151
|
Splicing mutations in inherited retinal diseases. Prog Retin Eye Res 2021. [DOI: 10.1016/j.preteyeres.2020.100874
expr 921883647 + 833887994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
152
|
Elcheva IA, Spiegelman VS. The Role of cis- and trans-Acting RNA Regulatory Elements in Leukemia. Cancers (Basel) 2020; 12:E3854. [PMID: 33419342 PMCID: PMC7766907 DOI: 10.3390/cancers12123854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
RNA molecules are a source of phenotypic diversity and an operating system that connects multiple genetic and metabolic processes in the cell. A dysregulated RNA network is a common feature of cancer. Aberrant expression of long non-coding RNA (lncRNA), micro RNA (miRNA), and circular RNA (circRNA) in tumors compared to their normal counterparts, as well as the recurrent mutations in functional regulatory cis-acting RNA motifs have emerged as biomarkers of disease development and progression, opening avenues for the design of novel therapeutic approaches. This review looks at the progress, challenges and future prospects of targeting cis-acting and trans-acting RNA elements for leukemia diagnosis and treatment.
Collapse
Affiliation(s)
- Irina A. Elcheva
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, P.O. Box 850, MC H085, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Vladimir S. Spiegelman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, P.O. Box 850, MC H085, 500 University Drive, Hershey, PA 17033-0850, USA
| |
Collapse
|
153
|
Abstract
The structural and regulatory elements in therapeutically relevant RNAs offer many opportunities for targeting by small molecules, yet fundamental understanding of what drives selectivity in small molecule:RNA recognition has been a recurrent challenge. In particular, RNAs tend to be more dynamic and offer less chemical functionality than proteins, and biologically active ligands must compete with the highly abundant and highly structured RNA of the ribosome. Indeed, the only small molecule drug targeting RNA other than the ribosome was just approved in August 2020, and our recent survey of the literature revealed fewer than 150 reported chemical probes that target non-ribosomal RNA in biological systems. This Feature outlines our efforts to improve small molecule targeting strategies and gain fundamental insights into small molecule:RNA recognition by analyzing patterns in both RNA-biased small molecule chemical space and RNA topological space privileged for differentiation. First, we synthesized libraries based on RNA binding scaffolds that allowed us to reveal general principles in small molecule:recognition and to ask precise chemical questions about drivers of affinity and selectivity. Elaboration of these scaffolds has led to recognition of medicinally relevant RNA targets, including viral and long noncoding RNA structures. More globally, we identified physicochemical, structural, and spatial properties of biologically active RNA ligands that are distinct from those of protein-targeted ligands, and we have provided the dataset and associated analytical tools as part of a publicly available online platform to facilitate RNA ligand discovery. At the same time, we used pattern recognition protocols to identify RNA topologies that can be differentially recognized by small molecules and have elaborated this technique to visualize conformational changes in RNA secondary structure. These fundamental insights into the drivers of RNA recognition in vitro have led to functional targeting of RNA structures in biological systems. We hope that these initial guiding principles, as well as the approaches and assays developed in their pursuit, will enable rapid progress toward the development of RNA-targeted chemical probes and ultimately new therapeutic approaches to a wide range of deadly human diseases.
Collapse
Affiliation(s)
- Amanda E Hargrove
- Department of Chemistry, Duke University, 124 Science Drive, Box 90346, Durham, NC 27708, USA.
| |
Collapse
|
154
|
Singh RN, Ottesen EW, Singh NN. The First Orally Deliverable Small Molecule for the Treatment of Spinal Muscular Atrophy. Neurosci Insights 2020; 15:2633105520973985. [PMID: 33283185 PMCID: PMC7691903 DOI: 10.1177/2633105520973985] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is 1 of the leading causes of infant mortality. SMA
is mostly caused by low levels of Survival Motor Neuron (SMN) protein due to
deletion of or mutation in the SMN1 gene. Its nearly identical
copy, SMN2, fails to compensate for the loss of
SMN1 due to predominant skipping of exon 7. Correction of
SMN2 exon 7 splicing by an antisense oligonucleotide (ASO),
nusinersen (Spinraza™), that targets the intronic splicing silencer N1 (ISS-N1)
became the first approved therapy for SMA. Restoration of SMN levels using gene
therapy was the next. Very recently, an orally deliverable small molecule,
risdiplam (Evrysdi™), became the third approved therapy for SMA. Here we discuss
how these therapies are positioned to meet the needs of the broad phenotypic
spectrum of SMA patients.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| |
Collapse
|
155
|
Menduti G, Rasà DM, Stanga S, Boido M. Drug Screening and Drug Repositioning as Promising Therapeutic Approaches for Spinal Muscular Atrophy Treatment. Front Pharmacol 2020; 11:592234. [PMID: 33281605 PMCID: PMC7689316 DOI: 10.3389/fphar.2020.592234] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is the most common genetic disease affecting infants and young adults. Due to mutation/deletion of the survival motor neuron (SMN) gene, SMA is characterized by the SMN protein lack, resulting in motor neuron impairment, skeletal muscle atrophy and premature death. Even if the genetic causes of SMA are well known, many aspects of its pathogenesis remain unclear and only three drugs have been recently approved by the Food and Drug Administration (Nusinersen-Spinraza; Onasemnogene abeparvovec or AVXS-101-Zolgensma; Risdiplam-Evrysdi): although assuring remarkable results, the therapies show some important limits including high costs, still unknown long-term effects, side effects and disregarding of SMN-independent targets. Therefore, the research of new therapeutic strategies is still a hot topic in the SMA field and many efforts are spent in drug discovery. In this review, we describe two promising strategies to select effective molecules: drug screening (DS) and drug repositioning (DR). By using compounds libraries of chemical/natural compounds and/or Food and Drug Administration-approved substances, DS aims at identifying new potentially effective compounds, whereas DR at testing drugs originally designed for the treatment of other pathologies. The drastic reduction in risks, costs and time expenditure assured by these strategies make them particularly interesting, especially for those diseases for which the canonical drug discovery process would be long and expensive. Interestingly, among the identified molecules by DS/DR in the context of SMA, besides the modulators of SMN2 transcription, we highlighted a convergence of some targeted molecular cascades contributing to SMA pathology, including cell death related-pathways, mitochondria and cytoskeleton dynamics, neurotransmitter and hormone modulation.
Collapse
Affiliation(s)
| | | | | | - Marina Boido
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| |
Collapse
|
156
|
Identification of phenothiazine derivatives as UHM-binding inhibitors of early spliceosome assembly. Nat Commun 2020; 11:5621. [PMID: 33159082 PMCID: PMC7648758 DOI: 10.1038/s41467-020-19514-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
Interactions between U2AF homology motifs (UHMs) and U2AF ligand motifs (ULMs) play a crucial role in early spliceosome assembly in eukaryotic gene regulation. UHM-ULM interactions mediate heterodimerization of the constitutive splicing factors U2AF65 and U2AF35 and between other splicing factors that regulate spliceosome assembly at the 3′ splice site, where UHM domains of alternative splicing factors, such as SPF45 and PUF60, contribute to alternative splicing regulation. Here, we performed high-throughput screening using fluorescence polarization assays with hit validation by NMR and identified phenothiazines as general inhibitors of UHM-ULM interactions. NMR studies show that these compounds occupy the tryptophan binding pocket of UHM domains. Co-crystal structures of the inhibitors with the PUF60 UHM domain and medicinal chemistry provide structure-activity-relationships and reveal functional groups important for binding. These inhibitors inhibit early spliceosome assembly on pre-mRNA substrates in vitro. Our data show that spliceosome assembly can be inhibited by targeting UHM-ULM interactions by small molecules, thus extending the toolkit of splicing modulators for structural and biochemical studies of the spliceosome and splicing regulation. So far only a few compounds have been reported as splicing modulators. Here, the authors combine high-throughput screening, chemical synthesis, NMR, X-ray crystallography with functional studies and develop phenothiazines as inhibitors for the U2AF Homology Motif (UHM) domains of proteins that regulate splicing and show that they inhibit early spliceosome assembly on pre-mRNA substrates in vitro.
Collapse
|
157
|
Vincent F, Loria PM, Weston AD, Steppan CM, Doyonnas R, Wang YM, Rockwell KL, Peakman MC. Hit Triage and Validation in Phenotypic Screening: Considerations and Strategies. Cell Chem Biol 2020; 27:1332-1346. [DOI: 10.1016/j.chembiol.2020.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/31/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023]
|
158
|
Ando S, Suzuki S, Okubo S, Ohuchi K, Takahashi K, Nakamura S, Shimazawa M, Fuji K, Hara H. Discovery of a CNS penetrant small molecule SMN2 splicing modulator with improved tolerability for spinal muscular atrophy. Sci Rep 2020; 10:17472. [PMID: 33060681 PMCID: PMC7562719 DOI: 10.1038/s41598-020-74346-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/28/2020] [Indexed: 01/08/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a motor neuron disease, typically resulting from loss-of-function mutations in the survival motor neuron 1 (SMN1) gene. Nusinersen/SPINRAZA, a splice-switching oligonucleotide that modulates SMN2 (a paralog of SMN1) splicing and consequently increases SMN protein levels, has a therapeutic effect for SMA. Previously reported small-molecule SMN2 splicing modulators such as risdiplam/EVRYSDI and its analog SMN-C3 modulate not only the splicing of SMN2 but also that of secondary splice targets, including forkhead box protein M1 (FOXM1). Through screening SMA patient-derived fibroblasts, a novel small molecule, designated TEC-1, was identified that selectively modulates SMN2 splicing over three secondary splice targets. TEC-1 did not strongly affect the splicing of FOXM1, and unlike risdiplam, did not induce micronucleus formation. In addition, TEC-1 showed higher selectively on galactosylceramidase and huntingtin gene expression compared to previously reported compounds (e.g., SMN-C3) due to off-target effects on cryptic exon inclusion and nonsense-mediated mRNA decay. Moreover, TEC-1 significantly ameliorated the disease phenotype in an SMA murine model in vivo. Thus, TEC-1 may have promising therapeutic potential for SMA, and our study demonstrates the feasibility of RNA-targeting small-molecule drug development with an improved tolerability profile.
Collapse
Affiliation(s)
- Shiori Ando
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | | | | | - Kazuki Ohuchi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Kei Takahashi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Koji Fuji
- Reborna Biosciences Inc., Kanagawa, 251-0012, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan.
| |
Collapse
|
159
|
Yu AM, Choi YH, Tu MJ. RNA Drugs and RNA Targets for Small Molecules: Principles, Progress, and Challenges. Pharmacol Rev 2020; 72:862-898. [PMID: 32929000 PMCID: PMC7495341 DOI: 10.1124/pr.120.019554] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RNA-based therapies, including RNA molecules as drugs and RNA-targeted small molecules, offer unique opportunities to expand the range of therapeutic targets. Various forms of RNAs may be used to selectively act on proteins, transcripts, and genes that cannot be targeted by conventional small molecules or proteins. Although development of RNA drugs faces unparalleled challenges, many strategies have been developed to improve RNA metabolic stability and intracellular delivery. A number of RNA drugs have been approved for medical use, including aptamers (e.g., pegaptanib) that mechanistically act on protein target and small interfering RNAs (e.g., patisiran and givosiran) and antisense oligonucleotides (e.g., inotersen and golodirsen) that directly interfere with RNA targets. Furthermore, guide RNAs are essential components of novel gene editing modalities, and mRNA therapeutics are under development for protein replacement therapy or vaccination, including those against unprecedented severe acute respiratory syndrome coronavirus pandemic. Moreover, functional RNAs or RNA motifs are highly structured to form binding pockets or clefts that are accessible by small molecules. Many natural, semisynthetic, or synthetic antibiotics (e.g., aminoglycosides, tetracyclines, macrolides, oxazolidinones, and phenicols) can directly bind to ribosomal RNAs to achieve the inhibition of bacterial infections. Therefore, there is growing interest in developing RNA-targeted small-molecule drugs amenable to oral administration, and some (e.g., risdiplam and branaplam) have entered clinical trials. Here, we review the pharmacology of novel RNA drugs and RNA-targeted small-molecule medications, with a focus on recent progresses and strategies. Challenges in the development of novel druggable RNA entities and identification of viable RNA targets and selective small-molecule binders are discussed. SIGNIFICANCE STATEMENT: With the understanding of RNA functions and critical roles in diseases, as well as the development of RNA-related technologies, there is growing interest in developing novel RNA-based therapeutics. This comprehensive review presents pharmacology of both RNA drugs and RNA-targeted small-molecule medications, focusing on novel mechanisms of action, the most recent progress, and existing challenges.
Collapse
MESH Headings
- Aptamers, Nucleotide/pharmacology
- Aptamers, Nucleotide/therapeutic use
- Betacoronavirus
- COVID-19
- Chemistry Techniques, Analytical/methods
- Chemistry Techniques, Analytical/standards
- Clustered Regularly Interspaced Short Palindromic Repeats
- Coronavirus Infections/drug therapy
- Drug Delivery Systems/methods
- Drug Development/organization & administration
- Drug Discovery
- Humans
- MicroRNAs/pharmacology
- MicroRNAs/therapeutic use
- Oligonucleotides, Antisense/pharmacology
- Oligonucleotides, Antisense/therapeutic use
- Pandemics
- Pneumonia, Viral/drug therapy
- RNA/adverse effects
- RNA/drug effects
- RNA/pharmacology
- RNA, Antisense/pharmacology
- RNA, Antisense/therapeutic use
- RNA, Messenger/drug effects
- RNA, Messenger/pharmacology
- RNA, Ribosomal/drug effects
- RNA, Ribosomal/pharmacology
- RNA, Small Interfering/pharmacology
- RNA, Small Interfering/therapeutic use
- RNA, Viral/drug effects
- Ribonucleases/metabolism
- Riboswitch/drug effects
- SARS-CoV-2
Collapse
Affiliation(s)
- Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, California (A.-M.Y., Y.H.C., M.-J.T.) and College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyonggi-do, Republic of Korea (Y.H.C.)
| | - Young Hee Choi
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, California (A.-M.Y., Y.H.C., M.-J.T.) and College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyonggi-do, Republic of Korea (Y.H.C.)
| | - Mei-Juan Tu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, California (A.-M.Y., Y.H.C., M.-J.T.) and College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyonggi-do, Republic of Korea (Y.H.C.)
| |
Collapse
|
160
|
Bennett CF, Krainer AR, Cleveland DW. Antisense Oligonucleotide Therapies for Neurodegenerative Diseases. Annu Rev Neurosci 2020; 42:385-406. [PMID: 31283897 DOI: 10.1146/annurev-neuro-070918-050501] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antisense oligonucleotides represent a novel therapeutic platform for the discovery of medicines that have the potential to treat most neurodegenerative diseases. Antisense drugs are currently in development for the treatment of amyotrophic lateral sclerosis, Huntington's disease, and Alzheimer's disease, and multiple research programs are underway for additional neurodegenerative diseases. One antisense drug, nusinersen, has been approved for the treatment of spinal muscular atrophy. Importantly, nusinersen improves disease symptoms when administered to symptomatic patients rather than just slowing the progression of the disease. In addition to the benefit to spinal muscular atrophy patients, there are discoveries from nusinersen that can be applied to other neurological diseases, including method of delivery, doses, tolerability of intrathecally delivered antisense drugs, and the biodistribution of intrathecal dosed antisense drugs. Based in part on the early success of nusinersen, antisense drugs hold great promise as a therapeutic platform for the treatment of neurological diseases.
Collapse
Affiliation(s)
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
161
|
Haniff HS, Knerr L, Chen JL, Disney MD, Lightfoot HL. Target-Directed Approaches for Screening Small Molecules against RNA Targets. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2020; 25:869-894. [PMID: 32419578 PMCID: PMC7442623 DOI: 10.1177/2472555220922802] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
RNA molecules have a variety of cellular functions that can drive disease pathologies. They are without a doubt one of the most intriguing yet controversial small-molecule drug targets. The ability to widely target RNA with small molecules could be revolutionary, once the right tools, assays, and targets are selected, thereby defining which biomolecules are targetable and what constitutes drug-like small molecules. Indeed, approaches developed over the past 5-10 years have changed the face of small molecule-RNA targeting by addressing historic concerns regarding affinity, selectivity, and structural dynamics. Presently, selective RNA-protein complex stabilizing drugs such as branaplam and risdiplam are in clinical trials for the modulation of SMN2 splicing, compounds identified from phenotypic screens with serendipitous outcomes. Fully developing RNA as a druggable target will require a target engagement-driven approach, and evolving chemical collections will be important for the industrial development of this class of target. In this review we discuss target-directed approaches that can be used to identify RNA-binding compounds and the chemical knowledge we have today of small-molecule RNA binders.
Collapse
Affiliation(s)
- Hafeez S. Haniff
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Laurent Knerr
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jonathan L. Chen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Matthew D. Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | | |
Collapse
|
162
|
Kannan A, Jiang X, He L, Ahmad S, Gangwani L. ZPR1 prevents R-loop accumulation, upregulates SMN2 expression and rescues spinal muscular atrophy. Brain 2020; 143:69-93. [PMID: 31828288 PMCID: PMC6935747 DOI: 10.1093/brain/awz373] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/08/2019] [Accepted: 10/07/2019] [Indexed: 12/21/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by homozygous mutation or deletion of the survival motor neuron 1 (SMN1) gene. A second copy, SMN2, is similar to SMN1 but produces ∼10% SMN protein because of a single-point mutation that causes splicing defects. Chronic low levels of SMN cause accumulation of co-transcriptional R-loops and DNA damage leading to genomic instability and neurodegeneration in SMA. Severity of SMA disease correlates inversely with SMN levels. SMN2 is a promising target to produce higher levels of SMN by enhancing its expression. Mechanisms that regulate expression of SMN genes are largely unknown. We report that zinc finger protein ZPR1 binds to RNA polymerase II, interacts in vivo with SMN locus and upregulates SMN2 expression in SMA mice and patient cells. Modulation of ZPR1 levels directly correlates and influences SMN2 expression levels in SMA patient cells. ZPR1 overexpression in vivo results in a systemic increase of SMN levels and rescues severe to moderate disease in SMA mice. ZPR1-dependent rescue improves growth and motor function and increases the lifespan of male and female SMA mice. ZPR1 reduces neurodegeneration in SMA mice and prevents degeneration of cultured primary spinal cord neurons derived from SMA mice. Further, we show that the low levels of ZPR1 associated with SMA pathogenesis cause accumulation of co-transcriptional RNA-DNA hybrids (R-loops) and DNA damage leading to genomic instability in SMA mice and patient cells. Complementation with ZPR1 elevates senataxin levels, reduces R-loop accumulation and rescues DNA damage in SMA mice, motor neurons and patient cells. In conclusion, ZPR1 is critical for preventing accumulation of co-transcriptional R-loops and DNA damage to avert genomic instability and neurodegeneration in SMA. ZPR1 enhances SMN2 expression and leads to SMN-dependent rescue of SMA. ZPR1 represents a protective modifier and a therapeutic target for developing a new method for the treatment of SMA.
Collapse
Affiliation(s)
- Annapoorna Kannan
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.,Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Xiaoting Jiang
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.,Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Lan He
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.,Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Saif Ahmad
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.,Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Laxman Gangwani
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.,Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.,Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| |
Collapse
|
163
|
Tabrizi SJ, Flower MD, Ross CA, Wild EJ. Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat Rev Neurol 2020; 16:529-546. [PMID: 32796930 DOI: 10.1038/s41582-020-0389-4] [Citation(s) in RCA: 313] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
Huntington disease (HD) is a neurodegenerative disease caused by CAG repeat expansion in the huntingtin gene (HTT) and involves a complex web of pathogenic mechanisms. Mutant HTT (mHTT) disrupts transcription, interferes with immune and mitochondrial function, and is aberrantly modified post-translationally. Evidence suggests that the mHTT RNA is toxic, and at the DNA level, somatic CAG repeat expansion in vulnerable cells influences the disease course. Genome-wide association studies have identified DNA repair pathways as modifiers of somatic instability and disease course in HD and other repeat expansion diseases. In animal models of HD, nucleocytoplasmic transport is disrupted and its restoration is neuroprotective. Novel cerebrospinal fluid (CSF) and plasma biomarkers are among the earliest detectable changes in individuals with premanifest HD and have the sensitivity to detect therapeutic benefit. Therapeutically, the first human trial of an HTT-lowering antisense oligonucleotide successfully, and safely, reduced the CSF concentration of mHTT in individuals with HD. A larger trial, powered to detect clinical efficacy, is underway, along with trials of other HTT-lowering approaches. In this Review, we discuss new insights into the molecular pathogenesis of HD and future therapeutic strategies, including the modulation of DNA repair and targeting the DNA mutation itself.
Collapse
Affiliation(s)
- Sarah J Tabrizi
- Huntington's Disease Centre, University College London, London, UK. .,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK. .,UK Dementia Research Institute, University College London, London, UK.
| | - Michael D Flower
- Huntington's Disease Centre, University College London, London, UK.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK.,UK Dementia Research Institute, University College London, London, UK
| | - Christopher A Ross
- Departments of Neurology, Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Edward J Wild
- Huntington's Disease Centre, University College London, London, UK.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
164
|
Abstract
There is a great need for innovative new medicines to treat unmet medical needs. The discovery and development of innovative new medicines is extremely difficult, costly, and inefficient. In the last decade, phenotypic drug discovery (PDD) was reintroduced as a strategy to provide first-in-class medicines. PDD uses empirical, target-agnostic lead generation to identify pharmacologically active molecules and novel therapeutics which work through unprecedented drug mechanisms. The economic and scientific value of PDD is exemplified through game-changing medicines for hepatitis C virus, spinal muscular atrophy, and cystic fibrosis. In this short review, recent advances are noted for the implementation and de-risking of PDD (for compound library selection, biomarker development, mechanism identification, and safety studies) and the potential for artificial intelligence. A significant barrier in the decision to implement PDD is balancing the potential impact of a novel mechanism of drug action with an under-defined scientific path forward, with the desire to provide infrastructure and metrics to optimize return on investment, which a known mechanism provides. A means to address this knowledge gap in the future is to empower precompetitive research utilizing the empirical concepts of PDD to identify new mechanisms and pharmacologically active compounds.
Collapse
|
165
|
Abstract
Protein-RNA interactions have crucial roles in various cellular activities, which, when dysregulated, can lead to a range of human diseases. The identification of small molecules that target the interaction between RNA-binding proteins (RBPs) and RNA is progressing rapidly and represents a novel strategy for the discovery of chemical probes that facilitate understanding of the cellular functions of RBPs and of therapeutic agents with new mechanisms of action. In this Review, I present a current overview of targeting emerging RBPs using small-molecule inhibitors and recent progress in this burgeoning field. Small-molecule inhibitors that were reported for three representative emerging classes of RBPs, the microRNA-binding protein LIN28, the single-stranded or double-stranded RNA-binding Toll-like receptors and the CRISPR-associated (Cas) proteins, are highlighted from a medicinal-chemistry and chemical-biology perspective. However, although this field is burgeoning, challenges remain in the discovery and characterization of small-molecule inhibitors of RBPs.
Collapse
|
166
|
Zakharova M. Modern approaches in gene therapy of motor neuron diseases. Med Res Rev 2020; 41:2634-2655. [PMID: 32638429 DOI: 10.1002/med.21705] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022]
Abstract
Motor neuron disorders are a group of neurodegenerative diseases characterized by muscle weakness, loss of ambulation, respiratory insufficiency, leading to an early death. Spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis are the most common and fatal motor neuron diseases. The last 3 years became very successful for novel gene therapy approaches in SMA in infants. Two innovative drugs-nusinersen (Spinraza) and onasemnogene abeparvovec (Zolgensma) have been approved by health authorities. The numerous molecular and genetic overlaps between different neurodegenerative diseases are of great importance in the development of innovative therapeutic strategies, including viral vector therapy and RNA modulating approaches.
Collapse
Affiliation(s)
- Maria Zakharova
- Sixth Neurology Department (Department of Neuroinfectious Diseases), Research Center of Neurology, Moscow, Russia
| |
Collapse
|
167
|
Angelbello AJ, Chen JL, Disney MD. Small molecule targeting of RNA structures in neurological disorders. Ann N Y Acad Sci 2020; 1471:57-71. [PMID: 30964958 PMCID: PMC6785366 DOI: 10.1111/nyas.14051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 12/11/2022]
Abstract
Aberrant RNA structure and function operate in neurological disease progression and severity. As RNA contributes to disease pathology in a complex fashion, that is, via various mechanisms, it has become an attractive therapeutic target for small molecules and oligonucleotides. In this review, we discuss the identification of RNA structures that cause or contribute to neurological diseases as well as recent progress toward the development of small molecules that target them, including small molecule modulators of pre-mRNA splicing and RNA repeat expansions that cause microsatellite disorders such as Huntington's disease and amyotrophic lateral sclerosis. The use of oligonucleotide-based modalities is also discussed. There are key differences between small molecule and oligonucleotide targeting of RNA. The former targets RNA structure, while the latter prefers unstructured regions. Thus, some targets will be preferentially targeted by oligonucleotides and others by small molecules.
Collapse
Affiliation(s)
| | - Jonathan L Chen
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida
| |
Collapse
|
168
|
Splicing mutations in inherited retinal diseases. Prog Retin Eye Res 2020; 80:100874. [PMID: 32553897 DOI: 10.1016/j.preteyeres.2020.100874] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 12/15/2022]
Abstract
Mutations which induce aberrant transcript splicing represent a distinct class of disease-causing genetic variants in retinal disease genes. Such mutations may either weaken or erase regular splice sites or create novel splice sites which alter exon recognition. While mutations affecting the canonical GU-AG dinucleotides at the splice donor and splice acceptor site are highly predictive to cause a splicing defect, other variants in the vicinity of the canonical splice sites or those affecting additional cis-acting regulatory sequences within exons or introns are much more difficult to assess or even to recognize and require additional experimental validation. Splicing mutations are unique in that the actual outcome for the transcript (e.g. exon skipping, pseudoexon inclusion, intron retention) and the encoded protein can be quite different depending on the individual mutation. In this article, we present an overview on the current knowledge about and impact of splicing mutations in inherited retinal diseases. We introduce the most common sub-classes of splicing mutations including examples from our own work and others and discuss current strategies for the identification and validation of splicing mutations, as well as therapeutic approaches, open questions, and future perspectives in this field of research.
Collapse
|
169
|
Tessaro F, Scapozza L. How 'Protein-Docking' Translates into the New Emerging Field of Docking Small Molecules to Nucleic Acids? Molecules 2020; 25:E2749. [PMID: 32545835 PMCID: PMC7355999 DOI: 10.3390/molecules25122749] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 11/16/2022] Open
Abstract
In this review, we retraced the '40-year evolution' of molecular docking algorithms. Over the course of the years, their development allowed to progress from the so-called 'rigid-docking' searching methods to the more sophisticated 'semi-flexible' and 'flexible docking' algorithms. Together with the advancement of computing architecture and power, molecular docking's applications also exponentially increased, from a single-ligand binding calculation to large screening and polypharmacology profiles. Recently targeting nucleic acids with small molecules has emerged as a valuable therapeutic strategy especially for cancer treatment, along with bacterial and viral infections. For example, therapeutic intervention at the mRNA level allows to overcome the problematic of undruggable proteins without modifying the genome. Despite the promising therapeutic potential of nucleic acids, molecular docking programs have been optimized mostly for proteins. Here, we have analyzed literature data on nucleic acid to benchmark some of the widely used docking programs. Finally, the comparison between proteins and nucleic acid targets docking highlighted similarity and differences, which are intrinsically related to their chemical and structural nature.
Collapse
Affiliation(s)
- Francesca Tessaro
- Pharmaceutical Biochemistry, School of Pharmaceutical Sciences, University of Geneva CMU, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland;
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry, School of Pharmaceutical Sciences, University of Geneva CMU, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland;
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
170
|
Zhou H, Meng J, Malerba A, Catapano F, Sintusek P, Jarmin S, Feng L, Lu-Nguyen N, Sun L, Mariot V, Dumonceaux J, Morgan JE, Gissen P, Dickson G, Muntoni F. Myostatin inhibition in combination with antisense oligonucleotide therapy improves outcomes in spinal muscular atrophy. J Cachexia Sarcopenia Muscle 2020; 11:768-782. [PMID: 32031328 PMCID: PMC7296258 DOI: 10.1002/jcsm.12542] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/10/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by genetic defects in the survival motor neuron 1 (SMN1) gene that lead to SMN deficiency. Different SMN-restoring therapies substantially prolong survival and function in transgenic mice of SMA. However, these therapies do not entirely prevent muscle atrophy and restore function completely. To further improve the outcome, we explored the potential of a combinatorial therapy by modulating SMN production and muscle-enhancing approach as a novel therapeutic strategy for SMA. METHODS The experiments were performed in a mouse model of severe SMA. A previously reported 25-mer morpholino antisense oligomer PMO25 was used to restore SMN expression. The adeno-associated virus-mediated expression of myostatin propeptide was used to block the myostatin pathway. Newborn SMA mice were treated with a single subcutaneous injection of 40 μg/g (therapeutic dose) or 10 μg/g (low-dose) PMO25 on its own or together with systemic delivery of a single dose of adeno-associated virus-mediated expression of myostatin propeptide. The multiple effects of myostatin inhibition on survival, skeletal muscle phenotype, motor function, neuromuscular junction maturation, and proprioceptive afferences were evaluated. RESULTS We show that myostatin inhibition acts synergistically with SMN-restoring antisense therapy in SMA mice treated with the higher therapeutic dose PMO25 (40 μg/g), by increasing not only body weight (21% increase in male mice at Day 40), muscle mass (38% increase), and fibre size (35% increase in tibialis anterior muscle in 3 month female SMA mice), but also motor function and physical performance as measured in hanging wire test (two-fold increase in time score) and treadmill exercise test (two-fold increase in running distance). In SMA mice treated with low-dose PMO25 (10 μg/g), the early application of myostatin inhibition prolongs survival (40% increase), improves neuromuscular junction maturation (50% increase) and innervation (30% increase), and increases both the size of sensory neurons in dorsal root ganglia (60% increase) and the preservation of proprioceptive synapses in the spinal cord (30% increase). CONCLUSIONS These data suggest that myostatin inhibition, in addition to the well-known effect on muscle mass, can also positively influence the sensory neural circuits that may enhance motor neurons function. While the availability of the antisense drug Spinraza for SMA and other SMN-enhancing therapies has provided unprecedented improvement in SMA patients, there are still unmet needs in these patients. Our study provides further rationale for considering myostatin inhibitors as a therapeutic intervention in SMA patients, in combination with SMN-restoring drugs.
Collapse
Affiliation(s)
- Haiyan Zhou
- Genetics and Genomic Medicine Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Jinhong Meng
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Alberto Malerba
- Centres of Gene and Cell Therapy and Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| | - Francesco Catapano
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Palittiya Sintusek
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK.,Department of Paediatrics, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Susan Jarmin
- Centres of Gene and Cell Therapy and Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| | - Lucy Feng
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Ngoc Lu-Nguyen
- Centres of Gene and Cell Therapy and Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| | - Lianwen Sun
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Virginie Mariot
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Julie Dumonceaux
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Jennifer E Morgan
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Paul Gissen
- Genetics and Genomic Medicine Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - George Dickson
- Centres of Gene and Cell Therapy and Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| |
Collapse
|
171
|
Rahman MA, Nasrin F, Bhattacharjee S, Nandi S. Hallmarks of Splicing Defects in Cancer: Clinical Applications in the Era of Personalized Medicine. Cancers (Basel) 2020; 12:cancers12061381. [PMID: 32481522 PMCID: PMC7352608 DOI: 10.3390/cancers12061381] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing promotes proteome diversity by using limited number of genes, a key control point of gene expression. Splicing is carried out by large macromolecular machineries, called spliceosome, composed of small RNAs and proteins. Alternative splicing is regulated by splicing regulatory cis-elements in RNA and trans-acting splicing factors that are often tightly regulated in a tissue-specific and developmental stage-specific manner. The biogenesis of ribonucleoprotein (RNP) complexes is strictly regulated to ensure that correct complements of RNA and proteins are coordinated in the right cell at the right time to support physiological functions. Any perturbations that impair formation of functional spliceosomes by disrupting the cis-elements, or by compromising RNA-binding or function of trans-factors can be deleterious to cells and result in pathological consequences. The recent discovery of oncogenic mutations in splicing factors, and growing evidence of the perturbed splicing in multiple types of cancer, underscores RNA processing defects as a critical driver of oncogenesis. These findings have resulted in a growing interest in targeting RNA splicing as a therapeutic approach for cancer treatment. This review summarizes our current understanding of splicing alterations in cancer, recent therapeutic efforts targeting splicing defects in cancer, and future potentials to develop novel cancer therapies.
Collapse
|
172
|
Chen JL, Zhang P, Abe M, Aikawa H, Zhang L, Frank AJ, Zembryski T, Hubbs C, Park H, Withka J, Steppan C, Rogers L, Cabral S, Pettersson M, Wager TT, Fountain MA, Rumbaugh G, Childs-Disney JL, Disney MD. Design, Optimization, and Study of Small Molecules That Target Tau Pre-mRNA and Affect Splicing. J Am Chem Soc 2020; 142:8706-8727. [PMID: 32364710 PMCID: PMC7357857 DOI: 10.1021/jacs.0c00768] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Approximately 95% of human genes are alternatively spliced, and aberrant splicing events can cause disease. One pre-mRNA that is alternatively spliced and linked to neurodegenerative diseases is tau (microtubule-associated protein tau), which can cause frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) and can contribute to Alzheimer's disease. Here, we describe the design of structure-specific lead small molecules that directly target tau pre-mRNA from sequence. This was followed by hit expansion and analogue synthesis to further improve upon these initial lead molecules. The emergent compounds were assessed for functional activity in a battery of assays, including binding assays and an assay that mimics molecular recognition of tau pre-mRNA by a U1 small nuclear ribonucleoprotein (snRNP) splicing factor. Compounds that emerged from these studies had enhanced potency and selectivity for the target RNA relative to the initial hits, while also having significantly improved drug-like properties. The compounds are shown to directly target tau pre-mRNA in cells, via chemical cross-linking and isolation by pull-down target profiling, and to rescue disease-relevant splicing of tau pre-mRNA in a variety of cellular systems, including primary neurons. More broadly, this study shows that lead, structure-specific compounds can be designed from sequence and then further optimized for their physicochemical properties while at the same time enhancing their activity.
Collapse
Affiliation(s)
- Jonathan L. Chen
- Department of Chemistry and Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Peiyuan Zhang
- Department of Chemistry and Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Masahito Abe
- Department of Chemistry and Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Haruo Aikawa
- Department of Chemistry and Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Liying Zhang
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Alexander J. Frank
- Department of Chemistry & Biochemistry, State University of New York at Fredonia, Fredonia, New York 14063, United States
| | - Timothy Zembryski
- Department of Chemistry & Biochemistry, State University of New York at Fredonia, Fredonia, New York 14063, United States
| | - Christopher Hubbs
- Department of Chemistry and Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - HaJeung Park
- Department of Chemistry and Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Jane Withka
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Claire Steppan
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Lucy Rogers
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Shawn Cabral
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Martin Pettersson
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Travis T. Wager
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Matthew A. Fountain
- Department of Chemistry & Biochemistry, State University of New York at Fredonia, Fredonia, New York 14063, United States
| | - Gavin Rumbaugh
- Department of Chemistry and Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Jessica L. Childs-Disney
- Department of Chemistry and Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Matthew D. Disney
- Department of Chemistry and Neuroscience, The Scripps Research Institute, Jupiter
| |
Collapse
|
173
|
Pernia C, Tobe BTD, O'Donnell R, Snyder EY. The Evolution of Stem Cells, Disease Modeling, and Drug Discovery for Neurological Disorders. Stem Cells Dev 2020; 29:1131-1141. [PMID: 32024446 DOI: 10.1089/scd.2019.0217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human neurological disorders are among the most challenging areas of translational research. The difficulty of acquiring human neural samples or specific representative animal models has necessitated a multifaceted approach to understanding disease pathology and drug discovery. The dedifferentiation of somatic cells to human induced pluripotent stem cells (hiPSCs) for the generation of neural derivatives has broadened the capability of biomedical research to study human cell types in neurological disorders. The initial zeal for the potential of hiPSCs for immediate biomedical breakthroughs has evolved to more reasonable expectations. Over the past decade, hiPSC technology has demonstrated the capacity to successfully establish "disease in a dish" models of complex neurological disorders and to identify possible novel therapeutics. However, as hiPSCs are used more broadly, an increased understanding of the limitations of hiPSC studies is becoming more evident. In this study, we review the challenges of studying neurological disorders, the current limitations of stem cell-based disease modeling, and the degrees to which hiPSC studies to date have demonstrated the capacity to fill essential gaps in neurological research.
Collapse
Affiliation(s)
- Cameron Pernia
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
| | - Brian T D Tobe
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA.,Department of Psychiatry, Veterans Administration Medical Center, La Jolla, California, USA
| | - Ryan O'Donnell
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
| | - Evan Y Snyder
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
| |
Collapse
|
174
|
RNA-Targeted Therapies and High-Throughput Screening Methods. Int J Mol Sci 2020; 21:ijms21082996. [PMID: 32340368 PMCID: PMC7216119 DOI: 10.3390/ijms21082996] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
RNA-binding proteins (RBPs) are involved in regulating all aspects of RNA metabolism, including processing, transport, translation, and degradation. Dysregulation of RNA metabolism is linked to a plethora of diseases, such as cancer, neurodegenerative diseases, and neuromuscular disorders. Recent years have seen a dramatic shift in the knowledge base, with RNA increasingly being recognised as an attractive target for precision medicine therapies. In this article, we are going to review current RNA-targeted therapies. Furthermore, we will scrutinise a range of drug discoveries targeting protein-RNA interactions. In particular, we will focus on the interplay between Lin28 and let-7, splicing regulatory proteins and survival motor neuron (SMN) pre-mRNA, as well as HuR, Musashi, proteins and their RNA targets. We will highlight the mechanisms RBPs utilise to modulate RNA metabolism and discuss current high-throughput screening strategies. This review provides evidence that we are entering a new era of RNA-targeted medicine.
Collapse
|
175
|
Hammond SM, Abendroth F, Gait MJ, Wood MJA. Evaluation of Cell-Penetrating Peptide Delivery of Antisense Oligonucleotides for Therapeutic Efficacy in Spinal Muscular Atrophy. Methods Mol Biol 2020; 2036:221-236. [PMID: 31410800 DOI: 10.1007/978-1-4939-9670-4_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Antisense oligonucleotides (ASOs) are a widely used form of gene therapy, which is translatable to multiple disorders. A major obstacle for ASO efficacy is its bioavailability for in vivo and in vitro studies. To overcome this challenge we use cell-penetrating peptides (CPPs) for systemic delivery of ASOs. One of the most advanced clinical uses of ASOs is for the treatment of spinal muscular atrophy (SMA). In this chapter, we describe the techniques used for in vitro screening and analysing in vivo biodistribution of CPP-conjugated ASOs targeting the survival motor neuron 2, SMN2, the dose-dependent modifying gene for SMA.
Collapse
Affiliation(s)
- Suzan M Hammond
- Department of Paediatrics, University of Oxford, Oxford, UK.
| | - Frank Abendroth
- Laboratory of Molecular Biology, Medical Research Council, Cambridge, UK
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University of Mainz, Staudingerweg 5, D-55128, Mainz, Germany
| | - Michael J Gait
- Laboratory of Molecular Biology, Medical Research Council, Cambridge, UK
| | | |
Collapse
|
176
|
Ravi B, Antonellis A, Sumner CJ, Lieberman AP. Genetic approaches to the treatment of inherited neuromuscular diseases. Hum Mol Genet 2020; 28:R55-R64. [PMID: 31227836 DOI: 10.1093/hmg/ddz131] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 04/29/2019] [Accepted: 06/07/2019] [Indexed: 12/17/2022] Open
Abstract
Inherited neuromuscular diseases are a heterogeneous group of developmental and degenerative disorders that affect motor unit function. Major challenges toward developing therapies for these diseases include heterogeneity with respect to clinical severity, age of onset and the primary cell type that is affected (e.g. motor neurons, skeletal muscle and Schwann cells). Here, we review recent progress toward the establishment of genetic therapies to treat inherited neuromuscular disorders that affect both children and adults with a focus on spinal muscular atrophy, Charcot-Marie-Tooth disease and spinal and bulbar muscular atrophy. We discuss clinical features, causative mutations and emerging approaches that are undergoing testing in preclinical models and in patients or that have received recent approval for clinical use. Many of these efforts employ antisense oligonucleotides to alter pre-mRNA splicing or diminish target gene expression and use viral vectors to replace expression of mutant genes. Finally, we discuss remaining challenges for optimizing the delivery and effectiveness of these approaches. In sum, therapeutic strategies for neuromuscular diseases have shown encouraging results, raising hope that recent strides will translate into significant clinical benefits for patients with these disorders.
Collapse
Affiliation(s)
- Bhavya Ravi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
177
|
Seranova E, Palhegyi AM, Verma S, Dimova S, Lasry R, Naama M, Sun C, Barrett T, Rosenstock TR, Kumar D, Cohen MA, Buganim Y, Sarkar S. Human Induced Pluripotent Stem Cell Models of Neurodegenerative Disorders for Studying the Biomedical Implications of Autophagy. J Mol Biol 2020; 432:2754-2798. [PMID: 32044344 DOI: 10.1016/j.jmb.2020.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/12/2022]
Abstract
Autophagy is an intracellular degradation process that is essential for cellular survival, tissue homeostasis, and human health. The housekeeping functions of autophagy in mediating the clearance of aggregation-prone proteins and damaged organelles are vital for post-mitotic neurons. Improper functioning of this process contributes to the pathology of myriad human diseases, including neurodegeneration. Impairment in autophagy has been reported in several neurodegenerative diseases where pharmacological induction of autophagy has therapeutic benefits in cellular and transgenic animal models. However, emerging studies suggest that the efficacy of autophagy inducers, as well as the nature of the autophagy defects, may be context-dependent, and therefore, studies in disease-relevant experimental systems may provide more insights for clinical translation to patients. With the advancements in human stem cell technology, it is now possible to establish disease-affected cellular platforms from patients for investigating disease mechanisms and identifying candidate drugs in the appropriate cell types, such as neurons that are otherwise not accessible. Towards this, patient-derived human induced pluripotent stem cells (hiPSCs) have demonstrated considerable promise in constituting a platform for effective disease modeling and drug discovery. Multiple studies have utilized hiPSC models of neurodegenerative diseases to study autophagy and evaluate the therapeutic efficacy of autophagy inducers in neuronal cells. This review provides an overview of the regulation of autophagy, generation of hiPSCs via cellular reprogramming, and neuronal differentiation. It outlines the findings in various neurodegenerative disorders where autophagy has been studied using hiPSC models.
Collapse
Affiliation(s)
- Elena Seranova
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Adina Maria Palhegyi
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Surbhi Verma
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Simona Dimova
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Rachel Lasry
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, 91120, Israel
| | - Moriyah Naama
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, 91120, Israel
| | - Congxin Sun
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Timothy Barrett
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Tatiana Rosado Rosenstock
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Sciences, São Paulo, SP, 01221-020, Brazil
| | - Dhiraj Kumar
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Malkiel A Cohen
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, 91120, Israel
| | - Sovan Sarkar
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
178
|
Ramdas S, Servais L. New treatments in spinal muscular atrophy: an overview of currently available data. Expert Opin Pharmacother 2020; 21:307-315. [PMID: 31973611 DOI: 10.1080/14656566.2019.1704732] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Introduction: Spinal muscular atrophy (SMA) is one of the most common inherited neuromuscular disorders. It causes progressive muscle weakness and results in significant disability. Until recently, there were no drugs available for the treatment of SMA. Several phase 1-3 studies, including three double-blind randomized placebo-controlled studies have demonstrated the efficacy of disease-modifying approaches including gene replacement therapy, antisense oligonucleotides, and splicing modifiers.Areas covered: This article covers the publically available data on therapeutic strategies that address the underlying cause of SMA and clinical data available on approved treatments and drugs in the pipeline.Expert opinion: The newer therapeutic options in SMA have a good safety profile and deliver a therapeutic benefit in most patients. It is essential that the recommended standards of care are delivered along with the drugs for the best outcomes. No biomarkers to distinguish responders from non-responders are available; it is important that biomarkers be identified. Early treatment is essential for the maximum efficacy of the newly available treatments.
Collapse
Affiliation(s)
- Sithara Ramdas
- MDUK Neuromuscular Center, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Laurent Servais
- MDUK Neuromuscular Center, Department of Paediatrics, University of Oxford, Oxford, UK.,Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liège & University of Liège, Belgium
| |
Collapse
|
179
|
Swalley SE. Expanding therapeutic opportunities for neurodegenerative diseases: A perspective on the important role of phenotypic screening. Bioorg Med Chem 2020; 28:115239. [DOI: 10.1016/j.bmc.2019.115239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/15/2019] [Accepted: 11/24/2019] [Indexed: 02/08/2023]
|
180
|
Wirth B, Karakaya M, Kye MJ, Mendoza-Ferreira N. Twenty-Five Years of Spinal Muscular Atrophy Research: From Phenotype to Genotype to Therapy, and What Comes Next. Annu Rev Genomics Hum Genet 2020; 21:231-261. [PMID: 32004094 DOI: 10.1146/annurev-genom-102319-103602] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Twenty-five years ago, the underlying genetic cause for one of the most common and devastating inherited diseases in humans, spinal muscular atrophy (SMA), was identified. Homozygous deletions or, rarely, subtle mutations of SMN1 cause SMA, and the copy number of the nearly identical copy gene SMN2 inversely correlates with disease severity. SMA has become a paradigm and a prime example of a monogenic neurological disorder that can be efficiently ameliorated or nearly cured by novel therapeutic strategies, such as antisense oligonucleotide or gene replacement therapy. These therapies enable infants to survive who might otherwise have died before the age of two and allow individuals who have never been able to sit or walk to do both. The major milestones on the road to these therapies were to understand the genetic cause and splice regulation of SMN genes, the disease's phenotype-genotype variability, the function of the protein and the main affected cellular pathways and tissues, the disease's pathophysiology through research on animal models, the windows of opportunity for efficient treatment, and how and when to treat patients most effectively.This review aims to bridge our knowledge from phenotype to genotype to therapy, not only highlighting the significant advances so far but also speculating about the future of SMA screening and treatment.
Collapse
Affiliation(s)
- Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne and Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany;
| | - Mert Karakaya
- Institute of Human Genetics, Center for Molecular Medicine Cologne and Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany;
| | - Min Jeong Kye
- Institute of Human Genetics, Center for Molecular Medicine Cologne and Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany;
| | - Natalia Mendoza-Ferreira
- Institute of Human Genetics, Center for Molecular Medicine Cologne and Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany;
| |
Collapse
|
181
|
Kumar A, Kumar V, Singh K, Kumar S, Kim YS, Lee YM, Kim JJ. Therapeutic Advances for Huntington's Disease. Brain Sci 2020; 10:brainsci10010043. [PMID: 31940909 PMCID: PMC7016861 DOI: 10.3390/brainsci10010043] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
Huntington’s disease (HD) is a progressive neurological disease that is inherited in an autosomal fashion. The cause of disease pathology is an expansion of cytosine-adenine-guanine (CAG) repeats within the huntingtin gene (HTT) on chromosome 4 (4p16.3), which codes the huntingtin protein (mHTT). The common symptoms of HD include motor and cognitive impairment of psychiatric functions. Patients exhibit a representative phenotype of involuntary movement (chorea) of limbs, impaired cognition, and severe psychiatric disturbances (mood swings, depression, and personality changes). A variety of symptomatic treatments (which target glutamate and dopamine pathways, caspases, inhibition of aggregation, mitochondrial dysfunction, transcriptional dysregulation, and fetal neural transplants, etc.) are available and some are in the pipeline. Advancement in novel therapeutic approaches include targeting the mutant huntingtin (mHTT) protein and the HTT gene. New gene editing techniques will reduce the CAG repeats. More appropriate and readily tractable treatment goals, coupled with advances in analytical tools will help to assess the clinical outcomes of HD treatments. This will not only improve the quality of life and life span of HD patients, but it will also provide a beneficial role in other inherited and neurological disorders. In this review, we aim to discuss current therapeutic research approaches and their possible uses for HD.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Genetics, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, UP, India;
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea; (Y.-S.K.); (Y.-M.L.)
- Correspondence: (V.K.); (J.-J.K.)
| | - Kritanjali Singh
- Central Research Station, Subharti Medical College, Swami Vivekanand Subharti University, Meerut 250002, India;
| | - Sukesh Kumar
- PG Department of Botany, Nalanda College, Bihar Sharif, Magadh University, Bihar 824234, India;
| | - You-Sam Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea; (Y.-S.K.); (Y.-M.L.)
| | - Yun-Mi Lee
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea; (Y.-S.K.); (Y.-M.L.)
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea; (Y.-S.K.); (Y.-M.L.)
- Correspondence: (V.K.); (J.-J.K.)
| |
Collapse
|
182
|
Tejero R, Balk S, Franco-Espin J, Ojeda J, Hennlein L, Drexl H, Dombert B, Clausen JD, Torres-Benito L, Saal-Bauernschubert L, Blum R, Briese M, Appenzeller S, Tabares L, Jablonka S. R-Roscovitine Improves Motoneuron Function in Mouse Models for Spinal Muscular Atrophy. iScience 2020; 23:100826. [PMID: 31981925 PMCID: PMC6992996 DOI: 10.1016/j.isci.2020.100826] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/08/2019] [Accepted: 01/06/2020] [Indexed: 12/27/2022] Open
Abstract
Neurotransmission defects and motoneuron degeneration are hallmarks of spinal muscular atrophy, a monogenetic disease caused by the deficiency of the SMN protein. In the present study, we show that systemic application of R-Roscovitine, a Cav2.1/Cav2.2 channel modifier and a cyclin-dependent kinase 5 (Cdk-5) inhibitor, significantly improved survival of SMA mice. In addition, R-Roscovitine increased Cav2.1 channel density and sizes of the motor endplates. In vitro, R-Roscovitine restored axon lengths and growth cone sizes of Smn-deficient motoneurons corresponding to enhanced spontaneous Ca2+ influx and elevated Cav2.2 channel cluster formations independent of its capability to inhibit Cdk-5. Acute application of R-Roscovitine at the neuromuscular junction significantly increased evoked neurotransmitter release, increased the frequency of spontaneous miniature potentials, and lowered the activation threshold of silent terminals. These data indicate that R-Roscovitine improves Ca2+ signaling and Ca2+ homeostasis in Smn-deficient motoneurons, which is generally crucial for motoneuron differentiation, maturation, and function. R-Roscovitine prolongs survival of SMA mice R-Roscovitine increases Ca2+ influx and growth cone size of SMA motoneurons R-Roscovitine beneficially affects neurotransmission in SMA motor nerve terminals R-Roscovitine wakes up dormant synapses of SMA motoneurons
Collapse
Affiliation(s)
- Rocio Tejero
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Stefanie Balk
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Julio Franco-Espin
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Jorge Ojeda
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Luisa Hennlein
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Hans Drexl
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Benjamin Dombert
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Jan-Dierk Clausen
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Laura Torres-Benito
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, 41009 Seville, Spain
| | | | - Robert Blum
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Michael Briese
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Silke Appenzeller
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, 97080 Würzburg, Germany; Core Unit SysMed, University of Würzburg, 97080 Würzburg, Germany
| | - Lucia Tabares
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, 41009 Seville, Spain.
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany.
| |
Collapse
|
183
|
Wadman RI, van der Pol WL, Bosboom WMJ, Asselman F, van den Berg LH, Iannaccone ST, Vrancken AFJE, Cochrane Neuromuscular Group. Drug treatment for spinal muscular atrophy types II and III. Cochrane Database Syst Rev 2020; 1:CD006282. [PMID: 32006461 PMCID: PMC6995983 DOI: 10.1002/14651858.cd006282.pub5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by a homozygous deletion of the survival motor neuron 1 (SMN1) gene on chromosome 5, or a heterozygous deletion in combination with a (point) mutation in the second SMN1 allele. This results in degeneration of anterior horn cells, which leads to progressive muscle weakness. Children with SMA type II do not develop the ability to walk without support and have a shortened life expectancy, whereas children with SMA type III develop the ability to walk and have a normal life expectancy. This is an update of a review first published in 2009 and previously updated in 2011. OBJECTIVES To evaluate if drug treatment is able to slow or arrest the disease progression of SMA types II and III, and to assess if such therapy can be given safely. SEARCH METHODS We searched the Cochrane Neuromuscular Specialised Register, CENTRAL, MEDLINE, Embase, and ISI Web of Science conference proceedings in October 2018. In October 2018, we also searched two trials registries to identify unpublished trials. SELECTION CRITERIA We sought all randomised or quasi-randomised trials that examined the efficacy of drug treatment for SMA types II and III. Participants had to fulfil the clinical criteria and have a homozygous deletion or hemizygous deletion in combination with a point mutation in the second allele of the SMN1 gene (5q11.2-13.2) confirmed by genetic analysis. The primary outcome measure was change in disability score within one year after the onset of treatment. Secondary outcome measures within one year after the onset of treatment were change in muscle strength, ability to stand or walk, change in quality of life, time from the start of treatment until death or full-time ventilation and adverse events attributable to treatment during the trial period. Treatment strategies involving SMN1-replacement with viral vectors are out of the scope of this review, but a summary is given in Appendix 1. Drug treatment for SMA type I is the topic of a separate Cochrane Review. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. MAIN RESULTS The review authors found 10 randomised, placebo-controlled trials of treatments for SMA types II and III for inclusion in this review, with 717 participants. We added four of the trials at this update. The trials investigated creatine (55 participants), gabapentin (84 participants), hydroxyurea (57 participants), nusinersen (126 participants), olesoxime (165 participants), phenylbutyrate (107 participants), somatotropin (20 participants), thyrotropin-releasing hormone (TRH) (nine participants), valproic acid (33 participants), and combination therapy with valproic acid and acetyl-L-carnitine (ALC) (61 participants). Treatment duration was from three to 24 months. None of the studies investigated the same treatment and none was completely free of bias. All studies had adequate blinding, sequence generation and reporting of primary outcomes. Based on moderate-certainty evidence, intrathecal nusinersen improved motor function (disability) in children with SMA type II, with a 3.7-point improvement in the nusinersen group on the Hammersmith Functional Motor Scale Expanded (HFMSE; range of possible scores 0 to 66), compared to a 1.9-point decline on the HFMSE in the sham procedure group (P < 0.01; n = 126). On all motor function scales used, higher scores indicate better function. Based on moderate-certainty evidence from two studies, the following interventions had no clinically important effect on motor function scores in SMA types II or III (or both) in comparison to placebo: creatine (median change 1 higher, 95% confidence interval (CI) -1 to 2; on the Gross Motor Function Measure (GMFM), scale 0 to 264; n = 40); and combination therapy with valproic acid and carnitine (mean difference (MD) 0.64, 95% CI -1.1 to 2.38; on the Modified Hammersmith Functional Motor Scale (MHFMS), scale 0 to 40; n = 61). Based on low-certainty evidence from other single studies, the following interventions had no clinically important effect on motor function scores in SMA types II or III (or both) in comparison to placebo: gabapentin (median change 0 in the gabapentin group and -2 in the placebo group on the SMA Functional Rating Scale (SMAFRS), scale 0 to 50; n = 66); hydroxyurea (MD -1.88, 95% CI -3.89 to 0.13 on the GMFM, scale 0 to 264; n = 57), phenylbutyrate (MD -0.13, 95% CI -0.84 to 0.58 on the Hammersmith Functional Motor Scale (HFMS) scale 0 to 40; n = 90) and monotherapy of valproic acid (MD 0.06, 95% CI -1.32 to 1.44 on SMAFRS, scale 0 to 50; n = 31). Very low-certainty evidence suggested that the following interventions had little or no effect on motor function: olesoxime (MD 2, 95% -0.25 to 4.25 on the Motor Function Measure (MFM) D1 + D2, scale 0 to 75; n = 160) and somatotropin (median change at 3 months 0.25 higher, 95% CI -1 to 2.5 on the HFMSE, scale 0 to 66; n = 19). One small TRH trial did not report effects on motor function and the certainty of evidence for other outcomes from this trial were low or very low. Results of nine completed trials investigating 4-aminopyridine, acetyl-L-carnitine, CK-2127107, hydroxyurea, pyridostigmine, riluzole, RO6885247/RG7800, salbutamol and valproic acid were awaited and not available for analysis at the time of writing. Various trials and studies investigating treatment strategies other than nusinersen (e.g. SMN2-augmentation by small molecules), are currently ongoing. AUTHORS' CONCLUSIONS Nusinersen improves motor function in SMA type II, based on moderate-certainty evidence. Creatine, gabapentin, hydroxyurea, phenylbutyrate, valproic acid and the combination of valproic acid and ALC probably have no clinically important effect on motor function in SMA types II or III (or both) based on low-certainty evidence, and olesoxime and somatropin may also have little to no clinically important effect but evidence was of very low-certainty. One trial of TRH did not measure motor function.
Collapse
Affiliation(s)
- Renske I Wadman
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - W Ludo van der Pol
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Wendy MJ Bosboom
- Onze Lieve Vrouwe Gasthuis locatie WestDepartment of NeurologyAmsterdamNetherlands
| | - Fay‐Lynn Asselman
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Leonard H van den Berg
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Susan T Iannaccone
- University of Texas Southwestern Medical CenterDepartment of Pediatrics5323 Harry Hines BoulevardDallasTexasUSA75390
| | - Alexander FJE Vrancken
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | | |
Collapse
|
184
|
Konieczny P, Artero R. Drosophila SMN2 minigene reporter model identifies moxifloxacin as a candidate therapy for SMA. FASEB J 2019; 34:3021-3036. [PMID: 31909520 DOI: 10.1096/fj.201802554rrr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/24/2022]
Abstract
Spinal muscular atrophy is a rare and fatal neuromuscular disorder caused by the loss of alpha motor neurons. The affected individuals have mutated the ubiquitously expressed SMN1 gene resulting in the loss or reduction in the survival motor neuron (SMN) protein levels. However, an almost identical paralog exists in humans: SMN2. Pharmacological activation of SMN2 exon 7 inclusion by small molecules or modified antisense oligonucleotides is a valid approach to treat SMA. Here we describe an in vivo SMN2 minigene reporter system in Drosophila motor neurons that serves as a cost-effective, feasible, and stringent primary screening model for identifying chemicals capable of crossing the conserved Drosophila blood-brain barrier and modulating exon 7 inclusion. The model was used for the screening of 1100 drugs from the Prestwick Chemical Library, resulting in 2.45% hit rate. The most promising candidate drugs were validated in patient-derived fibroblasts where they proved to increase SMN protein levels. Among them, moxifloxacin modulated SMN2 splicing by promoting exon 7 inclusion. The recovery of SMN protein levels was confirmed by increased colocalization of nuclear gems with Cajal Bodies. Thus, a Drosophila-based drug screen allowed the discovery of an FDA-approved small molecule with the potential to become a novel therapy for SMA.
Collapse
Affiliation(s)
- Piotr Konieczny
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain.,Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain.,Incliva-CIPF Joint Unit, Valencia, Spain
| | - Rubén Artero
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain.,Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain.,Incliva-CIPF Joint Unit, Valencia, Spain
| |
Collapse
|
185
|
Morgan BS, Sanaba BG, Donlic A, Karloff DB, Forte JE, Zhang Y, Hargrove AE. R-BIND: An Interactive Database for Exploring and Developing RNA-Targeted Chemical Probes. ACS Chem Biol 2019; 14:2691-2700. [PMID: 31589399 DOI: 10.1021/acschembio.9b00631] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While the opportunities available for targeting RNA with small molecules have been widely appreciated, the challenges associated with achieving specific RNA recognition in biological systems have hindered progress and prevented many researchers from entering the field. To facilitate the discovery of RNA-targeted chemical probes and their subsequent applications, we curated the RNA-targeted BIoactive ligaNd Database (R-BIND). This collection contains an array of information on reported chemical probes that target non-rRNA and have biological activity, and analysis has led to the discovery of RNA-privileged properties. Herein, we developed an online platform to make this information freely available to the community, offering search options, a suite of tools for probe development, and an updated R-BIND data set with detailed experimental information for each probe. We repeated the previous cheminformatics analysis on the updated R-BIND list and found that the distinguishing physicochemical, structural, and spatial properties remained unchanged, despite an almost 50% increase in the database size. Further, we developed several user-friendly tools, including queries based on cheminformatic parameters, experimental details, functional groups, and substructures. In addition, a nearest neighbor algorithm can assess the similarity of user-uploaded molecules to R-BIND ligands. These tools and resources can be used to design small molecule libraries, optimize lead ligands, or select targets, probes, assays, and control experiments. Chemical probes are critical to the study and discovery of novel functions for RNA, and we expect this resource to greatly assist researchers in exploring and developing successful RNA-targeted probes.
Collapse
Affiliation(s)
- Brittany S. Morgan
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, Michigan 48109, United States
| | - Bilva G. Sanaba
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27705, United States
| | - Anita Donlic
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27705, United States
| | - Diane B. Karloff
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jordan E. Forte
- Wake Forest School of Medicine, 475 Vine Street, Winston Salem, North Carolina 27101, United States
| | - Yuqi Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Amanda E. Hargrove
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27705, United States
| |
Collapse
|
186
|
Bogomazova AN, Eremeev AV, Pozmogova GE, Lagarkova MA. The Role of Mutant RNA in the Pathogenesis of Huntington’s Disease and Other Polyglutamine Diseases. Mol Biol 2019. [DOI: 10.1134/s0026893319060037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
187
|
Wadman RI, van der Pol WL, Bosboom WMJ, Asselman F, van den Berg LH, Iannaccone ST, Vrancken AFJE, Cochrane Neuromuscular Group. Drug treatment for spinal muscular atrophy type I. Cochrane Database Syst Rev 2019; 12:CD006281. [PMID: 31825542 PMCID: PMC6905354 DOI: 10.1002/14651858.cd006281.pub5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by a homozygous deletion of the survival motor neuron 1 (SMN1) gene on chromosome 5, or a heterozygous deletion in combination with a point mutation in the second SMN1 allele. This results in degeneration of anterior horn cells, which leads to progressive muscle weakness. By definition, children with SMA type I are never able to sit without support and usually die or become ventilator dependent before the age of two years. There have until very recently been no drug treatments to influence the course of SMA. We undertook this updated review to evaluate new evidence on emerging treatments for SMA type I. The review was first published in 2009 and previously updated in 2011. OBJECTIVES To assess the efficacy and safety of any drug therapy designed to slow or arrest progression of spinal muscular atrophy (SMA) type I. SEARCH METHODS We searched the Cochrane Neuromuscular Specialised Register, CENTRAL, MEDLINE, Embase, and ISI Web of Science conference proceedings in October 2018. We also searched two trials registries to identify unpublished trials (October 2018). SELECTION CRITERIA We sought all randomised controlled trials (RCTs) or quasi-RCTs that examined the efficacy of drug treatment for SMA type I. Included participants had to fulfil clinical criteria and have a genetically confirmed deletion or mutation of the SMN1 gene (5q11.2-13.2). The primary outcome measure was age at death or full-time ventilation. Secondary outcome measures were acquisition of motor milestones, i.e. head control, rolling, sitting or standing, motor milestone response on disability scores within one year after the onset of treatment, and adverse events and serious adverse events attributable to treatment during the trial period. Treatment strategies involving SMN1 gene replacement with viral vectors are out of the scope of this review. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. MAIN RESULTS We identified two RCTs: one trial of intrathecal nusinersen in comparison to a sham (control) procedure in 121 randomised infants with SMA type I, which was newly included at this update, and one small trial comparing riluzole treatment to placebo in 10 children with SMA type I. The RCT of intrathecally-injected nusinersen was stopped early for efficacy (based on a predefined Hammersmith Infant Neurological Examination-Section 2 (HINE-2) response). At the interim analyses after 183 days of treatment, 41% (21/51) of nusinersen-treated infants showed a predefined improvement on HINE-2, compared to 0% (0/27) of participants in the control group. This trial was largely at low risk of bias. Final analyses (ranging from 6 months to 13 months of treatment), showed that fewer participants died or required full-time ventilation (defined as more than 16 hours daily for 21 days or more) in the nusinersen-treated group than the control group (hazard ratio (HR) 0.53, 95% confidence interval (CI) 0.32 to 0.89; N = 121; a 47% lower risk; moderate-certainty evidence). A proportion of infants in the nusinersen group and none of 37 infants in the control group achieved motor milestones: 37/73 nusinersen-treated infants (51%) achieved a motor milestone response on HINE-2 (risk ratio (RR) 38.51, 95% CI 2.43 to 610.14; N = 110; moderate-certainty evidence); 16/73 achieved head control (RR 16.95, 95% CI 1.04 to 274.84; moderate-certainty evidence); 6/73 achieved independent sitting (RR 6.68, 95% CI 0.39 to 115.38; moderate-certainty evidence); 7/73 achieved rolling over (RR 7.70, 95% CI 0.45 to 131.29); and 1/73 achieved standing (RR 1.54, 95% CI 0.06 to 36.92; moderate-certainty evidence). Seventy-one per cent of nusinersen-treated infants versus 3% of infants in the control group were responders on the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND) measure of motor disability (RR 26.36, 95% CI 3.79 to 183.18; N = 110; moderate-certainty evidence). Adverse events and serious adverse events occurred in the majority of infants but were no more frequent in the nusinersen-treated group than the control group (RR 0.99, 95% CI 0.92 to 1.05 and RR 0.70, 95% CI 0.55 to 0.89, respectively; N = 121; moderate-certainty evidence). In the riluzole trial, three of seven children treated with riluzole were still alive at the ages of 30, 48, and 64 months, whereas all three children in the placebo group died. None of the children in the riluzole or placebo group developed the ability to sit, which was the only milestone reported. There were no adverse effects. The certainty of the evidence for all measured outcomes from this study was very low, because the study was too small to detect or rule out an effect, and had serious limitations, including baseline differences. This trial was stopped prematurely because the pharmaceutical company withdrew funding. Various trials and studies investigating treatment strategies other than nusinersen, such as SMN2 augmentation by small molecules, are ongoing. AUTHORS' CONCLUSIONS Based on the very limited evidence currently available regarding drug treatments for SMA type 1, intrathecal nusinersen probably prolongs ventilation-free and overall survival in infants with SMA type I. It is also probable that a greater proportion of infants treated with nusinersen than with a sham procedure achieve motor milestones and can be classed as responders to treatment on clinical assessments (HINE-2 and CHOP INTEND). The proportion of children experiencing adverse events and serious adverse events on nusinersen is no higher with nusinersen treatment than with a sham procedure, based on evidence of moderate certainty. It is uncertain whether riluzole has any effect in patients with SMA type I, based on the limited available evidence. Future trials could provide more high-certainty, longer-term evidence to confirm this result, or focus on comparing new treatments to nusinersen or evaluate them as an add-on therapy to nusinersen.
Collapse
Affiliation(s)
- Renske I Wadman
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - W Ludo van der Pol
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Wendy MJ Bosboom
- Onze Lieve Vrouwe Gasthuis locatie WestDepartment of NeurologyAmsterdamNetherlands
| | - Fay‐Lynn Asselman
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Leonard H van den Berg
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Susan T Iannaccone
- University of Texas Southwestern Medical CenterDepartment of Pediatrics5323 Harry Hines BoulevardDallasTexasUSA75390
| | - Alexander FJE Vrancken
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | | |
Collapse
|
188
|
Donadon I, Bussani E, Riccardi F, Licastro D, Romano G, Pianigiani G, Pinotti M, Konstantinova P, Evers M, Lin S, Rüegg MA, Pagani F. Rescue of spinal muscular atrophy mouse models with AAV9-Exon-specific U1 snRNA. Nucleic Acids Res 2019; 47:7618-7632. [PMID: 31127278 PMCID: PMC6698663 DOI: 10.1093/nar/gkz469] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Spinal Muscular Atrophy results from loss-of-function mutations in SMN1 but correcting aberrant splicing of SMN2 offers hope of a cure. However, current splice therapy requires repeated infusions and is expensive. We previously rescued SMA mice by promoting the inclusion of a defective exon in SMN2 with germline expression of Exon-Specific U1 snRNAs (ExspeU1). Here we tested viral delivery of SMN2 ExspeU1s encoded by adeno-associated virus AAV9. Strikingly the virus increased SMN2 exon 7 inclusion and SMN protein levels and rescued the phenotype of mild and severe SMA mice. In the severe mouse, the treatment improved the neuromuscular function and increased the life span from 10 to 219 days. ExspeU1 expression persisted for 1 month and was effective at around one five-hundredth of the concentration of the endogenous U1snRNA. RNA-seq analysis revealed our potential drug rescues aberrant SMA expression and splicing profiles, which are mostly related to DNA damage, cell-cycle control and acute phase response. Vastly overexpressing ExspeU1 more than 100-fold above the therapeutic level in human cells did not significantly alter global gene expression or splicing. These results indicate that AAV-mediated delivery of a modified U1snRNP particle may be a novel therapeutic option against SMA.
Collapse
Affiliation(s)
- Irving Donadon
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Erica Bussani
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Federico Riccardi
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Danilo Licastro
- CBM S.c.r.l., Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Giulia Romano
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Giulia Pianigiani
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Pavlina Konstantinova
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, The Netherlands
| | - Melvin Evers
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, The Netherlands
| | - Shuo Lin
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Markus A Rüegg
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Franco Pagani
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| |
Collapse
|
189
|
Baek J, Jeong H, Ham Y, Jo YH, Choi M, Kang M, Son B, Choi S, Ryu HW, Kim J, Shen H, Sydara K, Lee SW, Kim SY, Han SB, Oh SR, Cho S. Improvement of spinal muscular atrophy via correction of the SMN2 splicing defect by Brucea javanica (L.) Merr. extract and Bruceine D. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 65:153089. [PMID: 31563042 DOI: 10.1016/j.phymed.2019.153089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/04/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a rare neuromuscular disease and a leading genetic cause of infant mortality. SMA is caused primarily by the deletion of the survival motor neuron 1 (SMN1) gene, which leaves the duplicate gene SMN2 as the sole source of SMN protein. The splicing defect (exon 7 skipping) of SMN2 leads to an insufficient amount of SMN protein. Therefore, correcting this SMN2 splicing defect is considered to be a promising approach for the treatment of SMA. PURPOSE This study aimed to identify active compounds and extracts from plant resources to rescue SMA phenotypes through the correction of SMN2 splicing. STUDY DESIGN Of available plant resources, candidates with SMA-related traditional medicine information were selected for screening using a robust luciferase-based SMN2 splicing reporter. Primary hits were further evaluated for their ability to correct the splicing defect and resultant increase of SMN activity in SMA patient-derived fibroblasts. Confirmed hits were finally tested to determine the beneficial effects on the severe Δ7 SMA mouse. METHODS SMN2 splicing was analyzed using a luciferase-based SMN2 splicing reporter and subsequent RT-PCR of SMN2 mRNAs. SMA phenotypes were evaluated by the survival, body weights, and righting reflex of Δ7 SMA mice. RESULTS In a screen of 492 selected plant extracts, we found that Brucea javanica extract and its major constituent Bruceine D have SMN2 splicing-correcting activity. Their ability to correct the splicing defect and the resulting increased SMN activity were further confirmed in SMA fibroblasts. Importantly, both B. javanica and Bruceine D noticeably improved the phenotypic defects, especially muscle function, in SMA mice. Reduced expression of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) contributed to the correction of splicing by B. javanica. CONCLUSION Our work revealed that B. javanica and Bruceine D correct the SMN2 splicing defect and improve the symptoms of SMA in mice. These resources will provide another possibility for development of a plant-derived SMA drug candidate.
Collapse
Affiliation(s)
- Jiyeon Baek
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Hyejeong Jeong
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Youngwook Ham
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Yang Hee Jo
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea
| | - Miri Choi
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Mingu Kang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Bora Son
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Sangho Choi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea
| | - Janghwan Kim
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Haihong Shen
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Kongmany Sydara
- Ministry of Health, Institute of Traditional Medicine, Vientiane 116, Lao Democratic People's Republic
| | - Sang Woo Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Soo-Yong Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea
| | - Sungchan Cho
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
190
|
Campagne S, Boigner S, Rüdisser S, Moursy A, Gillioz L, Knörlein A, Hall J, Ratni H, Cléry A, Allain FHT. Structural basis of a small molecule targeting RNA for a specific splicing correction. Nat Chem Biol 2019; 15:1191-1198. [PMID: 31636429 PMCID: PMC7617061 DOI: 10.1038/s41589-019-0384-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 09/07/2019] [Indexed: 12/24/2022]
Abstract
Splicing modifiers promoting SMN2 exon 7 inclusion have the potential to treat spinal muscular atrophy, the leading genetic cause of infantile death. These small molecules are SMN2 exon 7 selective and act during the early stages of spliceosome assembly. Here, we show at atomic resolution how the drug selectively promotes the recognition of the weak 5' splice site of SMN2 exon 7 by U1 snRNP. The solution structure of the RNA duplex formed following 5' splice site recognition in the presence of the splicing modifier revealed that the drug specifically stabilizes a bulged adenine at this exon-intron junction and converts the weak 5' splice site of SMN2 exon 7 into a stronger one. The small molecule acts as a specific splicing enhancer cooperatively with the splicing regulatory network. Our investigations uncovered a novel concept for gene-specific alternative splicing correction that we coined 5' splice site bulge repair.
Collapse
Affiliation(s)
- Sébastien Campagne
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| | - Sarah Boigner
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Simon Rüdisser
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
- Biomolecular NMR Spectroscopy Platform, ETH Zurich, Zurich, Switzerland
| | - Ahmed Moursy
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Laurent Gillioz
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Anna Knörlein
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Hasane Ratni
- F. Hoffmann-La Roche Ltd, Pharma Research & Early Development, Roche Innovation Center, Basel, Switzerland
| | - Antoine Cléry
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Frédéric H-T Allain
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
191
|
Geerts H, Wikswo J, van der Graaf PH, Bai JPF, Gaiteri C, Bennett D, Swalley SE, Schuck E, Kaddurah-Daouk R, Tsaioun K, Pelleymounter M. Quantitative Systems Pharmacology for Neuroscience Drug Discovery and Development: Current Status, Opportunities, and Challenges. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2019; 9:5-20. [PMID: 31674729 PMCID: PMC6966183 DOI: 10.1002/psp4.12478] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/09/2019] [Indexed: 12/18/2022]
Abstract
The substantial progress made in the basic sciences of the brain has yet to be adequately translated to successful clinical therapeutics to treat central nervous system (CNS) diseases. Possible explanations include the lack of quantitative and validated biomarkers, the subjective nature of many clinical endpoints, and complex pharmacokinetic/pharmacodynamic relationships, but also the possibility that highly selective drugs in the CNS do not reflect the complex interactions of different brain circuits. Although computational systems pharmacology modeling designed to capture essential components of complex biological systems has been increasingly accepted in pharmaceutical research and development for oncology, inflammation, and metabolic disorders, the uptake in the CNS field has been very modest. In this article, a cross-disciplinary group with representatives from academia, pharma, regulatory, and funding agencies make the case that the identification and exploitation of CNS therapeutic targets for drug discovery and development can benefit greatly from a system and network approach that can span the gap between molecular pathways and the neuronal circuits that ultimately regulate brain activity and behavior. The National Institute of Neurological Disorders and Stroke (NINDS), in collaboration with the National Institute on Aging (NIA), National Institute of Mental Health (NIMH), National Institute on Drug Abuse (NIDA), and National Center for Advancing Translational Sciences (NCATS), convened a workshop to explore and evaluate the potential of a quantitative systems pharmacology (QSP) approach to CNS drug discovery and development. The objective of the workshop was to identify the challenges and opportunities of QSP as an approach to accelerate drug discovery and development in the field of CNS disorders. In particular, the workshop examined the potential for computational neuroscience to perform QSP-based interrogation of the mechanism of action for CNS diseases, along with a more accurate and comprehensive method for evaluating drug effects and optimizing the design of clinical trials. Following up on an earlier white paper on the use of QSP in general disease mechanism of action and drug discovery, this report focuses on new applications, opportunities, and the accompanying limitations of QSP as an approach to drug development in the CNS therapeutic area based on the discussions in the workshop with various stakeholders.
Collapse
Affiliation(s)
- Hugo Geerts
- In Silico Biosciences, Berwyn, Pennsylvania, USA
| | - John Wikswo
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Jane P F Bai
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Chris Gaiteri
- Rush Alzheimer's Disease Center, Rush University, Chicago, Illinois, USA
| | - David Bennett
- Rush Alzheimer's Disease Center, Rush University, Chicago, Illinois, USA
| | | | | | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, USA
| | - Katya Tsaioun
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Mary Pelleymounter
- Division of Translational Research, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| |
Collapse
|
192
|
Nussbacher JK, Tabet R, Yeo GW, Lagier-Tourenne C. Disruption of RNA Metabolism in Neurological Diseases and Emerging Therapeutic Interventions. Neuron 2019; 102:294-320. [PMID: 30998900 DOI: 10.1016/j.neuron.2019.03.014] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 01/24/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
RNA binding proteins are critical to the maintenance of the transcriptome via controlled regulation of RNA processing and transport. Alterations of these proteins impact multiple steps of the RNA life cycle resulting in various molecular phenotypes such as aberrant RNA splicing, transport, and stability. Disruption of RNA binding proteins and widespread RNA processing defects are increasingly recognized as critical determinants of neurological diseases. Here, we describe distinct mechanisms by which the homeostasis of RNA binding proteins is compromised in neurological disorders through their reduced expression level, increased propensity to aggregate or sequestration by abnormal RNAs. These mechanisms all converge toward altered neuronal function highlighting the susceptibility of neurons to deleterious changes in RNA expression and the central role of RNA binding proteins in preserving neuronal integrity. Emerging therapeutic approaches to mitigate or reverse alterations of RNA binding proteins in neurological diseases are discussed.
Collapse
Affiliation(s)
- Julia K Nussbacher
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Ricardos Tabet
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.
| | - Clotilde Lagier-Tourenne
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
193
|
Abstract
Severe spinal muscular atrophy is an autosomal recessive motor neuron disorder characterized by rapidly progressive hypotonia and weakness with respiratory complications and fatal outcome. It is caused by absence or pathogenic variants in the SMN1 gene. Knowledge and advances of the genetics of the disease allowed the development of tailored therapies that has changed clinical trajectories with evolving phenotypes. Several clinical investigations demonstrate that early diagnosis and intervention are essential for improved response to treatment and better prognosis. Therapeutic interventions that are effective at pre-symptomatic or early stages of the disease creates the need for awareness, expedite diagnosis and consideration of newborn screening programs.
Collapse
Affiliation(s)
- Eduardo F Tizzano
- Department of Clinical and Molecular Genetics, Hospital Valle Hebron, Barcelona, Spain; Medicine Genetics Group, Valle Hebron Research Institute (VHIR), Barcelona, Spain.
| |
Collapse
|
194
|
Ramos DM, d’Ydewalle C, Gabbeta V, Dakka A, Klein SK, Norris DA, Matson J, Taylor SJ, Zaworski PG, Prior TW, Snyder PJ, Valdivia D, Hatem CL, Waters I, Gupte N, Swoboda KJ, Rigo F, Bennett CF, Naryshkin N, Paushkin S, Crawford TO, Sumner CJ. Age-dependent SMN expression in disease-relevant tissue and implications for SMA treatment. J Clin Invest 2019; 129:4817-4831. [PMID: 31589162 PMCID: PMC6819103 DOI: 10.1172/jci124120] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/07/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUNDSpinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein. New SMN-enhancing therapeutics are associated with variable clinical benefits. Limited knowledge of baseline and drug-induced SMN levels in disease-relevant tissues hinders efforts to optimize these treatments.METHODSSMN mRNA and protein levels were quantified in human tissues isolated during expedited autopsies.RESULTSSMN protein expression varied broadly among prenatal control spinal cord samples, but was restricted at relatively low levels in controls and SMA patients after 3 months of life. A 2.3-fold perinatal decrease in median SMN protein levels was not paralleled by comparable changes in SMN mRNA. In tissues isolated from nusinersen-treated SMA patients, antisense oligonucleotide (ASO) concentration and full-length (exon 7 including) SMN2 (SMN2-FL) mRNA level increases were highest in lumbar and thoracic spinal cord. An increased number of cells showed SMN immunolabeling in spinal cord of treated patients, but was not associated with an increase in whole-tissue SMN protein levels.CONCLUSIONSA normally occurring perinatal decrease in whole-tissue SMN protein levels supports efforts to initiate SMN-inducing therapies as soon after birth as possible. Limited ASO distribution to rostral spinal and brain regions in some patients likely limits clinical response of motor units in these regions for those patients. These results have important implications for optimizing treatment of SMA patients and warrant further investigations to enhance bioavailability of intrathecally administered ASOs.FUNDINGSMA Foundation, SMART, NIH (R01-NS096770, R01-NS062869), Ionis Pharmaceuticals, and PTC Therapeutics. Biogen provided support for absolute real-time RT-PCR.
Collapse
Affiliation(s)
| | - Constantin d’Ydewalle
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Amal Dakka
- PTC Therapeutics, South Plainfield, New Jersey, USA
| | | | | | - John Matson
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | | | | | - Thomas W. Prior
- Center for Human Genetics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Pamela J. Snyder
- Department of Pathology, Ohio State University, Columbus, Ohio, USA
| | - David Valdivia
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christine L. Hatem
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ian Waters
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, and
| | - Nikhil Gupte
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kathryn J. Swoboda
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | | | | | | | - Thomas O. Crawford
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Charlotte J. Sumner
- Department of Neuroscience and
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
195
|
Dangouloff T, Servais L. Clinical Evidence Supporting Early Treatment Of Patients With Spinal Muscular Atrophy: Current Perspectives. Ther Clin Risk Manag 2019; 15:1153-1161. [PMID: 31632042 PMCID: PMC6778729 DOI: 10.2147/tcrm.s172291] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 09/08/2019] [Indexed: 01/16/2023] Open
Abstract
Recent advances in the treatment of spinal muscular atrophy (SMA) have dramatically altered prognosis. Rather than a rapidly lethal disease, SMA type 1, the most severe form with the earliest onset of SMA, has become a disease in which long-term event-free survival with the acquisition of important motor milestones is likely. Prognosis for patients with SMA type 2 has shifted from slow and progressive deterioration to long-term stability. Nevertheless, there is a large heterogeneity in terms of clinical response to currently available treatments, ranging from absence of response to impressive improvement. The only factor identified that is predictive of treatment success is the age of the patient at the initiation of treatment, which is closely related to disease duration. The aim of this paper is to review available evidence that support early intervention using currently available treatment approaches.
Collapse
Affiliation(s)
- Tamara Dangouloff
- Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liège & University of Liège, Liège, Belgium
| | - Laurent Servais
- Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liège & University of Liège, Liège, Belgium
- MDUK Neuromuscular Center, Department of Paediatrics, University of Oxford, Oxford, UK
| |
Collapse
|
196
|
Ursu A, Vézina-Dawod S, Disney MD. Methods to identify and optimize small molecules interacting with RNA (SMIRNAs). Drug Discov Today 2019; 24:2002-2016. [PMID: 31356880 PMCID: PMC6842402 DOI: 10.1016/j.drudis.2019.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/11/2019] [Accepted: 06/27/2019] [Indexed: 01/14/2023]
Abstract
RNAs, particularly noncoding RNAs (ncRNAs), are becoming increasingly important therapeutic targets, because they are causative and antagonists of human disease. Indeed, aberrant RNA structural elements and expression deregulate biological processes. In this review, we describe methodologies to discover and optimize small molecules interacting with RNA (SMIRNAs), including the evaluation of direct target engagement and the rescue of RNA-mediated phenotypes in vitro and in vivo. Such studies are essential to fully characterize the mode of action of SMIRNAs and advance our understanding of rationally and efficiently drugging RNAs for therapeutic benefit.
Collapse
Affiliation(s)
- Andrei Ursu
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Simon Vézina-Dawod
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
197
|
Hatje K, Mühlhausen S, Simm D, Kollmar M. The Protein-Coding Human Genome: Annotating High-Hanging Fruits. Bioessays 2019; 41:e1900066. [PMID: 31544971 DOI: 10.1002/bies.201900066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/07/2019] [Indexed: 12/19/2022]
Abstract
The major transcript variants of human protein-coding genes are annotated to a certain degree of accuracy combining manual curation, transcript data, and proteomics evidence. However, there is considerable disagreement on the annotation of about 2000 genes-they can be protein-coding, noncoding, or pseudogenes-and on the annotation of most of the predicted alternative transcripts. Pure transcriptome mapping approaches seem to be limited in discriminating functional expression from noise. These limitations have partially been overcome by dedicated algorithms to detect alternative spliced micro-exons and wobble splice variants. Recently, knowledge about splice mechanism and protein structure are incorporated into an algorithm to predict neighboring homologous exons, often spliced in a mutually exclusive manner. Predicted exons are evaluated by transcript data, structural compatibility, and evolutionary conservation, revealing hundreds of novel coding exons and splice mechanism re-assignments. The emerging human pan-genome is necessitating distinctive annotations incorporating differences between individuals and between populations.
Collapse
Affiliation(s)
- Klas Hatje
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstr. 124, 4070, Basel, Switzerland
| | - Stefanie Mühlhausen
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Dominic Simm
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.,Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science, Georg-August-University Göttingen, Goldschmidtstr. 7, 37077, Göttingen, Germany
| | - Martin Kollmar
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| |
Collapse
|
198
|
Valeur E, Narjes F, Ottmann C, Plowright AT. Emerging modes-of-action in drug discovery. MEDCHEMCOMM 2019; 10:1550-1568. [PMID: 31673315 PMCID: PMC6786009 DOI: 10.1039/c9md00263d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022]
Abstract
An increasing focus on complex biology to cure diseases rather than merely treat symptoms has transformed how drug discovery can be approached. Instead of activating or blocking protein function, a growing repertoire of drug modalities can be leveraged or engineered to hijack cellular processes, such as translational regulation or degradation mechanisms. Drug hunters can therefore access a wider arsenal of modes-of-action to modulate biological processes and this review summarises these emerging strategies by highlighting the most representative examples of these approaches.
Collapse
Affiliation(s)
- Eric Valeur
- Medicinal Chemistry , Research and Early Development, Cardiovascular, Renal & Metabolism , BioPharmaceuticals R&D , AstraZeneca, Gothenburg , 43183 Mölndal , Sweden .
| | - Frank Narjes
- Medicinal Chemistry , Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA) , BioPharmaceuticals R&D , AstraZeneca, Gothenburg , 43183 Mölndal , Sweden
| | - Christian Ottmann
- Department of Biomedical Engineering and Institute for Complex Molecular Systems , Technische Universiteit Eindhoven , Den Dolech 2 , 5612 , AZ , Eindhoven , the Netherlands
- Department of Chemistry , University of Duisburg-Essen , Universitätsstraße 7 , 45117 , Essen , Germany
| | - Alleyn T Plowright
- Integrated Drug Discovery , Sanofi-Aventis Deutschland GmbH , Industriepark Höchst , D-65926 Frankfurt am Main , Germany
| |
Collapse
|
199
|
Di Giorgio A, Duca M. Synthetic small-molecule RNA ligands: future prospects as therapeutic agents. MEDCHEMCOMM 2019; 10:1242-1255. [PMID: 31534649 PMCID: PMC6748380 DOI: 10.1039/c9md00195f] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022]
Abstract
RNA is one of the most intriguing and promising biological targets for the discovery of innovative drugs in many pathologies and various biologically relevant RNAs that could serve as drug targets have already been identified. Among the most important ones, one can mention prokaryotic ribosomal RNA which is the target of several marketed antibiotics, viral RNAs or oncogenic microRNAs that are tightly involved in the development and progression of various cancers. Oligonucleotides are efficient and specific RNA targeting agents but suffer from poor pharmacodynamic and pharmacokinetic properties. For this reason, a number of synthetic small-molecule ligands have been identified and studied upon screening of chemical libraries or focused design of RNA binders. In this review, we report the most relevant examples of synthetic compounds bearing sufficient selectivity to envisage clinical studies and future therapeutic applications with a particular attention for the main strategies that can be undertaken toward the improvement of selectivity and biological activity.
Collapse
Affiliation(s)
- A Di Giorgio
- Université Côte d'Azur , CNRS , Institute of Chemistry of Nice (ICN) , Nice , France .
| | - M Duca
- Université Côte d'Azur , CNRS , Institute of Chemistry of Nice (ICN) , Nice , France .
| |
Collapse
|
200
|
Brown DG, Wobst HJ. Opportunities and Challenges in Phenotypic Screening for Neurodegenerative Disease Research. J Med Chem 2019; 63:1823-1840. [PMID: 31268707 DOI: 10.1021/acs.jmedchem.9b00797] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Toxic misfolded proteins potentially underly many neurodegenerative diseases, but individual targets which regulate these proteins and their downstream detrimental effects are often unknown. Phenotypic screening is an unbiased method to screen for novel targets and therapeutic molecules and span the range from primitive model organisms such as Sacchaomyces cerevisiae, which allow for high-throughput screening to patient-derived cell-lines that have a close connection to the disease biology but are limited in screening capacity. This perspective will review current phenotypic models, as well as the chemical screening strategies most often employed. Advances in in 3D cell cultures, high-content screens, robotic microscopy, CRISPR screening, and use of machine learning methods to process the enormous amount of data generated by these screens are certain to change the paradigm for phenotypic screening and will be discussed.
Collapse
Affiliation(s)
- Dean G Brown
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Heike J Wobst
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|