ambrosius P. Snijders
- Cancer Research UK, Clare Hall Laboratories, Blanche Lane, South Mimms, Potters Bar, Hertfordshire. EN6 3LD, UK
| | - E. Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Jean-Paul Vincent
- MRC’s National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
159
|
Koyama-Nasu R, Hayashi T, Nasu-Nishimura Y, Akiyama T, Yamanaka R. Thr160 of Axin1 is critical for the formation and function of the β-catenin destruction complex. Biochem Biophys Res Commun 2015; 459:411-5. [PMID: 25735981 DOI: 10.1016/j.bbrc.2015.02.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 10/23/2022]
Abstract
Upon binding of a Wnt ligand to the frizzled (FZD)-low density lipoprotein receptor related protein 5/6 (LRP5/6) receptor complex, the β-catenin destruction complex, composed of Axin1, adenomatous polyposis coli (APC), glycogen synthase kinase 3 (GSK3) and casein kinase 1 (CK1), is immediately inactivated, which causes β-catenin stabilization. However, the molecular mechanism of signal transduction from the receptor complex to the β-catenin destruction complex is controversial. Here we show that Wnt3a treatment promotes the dissociation of the Axin1-APC complex in glioblastoma cells cultured in serum-free medium. Experiments with the GSK3 inhibitor BIO suggest that Axin1-APC dissociation was controlled by phosphorylation. Introduction of a phosphomimetic mutation into Thr160 of Axin1, located in the APC-binding region RGS, abrogated the interaction of Axin1 with APC. Consistent with these observations, the Axin1 phosphomimetic mutant lost the ability to reduce β-catenin stability and to repress β-catenin/TCF-dependent transcription. Taken together, our results suggest a novel mechanism of Wnt signaling through the dissociation of the β-catenin destruction complex by Axin1 Thr160 modification.
Collapse
Affiliation(s)
- Ryo Koyama-Nasu
- Laboratory of Molecular Target Therapy for Cancer, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Tomoatsu Hayashi
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yukiko Nasu-Nishimura
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tetsu Akiyama
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Ryuya Yamanaka
- Laboratory of Molecular Target Therapy for Cancer, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; Department of Medical Science, Graduate School of Nursing for Health Care Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
160
|
Corallino S, Malabarba MG, Zobel M, Di Fiore PP, Scita G. Epithelial-to-Mesenchymal Plasticity Harnesses Endocytic Circuitries. Front Oncol 2015; 5:45. [PMID: 25767773 PMCID: PMC4341543 DOI: 10.3389/fonc.2015.00045] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/09/2015] [Indexed: 02/01/2023] Open
Abstract
The ability of cells to alter their phenotypic and morphological characteristics, known as cellular plasticity, is critical in normal embryonic development and adult tissue repair and contributes to the pathogenesis of diseases, such as organ fibrosis and cancer. The epithelial-to-mesenchymal transition (EMT) is a type of cellular plasticity. This transition involves genetic and epigenetic changes as well as alterations in protein expression and post-translational modifications. These changes result in reduced cell-cell adhesion, enhanced cell adhesion to the extracellular matrix, and altered organization of the cytoskeleton and of cell polarity. Among these modifications, loss of cell polarity represents the nearly invariable, distinguishing feature of EMT that frequently precedes the other traits or might even occur in their absence. EMT transforms cell morphology and physiology, and hence cell identity, from one typical of cells that form a tight barrier, like epithelial and endothelial cells, to one characterized by a highly motile mesenchymal phenotype. Time-resolved proteomic and phosphoproteomic analyses of cells undergoing EMT recently identified thousands of changes in proteins involved in many cellular processes, including cell proliferation and motility, DNA repair, and - unexpectedly - membrane trafficking (1). These results have highlighted a picture of great complexity. First, the EMT transition is not an all-or-none response but rather a gradual process that develops over time. Second, EMT events are highly dynamic and frequently reversible, involving both cell-autonomous and non-autonomous mechanisms. The net results is that EMT generates populations of mixed cells, with partial or full phenotypes, possibly accounting (at least in part) for the physiological as well as pathological cellular heterogeneity of some tissues. Endocytic circuitries have emerged as complex connectivity infrastructures for numerous cellular networks required for the execution of different biological processes, with a primary role in the control of polarized functions. Thus, they may be relevant for controlling EMT or certain aspects of it. Here, by discussing a few paradigmatic cases, we will outline how endocytosis may be harnessed by the EMT process to promote dynamic changes in cellular identity, and to increase cellular flexibility and adaptation to micro-environmental cues, ultimately impacting on physiological and pathological processes, first and foremost cancer progression.
Collapse
Affiliation(s)
| | - Maria Grazia Malabarba
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM) , Milan , Italy ; Dipartimento di Scienze della Salute, Università degli Studi di Milano , Milan , Italy
| | - Martina Zobel
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM) , Milan , Italy
| | - Pier Paolo Di Fiore
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM) , Milan , Italy ; Dipartimento di Scienze della Salute, Università degli Studi di Milano , Milan , Italy ; Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia , Milan , Italy
| | - Giorgio Scita
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM) , Milan , Italy ; Dipartimento di Scienze della Salute, Università degli Studi di Milano , Milan , Italy
| |
Collapse
|
161
|
Walker MP, Stopford CM, Cederlund M, Fang F, Jahn C, Rabinowitz AD, Goldfarb D, Graham DM, Yan F, Deal AM, Fedoriw Y, Richards KL, Davis IJ, Weidinger G, Damania B, Major MB. FOXP1 potentiates Wnt/β-catenin signaling in diffuse large B cell lymphoma. Sci Signal 2015; 8:ra12. [PMID: 25650440 DOI: 10.1126/scisignal.2005654] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transcription factor FOXP1 (forkhead box protein P1) is a master regulator of stem and progenitor cell biology. In diffuse large B cell lymphoma (DLBCL), copy number amplifications and chromosomal translocations result in overexpression of FOXP1. Increased abundance of FOXP1 in DLBCL is a predictor of poor prognosis and resistance to therapy. We developed a genome-wide, mass spectrometry-coupled, gain-of-function genetic screen, which revealed that FOXP1 potentiates β-catenin-dependent, Wnt-dependent gene expression. Gain- and loss-of-function studies in cell models and zebrafish confirmed that FOXP1 was a general and conserved enhancer of Wnt signaling. In a Wnt-dependent fashion, FOXP1 formed a complex with β-catenin, TCF7L2 (transcription factor 7-like 2), and the acetyltransferase CBP [CREB (adenosine 3',5'-monophosphate response element-binding protein)-binding protein], and this complex bound the promoters of Wnt target genes. FOXP1 promoted the acetylation of β-catenin by CBP, and acetylation was required for FOXP1-mediated potentiation of β-catenin-dependent transcription. In DLBCL, we found that FOXP1 promoted sensitivity to Wnt pathway inhibitors, and knockdown of FOXP1 or blocking β-catenin transcriptional activity slowed xenograft tumor growth. These data connect excessive FOXP1 with β-catenin-dependent signal transduction and provide a molecular rationale for Wnt-directed therapy in DLBCL.
Collapse
Affiliation(s)
- Matthew P Walker
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Charles M Stopford
- Division of Microbiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27516-7361, USA
| | - Maria Cederlund
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Fang Fang
- Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Christopher Jahn
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Alex D Rabinowitz
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Dennis Goldfarb
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3175, USA
| | - David M Graham
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Feng Yan
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Allison M Deal
- UNC Lineberger Comprehensive Cancer Center Biostatistics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Yuri Fedoriw
- Department of Pathology and Laboratory, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Kristy L Richards
- Division of Hematology/Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27516-7361, USA
| | - Ian J Davis
- Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Gilbert Weidinger
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Blossom Damania
- Division of Microbiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27516-7361, USA
| | - Michael B Major
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA. Division of Microbiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27516-7361, USA.
| |
Collapse
|
162
|
Xue J, Chen Y, Wu Y, Wang Z, Zhou A, Zhang S, Lin K, Aldape K, Majumder S, Lu Z, Huang S. Tumour suppressor TRIM33 targets nuclear β-catenin degradation. Nat Commun 2015; 6:6156. [PMID: 25639486 PMCID: PMC4315364 DOI: 10.1038/ncomms7156] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 12/15/2014] [Indexed: 01/15/2023] Open
Abstract
Aberrant activation of β-catenin in the nucleus has been implicated in a variety of human cancers but the fate of nuclear β-catenin is unknown. Here we demonstrate that tripartite motif-containing protein 33 (TRIM33), acting as an E3 ubiquitin ligase, reduces the abundance of nuclear β-catenin protein. TRIM33-mediated β-catenin is destabilized and is GSK-3β or β-TrCP independent. TRIM33 interacts with and ubiquitylates nuclear β-catenin. Moreover, protein kinase Cδ, which directly phosphorylates β-catenin at Ser715, is required for the TRIM33–β-catenin interaction. The function of TRIM33 in suppressing tumour cell proliferation and brain tumour development depends on TRIM33-promoted β-catenin degradation. In human glioblastoma specimens, endogenous TRIM33 levels are inversely correlated with β-catenin. In summary, our findings identify TRIM33 as a tumour suppressor that can abolish tumour cell proliferation and tumorigenesis by degrading nuclear β-catenin. This work suggests a new therapeutic strategy against human cancers caused by aberrant activation of β-catenin.
Collapse
Affiliation(s)
- Jianfei Xue
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yaohui Chen
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yamei Wu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Zhongyong Wang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Aidong Zhou
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sicong Zhang
- 1] Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA
| | - Kangyu Lin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kenneth Aldape
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sadhan Majumder
- 1] Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA [2] Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Zhimin Lu
- 1] Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA [2] Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Suyun Huang
- 1] Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA
| |
Collapse
|
163
|
Wang W, Li F, Sun Y, Lei L, Zhou H, Lei T, Xia Y, Verkman AS, Yang B. Aquaporin-1 retards renal cyst development in polycystic kidney disease by inhibition of Wnt signaling. FASEB J 2015; 29:1551-63. [PMID: 25573755 DOI: 10.1096/fj.14-260828] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/15/2014] [Indexed: 01/04/2023]
Abstract
Water channel aquaporin-1 (AQP1) is expressed at epithelial cell plasma membranes in renal proximal tubules and thin descending limb of Henle. Recently, AQP1 was reported to interact with β-catenin. Here we investigated the relationship between AQP1 and Wnt signaling in in vitro and in vivo models of autosomal dominant polycystic kidney disease (PKD). AQP1 overexpression decreased β-catenin and cyclinD1 expression, suggesting down-regulation of Wnt signaling, and coimmunoprecipitation showed AQP1 interaction with β-catenin, glycogen synthase kinase 3β, LRP6, and Axin1. AQP1 inhibited cyst development and promoted branching in matrix-grown MDCK cells. In embryonic kidney cultures, AQP1 deletion increased cyst development by up to ∼ 40%. Kidney size and cyst number were significantly greater in AQP1-null PKD mice than in AQP1-expressing PKD mice, with the difference mainly attributed to a greater number of proximal tubule cysts. Biochemical analysis revealed decreased β-catenin phosphorylation and increased β-catenin expression in AQP1-null PKD mice, suggesting enhanced Wnt signaling. These results implicate AQP1 as a novel determinant in renal cyst development that may involve inhibition of Wnt signaling by an AQP1-macromolecular signaling complex.
Collapse
Affiliation(s)
- Weiling Wang
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| | - Fei Li
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| | - Yi Sun
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| | - Lei Lei
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| | - Hong Zhou
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| | - Tianluo Lei
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| | - Yin Xia
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| | - A S Verkman
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| | - Baoxue Yang
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| |
Collapse
|
164
|
Gentzel M, Schille C, Rauschenberger V, Schambony A. Distinct functionality of dishevelled isoforms on Ca2+/calmodulin-dependent protein kinase 2 (CamKII) in Xenopus gastrulation. Mol Biol Cell 2015; 26:966-77. [PMID: 25568338 PMCID: PMC4342031 DOI: 10.1091/mbc.e14-06-1089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
CamKII is a novel binding partner of Arrb2/Dvl2 protein complexes and is required for convergent extension movements in Xenopus. CamKII physically and functionally interacts with Dvl2, whereas CamKII activity is antagonistically modulated by Dvl1 and Dvl3. Wnt ligands trigger the activation of a variety of β-catenin–dependent and β-catenin–independent intracellular signaling cascades. Despite the variations in intracellular signaling, Wnt pathways share the effector proteins frizzled, dishevelled, and β-arrestin. It is unclear how the specific activation of individual branches and the integration of multiple signals are achieved. We hypothesized that the composition of dishevelled–β-arrestin protein complexes contributes to signal specificity and identified CamKII as an interaction partner of the dishevelled–β-arrestin protein complex by quantitative functional proteomics. Specifically, we found that CamKII isoforms interact differentially with the three vertebrate dishevelled proteins. Dvl1 is required for the activation of CamKII and PKC in the Wnt/Ca2+ pathway. However, CamKII interacts with Dvl2 but not with Dvl1, and Dvl2 is necessary to mediate CamKII function downstream of Dvl1 in convergent extension movements in Xenopus gastrulation. Our findings indicate that the different Dvl proteins and the composition of dishevelled–β-arrestin protein complexes contribute to the specific activation of individual branches of Wnt signaling.
Collapse
Affiliation(s)
- Marc Gentzel
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Carolin Schille
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Verena Rauschenberger
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Alexandra Schambony
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
165
|
Filopodia-based Wnt transport during vertebrate tissue patterning. Nat Commun 2015; 6:5846. [PMID: 25556612 DOI: 10.1038/ncomms6846] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/13/2014] [Indexed: 02/07/2023] Open
Abstract
Paracrine Wnt/β-catenin signalling is important during developmental processes, tissue regeneration and stem cell regulation. Wnt proteins are morphogens, which form concentration gradients across responsive tissues. Little is known about the transport mechanism for these lipid-modified signalling proteins in vertebrates. Here we show that Wnt8a is transported on actin-based filopodia to contact responding cells and activate signalling during neural plate formation in zebrafish. Cdc42/N-Wasp regulates the formation of these Wnt-positive filopodia. Enhanced formation of filopodia increases the effective signalling range of Wnt by facilitating spreading. Consistently, reduction in filopodia leads to a restricted distribution of the ligand and a limited signalling range. Using a simulation, we provide evidence that such a short-range transport system for Wnt has a long-range signalling function. Indeed, we show that a filopodia-based transport system for Wnt8a controls anteroposterior patterning of the neural plate during vertebrate gastrulation.
Collapse
|
166
|
Volckaert T, De Langhe SP. Wnt and FGF mediated epithelial-mesenchymal crosstalk during lung development. Dev Dyn 2014; 244:342-66. [PMID: 25470458 DOI: 10.1002/dvdy.24234] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/20/2014] [Accepted: 11/26/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The adaptation to terrestrial life required the development of an organ capable of efficient air-blood gas exchange. To meet the metabolic load of cellular respiration, the mammalian respiratory system has evolved from a relatively simple structure, similar to the two-tube amphibian lung, to a highly complex tree-like system of branched epithelial airways connected to a vast network of gas exchanging units called alveoli. The development of such an elaborate organ in a relatively short time window is therefore an extraordinary feat and involves an intimate crosstalk between mesodermal and endodermal cell lineages. RESULTS This review describes the molecular processes governing lung development with an emphasis on the current knowledge on the role of Wnt and FGF signaling in lung epithelial differentiation. CONCLUSIONS The Wnt and FGF signaling pathways are crucial for the dynamic and reciprocal communication between epithelium and mesenchyme during lung development. In addition, some of this developmental crosstalk is reemployed in the adult lung after injury to drive regeneration, and may, when aberrantly or chronically activated, result in chronic lung diseases. Novel insights into how the Wnt and FGF pathways interact and are integrated into a complex gene regulatory network will not only provide us with essential information about how the lung regenerates itself, but also enhance our understanding of the pathogenesis of chronic lung diseases, as well as improve the controlled differentiation of lung epithelium from pluripotent stem cells.
Collapse
Affiliation(s)
- Thomas Volckaert
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, Colorado; The Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Technologiepark 927, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | | |
Collapse
|
167
|
Bhattaram P, Penzo-Méndez A, Kato K, Bandyopadhyay K, Gadi A, Taketo MM, Lefebvre V. SOXC proteins amplify canonical WNT signaling to secure nonchondrocytic fates in skeletogenesis. ACTA ACUST UNITED AC 2014; 207:657-71. [PMID: 25452386 PMCID: PMC4259807 DOI: 10.1083/jcb.201405098] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In skeletogenic mesenchyme, SOXC proteins enter the APC–Axin destruction complex to inhibit β-catenin phosphorylation by GSK3 and thereby synergize with canonical WNT signaling to inhibit chondrogenesis. Canonical WNT signaling stabilizes β-catenin to determine cell fate in many processes from development onwards. One of its main roles in skeletogenesis is to antagonize the chondrogenic transcription factor SOX9. We here identify the SOXC proteins as potent amplifiers of this pathway. The SOXC genes, i.e., Sox4, Sox11, and Sox12, are coexpressed in skeletogenic mesenchyme, including presumptive joints and perichondrium, but not in cartilage. Their inactivation in mouse embryo limb bud caused massive cartilage fusions, as joint and perichondrium cells underwent chondrogenesis. SOXC proteins govern these cells cell autonomously. They replace SOX9 in the adenomatous polyposis coli–Axin destruction complex and therein inhibit phosphorylation of β-catenin by GSK3. This inhibition, a crucial, limiting step in canonical WNT signaling, thus becomes a constitutive event. The resulting SOXC/canonical WNT-mediated synergistic stabilization of β-catenin contributes to efficient repression of Sox9 in presumptive joint and perichondrium cells and thereby ensures proper delineation and articulation of skeletal primordia. This synergy may determine cell fate in many processes besides skeletogenesis.
Collapse
Affiliation(s)
- Pallavi Bhattaram
- Department of Cellular and Molecular Medicine, Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195
| | - Alfredo Penzo-Méndez
- Department of Cellular and Molecular Medicine, Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195
| | - Kenji Kato
- Department of Cellular and Molecular Medicine, Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195
| | - Kaustav Bandyopadhyay
- Department of Cellular and Molecular Medicine, Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195
| | - Abhilash Gadi
- Department of Cellular and Molecular Medicine, Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195
| | - Makoto M Taketo
- Department of Pharmacology, Kyoto University, Kyoto 606-8501, Japan
| | - Véronique Lefebvre
- Department of Cellular and Molecular Medicine, Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195
| |
Collapse
|
168
|
Amado NG, Predes D, Fonseca BF, Cerqueira DM, Reis AH, Dudenhoeffer AC, Borges HL, Mendes FA, Abreu JG. Isoquercitrin suppresses colon cancer cell growth in vitro by targeting the Wnt/β-catenin signaling pathway. J Biol Chem 2014; 289:35456-67. [PMID: 25359775 DOI: 10.1074/jbc.m114.621599] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Flavonoids are plant-derived polyphenolic molecules that have potential biological effects including anti-oxidative, anti-inflammatory, anti-viral, and anti-tumoral effects. These effects are related to the ability of flavonoids to modulate signaling pathways, such as the canonical Wnt signaling pathway. This pathway controls many aspects of embryonic development and tissue maintenance and has been found to be deregulated in a range of human cancers. We performed several in vivo assays in Xenopus embryos, a functional model of canonical Wnt signaling studies, and also used in vitro models, to investigate whether isoquercitrin affects Wnt/β-catenin signaling. Our data provide strong support for an inhibitory effect of isoquercitrin on Wnt/β-catenin, where the flavonoid acts downstream of β-catenin translocation to the nuclei. Isoquercitrin affects Xenopus axis establishment, reverses double axes and the LiCl hyperdorsalization phenotype, and reduces Xnr3 expression. In addition, this flavonoid shows anti-tumoral effects on colon cancer cells (SW480, DLD-1, and HCT116), whereas exerting no significant effect on non-tumor colon cell (IEC-18), suggesting a specific effect in tumor cells in vitro. Taken together, our data indicate that isoquercitrin is an inhibitor of Wnt/β-catenin and should be further investigated as a potential novel anti-tumoral agent.
Collapse
Affiliation(s)
- Nathália G Amado
- From the Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21949-590, Brazil
| | - Danilo Predes
- From the Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21949-590, Brazil
| | - Barbara F Fonseca
- From the Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21949-590, Brazil
| | - Débora M Cerqueira
- From the Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21949-590, Brazil
| | - Alice H Reis
- From the Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21949-590, Brazil
| | - Ana C Dudenhoeffer
- From the Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21949-590, Brazil
| | - Helena L Borges
- From the Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21949-590, Brazil
| | - Fábio A Mendes
- From the Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21949-590, Brazil
| | - Jose G Abreu
- From the Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21949-590, Brazil
| |
Collapse
|
169
|
Yu J, Virshup D. Updating the Wnt pathways. Biosci Rep 2014; 34:e00142. [PMID: 25208913 PMCID: PMC4201215 DOI: 10.1042/bsr20140119] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/05/2014] [Accepted: 09/11/2014] [Indexed: 12/12/2022] Open
Abstract
In the three decades since the discovery of the Wnt1 proto-oncogene in virus-induced mouse mammary tumours, our understanding of the signalling pathways that are regulated by the Wnt proteins has progressively expanded. Wnts are involved in an complex signalling network that governs multiple biological processes and cross-talk with multiple additional signalling cascades, including the Notch, FGF (fibroblast growth factor), SHH (Sonic hedgehog), EGF (epidermal growth factor) and Hippo pathways. The Wnt signalling pathway also illustrates the link between abnormal regulation of the developmental processes and disease manifestation. Here we provide an overview of Wnt-regulated signalling cascades and highlight recent advances. We focus on new findings regarding the dedicated Wnt production and secretion pathway with potential therapeutic targets that might be beneficial for patients with Wnt-related diseases.
Collapse
Key Words
- adenomatous polyposis coli
- planar cell polarity (pcp)
- wnt
- apc, adenomatous polyposis coli
- bar, bin-amphiphysin-rvs
- cbp, creb (camp response element-binding)-binding protein
- cop, coat protein complex
- crd, cysteine-rich domain
- ctd, c-terminal domain
- ck1α, casein kinase 1 α
- er, endoplasmic reticulum fap, familial adenomatous polyposis
- fdh, focal dermal hypoplasia
- gsk3β, glycogen synthase kinase 3β
- lef, lymphoid enhancer-binding factor
- lrp, lipoprotein receptor-related protein
- ntd, n-terminal domain
- pcp, planar cell polarity
- porcn, protein porcupine
- ror2, receptor tyrosine kinase-like orphan receptor 2
- rspo, r-spondin
- sfrp, secreted frizzled-related protein
- snx-1, sorting nexin-1
- swim, wingless-interacting molecule
- tcf, t cell-specific factor
Collapse
Affiliation(s)
- Jia Yu
- *Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - David M. Virshup
- *Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
- †Institute of Medical Biology, A*STAR, Singapore 138648, Singapore
- ‡Department of Biochemistry, National University of Singapore, Singapore 117597, Singapore
- §Department of Pediatrics, Duke University, Durham, NC 27710, U.S.A
| |
Collapse
|
170
|
Zhao M, Li Y, Peng L. FPGA-based multi-channel fluorescence lifetime analysis of Fourier multiplexed frequency-sweeping lifetime imaging. OPTICS EXPRESS 2014; 22:23073-85. [PMID: 25321778 PMCID: PMC4247184 DOI: 10.1364/oe.22.023073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 05/02/2023]
Abstract
We report a fast non-iterative lifetime data analysis method for the Fourier multiplexed frequency-sweeping confocal FLIM (Fm-FLIM) system [Opt. Express 22, 10221 (2014)]. The new method, named R-method, allows fast multi-channel lifetime image analysis in the system's FPGA data processing board. Experimental tests proved that the performance of the R-method is equivalent to that of single-exponential iterative fitting, and its sensitivity is well suited for time-lapse FLIM-FRET imaging of live cells, for example cyclic adenosine monophosphate (cAMP) level imaging with GFP-Epac-mCherry sensors. With the R-method and its FPGA implementation, multi-channel lifetime images can now be generated in real time on the multi-channel frequency-sweeping FLIM system, and live readout of FRET sensors can be performed during time-lapse imaging.
Collapse
Affiliation(s)
- Ming Zhao
- College of Optical Sciences, the University of Arizona, 1630 East University Blvd., Tucson, AZ 85721,
USA
| | - Yu Li
- College of Optical Sciences, the University of Arizona, 1630 East University Blvd., Tucson, AZ 85721,
USA
| | - Leilei Peng
- College of Optical Sciences, the University of Arizona, 1630 East University Blvd., Tucson, AZ 85721,
USA
- Molecular and Cellular Biology, the University of Arizona, 1007 E. Lowell St., Tucson, AZ 85721,
USA
| |
Collapse
|
171
|
Ding Y, Su S, Tang W, Zhang X, Chen S, Zhu G, Liang J, Wei W, Guo Y, Liu L, Chen YG, Wu W. Enrichment of the β-catenin-TCF complex at the S and G2 phases ensures cell survival and cell cycle progression. J Cell Sci 2014; 127:4833-45. [PMID: 25236602 DOI: 10.1242/jcs.146977] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Wnt-β-catenin (β-catenin is also known as CTNNB1 in human) signaling through the β-catenin-TCF complex plays crucial roles in tissue homeostasis. Wnt-stimulated β-catenin-TCF complex accumulation in the nucleus regulates cell survival, proliferation and differentiation through the transcription of target genes. Compared with their levels in G1, activation of the receptor LRP6 and cytosolic β-catenin are both upregulated in G2 cells. However, accumulation of the Wnt pathway negative regulator AXIN2 also occurs in this phase. Therefore, it is unclear whether Wnt signaling is active in G2 phase cells. Here, we established a bimolecular fluorescence complementation (BiFC) biosensor system for the direct visualization of the β-catenin-TCF interaction in living cells. Using the BiFC biosensor and co-immunoprecipitation experiments, we demonstrate that levels of the nucleus-localized β-catenin-TCF complex increase during the S and G2 phases, and declines in the next G1 phase. Accordingly, a subset of Wnt target genes is transcribed by the β-catenin-TCF complex during both the S and G2 phases. By contrast, transient inhibition of this complex disturbs both cell survival and G2/M progression. Our results suggest that in S and G2 phase cells, Wnt-β-catenin signaling is highly active and functions to ensure cell survival and cell cycle progression.
Collapse
Affiliation(s)
- Yajie Ding
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shang Su
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Weixin Tang
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaolei Zhang
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shengyao Chen
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guixin Zhu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Juan Liang
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wensheng Wei
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Ye Guo
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua-Peking Center for Life Sciences, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lei Liu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua-Peking Center for Life Sciences, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ye-Guang Chen
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Wu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
172
|
Gagliardi M, Hernandez A, McGough IJ, Vincent JP. Inhibitors of endocytosis prevent Wnt/Wingless signalling by reducing the level of basal β-catenin/Armadillo. J Cell Sci 2014; 127:4918-26. [PMID: 25236598 PMCID: PMC4231306 DOI: 10.1242/jcs.155424] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A key step in the canonical Wnt signalling pathway is the inhibition of GSK3β, which results in the accumulation of nuclear β-catenin (also known as CTNNB1), and hence regulation of target genes. Evidence suggests that endocytosis is required for signalling, yet its role and the molecular understanding remains unclear. A recent and controversial model suggests that endocytosis contributes to Wnt signalling by causing the sequestration of the ligand-receptor complex, including LRP6 and GSK3 to multivesicular bodies (MVBs), thus preventing GSK3β from accessing β-catenin. Here, we use specific inhibitors (Dynasore and Dyngo-4a) to confirm the essential role of endocytosis in Wnt/Wingless signalling in human and Drosophila cells. However, we find no evidence that, in Drosophila cells or wing imaginal discs, LRP6/Arrow traffics to MVBs or that MVBs are required for Wnt/Wingless signalling. Moreover, we show that activation of signalling through chemical blockade of GSK3β is prevented by endocytosis inhibitors, suggesting that endocytosis impacts on Wnt/Wingless signalling downstream of the ligand-receptor complex. We propose that, through an unknown mechanism, endocytosis boosts the resting pool of β-catenin upon which GSK3β normally acts.
Collapse
Affiliation(s)
- Maria Gagliardi
- MRC's National Institute for Medical Research, The Ridgeway, Mill Hill, London NW71AA, UK
| | - Ana Hernandez
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ian J McGough
- MRC's National Institute for Medical Research, The Ridgeway, Mill Hill, London NW71AA, UK
| | - Jean-Paul Vincent
- MRC's National Institute for Medical Research, The Ridgeway, Mill Hill, London NW71AA, UK
| |
Collapse
|
173
|
Cruciat CM. Casein kinase 1 and Wnt/β-catenin signaling. Curr Opin Cell Biol 2014; 31:46-55. [PMID: 25200911 DOI: 10.1016/j.ceb.2014.08.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/21/2014] [Indexed: 12/12/2022]
Abstract
Casein kinase 1 (CK1) members play a critical and evolutionary conserved role in Wnt/β-catenin signaling. They phosphorylate several pathway components and exert a dual function, acting as both Wnt activators and Wnt inhibitors. Recent discoveries suggest that CK1 members act in a coordinated manner to regulate early responses to Wnt and notably that their enzymatic activity is regulated. Here, I provide a brief update of CK1 function and regulation in Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Cristina-Maria Cruciat
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| |
Collapse
|
174
|
Shimizu N, Ishitani S, Sato A, Shibuya H, Ishitani T. Hipk2 and PP1c Cooperate to Maintain Dvl Protein Levels Required for Wnt Signal Transduction. Cell Rep 2014; 8:1391-404. [DOI: 10.1016/j.celrep.2014.07.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 06/04/2014] [Accepted: 07/23/2014] [Indexed: 11/30/2022] Open
|
175
|
Hagemann AIH, Kurz J, Kauffeld S, Chen Q, Reeves PM, Weber S, Schindler S, Davidson G, Kirchhausen T, Scholpp S. In vivo analysis of formation and endocytosis of the Wnt/β-catenin signaling complex in zebrafish embryos. J Cell Sci 2014; 127:3970-82. [PMID: 25074807 PMCID: PMC4163645 DOI: 10.1242/jcs.148767] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
After activation by Wnt/β-Catenin ligands, a multi-protein complex assembles at the clustering membrane-bound receptors and intracellular signal transducers into the so-called Lrp6-signalosome. However, the mechanism of signalosome formation and dissolution is yet not clear. Our imaging studies of live zebrafish embryos show that the signalosome is a highly dynamic structure. It is continuously assembled by Dvl2-mediated recruitment of the transducer complex to the activated receptors and partially disassembled by endocytosis. We find that, after internalization, the ligand-receptor complex and the transducer complex take separate routes. The Wnt–Fz–Lrp6 complex follows a Rab-positive endocytic path. However, when still bound to the transducer complex, Dvl2 forms intracellular aggregates. We show that this endocytic process is not only essential for ligand-receptor internalization but also for signaling. The μ2-subunit of the endocytic Clathrin adaptor Ap2 interacts with Dvl2 to maintain its stability during endocytosis. Blockage of Ap2μ2 function leads to Dvl2 degradation, inhibiton of signalosome formation at the plasma membrane and, consequently, reduction of signaling. We conclude that Ap2μ2-mediated endocytosis is important to maintain Wnt/β-catenin signaling in vertebrates.
Collapse
Affiliation(s)
- Anja I H Hagemann
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), 76021 Karsruhe, Germany
| | - Jennifer Kurz
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), 76021 Karsruhe, Germany
| | - Silke Kauffeld
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), 76021 Karsruhe, Germany
| | - Qing Chen
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), 76021 Karsruhe, Germany
| | - Patrick M Reeves
- Departments of Cell Biology and Pediatrics, Harvard Medical School and Program in Cellular and Molecular Medicine at Boston Children's Hospital, Boston, 02115 MA, USA
| | - Sabrina Weber
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), 76021 Karsruhe, Germany
| | - Simone Schindler
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), 76021 Karsruhe, Germany
| | - Gary Davidson
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), 76021 Karsruhe, Germany
| | - Tomas Kirchhausen
- Departments of Cell Biology and Pediatrics, Harvard Medical School and Program in Cellular and Molecular Medicine at Boston Children's Hospital, Boston, 02115 MA, USA
| | - Steffen Scholpp
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), 76021 Karsruhe, Germany
| |
Collapse
|
176
|
Sheng R, Kim H, Lee H, Xin Y, Chen Y, Tian W, Cui Y, Choi JC, Doh J, Han JK, Cho W. Cholesterol selectively activates canonical Wnt signalling over non-canonical Wnt signalling. Nat Commun 2014; 5:4393. [PMID: 25024088 PMCID: PMC4100210 DOI: 10.1038/ncomms5393] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/13/2014] [Indexed: 12/19/2022] Open
Abstract
Wnt proteins control diverse biological processes through β-catenin-dependent canonical signalling and β-catenin-independent non-canonical signalling. The mechanisms by which these signalling pathways are differentially triggered and controlled are not fully understood. Dishevelled (Dvl) is a scaffold protein that serves as the branch point of these pathways. Here, we show that cholesterol selectively activates canonical Wnt signalling over non-canonical signalling under physiological conditions by specifically facilitating the membrane recruitment of the PDZ domain of Dvl and its interaction with other proteins. Single-molecule imaging analysis shows that cholesterol is enriched around the Wnt-activated Frizzled and low-density lipoprotein receptor-related protein 5/6 receptors and plays an essential role for Dvl-mediated formation and maintenance of the canonical Wnt signalling complex. Collectively, our results suggest a new regulatory role of cholesterol in Wnt signalling and a potential link between cellular cholesterol levels and the balance between canonical and non-canonical Wnt signalling activities.
Collapse
Affiliation(s)
- Ren Sheng
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | - Yao Xin
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yong Chen
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Wen Tian
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yang Cui
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jong-Cheol Choi
- Mechanical Engineering, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Junsang Doh
- Mechanical Engineering, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | | | - Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
177
|
Computational modeling of the interplay between cadherin-mediated cell adhesion and Wnt signaling pathway. PLoS One 2014; 9:e100702. [PMID: 24967587 PMCID: PMC4072676 DOI: 10.1371/journal.pone.0100702] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 05/27/2014] [Indexed: 12/21/2022] Open
Abstract
Wnt signaling and cadherin-mediated adhesion have been implicated in both processes of embryonic development and the progression of carcinomas. Recent experimental studies revealed that Wnt signaling and cadherin-mediated cell adhesion have close crosstalk with each other. A comprehensive model that investigates the dynamic balance of β-catenins in Wnt signaling and cell adhesion will improve our understanding to embryonic development and carcinomas. We constructed a network model to evaluate the dynamic interplay between adhesion and Wnt signaling. The network is decomposed into three interdependent modules: the cell adhesion, the degradation circle and the transcriptional regulation. In the cell adhesion module, we consider the effect of cadherin’s lateral clustering. We found adhesion negatively contributes to Wnt signaling through competition for cytoplasmic β-catenins. In the network of degradation circle, we incorporated features from various existing models. Our simulations reproduced the most recent experimental phenomena with semi-quantitative accuracy. Finally, in the transcriptional regulation module, we developed a function selection strategy to analyze the outcomes of genetic feedback loops in modulating the gene expression of Wnt targets. The specific cellular phenomena such as cadherin switch and Axin oscillation were archived and their biological insights were discussed. Our model provides the theoretical basis of how spatial organization regulates the dynamics of cellular signaling pathways. We suggest that cell adhesion affects Wnt signaling in both negative and positive ways. Cadherins can inhibit Wnt signaling not only in a way as a stoichiometric binding partner of β-catenins that sequesters them from signaling, but also in a way through their clustering to impacts the rate at which β-catenins are involved in the destruction loop. Additionally, cadherin clustering increases the phosphorylation rate of β-catenins and promotes its signaling in nucleus.
Collapse
|
178
|
Testing models of the APC tumor suppressor/β-catenin interaction reshapes our view of the destruction complex in Wnt signaling. Genetics 2014; 197:1285-302. [PMID: 24931405 DOI: 10.1534/genetics.114.166496] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Wnt pathway is a conserved signal transduction pathway that contributes to normal development and adult homeostasis, but is also misregulated in human diseases such as cancer. The tumor suppressor adenomatous polyposis coli (APC) is an essential negative regulator of Wnt signaling inactivated in >80% of colorectal cancers. APC participates in a multiprotein "destruction complex" that targets the proto-oncogene β-catenin for ubiquitin-mediated proteolysis; however, the mechanistic role of APC in the destruction complex remains unknown. Several models of APC function have recently been proposed, many of which have emphasized the importance of phosphorylation of high-affinity β-catenin-binding sites [20-amino-acid repeats (20Rs)] on APC. Here we test these models by generating a Drosophila APC2 mutant lacking all β-catenin-binding 20Rs and performing functional studies in human colon cancer cell lines and Drosophila embryos. Our results are inconsistent with current models, as we find that β-catenin binding to the 20Rs of APC is not required for destruction complex activity. In addition, we generate an APC2 mutant lacking all β-catenin-binding sites (including the 15Rs) and find that a direct β-catenin/APC interaction is also not essential for β-catenin destruction, although it increases destruction complex efficiency in certain developmental contexts. Overall, our findings support a model whereby β-catenin-binding sites on APC do not provide a critical mechanistic function per se, but rather dock β-catenin in the destruction complex to increase the efficiency of β-catenin destruction. Furthermore, in Drosophila embryos expressing some APC2 mutant transgenes we observe a separation of β-catenin destruction and Wg/Wnt signaling outputs and suggest that cytoplasmic retention of β-catenin likely accounts for this difference.
Collapse
|
179
|
Barik A, Zhang B, Sohal GS, Xiong WC, Mei L. Crosstalk between Agrin and Wnt signaling pathways in development of vertebrate neuromuscular junction. Dev Neurobiol 2014; 74:828-38. [PMID: 24838312 DOI: 10.1002/dneu.22190] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 05/01/2014] [Accepted: 05/14/2014] [Indexed: 11/08/2022]
Abstract
Neuromuscular junction (NMJ) is a cholinergic synapse where motor neurons elicit muscle contraction. Agrin and its coreceptors LRP4 and MuSK are critical for vertebrate NMJ formation. This paper reviews recent evidence for Wnts and Wnt signaling molecules in NMJ formation including a possible retrograde mechanism by muscle β-catenin. We also present data that Wnt3a, 7a, 8a and 10b could inhibit agrin-mediated AChR clustering. Together with the stimulating effect of Wnt9a, 9b, 10b, 11 and 16 on AChR clustering in the absence of agrin, these results suggest diverse roles for Wnt ligands in NMJ development.
Collapse
Affiliation(s)
- Arnab Barik
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, 30912
| | | | | | | | | |
Collapse
|
180
|
De Robertis A, Mennillo F, Rossi M, Valensin S, Tunici P, Mori E, Caradonna N, Varrone M, Salerno M. Human Sarcoma growth is sensitive to small-molecule mediated AXIN stabilization. PLoS One 2014; 9:e97847. [PMID: 24842792 PMCID: PMC4026528 DOI: 10.1371/journal.pone.0097847] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/25/2014] [Indexed: 11/19/2022] Open
Abstract
Sarcomas are mesenchymal tumors showing high molecular heterogeneity, reflected at the histological level by the existence of more than fifty different subtypes. Genetic and epigenetic evidences link aberrant activation of the Wnt signaling to growth and progression of human sarcomas. This phenomenon, mainly accomplished by autocrine loop activity, is sustained by gene amplification, over-expression of Wnt ligands and co-receptors or epigenetic silencing of endogenous Wnt antagonists. We previously showed that pharmacological inhibition of Wnt signaling mediated by Axin stabilization produced in vitro and in vivo antitumor activity in glioblastoma tumors. Here, we report that targeting different sarcoma cell lines with the Wnt inhibitor/Axin stabilizer SEN461 produces a less transformed phenotype, as supported by modulation of anchorage-independent growth in vitro. At the molecular level, SEN461 treatment enhanced the stability of the scaffold protein Axin1, a key negative regulator of the Wnt signaling with tumor suppressor function, resulting in downstream effects coherent with inhibition of canonical Wnt signaling. Genetic phenocopy of small molecule Axin stabilization, through Axin1 over-expression, coherently resulted in strong impairment of soft-agar growth. Importantly, sarcoma growth inhibition through pharmacological Axin stabilization was also observed in a xenograft model in vivo in female CD-1 nude mice. Our findings suggest the usefulness of Wnt inhibitors with Axin stabilization activity as a potentialyl clinical relevant strategy for certain types of sarcomas.
Collapse
Affiliation(s)
- Alessandra De Robertis
- Molecular Oncology Unit, Siena Biotech Medicine Research Centre, Siena, Italy
- Department of Pharmacology, Siena Biotech Medicine Research Centre, Siena, Italy
| | - Federica Mennillo
- Molecular Oncology Unit, Siena Biotech Medicine Research Centre, Siena, Italy
- Department of Pharmacology, Siena Biotech Medicine Research Centre, Siena, Italy
| | - Marco Rossi
- Department of Pharmacology, Siena Biotech Medicine Research Centre, Siena, Italy
- In Vivo Pharmacology Unit, Siena Biotech Medicine Research Centre, Siena, Italy
| | - Silvia Valensin
- Molecular Oncology Unit, Siena Biotech Medicine Research Centre, Siena, Italy
- Department of Pharmacology, Siena Biotech Medicine Research Centre, Siena, Italy
| | - Patrizia Tunici
- Department of Pharmacology, Siena Biotech Medicine Research Centre, Siena, Italy
- In Vivo Pharmacology Unit, Siena Biotech Medicine Research Centre, Siena, Italy
| | - Elisa Mori
- Department of Pharmacology, Siena Biotech Medicine Research Centre, Siena, Italy
- Data Analysis Unit, Siena Biotech Medicine Research Centre, Siena, Italy
| | - Nicola Caradonna
- MET Profiling Unit, Siena Biotech Medicine Research Centre, Siena, Italy
| | - Maurizio Varrone
- Department of Medicinal Chemistry, Siena Biotech Medicine Research Centre, Siena, Italy
| | - Massimiliano Salerno
- Molecular Oncology Unit, Siena Biotech Medicine Research Centre, Siena, Italy
- Department of Pharmacology, Siena Biotech Medicine Research Centre, Siena, Italy
- * E-mail:
| |
Collapse
|
181
|
Zhao M, Li Y, Peng L. Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging. OPTICS EXPRESS 2014; 22:10221-32. [PMID: 24921725 PMCID: PMC4083044 DOI: 10.1364/oe.22.010221] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community.
Collapse
Affiliation(s)
- Ming Zhao
- College of Optical Sciences, the University of Arizona, 1630 E. University Blvd., Tucson, Arizona 85721, USA
| | - Yu Li
- College of Optical Sciences, the University of Arizona, 1630 E. University Blvd., Tucson, Arizona 85721, USA
| | - Leilei Peng
- College of Optical Sciences, the University of Arizona, 1630 E. University Blvd., Tucson, Arizona 85721, USA
- Molecular and Cellular Biology, University of Arizona, 1007 E. Lowell Street, Tucson, Arizona 85721, USA
| |
Collapse
|
182
|
Acebron S, Karaulanov E, Berger B, Huang YL, Niehrs C. Mitotic Wnt Signaling Promotes Protein Stabilization and Regulates Cell Size. Mol Cell 2014; 54:663-74. [DOI: 10.1016/j.molcel.2014.04.014] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/27/2014] [Accepted: 04/08/2014] [Indexed: 10/25/2022]
|
183
|
Stamos JL, Chu MLH, Enos MD, Shah N, Weis WI. Structural basis of GSK-3 inhibition by N-terminal phosphorylation and by the Wnt receptor LRP6. eLife 2014; 3:e01998. [PMID: 24642411 PMCID: PMC3953950 DOI: 10.7554/elife.01998] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a key regulator of many cellular signaling pathways. Unlike most kinases, GSK-3 is controlled by inhibition rather than by specific activation. In the insulin and several other signaling pathways, phosphorylation of a serine present in a conserved sequence near the amino terminus of GSK-3 generates an auto-inhibitory peptide. In contrast, Wnt/β-catenin signal transduction requires phosphorylation of Ser/Pro rich sequences present in the Wnt co-receptors LRP5/6, and these motifs inhibit GSK-3 activity. We present crystal structures of GSK-3 bound to its phosphorylated N-terminus and to two of the phosphorylated LRP6 motifs. A conserved loop unique to GSK-3 undergoes a dramatic conformational change that clamps the bound pseudo-substrate peptides, and reveals the mechanism of primed substrate recognition. The structures rationalize target sequence preferences and suggest avenues for the design of inhibitors selective for a subset of pathways regulated by GSK-3. DOI: http://dx.doi.org/10.7554/eLife.01998.001.
Collapse
Affiliation(s)
- Jennifer L Stamos
- Department of Structural Biology, Stanford University, Stanford, United States
| | | | | | | | | |
Collapse
|
184
|
Gao C, Xiao G, Hu J. Regulation of Wnt/β-catenin signaling by posttranslational modifications. Cell Biosci 2014; 4:13. [PMID: 24594309 PMCID: PMC3977945 DOI: 10.1186/2045-3701-4-13] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/07/2014] [Indexed: 02/07/2023] Open
Abstract
The canonical Wnt signaling pathway (or Wnt/β-catenin pathway) plays a pivotal role in embryonic development and adult homeostasis; deregulation of the Wnt pathway contributes to the initiation and progression of human diseases including cancer. Despite its importance in human biology and disease, how regulation of the Wnt/β-catenin pathway is achieved remains largely undefined. Increasing evidence suggests that post-translational modifications (PTMs) of Wnt pathway components are essential for the activation of the Wnt/β-catenin pathway. PTMs create a highly dynamic relay system that responds to Wnt stimulation without requiring de novo protein synthesis and offer a platform for non-Wnt pathway components to be involved in the regulation of Wnt signaling, hence providing alternative opportunities for targeting the Wnt pathway. This review highlights the current status of PTM-mediated regulation of the Wnt/β-catenin pathway with a focus on factors involved in Wnt-mediated stabilization of β-catenin.
Collapse
Affiliation(s)
| | | | - Jing Hu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
185
|
Abstract
Sequential transfer of information from one enzyme to the next within the confines of a protein kinase scaffold enhances signal transduction. Though frequently considered to be inert organizational elements, two recent reports implicate kinase-scaffolding proteins as active participants in signal relay.
Collapse
Affiliation(s)
- F Donelson Smith
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
186
|
Song X, Wang S, Li L. New insights into the regulation of Axin function in canonical Wnt signaling pathway. Protein Cell 2014; 5:186-93. [PMID: 24474204 PMCID: PMC3967064 DOI: 10.1007/s13238-014-0019-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 12/10/2013] [Indexed: 12/16/2022] Open
Abstract
The Wnt signaling pathway plays crucial roles during embryonic development, whose aberration is implicated in a variety of human cancers. Axin, a key component of canonical Wnt pathway, plays dual roles in modulating Wnt signaling: on one hand, Axin scaffolds the “β-catenin destruction complex” to promote β-catenin degradation and therefore inhibits the Wnt signal transduction; on the other hand, Axin interacts with LRP5/6 and facilitates the recruitment of GSK3 to the plasma membrane to promote LRP5/6 phosphorylation and Wnt signaling. The differential assemblies of Axin with these two distinct complexes have to be tightly controlled for appropriate transduction of the “on” or “off” Wnt signal. So far, there are multiple mechanisms revealed in the regulation of Axin activity, such as post-transcriptional modulation, homo/hetero-polymerization and auto-inhibition. These mechanisms may work cooperatively to modulate the function of Axin, thereby playing an important role in controlling the canonical Wnt signaling. In this review, we will focus on the recent progresses regarding the regulation of Axin function in canonical Wnt signaling.
Collapse
Affiliation(s)
- Xiaomin Song
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | | |
Collapse
|
187
|
Gao C, Chen G, Romero G, Moschos S, Xu X, Hu J. Induction of Gsk3β-β-TrCP interaction is required for late phase stabilization of β-catenin in canonical Wnt signaling. J Biol Chem 2014; 289:7099-7108. [PMID: 24451375 DOI: 10.1074/jbc.m113.532606] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A pivotal step in canonical Wnt signaling is Wnt-induced β-catenin stabilization. In the absence of Wnt, β-catenin is targeted for β-transducin repeats-containing proteins (β-TrCP)-mediated degradation due to phosphorylation by glycogen synthase kinase 3 (Gsk3). How canonical Wnt signaling regulates Gsk3 to inhibit β-catenin proteolysis remains largely elusive. This study reveals novel key molecular events in Wnt signaling: induction of Gsk3β ubiquitination and Gsk3β-β-TrCP binding. We found that Wnt stimulation induced prolonged monoubiquitination of Gsk3β and Gsk3β-β-TrCP interaction. Monoubiquitination did not cause Gsk3β degradation nor affects its enzymatic activity. Rather, increased monoubiquitination of Gsk3β/Gsk3β-β-TrCP association suppressed β-catenin recruitment of β-TrCP, leading to long-term inhibition of β-catenin ubiquitination and degradation.
Collapse
Affiliation(s)
- Chenxi Gao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213; University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Guangming Chen
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213; University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Guillermo Romero
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Stergios Moschos
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213; Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Xiang Xu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213; University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Jing Hu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213; University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213.
| |
Collapse
|
188
|
Vinyoles M, Del Valle-Pérez B, Curto J, Viñas-Castells R, Alba-Castellón L, García de Herreros A, Duñach M. Multivesicular GSK3 sequestration upon Wnt signaling is controlled by p120-catenin/cadherin interaction with LRP5/6. Mol Cell 2014; 53:444-57. [PMID: 24412065 DOI: 10.1016/j.molcel.2013.12.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/12/2013] [Accepted: 12/04/2013] [Indexed: 01/15/2023]
Abstract
The Wnt canonical ligands elicit the activation of β-catenin transcriptional activity, a response dependent on, but not limited to, β-catenin stabilization through the inhibition of GSK3 activity. Two mechanisms have been proposed for this inhibition, one dependent on the binding and subsequent block of GSK3 to LRP5/6 Wnt coreceptor and another one on its sequestration into multivesicular bodies (MVBs). Here we report that internalization of the GSK3-containing Wnt-signalosome complex into MVBs is dependent on the dissociation of p120-catenin/cadherin from this complex. Disruption of cadherin-LRP5/6 interaction is controlled by cadherin phosphorylation and requires the previous separation of p120-catenin; thus, p120-catenin and cadherin mutants unable to dissociate from the complex block GSK3 sequestration into MVBs. These mutants substantially inhibit, but do not completely prevent, the β-catenin upregulation caused by Wnt3a. These results, besides elucidating how GSK3 is sequestered into MVBs, support this mechanism as cause of β-catenin stabilization by Wnt.
Collapse
Affiliation(s)
- Meritxell Vinyoles
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Beatriz Del Valle-Pérez
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Josué Curto
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Rosa Viñas-Castells
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), E-08003 Barcelona, Spain
| | - Lorena Alba-Castellón
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), E-08003 Barcelona, Spain
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), E-08003 Barcelona, Spain; Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, E-08003 Barcelona, Spain.
| | - Mireia Duñach
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain.
| |
Collapse
|
189
|
Singh V, Lin R, Yang J, Cha B, Sarker R, Tse CM, Donowitz M. AKT and GSK-3 are necessary for direct ezrin binding to NHE3 as part of a C-terminal stimulatory complex: role of a novel Ser-rich NHE3 C-terminal motif in NHE3 activity and trafficking. J Biol Chem 2014; 289:5449-61. [PMID: 24398676 DOI: 10.1074/jbc.m113.521336] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Basal activity of the BB Na(+)/H(+) exchanger NHE3 requires multiprotein complexes that form on its C terminus. One complex stimulates basal NHE3 activity and contains ezrin and phosphoinositides as major components; how it stimulates NHE3 activity is not known. This study tested the hypothesis that ezrin dynamically associates with this complex, which sets ezrin binding. NHE3 activity was reduced by an Akti. This effect was eliminated if ezrin binding to NHE3 was inhibited by a point mutant. Recombinant AKT phosphorylated NHE3 C terminus in the domain ezrin directly binds. This domain (amino acids 475-589) is predicted to be α-helical and contains a conserved cluster of three serines (Ser(515), Ser(522), and Ser(526)). Point mutations of two of these (S515A, S515D, or S526A) reduced basal NHE3 activity and surface expression and had no Akti inhibition. S526D had NHE3 activity equal to wild type with normal Akti inhibition. Ezrin binding to NHE3 was regulated by Akt, being eliminated by Akti. NHE3-S515A and -S526D did not bind ezrin; NHE3-S515D had reduced ezrin binding; NHE3-S526D bound ezrin normally. NHE3-Ser(526) is predicted to be a GSK-3 kinase phosphorylation site. A GSK-3 inhibitor reduced basal NHE3 activity as well as ezrin-NHE3 binding, and this effect was eliminated in NHE3-S526A and -S526D mutants. The conclusions were: 1) NHE3 basal activity is regulated by a signaling complex that is controlled by sequential effects of two kinases, Akt and GSK-3, which act on a Ser cluster in the same NHE3 C-terminal domain that binds ezrin; and 2) these kinases regulate the dynamic association of ezrin with NHE3 to affect basal NHE3 activity.
Collapse
Affiliation(s)
- Varsha Singh
- From the Departments of Physiology and Medicine, Gastroenterology Division, Johns, Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| | | | | | | | | | | | | |
Collapse
|
190
|
Choi SH, Estarás C, Moresco JJ, Yates JR, Jones KA. α-Catenin interacts with APC to regulate β-catenin proteolysis and transcriptional repression of Wnt target genes. Genes Dev 2014; 27:2473-88. [PMID: 24240237 PMCID: PMC3841736 DOI: 10.1101/gad.229062.113] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutation of the adenomatous polyposis coli (APC) tumor suppressor stabilizes β-catenin and aberrantly reactivates Wnt/β-catenin target genes in colon cancer. APC mutants in cancer frequently lack the conserved catenin inhibitory domain (CID), which is essential for β-catenin proteolysis. Here we show that the APC CID interacts with α-catenin, a Hippo signaling regulator and heterodimeric partner of β-catenin at cell:cell adherens junctions. Importantly, α-catenin promotes β-catenin ubiquitylation and proteolysis by stabilizing its association with APC and protecting the phosphodegron. Moreover, β-catenin ubiquitylation requires binding to α-catenin. Multidimensional protein identification technology (MudPIT) proteomics of multiple Wnt regulatory complexes reveals that α-catenin binds with β-catenin to LEF-1/TCF DNA-binding proteins in Wnt3a signaling cells and recruits APC in a complex with the CtBP:CoREST:LSD1 histone H3K4 demethylase to regulate transcription and β-catenin occupancy at Wnt target genes. Interestingly, tyrosine phosphorylation of α-catenin at Y177 disrupts binding to APC but not β-catenin and prevents repression of Wnt target genes in transformed cells. Chromatin immunoprecipitation studies further show that α-catenin and APC are recruited with β-catenin to Wnt response elements in human embryonic stem cells (hESCs). Knockdown of α-catenin in hESCs prevents the switch-off of Wnt/β-catenin transcription and promotes endodermal differentiation. Our findings indicate a role for α-catenin in the APC destruction complex and at Wnt target genes.
Collapse
Affiliation(s)
- Seung H Choi
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037 USA
| | | | | | | | | |
Collapse
|
191
|
Wnt signaling in adult intestinal stem cells and cancer. Cell Signal 2013; 26:570-9. [PMID: 24308963 DOI: 10.1016/j.cellsig.2013.11.032] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/26/2013] [Indexed: 12/22/2022]
Abstract
Signaling initiated by secreted glycoproteins of the Wnt family regulates many aspects of embryonic development and it is involved in homeostasis of adult tissues. In the gastrointestinal (GI) tract the Wnt pathway maintains the self-renewal capacity of epithelial stem cells. The stem cell attributes are conferred by mutual interactions of the stem cell with its local microenvironment, the stem cell niche. The niche ensures that the threshold of Wnt signaling in the stem cell is kept in physiological range. In addition, the Wnt pathway involves various feedback loops that balance the opposing processes of cell proliferation and differentiation. Today, we have compelling evidence that mutations causing aberrant activation of the Wnt pathway promote expansion of undifferentiated progenitors and lead to cancer. The review summarizes recent advances in characterization of adult epithelial stem cells in the gut. We mainly focus on discoveries related to molecular mechanisms regulating the output of the Wnt pathway. Moreover, we present novel experimental approaches utilized to investigate the epithelial cell signaling circuitry in vivo and in vitro. Pivotal aspects of tissue homeostasis are often deduced from studies of tumor cells; therefore, we also discuss some latest results gleaned from the deep genome sequencing studies of human carcinomas of the colon and rectum.
Collapse
|
192
|
Hur J, Jeong S. Multitasking β-catenin: from adhesion and transcription to RNA regulation. Anim Cells Syst (Seoul) 2013. [DOI: 10.1080/19768354.2013.853694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
193
|
Tacchelly-Benites O, Wang Z, Yang E, Lee E, Ahmed Y. Toggling a conformational switch in Wnt/β-catenin signaling: regulation of Axin phosphorylation. The phosphorylation state of Axin controls its scaffold function in two Wnt pathway protein complexes. Bioessays 2013; 35:1063-70. [PMID: 24105937 DOI: 10.1002/bies.201300101] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The precise orchestration of two opposing protein complexes - one in the cytoplasm (β-catenin destruction complex) and the other at the plasma membrane (LRP6 signaling complex) - is critical for controlling levels of the transcriptional co-factor β-catenin, and subsequent activation of the Wnt/β-catenin signal transduction pathway. The Wnt pathway component Axin acts as an essential scaffold for the assembly of both complexes. How the β-catenin destruction and LRP6 signaling complexes are modulated following Wnt stimulation remains controversial. A recent study in Science by He and coworkers reveals an underlying logic for Wnt pathway control in which Axin phosphorylation toggles a switch between the active and inactive states. This mini-review focuses on this and two other recent studies that provide insight into the initial signaling events triggered by Wnt exposure. We emphasize regulation of the β-catenin destruction and LRP6 signaling complexes and propose a framework for future work in this area.
Collapse
Affiliation(s)
- Ofelia Tacchelly-Benites
- Department of Genetics and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | | | | | | |
Collapse
|
194
|
Wang S, Yin J, Chen D, Nie F, Song X, Fei C, Miao H, Jing C, Ma W, Wang L, Xie S, Li C, Zeng R, Pan W, Hao X, Li L. Small-molecule modulation of Wnt signaling via modulating the Axin-LRP5/6 interaction. Nat Chem Biol 2013; 9:579-85. [PMID: 23892894 DOI: 10.1038/nchembio.1309] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 06/26/2013] [Indexed: 01/07/2023]
Abstract
The Wnt/β-catenin signaling pathway has a crucial role in embryonic development, stem cell maintenance and human disease. By screening a synthetic chemical library of lycorine derivatives, we identified 4-ethyl-5-methyl-5,6-dihydro-[1,3]dioxolo[4,5-j]phenanthridine (HLY78) as an activator of the Wnt/β-catenin signaling pathway, which acts in a Wnt ligand-dependent manner. HLY78 targets the DIX domain of Axin and potentiates the Axin-LRP6 association, thus promoting LRP6 phosphorylation and Wnt signaling transduction. Moreover, we identified the critical residues on Axin for HLY78 binding and showed that HLY78 may weaken the autoinhibition of Axin. In addition, HLY78 acts synergistically with Wnt in the embryonic development of zebrafish and increases the expression of the conserved hematopoietic stem cell (HSC) markers, runx1 and cmyb, in zebrafish embryos. Collectively, our study not only provides new insights into the regulation of the Wnt/β-catenin signaling pathway by a Wnt-specific small molecule but also will facilitate therapeutic applications, such as HSC expansion.
Collapse
Affiliation(s)
- Sheng Wang
- 1] State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China. [2]
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|