151
|
Navratilova P, Danks GB, Long A, Butcher S, Manak JR, Thompson EM. Sex-specific chromatin landscapes in an ultra-compact chordate genome. Epigenetics Chromatin 2017; 10:3. [PMID: 28115992 PMCID: PMC5240408 DOI: 10.1186/s13072-016-0110-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/23/2016] [Indexed: 12/15/2022] Open
Abstract
Background In multicellular organisms, epigenome dynamics are associated with transitions in the cell cycle, development, germline specification, gametogenesis and inheritance. Evolutionarily, regulatory space has increased in complex metazoans to accommodate these functions. In tunicates, the sister lineage to vertebrates, we examine epigenome adaptations to strong secondary genome compaction, sex chromosome evolution and cell cycle modes. Results Across the 70 MB Oikopleura dioica genome, we profiled 19 histone modifications, and RNA polymerase II, CTCF and p300 occupancies, to define chromatin states within two homogeneous tissues with distinct cell cycle modes: ovarian endocycling nurse nuclei and mitotically proliferating germ nuclei in testes. Nurse nuclei had active chromatin states similar to other metazoan epigenomes, with large domains of operon-associated transcription, a general lack of heterochromatin, and a possible role of Polycomb PRC2 in dosage compensation. Testis chromatin states reflected transcriptional activity linked to spermatogenesis and epigenetic marks that have been associated with establishment of transgenerational inheritance in other organisms. We also uncovered an unusual chromatin state specific to the Y-chromosome, which combined active and heterochromatic histone modifications on specific transposable elements classes, perhaps involved in regulating their activity. Conclusions Compacted regulatory space in this tunicate genome is accompanied by reduced heterochromatin and chromatin state domain widths. Enhancers, promoters and protein-coding genes have conserved epigenomic features, with adaptations to the organization of a proportion of genes in operon units. We further identified features specific to sex chromosomes, cell cycle modes, germline identity and dosage compensation, and unusual combinations of histone PTMs with opposing consensus functions. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0110-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pavla Navratilova
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5008 Bergen, Norway
| | - Gemma Barbara Danks
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5008 Bergen, Norway
| | - Abby Long
- Departments of Biology and Pediatrics and the Roy J. Carver Center for Genomics, 459 Biology Building, University of Iowa, Iowa City, IA 52242 USA
| | - Stephen Butcher
- Departments of Biology and Pediatrics and the Roy J. Carver Center for Genomics, 459 Biology Building, University of Iowa, Iowa City, IA 52242 USA
| | - John Robert Manak
- Departments of Biology and Pediatrics and the Roy J. Carver Center for Genomics, 459 Biology Building, University of Iowa, Iowa City, IA 52242 USA
| | - Eric M Thompson
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5008 Bergen, Norway.,Department of Biology, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
152
|
Santos AP, Ferreira LJ, Oliveira MM. Concerted Flexibility of Chromatin Structure, Methylome, and Histone Modifications along with Plant Stress Responses. BIOLOGY 2017; 6:biology6010003. [PMID: 28275209 PMCID: PMC5371996 DOI: 10.3390/biology6010003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 12/12/2022]
Abstract
The spatial organization of chromosome structure within the interphase nucleus, as well as the patterns of methylome and histone modifications, represent intersecting layers that influence genome accessibility and function. This review is focused on the plastic nature of chromatin structure and epigenetic marks in association to stress situations. The use of chemical compounds (epigenetic drugs) or T-DNA-mediated mutagenesis affecting epigenetic regulators (epi-mutants) are discussed as being important tools for studying the impact of deregulated epigenetic backgrounds on gene function and phenotype. The inheritability of epigenetic marks and chromatin configurations along successive generations are interpreted as a way for plants to “communicate” past experiences of stress sensing. A mechanistic understanding of chromatin and epigenetics plasticity in plant response to stress, including tissue- and genotype-specific epigenetic patterns, may help to reveal the epigenetics contributions for genome and phenotype regulation.
Collapse
Affiliation(s)
- Ana Paula Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress Unit. Av. da República, 2780-157 Oeiras, Portugal.
| | - Liliana J Ferreira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress Unit. Av. da República, 2780-157 Oeiras, Portugal.
| | - M Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress Unit. Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
153
|
Kishimoto S, Uno M, Okabe E, Nono M, Nishida E. Environmental stresses induce transgenerationally inheritable survival advantages via germline-to-soma communication in Caenorhabditis elegans. Nat Commun 2017; 8:14031. [PMID: 28067237 PMCID: PMC5227915 DOI: 10.1038/ncomms14031] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022] Open
Abstract
Hormesis is a biological phenomenon, whereby exposure to low levels of toxic agents or conditions increases organismal viability. It thus represents a beneficial aspect of adaptive responses to harmful environmental stimuli. Here we show that hormesis effects induced in the parental generation can be passed on to the descendants in Caenorhabditis elegans. Animals subjected to various stressors during developmental stages exhibit increased resistance to oxidative stress and proteotoxicity. The increased resistance is transmitted to the subsequent generations grown under unstressed conditions through epigenetic alterations. Our analysis reveal that the insulin/insulin-like growth factor (IGF) signalling effector DAF-16/FOXO and the heat-shock factor HSF-1 in the parental somatic cells mediate the formation of epigenetic memory, which is maintained through the histone H3 lysine 4 trimethylase complex in the germline across generations. The elicitation of memory requires the transcription factor SKN-1/Nrf in somatic tissues. We propose that germ-to-soma communication across generations is an essential framework for the transgenerational inheritance of acquired traits, which provides the offspring with survival advantages to deal with environmental perturbation. Environmental stress causes epigenetic changes but it is unclear if such changes are transgenerational. Here, the authors show that in C. elegans, increased resistance to oxidative stress and proteotoxicity in the parental generation and linked epigenetic changes are transmitted to subsequent generations.
Collapse
Affiliation(s)
- Saya Kishimoto
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masaharu Uno
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Emiko Okabe
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masanori Nono
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Eisuke Nishida
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
154
|
Alabert C, Jasencakova Z, Groth A. Chromatin Replication and Histone Dynamics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:311-333. [PMID: 29357065 DOI: 10.1007/978-981-10-6955-0_15] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Inheritance of the DNA sequence and its proper organization into chromatin is fundamental for genome stability and function. Therefore, how specific chromatin structures are restored on newly synthesized DNA and transmitted through cell division remains a central question to understand cell fate choices and self-renewal. Propagation of genetic information and chromatin-based information in cycling cells entails genome-wide disruption and restoration of chromatin, coupled with faithful replication of DNA. In this chapter, we describe how cells duplicate the genome while maintaining its proper organization into chromatin. We reveal how specialized replication-coupled mechanisms rapidly assemble newly synthesized DNA into nucleosomes, while the complete restoration of chromatin organization including histone marks is a continuous process taking place throughout the cell cycle. Because failure to reassemble nucleosomes at replication forks blocks DNA replication progression in higher eukaryotes and leads to genomic instability, we further underline the importance of the mechanistic link between DNA replication and chromatin duplication.
Collapse
Affiliation(s)
- Constance Alabert
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Zuzana Jasencakova
- Biotech Research and Innovation Centre (BRIC), Health and Medical Faculty, University of Copenhagen, Copenhagen, Denmark
| | - Anja Groth
- Biotech Research and Innovation Centre (BRIC), Health and Medical Faculty, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
155
|
Abstract
Recent human and animal studies investigating the roles of the genome, epigenome, and environmental cues have identified associations between offspring predisposition to life-long obesity/metabolic disease and epigenetic modifications such as DNA methylation. This review explores the mechanisms by which maternal exposures impair the health of not only the next generation but also potentially future generations of offspring.
Collapse
Affiliation(s)
- Kathleen Jaeger
- Washington University School of Medicine, St. Louis, Missouri
| | - Jessica L Saben
- Washington University School of Medicine, St. Louis, Missouri
| | - Kelle H Moley
- Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
156
|
|
157
|
Li Y, Tollefsbol TO. Age-related epigenetic drift and phenotypic plasticity loss: implications in prevention of age-related human diseases. Epigenomics 2016; 8:1637-1651. [PMID: 27882781 PMCID: PMC5618938 DOI: 10.2217/epi-2016-0078] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aging is considered as one of the most important developmental processes in organisms and is closely associated with global deteriorations of epigenetic markers such as aberrant methylomic patterns. This altered epigenomic state, referred to 'epigenetic drift', reflects deficient maintenance of epigenetic marks and contributes to impaired cellular and molecular functions in aged cells. Epigenetic drift-induced abnormal changes during aging are scantily repaired by epigenetic modulators. This inflexibility in the aged epigenome may lead to an age-related decline in phenotypic plasticity at the cellular and molecular levels due to epigenetic drift. This perspective aims to provide novel concepts for understanding epigenetic effects on the aging process and to provide insights into epigenetic prevention and therapeutic strategies for age-related human disease.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
158
|
Brennan LD, Forties RA, Patel SS, Wang MD. DNA looping mediates nucleosome transfer. Nat Commun 2016; 7:13337. [PMID: 27808093 PMCID: PMC5097161 DOI: 10.1038/ncomms13337] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/23/2016] [Indexed: 01/18/2023] Open
Abstract
Proper cell function requires preservation of the spatial organization of chromatin modifications. Maintenance of this epigenetic landscape necessitates the transfer of parental nucleosomes to newly replicated DNA, a process that is stringently regulated and intrinsically linked to replication fork dynamics. This creates a formidable setting from which to isolate the central mechanism of transfer. Here we utilized a minimal experimental system to track the fate of a single nucleosome following its displacement, and examined whether DNA mechanics itself, in the absence of any chaperones or assembly factors, may serve as a platform for the transfer process. We found that the nucleosome is passively transferred to available dsDNA as predicted by a simple physical model of DNA loop formation. These results demonstrate a fundamental role for DNA mechanics in mediating nucleosome transfer and preserving epigenetic integrity during replication.
Collapse
Affiliation(s)
- Lucy D Brennan
- Department of Physics-Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA
| | - Robert A Forties
- Department of Physics-Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA.,Howard Hughes Medical Institute, Cornell University, Ithaca, New York 14853, USA
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | - Michelle D Wang
- Department of Physics-Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA.,Howard Hughes Medical Institute, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
159
|
Koppens MAJ, Bounova G, Cornelissen-Steijger P, de Vries N, Sansom OJ, Wessels LFA, van Lohuizen M. Large variety in a panel of human colon cancer organoids in response to EZH2 inhibition. Oncotarget 2016; 7:69816-69828. [PMID: 27634879 PMCID: PMC5342517 DOI: 10.18632/oncotarget.12002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/04/2016] [Indexed: 01/28/2023] Open
Abstract
EZH2 inhibitors have gained great interest for their use as anti-cancer therapeutics. However, most research has focused on EZH2 mutant cancers and recently adverse effects of EZH2 inactivation have come to light. To determine whether colorectal cancer cells respond to EZH2 inhibition and to explore which factors influence the degree of response, we treated a panel of 20 organoid lines derived from human colon tumors with different concentrations of the EZH2 inhibitor GSK126. The resulting responses were associated with mutation status, gene expression and responses to other drugs. We found that the response to GSK126 treatment greatly varied between organoid lines. Response associated with the mutation status of ATRX and PAX2, and correlated with BIK expression. It also correlated well with response to Nutlin-3a which inhibits MDM2-p53 interaction thereby activating p53 signaling. Sensitivity to EZH2 ablation depended on the presence of wild type p53, as tumor organoids became resistant when p53 was mutated or knocked down. Our exploratory study provides insight into which genetic factors predict sensitivity to EZH2 inhibition. In addition, we show that the response to EZH2 inhibition requires wild type p53. We conclude that a subset of colorectal cancer patients may benefit from EZH2-targeting therapies.
Collapse
Affiliation(s)
- Martijn AJ Koppens
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Gergana Bounova
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Nienke de Vries
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Lodewyk FA Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of EEMCS, Delft University of Technology, Delft, The Netherlands
- Cancer Genomics Centre Netherlands (CGC.nl), The Netherlands
| | - Maarten van Lohuizen
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Cancer Genomics Centre Netherlands (CGC.nl), The Netherlands
| |
Collapse
|
160
|
Hao C, Gely-Pernot A, Kervarrec C, Boudjema M, Becker E, Khil P, Tevosian S, Jégou B, Smagulova F. Exposure to the widely used herbicide atrazine results in deregulation of global tissue-specific RNA transcription in the third generation and is associated with a global decrease of histone trimethylation in mice. Nucleic Acids Res 2016; 44:9784-9802. [PMID: 27655631 PMCID: PMC5175363 DOI: 10.1093/nar/gkw840] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/11/2016] [Accepted: 09/12/2016] [Indexed: 02/07/2023] Open
Abstract
The epigenetic events imposed during germline reprogramming and affected by harmful exposure can be inherited and transferred to subsequent generations via gametes inheritance. In this study, we examine the transgenerational effects promoted by widely used herbicide atrazine (ATZ). We exposed pregnant outbred CD1 female mice and the male progeny was crossed for three generations with untreated females. We demonstrate here that exposure to ATZ affects meiosis, spermiogenesis and reduces the spermatozoa number in the third generation (F3) male mice. We suggest that changes in testis cell types originate from modified transcriptional network in undifferentiated spermatogonia. Importantly, exposure to ATZ dramatically increases the number of transcripts with novel transcription initiation sites, spliced variants and alternative polyadenylation sites. We found the global decrease in H3K4me3 occupancy in the third generation males. The regions with altered H3K4me3 occupancy in F3 ATZ-derived males correspond to altered H3K4me3 occupancy of F1 generation and 74% of changed peaks in F3 generation are associated with enhancers. The regions with altered H3K4me3 occupancy are enriched in SP family and WT1 transcription factor binding sites. Our data suggest that the embryonic exposure to ATZ affects the development and the changes induced by ATZ are transferred up to three generations.
Collapse
Affiliation(s)
- Chunxiang Hao
- Inserm U1085 IRSET, 9 Avenue du Professeur Léon-Bernard, 35000 Rennes, France
| | - Aurore Gely-Pernot
- Inserm U1085 IRSET, 9 Avenue du Professeur Léon-Bernard, 35000 Rennes, France.,EHESP, 2 Avenue du Professeur Léon-Bernard, 35000 Rennes, France
| | - Christine Kervarrec
- Inserm U1085 IRSET, 9 Avenue du Professeur Léon-Bernard, 35000 Rennes, France
| | - Melissa Boudjema
- Inserm U1085 IRSET, 9 Avenue du Professeur Léon-Bernard, 35000 Rennes, France
| | - Emmanuelle Becker
- Inserm U1085 IRSET, 9 Avenue du Professeur Léon-Bernard, 35000 Rennes, France
| | - Pavel Khil
- Clinical Center, National Institute of Health, Bethesda, MD 20892, USA
| | - Sergei Tevosian
- University of Florida, Department of Physiological Sciences, Box 100144, 1333 Center Drive, 32610 Gainesville, FL, USA
| | - Bernard Jégou
- Inserm U1085 IRSET, 9 Avenue du Professeur Léon-Bernard, 35000 Rennes, France.,EHESP, 2 Avenue du Professeur Léon-Bernard, 35000 Rennes, France
| | - Fatima Smagulova
- Inserm U1085 IRSET, 9 Avenue du Professeur Léon-Bernard, 35000 Rennes, France
| |
Collapse
|
161
|
Neuhof M, Levin M, Rechavi O. Vertically- and horizontally-transmitted memories - the fading boundaries between regeneration and inheritance in planaria. Biol Open 2016; 5:1177-88. [PMID: 27565761 PMCID: PMC5051648 DOI: 10.1242/bio.020149] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Weismann barrier postulates that genetic information passes only from the germline to the soma and not in reverse, thus providing an obstacle to the inheritance of acquired traits. Certain organisms such as planaria – flatworms that can reproduce through asymmetric fission – avoid the limitations of this barrier, thus blurring the distinction between the processes of inheritance and development. In this paper, we re-evaluate canonical ideas about the interaction between developmental, genetic and evolutionary processes through the lens of planaria. Biased distribution of epigenetic effects in asymmetrically produced parts of a regenerating organism could increase variation and therefore affect the species' evolution. The maintenance and fixing of somatic experiences, encoded via stable biochemical or physiological states, may contribute to evolutionary processes in the absence of classically defined generations. We discuss different mechanisms that could induce asymmetry between the two organisms that eventually develop from the regenerating parts, including one particularly fascinating source – the potential capacity of the brain to produce long-lasting epigenetic changes. Summary: In this hypothesis paper we re-evaluate canonical ideas about the interaction between developmental, genetic and evolutionary processes through the lens of planaria, an invertebrate model organism which challenges fundamental assumptions regarding reproduction.
Collapse
Affiliation(s)
- Moran Neuhof
- Department of Neurobiology, Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Levin
- Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
162
|
Houri-Ze'evi L, Rechavi O. Plastic germline reprogramming of heritable small RNAs enables maintenance or erasure of epigenetic memories. RNA Biol 2016; 13:1212-1217. [PMID: 27592591 PMCID: PMC5207387 DOI: 10.1080/15476286.2016.1229732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In Caenorhabditis elegans small RNAs can regulate genes across generations. The mysterious tendency of heritable RNA interference (RNAi) responses to terminate after 3–5 generations has been referred to as “the bottleneck to RNAi inheritance.” We have recently shown that the re-setting of epigenetic inheritance after 3–5 generations is not due to passive dilution of the original RNA trigger, but instead results from an active, multigenerational, and small RNA-mediated regulatory pathway. In this “Point of View” manuscript we suggest that the process that leads to the erasure of the ancestral small RNA-encoded memory is a specialized type of germline reprogramming mechanism, analogous to the processes that robustly remove parental DNA methylation and histone modifications early in development in different organisms. Traditionally, germline reprogramming mechanisms that re-set chromatin are thought to stand in the way of inheritance of memories of parental experiences. We found that reprogramming of heritable small RNAs takes multiple generations to complete, enabling long-term inheritance of small RNA responses. Moreover, the duration of this reprogramming process can be prolonged significantly if new heritable RNAi responses are provoked. A dedicated signaling pathway that is responsive to environmental cues can tune the epigenetic state of the RNAi inheritance system, so that inheritance of particular small RNA species can be extended.
Collapse
Affiliation(s)
- Leah Houri-Ze'evi
- a Department of Neurobiology , Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University , Tel Aviv , Israel
| | - Oded Rechavi
- a Department of Neurobiology , Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University , Tel Aviv , Israel
| |
Collapse
|
163
|
Beemelmanns A, Roth O. Bacteria-type-specific biparental immune priming in the pipefish Syngnathus typhle. Ecol Evol 2016; 6:6735-6757. [PMID: 27777744 PMCID: PMC5058542 DOI: 10.1002/ece3.2391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/27/2016] [Accepted: 08/01/2016] [Indexed: 12/29/2022] Open
Abstract
The transfer of acquired and specific immunity against previously encountered bacteria from mothers to offspring boosts the immune response of the next generation and supports the development of a successful pathogen defense. While most studies claim that the transfer of immunity is a maternal trait, in the sex-role-reversed pipefish Syngnathus typhle, fathers nurse the embryos over a placenta-like structure, which opens the door for additional paternal immune priming. We examined the potential and persistence of bacteria-type-specific parental immune priming in the pipefish S. typhle over maturation time using a fully reciprocal design with two different bacteria species (Vibrio spp. and Tenacibaculum maritimum). Our results suggest that S. typhle is able to specifically prime the next generation against prevalent local bacteria and to a limited extent even also against newly introduced bacteria species. Long-term protection was thereby maintained only against prevailing Vibrio bacteria. Maternal and paternal transgenerational immune priming can complement each other, as they affect different pathways of the offspring immune system and come with distinct degree of specificity. The differential regulation of DNA-methylation genes upon parental bacteria exposure in premature pipefish offspring indicates that epigenetic regulation processes are involved in transferring immune-related information across generations. The identified trade-offs between immune priming and reproduction determine TGIP as a costly trait, which might constrain the evolution of long-lasting TGIP, if parental and offspring generations do not share the same parasite assembly.
Collapse
Affiliation(s)
- Anne Beemelmanns
- Helmholtz‐Centre for Ocean Research Kiel (GEOMAR)Evolutionary Ecology of Marine FishesDüsternbrooker Weg 2024105KielGermany
| | - Olivia Roth
- Helmholtz‐Centre for Ocean Research Kiel (GEOMAR)Evolutionary Ecology of Marine FishesDüsternbrooker Weg 2024105KielGermany
| |
Collapse
|
164
|
Abstract
Nucleosomes function to tightly package DNA into chromosomes, but the nucleosomal landscape becomes disrupted during active processes such as replication, transcription, and repair. The realization that many proteins responsible for chromatin regulation are frequently mutated in cancer has drawn attention to chromatin dynamics; however, the basic mechanisms whereby nucleosomes are disrupted and reassembled is incompletely understood. Here, I present an overview of chromatin dynamics as has been elucidated in model organisms, in which our understanding is most advanced. A basic understanding of chromatin dynamics during normal developmental processes can provide the context for understanding how this machinery can go awry during oncogenesis.
Collapse
Affiliation(s)
- Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| |
Collapse
|
165
|
Unravelling the complex mechanisms of transgenerational epigenetic inheritance. Curr Opin Chem Biol 2016; 33:101-7. [DOI: 10.1016/j.cbpa.2016.06.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 12/22/2022]
|
166
|
Polycarpou A, Holland MJ, Karageorgiou I, Eddaoudi A, Walker SL, Willcocks S, Lockwood DNJ. Mycobacterium leprae Activates Toll-Like Receptor-4 Signaling and Expression on Macrophages Depending on Previous Bacillus Calmette-Guerin Vaccination. Front Cell Infect Microbiol 2016; 6:72. [PMID: 27458573 PMCID: PMC4937034 DOI: 10.3389/fcimb.2016.00072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/24/2016] [Indexed: 01/09/2023] Open
Abstract
Toll-like receptor (TLR)-1 and TLR2 have been shown to be receptors for Mycobacterium leprae (M. leprae), yet it is unclear whether M. leprae can signal through alternative TLRs. Other mycobacterial species possess ligands for TLR4 and genetic association studies in human populations suggest that people with TLR4 polymorphisms may be protected against leprosy. Using human embryonic kidney (HEK)-293 cells co-transfected with TLR4, we demonstrate that M. leprae activates TLR4. We used human macrophages to show that M. leprae stimulation of cytokine production is diminished if pre-treated with TLR4 neutralizing antibody. TLR4 protein expression was up-regulated on macrophages derived from non-bacillus Calmette-Guerin (BCG) vaccinated healthy volunteers after incubation with M. leprae, whereas it was down-regulated in macrophages derived from BCG-vaccinated donors. Finally, pre-treatment of macrophages derived from BCG-naive donors with BCG reversed the effect of M. leprae on TLR4 expression. This may be a newly described phenomenon by which BCG vaccination stimulates “non-specific” protection to the human immune system.
Collapse
Affiliation(s)
- Anastasia Polycarpou
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine London, UK
| | - Martin J Holland
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine London, UK
| | - Ioannis Karageorgiou
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine London, UK
| | - Ayad Eddaoudi
- Molecular and Cellular Immunology Unit, Institute of Child Health, University College London London, UK
| | - Stephen L Walker
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine London, UK
| | - Sam Willcocks
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine London, UK
| | - Diana N J Lockwood
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine London, UK
| |
Collapse
|
167
|
Abstract
Over the past 20 years, breakthrough discoveries of chromatin-modifying enzymes and associated mechanisms that alter chromatin in response to physiological or pathological signals have transformed our knowledge of epigenetics from a collection of curious biological phenomena to a functionally dissected research field. Here, we provide a personal perspective on the development of epigenetics, from its historical origins to what we define as 'the modern era of epigenetic research'. We primarily highlight key molecular mechanisms of and conceptual advances in epigenetic control that have changed our understanding of normal and perturbed development.
Collapse
Affiliation(s)
- C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, 1230 York Avenue, New York 10065, New York, USA
| | - Thomas Jenuwein
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, Freiburg D-79108, Germany
| |
Collapse
|
168
|
Beemelmanns A, Roth O. Biparental immune priming in the pipefish Syngnathus typhle. ZOOLOGY 2016; 119:262-72. [PMID: 27477613 DOI: 10.1016/j.zool.2016.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/08/2016] [Accepted: 06/06/2016] [Indexed: 02/08/2023]
Abstract
The transfer of immunity from parents to offspring (trans-generational immune priming (TGIP)) boosts offspring immune defence and parasite resistance. TGIP is usually a maternal trait. However, if fathers have a physical connection to their offspring, and if offspring are born in the paternal parasitic environment, evolution of paternal TGIP can become adaptive. In Syngnathus typhle, a sex-role reversed pipefish with male pregnancy, both parents invest into offspring immune defence. To connect TGIP with parental investment, we need to know how parents share the task of TGIP, whether TGIP is asymmetrically distributed between the parents, and how the maternal and paternal effects interact in case of biparental TGIP. We experimentally investigated the strength and differences but also the costs of maternal and paternal contribution, and their interactive biparental influence on offspring immune defence throughout offspring maturation. To disentangle maternal and paternal influences, two different bacteria were used in a fully reciprocal design for parental and offspring exposure. In offspring, we measured gene expression of 29 immune genes, 15 genes associated with epigenetic regulation, immune cell activity and life-history traits. We identified asymmetric maternal and paternal immune priming with a dominating, long-lasting paternal effect. We could not detect an additive adaptive biparental TGIP impact. However, biparental TGIP harbours additive costs as shown in delayed sexual maturity. Epigenetic regulation may play a role both in maternal and paternal TGIP.
Collapse
Affiliation(s)
- Anne Beemelmanns
- Helmholtz Centre for Ocean Research Kiel (GEOMAR), Evolutionary Ecology of Marine Fishes, Düsternbrooker Weg 20, D-24105 Kiel, Germany
| | - Olivia Roth
- Helmholtz Centre for Ocean Research Kiel (GEOMAR), Evolutionary Ecology of Marine Fishes, Düsternbrooker Weg 20, D-24105 Kiel, Germany.
| |
Collapse
|
169
|
Lin S, Yuan ZF, Han Y, Marchione DM, Garcia BA. Preferential Phosphorylation on Old Histones during Early Mitosis in Human Cells. J Biol Chem 2016; 291:15342-57. [PMID: 27226594 DOI: 10.1074/jbc.m116.726067] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Indexed: 12/25/2022] Open
Abstract
How histone post-translational modifications (PTMs) are inherited through the cell cycle remains poorly understood. Canonical histones are made in the S phase of the cell cycle. Combining mass spectrometry-based technologies and stable isotope labeling by amino acids in cell culture, we question the distribution of multiple histone PTMs on old versus new histones in synchronized human cells. We show that histone PTMs can be grouped into three categories according to their distributions. Most lysine mono-methylation and acetylation PTMs are either symmetrically distributed on old and new histones or are enriched on new histones. In contrast, most di- and tri-methylation PTMs are enriched on old histones, suggesting that the inheritance of different PTMs is regulated distinctly. Intriguingly, old and new histones are distinct in their phosphorylation status during early mitosis in the following three human cell types: HeLa, 293T, and human foreskin fibroblast cells. The mitotic hallmark H3S10ph is predominantly associated with old H3 at early mitosis and becomes symmetric with the progression of mitosis. This same distribution was observed with other mitotic phosphorylation marks, including H3T3/T6ph, H3.1/2S28ph, and H1.4S26ph but not S28/S31ph on the H3 variant H3.3. Although H3S10ph often associates with the neighboring Lys-9 di- or tri-methylations, they are not required for the asymmetric distribution of Ser-10 phosphorylation on the same H3 tail. Inhibition of the kinase Aurora B does not change the distribution despite significant reduction of H3S10ph levels. However, K9me2 abundance on the new H3 is significantly reduced after Aurora B inhibition, suggesting a cross-talk between H3S10ph and H3K9me2.
Collapse
Affiliation(s)
- Shu Lin
- From the Epigenetics Program, Department of Biochemistry and Biophysics, and
| | - Zuo-Fei Yuan
- From the Epigenetics Program, Department of Biochemistry and Biophysics, and
| | - Yumiao Han
- From the Epigenetics Program, Department of Biochemistry and Biophysics, and
| | - Dylan M Marchione
- the Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Benjamin A Garcia
- From the Epigenetics Program, Department of Biochemistry and Biophysics, and
| |
Collapse
|
170
|
San B, Chrispijn ND, Wittkopp N, van Heeringen SJ, Lagendijk AK, Aben M, Bakkers J, Ketting RF, Kamminga LM. Normal formation of a vertebrate body plan and loss of tissue maintenance in the absence of ezh2. Sci Rep 2016; 6:24658. [PMID: 27145952 PMCID: PMC4857124 DOI: 10.1038/srep24658] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/29/2016] [Indexed: 11/09/2022] Open
Abstract
Polycomb group (PcG) proteins are transcriptional repressors of numerous genes, many of which regulate cell cycle progression or developmental processes. We used zebrafish to study Enhancer of zeste homolog 2 (Ezh2), the PcG protein responsible for placing the transcriptional repressive H3K27me3 mark. We identified a nonsense mutant of ezh2 and generated maternal zygotic (MZ) ezh2 mutant embryos. In contrast to knockout mice for PcG proteins, MZezh2 mutant embryos gastrulate seemingly normal, but die around 2 days post fertilization displaying pleiotropic phenotypes. Expression analyses indicated that genes important for early development are not turned off properly, revealing a regulatory role for Ezh2 during zygotic gene expression. In addition, we suggest that Ezh2 regulates maternal mRNA loading of zygotes. Analyses of tissues arising later in development, such as heart, liver, and pancreas, indicated that Ezh2 is required for maintenance of differentiated cell fates. Our data imply that the primary role of Ezh2 is to maintain tissues after tissue specification. Furthermore, our work indicates that Ezh2 is essential to sustain tissue integrity and to set up proper maternal mRNA contribution, and presents a novel and powerful tool to study how PcG proteins contribute to early vertebrate development.
Collapse
Affiliation(s)
- Bilge San
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Naomi D Chrispijn
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Nadine Wittkopp
- Hubrecht Institute, University Medical Centre Utrecht, Utrecht, The Netherlands.,Institute of Molecular Biology, Mainz, Germany
| | - Simon J van Heeringen
- Radboud University, Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Anne K Lagendijk
- Hubrecht Institute, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Marco Aben
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute, University Medical Centre Utrecht, Utrecht, The Netherlands.,Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - René F Ketting
- Hubrecht Institute, University Medical Centre Utrecht, Utrecht, The Netherlands.,Institute of Molecular Biology, Mainz, Germany
| | - Leonie M Kamminga
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Hubrecht Institute, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
171
|
Kidd CDA, Thompson PJ, Barrett L, Baltic S. Histone Modifications and Asthma. The Interface of the Epigenetic and Genetic Landscapes. Am J Respir Cell Mol Biol 2016; 54:3-12. [PMID: 26397168 DOI: 10.1165/rcmb.2015-0050tr] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Complex lung diseases, such as asthma, are influenced by both genetic predisposition and environmental stimuli. The epigenetic landscape of such diseases is attracting increasing interest and research. Epigenetics broadly covers the transient and the inheritable changes to gene expression that are not directly due to changes in nucleotide sequences. Epigenetic mechanisms could have significant impact on asthma-related allergic, immune, and regulatory pathways, as well as on the generation of biomarkers and the heritable transmission of asthma phenotypes. Recent technological advances have allowed mapping of the epigenome and analysis of genome-wide epigenetic contributors to disease. As a result, ground-breaking observations regarding histone post-translational modifications in a number of immunological diseases have emerged. In this review, we look beyond the biological information coded by DNA and review the epigenetic modifications made to histones, with evidence suggesting a role for their modification in asthma.
Collapse
Affiliation(s)
- Courtney D A Kidd
- 1 Institute for Respiratory Health, Perth, Western Australia, Australia.,2 Centre for Respiratory Health, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia; and
| | - Philip J Thompson
- 1 Institute for Respiratory Health, Perth, Western Australia, Australia.,2 Centre for Respiratory Health, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia; and.,3 Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Western Australia, Perth, Western Australia, Australia
| | - Lucy Barrett
- 1 Institute for Respiratory Health, Perth, Western Australia, Australia.,2 Centre for Respiratory Health, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia; and
| | - Svetlana Baltic
- 1 Institute for Respiratory Health, Perth, Western Australia, Australia.,2 Centre for Respiratory Health, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia; and
| |
Collapse
|
172
|
Aiken CE, Tarry-Adkins JL, Ozanne SE. Transgenerational effects of maternal diet on metabolic and reproductive ageing. Mamm Genome 2016; 27:430-9. [PMID: 27114382 PMCID: PMC4935748 DOI: 10.1007/s00335-016-9631-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/29/2016] [Indexed: 12/19/2022]
Abstract
The early-life environment, in particular maternal diet during pregnancy, influences a wide range of organs and systems in adult offspring. Mounting evidence suggests that developmental programming can also influence health and disease in grand-offspring. Transgenerational effects can be defined as those persisting into an F2 generation, where the F0 mother experiences suboptimal diet during her pregnancy. In this review, we critically examine evidence for transgenerational developmental programming effects in human populations, focusing on metabolic and reproductive outcomes. We discuss evidence from historical cohorts suggesting that grandchildren of women exposed to famine and other dietary alterations during pregnancy may experience increased rates of later health complications than their control counterparts. The methodological difficulties with transgenerational studies in human cohorts are explored. In particular, the problems with assessing reproductive outcomes in human populations are discussed. In light of the relative paucity of evidence available from human cohorts, we consider key insights from transgenerational experimental animal models of developmental programming by maternal diet; data are drawn from a range of rodent models, as well as the guinea-pig and the sheep. The evidence for different potential mechanisms of transgenerational inheritance or re-propagation of developmental programming effects is evaluated. Transgenerational effects could be transmitted through methylation of the gametes via the paternal and maternal lineage, as well as other possible mechanisms via the maternal lineage. Finally, future directions for exploring these underlying mechanisms further are proposed, including utilizing large, well-characterized, prospective pregnancy cohorts that include biobanks, which have been established in various populations during the last few decades.
Collapse
Affiliation(s)
- Catherine E Aiken
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.,Department of Obstetrics and Gynaecology, The Rosie Hospital and NIHR Cambridge Comprehensive Biomedical Research Centre, University of Cambridge, Box 223, Cambridge, CB2 0SW, UK
| | - Jane L Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
173
|
Yadav T, Whitehouse I. Replication-Coupled Nucleosome Assembly and Positioning by ATP-Dependent Chromatin-Remodeling Enzymes. Cell Rep 2016; 15:715-723. [PMID: 27149855 DOI: 10.1016/j.celrep.2016.03.059] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/05/2016] [Accepted: 03/15/2016] [Indexed: 12/27/2022] Open
Abstract
During DNA replication, chromatin must be disassembled and faithfully reassembled on newly synthesized genomes. The mechanisms that govern the assembly of chromatin structures following DNA replication are poorly understood. Here, we exploited Okazaki fragment synthesis and other assays to study how nucleosomes are deposited and become organized in S. cerevisiae. We observe that global nucleosome positioning is quickly established on newly synthesized DNA in vivo. Importantly, we find that ATP-dependent chromatin-remodeling enzymes, Isw1 and Chd1, collaborate with histone chaperones to remodel nucleosomes as they are loaded behind a replication fork. Using a whole-genome sequencing approach, we determine that the positioning of newly deposited nucleosomes in vivo is specified by the combined actions of ATP-dependent chromatin-remodeling enzymes and select DNA-binding proteins. Altogether, our data provide in vivo evidence for coordinated "loading and remodeling" of nucleosomes behind the replication fork, allowing for rapid organization of chromatin during S phase.
Collapse
Affiliation(s)
- Tejas Yadav
- Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10065, USA; Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Iestyn Whitehouse
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
174
|
Faralli H, Wang C, Nakka K, Benyoucef A, Sebastian S, Zhuang L, Chu A, Palii CG, Liu C, Camellato B, Brand M, Ge K, Dilworth FJ. UTX demethylase activity is required for satellite cell-mediated muscle regeneration. J Clin Invest 2016; 126:1555-65. [PMID: 26999603 DOI: 10.1172/jci83239] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/07/2016] [Indexed: 12/31/2022] Open
Abstract
The X chromosome-encoded histone demethylase UTX (also known as KDM6A) mediates removal of repressive trimethylation of histone H3 lysine 27 (H3K27me3) to establish transcriptionally permissive chromatin. Loss of UTX in female mice is embryonic lethal. Unexpectedly, male UTX-null mice escape embryonic lethality due to expression of UTY, a paralog that lacks H3K27 demethylase activity, suggesting an enzyme-independent role for UTX in development and thereby challenging the need for active H3K27 demethylation in vivo. However, the requirement for active H3K27 demethylation in stem cell-mediated tissue regeneration remains untested. Here, we employed an inducible mouse KO that specifically ablates Utx in satellite cells (SCs) and demonstrated that active H3K27 demethylation is necessary for muscle regeneration. Loss of UTX in SCs blocked myofiber regeneration in both male and female mice. Furthermore, we demonstrated that UTX mediates muscle regeneration through its H3K27 demethylase activity, as loss of demethylase activity either by chemical inhibition or knock-in of demethylase-dead UTX resulted in defective muscle repair. Mechanistically, dissection of the muscle regenerative process revealed that the demethylase activity of UTX is required for expression of the transcription factor myogenin, which in turn drives differentiation of muscle progenitors. Thus, we have identified a critical role for the enzymatic activity of UTX in activating muscle-specific gene expression during myofiber regeneration and have revealed a physiological role for active H3K27 demethylation in vivo.
Collapse
|
175
|
Bire S, Casteret S, Piégu B, Beauclair L, Moiré N, Arensbuger P, Bigot Y. Mariner Transposons Contain a Silencer: Possible Role of the Polycomb Repressive Complex 2. PLoS Genet 2016; 12:e1005902. [PMID: 26939020 PMCID: PMC4777549 DOI: 10.1371/journal.pgen.1005902] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/05/2016] [Indexed: 12/31/2022] Open
Abstract
Transposable elements are driving forces for establishing genetic innovations such as transcriptional regulatory networks in eukaryotic genomes. Here, we describe a silencer situated in the last 300 bp of the Mos1 transposase open reading frame (ORF) which functions in vertebrate and arthropod cells. Functional silencers are also found at similar locations within three other animal mariner elements, i.e. IS630-Tc1-mariner (ITm) DD34D elements, Himar1, Hsmar1 and Mcmar1. These silencers are able to impact eukaryotic promoters monitoring strong, moderate or low expression as well as those of mariner elements located upstream of the transposase ORF. We report that the silencing involves at least two transcription factors (TFs) that are conserved within animal species, NFAT-5 and Alx1. These cooperatively act with YY1 to trigger the silencing activity. Four other housekeeping transcription factors (TFs), neuron restrictive silencer factor (NRSF), GAGA factor (GAF) and GTGT factor (GTF), were also found to have binding sites within mariner silencers but their impact in modulating the silencer activity remains to be further specified. Interestingly, an NRSF binding site was found to overlap a 30 bp motif coding a highly conserved PHxxYSPDLAPxD peptide in mariner transposases. We also present experimental evidence that silencing is mainly achieved by co-opting the host Polycomb Repressive Complex 2 pathway. However, we observe that when PRC2 is impaired another host silencing pathway potentially takes over to maintain weak silencer activity. Mariner silencers harbour features of Polycomb Response Elements, which are probably a way for mariner elements to self-repress their transcription and mobility in somatic and germinal cells when the required TFs are expressed. At the evolutionary scale, mariner elements, through their exaptation, might have been a source of silencers playing a role in the chromatin configuration in eukaryotic genomes. Transposons are mobile DNA sequences that have long co-evolved with the genome of their hosts. Consequently, they are involved in the generation of mutations, as well as the creation of genes and regulatory networks. Controlling the transposon activity, and consequently its negative effects on both the host soma and germ line, is a challenge for the survival of both the host and the transposon. To silence transposons, hosts often use defence mechanisms involving DNA methylation and RNA interference pathways. Here we show that mariner transposons can self-regulate their activity by using a silencer element located in their DNA sequence. The silencer element interferes with host housekeeping protein transcription factors involved in the polycomb silencing pathways. As the regulation of chromatin configuration by polycomb is an important regulator of animal development, our findings open the possibility that mariner silencers might have been exapted during animal evolution to participate in certain regulation pathways of their hosts. Since some of the TFs involved in mariner silencer activity play a role at different stages of nervous system development and neuron differentiation, it might be possible that mariner transposons can be active during some steps of cell differentiation. Interestingly, mariner transposons (i.e. IS630-Tc1-mariner (ITm) DD34D transposons) have so far only been found in genomes of animals having a nervous system.
Collapse
Affiliation(s)
- Solenne Bire
- PRC, UMR INRA-CNRS 7247, PRC, Nouzilly, France
- Institute of Biotechnology, University of Lausanne, and Center for Biotechnology UNIL-EPFL, Lausanne, Switzerland
| | | | | | | | | | - Peter Arensbuger
- Biological Sciences Department, California State Polytechnic University, Pomona, California, United States of America
| | - Yves Bigot
- PRC, UMR INRA-CNRS 7247, PRC, Nouzilly, France
- * E-mail:
| |
Collapse
|
176
|
Skoblov MY, Scobeyeva VA, Baranova AV. The mechanisms of transgenerational inheritance and their potential contribution to human phenotypes. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416030145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
177
|
Houri-Ze’evi L, Korem Y, Sheftel H, Faigenbloom L, Toker IA, Dagan Y, Awad L, Degani L, Alon U, Rechavi O. A Tunable Mechanism Determines the Duration of the Transgenerational Small RNA Inheritance in C. elegans. Cell 2016; 165:88-99. [DOI: 10.1016/j.cell.2016.02.057] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/19/2016] [Accepted: 02/24/2016] [Indexed: 01/13/2023]
|
178
|
Bhandari RK. Medaka as a model for studying environmentally induced epigenetic transgenerational inheritance of phenotypes. ENVIRONMENTAL EPIGENETICS 2016; 2:dvv010. [PMID: 29492282 PMCID: PMC5804509 DOI: 10.1093/eep/dvv010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/24/2015] [Accepted: 12/08/2015] [Indexed: 05/29/2023]
Abstract
Ability of environmental stressors to induce transgenerational diseases has been experimentally demonstrated in plants, worms, fish, and mammals, indicating that exposures affect not only human health but also fish and ecosystem health. Small aquarium fish have been reliable model to study genetic and epigenetic basis of development and disease. Additionally, fish can also provide better, economic opportunity to study transgenerational inheritance of adverse health and epigenetic mechanisms. Molecular mechanisms underlying germ cell development in fish are comparable to those in mammals and humans. This review will provide a short overview of long-term effects of environmental chemical contaminant exposure in various models, associated epigenetic mechanisms, and a perspective on fish as model to study environmentally induced transgenerational inheritance of altered phenotypes.
Collapse
Affiliation(s)
- Ramji K Bhandari
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|
179
|
Ventura-Juncá P, Irarrázaval I, Rolle AJ, Gutiérrez JI, Moreno RD, Santos MJ. In vitro fertilization (IVF) in mammals: epigenetic and developmental alterations. Scientific and bioethical implications for IVF in humans. Biol Res 2015; 48:68. [PMID: 26683055 PMCID: PMC4684609 DOI: 10.1186/s40659-015-0059-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/30/2015] [Indexed: 01/06/2023] Open
Abstract
The advent of in vitro fertilization (IVF) in animals and humans implies an extraordinary change in the environment where the beginning of a new organism takes place. In mammals fertilization occurs in the maternal oviduct, where there are unique conditions for guaranteeing the encounter of the gametes and the first stages of development of the embryo and thus its future. During this period a major epigenetic reprogramming takes place that is crucial for the normal fate of the embryo. This epigenetic reprogramming is very vulnerable to changes in environmental conditions such as the ones implied in IVF, including in vitro culture, nutrition, light, temperature, oxygen tension, embryo-maternal signaling, and the general absence of protection against foreign elements that could affect the stability of this process. The objective of this review is to update the impact of the various conditions inherent in the use of IVF on the epigenetic profile and outcomes of mammalian embryos, including superovulation, IVF technique, embryo culture and manipulation and absence of embryo-maternal signaling. It also covers the possible transgenerational inheritance of the epigenetic alterations associated with assisted reproductive technologies (ART), including its phenotypic consequences as is in the case of the large offspring syndrome (LOS). Finally, the important scientific and bioethical implications of the results found in animals are discussed in terms of the ART in humans.
Collapse
Affiliation(s)
- Patricio Ventura-Juncá
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Bioethics Center, Universidad Finis Terrae, Pedro de Valdivia 1509, Providencia, Región Metropolitana, 7501015, Santiago, Chile.
| | - Isabel Irarrázaval
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Augusto J Rolle
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Juan I Gutiérrez
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Ricardo D Moreno
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Manuel J Santos
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
180
|
McKnight RA, Yost CC, Yu X, Wiedmeier JE, Callaway CW, Brown AS, Lane RH, Fung CM. Intrauterine growth restriction perturbs nucleosome depletion at a growth hormone-responsive element in the mouse IGF-1 gene. Physiol Genomics 2015; 47:634-43. [DOI: 10.1152/physiolgenomics.00082.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/13/2015] [Indexed: 01/08/2023] Open
Abstract
Intrauterine growth restriction (IUGR) is a common human pregnancy complication. IUGR offspring carry significant postnatal risk for early-onset metabolic syndrome, which is associated with persistent reduction in IGF-1 protein expression. We have previously shown that preadolescent IUGR male mice have decreased hepatic IGF-1 mRNA and circulating IGF-1 protein at postnatal day 21, the age when growth hormone (GH) normally upregulates hepatic IGF-1 expression. Here we studied nucleosome occupancy and CpG methylation at a putative growth hormone-responsive element in intron 2 (in2GHRE) of the hepatic IGF-1 gene in normal, sham-operated, and IUGR mice. Nucleosome occupancy and CpG methylation were determined in embryonic stem cells (ESCs) and in liver at postnatal days 14, 21, and 42. For CpG methylation, additional time points out to 2 yr were analyzed. We confirmed the putative mouse in2GHRE was GH-responsive, and in normal mice, a single nucleosome was displaced from the hepatic in2GHRE by postnatal day 21, which exposed two STAT5b DNA binding sites. Nucleosome displacement correlated with developmentally programmed CpG demethylation. Finally, IUGR significantly altered the nucleosome-depleted region (NDR) at the in2GHRE of IGF-1 on postnatal day 21, with either complete absence of the NDR or with a shifted NDR exposing only one of two STAT5b DNA binding sites. An NDR shift was also seen in offspring of sham-operated mothers. We conclude that prenatal insult such as IUGR or anesthesia/surgery could perturb the proper formation of a well-positioned NDR at the mouse hepatic IGF-1 in2GHRE necessary for transitioning to an open chromatin state.
Collapse
Affiliation(s)
- Robert A. McKnight
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Christian C. Yost
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Xing Yu
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Julia E. Wiedmeier
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Christopher W. Callaway
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Ashley S. Brown
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Robert H. Lane
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Camille M. Fung
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| |
Collapse
|
181
|
Miwa T, Takasaki T, Inoue K, Sakamoto H. Restricted distribution of mrg-1 mRNA in C. elegans primordial germ cells through germ granule-independent regulation. Genes Cells 2015; 20:932-42. [PMID: 26537333 DOI: 10.1111/gtc.12285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/02/2015] [Indexed: 11/27/2022]
Abstract
The chromodomain protein MRG-1 is an essential maternal factor for proper germline development that protects germ cells from cell death in C. elegans. Unlike germ granules, which are exclusively segregated to the germline blastomeres at each cell division from the first cleavage of the embryo, MRG-1 is abundant in all cells in early embryos and is then gradually restricted to the primordial germ cells (PGCs) by the morphogenesis stage. Here, we show that this characteristic spatiotemporal expression pattern is dictated by the mrg-1 3'UTR and is differentially regulated at the RNA level between germline and somatic cells. Asymmetric segregation of germ granules is not necessary to localize MRG-1 to the PGCs. We found that MES-4, an essential chromatin regulator in germ cells, also accumulates in the PGCs in a germ granule-independent manner. We propose that C.elegans PGCs have a novel mechanism to accumulate at least some chromatin-associated proteins that are essential for germline immortality.
Collapse
Affiliation(s)
- Takashi Miwa
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Teruaki Takasaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Kunio Inoue
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Hiroshi Sakamoto
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| |
Collapse
|
182
|
Rahman MM, Munzig M, Kaneshiro K, Lee B, Strome S, Müller-Reichert T, Cohen-Fix O. Caenorhabditis elegans polo-like kinase PLK-1 is required for merging parental genomes into a single nucleus. Mol Biol Cell 2015; 26:4718-35. [PMID: 26490119 PMCID: PMC4678026 DOI: 10.1091/mbc.e15-04-0244] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/13/2015] [Indexed: 11/11/2022] Open
Abstract
Before the first zygotic division, the nuclear envelopes of the maternal and paternal pronuclei disassemble, allowing both sets of chromosomes to be incorporated into a single nucleus in daughter cells after mitosis. We found that in Caenorhabditis elegans, partial inactivation of the polo-like kinase PLK-1 causes the formation of two nuclei, containing either the maternal or paternal chromosomes, in each daughter cell. These two nuclei gave rise to paired nuclei in all subsequent cell divisions. The paired-nuclei phenotype was caused by a defect in forming a gap in the nuclear envelopes at the interface between the two pronuclei during the first mitotic division. This was accompanied by defects in chromosome congression and alignment of the maternal and paternal metaphase plates relative to each other. Perturbing chromosome congression by other means also resulted in failure to disassemble the nuclear envelope between the two pronuclei. Our data further show that PLK-1 is needed for nuclear envelope breakdown during early embryogenesis. We propose that during the first zygotic division, PLK-1-dependent chromosome congression and metaphase plate alignment are necessary for the disassembly of the nuclear envelope between the two pronuclei, ultimately allowing intermingling of the maternal and paternal chromosomes.
Collapse
Affiliation(s)
- Mohammad M Rahman
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Mandy Munzig
- Structural Cell Biology Group, Experimental Center, Medical Faculty Carl Gustav Carus, University of Technology Dresden, 01307 Dresden, Germany
| | - Kiyomi Kaneshiro
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Brandon Lee
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Susan Strome
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Thomas Müller-Reichert
- Structural Cell Biology Group, Experimental Center, Medical Faculty Carl Gustav Carus, University of Technology Dresden, 01307 Dresden, Germany
| | - Orna Cohen-Fix
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
183
|
Alabert C, Barth TK, Reverón-Gómez N, Sidoli S, Schmidt A, Jensen ON, Imhof A, Groth A. Two distinct modes for propagation of histone PTMs across the cell cycle. Genes Dev 2015; 29:585-90. [PMID: 25792596 PMCID: PMC4378191 DOI: 10.1101/gad.256354.114] [Citation(s) in RCA: 299] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epigenetic states defined by chromatin can be maintained through mitotic cell division. However, it remains unknown how histone-based information is transmitted. Here we combine nascent chromatin capture (NCC) and triple-SILAC (stable isotope labeling with amino acids in cell culture) labeling to track histone modifications and histone variants during DNA replication and across the cell cycle. We show that post-translational modifications (PTMs) are transmitted with parental histones to newly replicated DNA. Di- and trimethylation marks are diluted twofold upon DNA replication, as a consequence of new histone deposition. Importantly, within one cell cycle, all PTMs are restored. In general, new histones are modified to mirror the parental histones. However, H3K9 trimethylation (H3K9me3) and H3K27me3 are propagated by continuous modification of parental and new histones because the establishment of these marks extends over several cell generations. Together, our results reveal how histone marks propagate and demonstrate that chromatin states oscillate within the cell cycle.
Collapse
Affiliation(s)
- Constance Alabert
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; Centre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Teresa K Barth
- Munich Centre of Integrated Protein Science, Ludwig-Maximillians University of Munich, 80336 Munich, Germany; Adolf Butenandt Institute, Ludwig-Maximillians University of Munich, 80336 Munich, Germany
| | - Nazaret Reverón-Gómez
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; Centre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Simone Sidoli
- Centre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Andreas Schmidt
- Munich Centre of Integrated Protein Science, Ludwig-Maximillians University of Munich, 80336 Munich, Germany; Adolf Butenandt Institute, Ludwig-Maximillians University of Munich, 80336 Munich, Germany
| | - Ole N Jensen
- Centre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Axel Imhof
- Munich Centre of Integrated Protein Science, Ludwig-Maximillians University of Munich, 80336 Munich, Germany; Adolf Butenandt Institute, Ludwig-Maximillians University of Munich, 80336 Munich, Germany;
| | - Anja Groth
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; Centre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark;
| |
Collapse
|
184
|
Robert VJ, Garvis S, Palladino F. Repression of somatic cell fate in the germline. Cell Mol Life Sci 2015; 72:3599-620. [PMID: 26043973 PMCID: PMC11113910 DOI: 10.1007/s00018-015-1942-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 01/13/2023]
Abstract
Germ cells must transmit genetic information across generations, and produce gametes while also maintaining the potential to form all cell types after fertilization. Preventing the activation of somatic programs is, therefore, crucial to the maintenance of germ cell identity. Studies in Caenorhabditis elegans, Drosophila melanogaster, and mouse have revealed both similarities and differences in how somatic gene expression is repressed in germ cells, thereby preventing their conversion into somatic tissues. This review will focus on recent developments in our understanding of how global or gene-specific transcriptional repression, chromatin regulation, and translational repression operate in the germline to maintain germ cell identity and repress somatic differentiation programs.
Collapse
Affiliation(s)
- Valérie J Robert
- Ecole Normale Supérieure de Lyon, Université de Lyon, 46 allée d'Italie, 69007, Lyon, France
| | - Steve Garvis
- Ecole Normale Supérieure de Lyon, Université de Lyon, 46 allée d'Italie, 69007, Lyon, France
| | - Francesca Palladino
- Ecole Normale Supérieure de Lyon, Université de Lyon, 46 allée d'Italie, 69007, Lyon, France.
| |
Collapse
|
185
|
Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol 2015; 16:593-610. [PMID: 26373265 DOI: 10.1038/nrm4048] [Citation(s) in RCA: 407] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ageing is affected by both genetic and non-genetic factors. Here, we review the chromatin-based epigenetic changes that occur during ageing, the role of chromatin modifiers in modulating lifespan and the importance of epigenetic signatures as biomarkers of ageing. We also discuss how epigenome remodelling by environmental stimuli affects several aspects of transcription and genomic stability, with important consequences for longevity, and outline epigenetic differences between the 'mortal soma' and the 'immortal germ line'. Finally, we discuss the inheritance of characteristics of ageing and potential chromatin-based strategies to delay or reverse hallmarks of ageing or age-related diseases.
Collapse
|
186
|
Mao H, Zhu C, Zong D, Weng C, Yang X, Huang H, Liu D, Feng X, Guang S. The Nrde Pathway Mediates Small-RNA-Directed Histone H3 Lysine 27 Trimethylation in Caenorhabditis elegans. Curr Biol 2015; 25:2398-403. [PMID: 26365259 DOI: 10.1016/j.cub.2015.07.051] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/13/2015] [Accepted: 07/20/2015] [Indexed: 11/29/2022]
Abstract
Small-RNA-mediated chromatin modifications have been widely studied in plants and S. pombe. However, direct evidence of small-RNA-guided sequence-specific chromatin alterations is scarce in animals. In C. elegans, the nuclear RNAi defective (Nrde) pathway functions to transport siRNA from the cytoplasm to the nucleus, modulate transcription elongation, induce histone H3 lysine 9 (H3K9) trimethylation, and mediate transgenerational inheritance of RNAi. Here, we show that both exogenous RNAi and NRDE-bound endogenous 22G RNAs can direct sequence-specific histone H3 lysine 27 (H3K27) trimethylation at targeted loci through the Nrde pathway. The resulting H3K27me3 status can be inherited by progeny for multiple generations. piRNAs and WAGO-1-associated siRNAs induce H3K27 methylation as well. Interestingly, CSR-1-associated endogenous siRNAs fail to trigger H3K27 methylation, whereas exogenous provision of dsRNAs can induce H3K27 methylation at the CSR-1-targeted loci via the Nrde pathway. We further observed distinct genetic requirements of H3K9 and H3K27 trimethylation. Whereas set-25 and met-2 are required for K9 methylation, mes-2 is required for K27 methylation. The depletion of mes-2 leads to a nuclear RNAi defective phenotype. These results indicate that dsRNA-triggered chromatin modification is a sequence-specific response that engages the Nrde pathway in C. elegans.
Collapse
Affiliation(s)
- Hui Mao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chengming Zhu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Dandan Zong
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chenchun Weng
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiangwei Yang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Hui Huang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Dun Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xuezhu Feng
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Shouhong Guang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
187
|
Abstract
Germ cells are the special cells in the body that undergo meiosis to generate gametes and subsequently entire new organisms after fertilization, a process that continues generation after generation. Recent studies have expanded our understanding of the factors and mechanisms that specify germ cell fate, including the partitioning of maternally supplied 'germ plasm', inheritance of epigenetic memory and expression of transcription factors crucial for primordial germ cell (PGC) development. Even after PGCs are specified, germline fate is labile and thus requires protective mechanisms, such as global transcriptional repression, chromatin state alteration and translation of only germline-appropriate transcripts. Findings from diverse species continue to provide insights into the shared and divergent needs of these special reproductive cells.
Collapse
Affiliation(s)
- Susan Strome
- Molecular, Cell &Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Dustin Updike
- Kathryn W. Davis Center for Regenerative Biology &Medicine, Mount Desert Island Biological Laboratory, Bar Harbor, Maine 04672, USA
| |
Collapse
|
188
|
Zha L, Li F, Wu R, Artinian L, Rehder V, Yu L, Liang H, Xue B, Shi H. The Histone Demethylase UTX Promotes Brown Adipocyte Thermogenic Program Via Coordinated Regulation of H3K27 Demethylation and Acetylation. J Biol Chem 2015; 290:25151-63. [PMID: 26306033 DOI: 10.1074/jbc.m115.662650] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Indexed: 01/01/2023] Open
Abstract
Brown adipocytes function to dissipate energy as heat through adaptive thermogenesis. Understanding the molecular mechanisms underlying the brown fat thermogenic program may provide insights for the development of therapeutic approaches in the treatment of obesity. Most studies investigating the mechanisms underlying brown fat development focus on genetic mechanisms; little is known about the epigenetic mechanisms in this process. We have discovered that ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX), a histone demethylase for di- or tri-methylated histone 3 lysine 27 (H3K27me2/3), plays a potential role in regulating brown adipocyte thermogenic program. We found that UTX is up-regulated during brown adipocyte differentiation and by cold exposure in both brown adipose tissue (BAT) and white adipose tissue (WAT) of mice, suggesting a potential role in thermogenesis. Inactivation of UTX down-regulates brown fat specific gene expression, while overexpression of UTX does the opposite. Notably, activation of β adrenergic signaling recruits UTX to the UCP1 and PGC1α promoters, leading to decreased H3K27me3, a histone transcriptional repressive mark. UTX demethylates H3K27me3 and subsequently interacts with the histone acetyltransferase (HAT) protein CBP, resulting in increased H3K27 acetylation (H3K27ac), a histone transcriptional active mark. UTX positively regulate brown adipocyte thermogenic program through coordinated control of demethylating H3K27me3 and acetylating H3K27, switching the transcriptional repressive state to the transcriptional active state at the promoters of UCP1 and PGC1α. We conclude that UTX may play a potential role in regulation of brown adipocyte gene expression and may mediate β adrenergic activation of brown fat function.
Collapse
Affiliation(s)
- Lin Zha
- From the Department of Oncology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China, Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, Georgia 30303, and
| | - Fenfen Li
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, Georgia 30303, and
| | - Rui Wu
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, Georgia 30303, and
| | - Liana Artinian
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, Georgia 30303, and
| | - Vincent Rehder
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, Georgia 30303, and
| | - Liqing Yu
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742
| | - Houjie Liang
- From the Department of Oncology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China,
| | - Bingzhong Xue
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, Georgia 30303, and
| | - Hang Shi
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, Georgia 30303, and
| |
Collapse
|
189
|
Abstract
Eukaryotic replication disrupts each nucleosome as the fork passes, followed by re-assembly of disrupted nucleosomes and incorporation of newly synthesized histones into nucleosomes in the daughter genomes. In this review, we examine this process of replication-coupled nucleosome assembly to understand how characteristic steady state nucleosome landscapes are attained. Recent studies have begun to elucidate mechanisms involved in histone transfer during replication and maturation of the nucleosome landscape after disruption by replication. A fuller understanding of replication-coupled nucleosome assembly will be needed to explain how epigenetic information is replicated at every cell division.
Collapse
Affiliation(s)
- Srinivas Ramachandran
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Corresponding author. E-mail:
| |
Collapse
|
190
|
Baker MA. Proteomics of post-translational modifications of mammalian spermatozoa. Cell Tissue Res 2015; 363:279-287. [DOI: 10.1007/s00441-015-2249-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/18/2015] [Indexed: 12/25/2022]
|
191
|
Nagy C, Turecki G. Transgenerational epigenetic inheritance: an open discussion. Epigenomics 2015; 7:781-90. [DOI: 10.2217/epi.15.46] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Much controversy surrounds the idea of transgenerational epigenetics. Recent papers argue that epigenetic marks acquired through experience are passed to offspring, but as in much of the field of epigenetics, there is lack of precision in the definitions and perhaps too much eagerness to translate animal research to humans. Here, we review operational definitions of transgenerational inheritance and the processes of epigenetic programing during early development. Subsequently, based on this background, we critically examine some recent findings of studies investigating transgenerational inheritance. Finally, we discuss possible mechanisms that may explain transgenerational inheritance, including transmission of an epigenetic blueprint, which may predispose offspring to specific epigenetic patterning. Taken together, we conclude that presently, the evidence suggesting that acquired epigenetic marks are passed to the subsequent generation remains limited.
Collapse
Affiliation(s)
- Corina Nagy
- McGill Group for Suicide Studies, Douglas Hospital University Institute, 6875 Lasalle boul, Montreal, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Hospital University Institute, 6875 Lasalle boul, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
192
|
Cis-acting determinants of paramutation. Semin Cell Dev Biol 2015; 44:22-32. [DOI: 10.1016/j.semcdb.2015.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/20/2015] [Indexed: 11/23/2022]
|
193
|
Stegemann R, Buchner DA. Transgenerational inheritance of metabolic disease. Semin Cell Dev Biol 2015; 43:131-140. [PMID: 25937492 PMCID: PMC4626440 DOI: 10.1016/j.semcdb.2015.04.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 02/05/2023]
Abstract
Metabolic disease encompasses several disorders including obesity, type 2 diabetes, and dyslipidemia. Recently, the incidence of metabolic disease has drastically increased, driven primarily by a worldwide obesity epidemic. Transgenerational inheritance remains controversial, but has been proposed to contribute to human metabolic disease risk based on a growing number of proof-of-principle studies in model organisms ranging from Caenorhabditis elegans to Mus musculus to Sus scrofa. Collectively, these studies demonstrate that heritable risk is epigenetically transmitted from parent to offspring over multiple generations in the absence of a continued exposure to the triggering stimuli. A diverse assortment of initial triggers can induce transgenerational inheritance including high-fat or high-sugar diets, low-protein diets, various toxins, and ancestral genetic variants. Although the mechanistic basis underlying the transgenerational inheritance of disease risk remains largely unknown, putative molecules mediating transmission include small RNAs, histone modifications, and DNA methylation. Due to the considerable impact of metabolic disease on human health, it is critical to better understand the role of transgenerational inheritance of metabolic disease risk to open new avenues for therapeutic intervention and improve upon the current methods for clinical diagnoses and treatment.
Collapse
Affiliation(s)
- Rachel Stegemann
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, United States
| | - David A Buchner
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, United States; Department of Biological Chemistry, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
194
|
Berry S, Dean C. Environmental perception and epigenetic memory: mechanistic insight through FLC. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:133-48. [PMID: 25929799 PMCID: PMC4691321 DOI: 10.1111/tpj.12869] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/13/2015] [Accepted: 04/20/2015] [Indexed: 05/18/2023]
Abstract
Chromatin plays a central role in orchestrating gene regulation at the transcriptional level. However, our understanding of how chromatin states are altered in response to environmental and developmental cues, and then maintained epigenetically over many cell divisions, remains poor. The floral repressor gene FLOWERING LOCUS C (FLC) in Arabidopsis thaliana is a useful system to address these questions. FLC is transcriptionally repressed during exposure to cold temperatures, allowing studies of how environmental conditions alter expression states at the chromatin level. FLC repression is also epigenetically maintained during subsequent development in warm conditions, so that exposure to cold may be remembered. This memory depends on molecular complexes that are highly conserved among eukaryotes, making FLC not only interesting as a paradigm for understanding biological decision-making in plants, but also an important system for elucidating chromatin-based gene regulation more generally. In this review, we summarize our understanding of how cold temperature induces a switch in the FLC chromatin state, and how this state is epigenetically remembered. We also discuss how the epigenetic state of FLC is reprogrammed in the seed to ensure a requirement for cold exposure in the next generation.
Collapse
Affiliation(s)
- Scott Berry
- John Innes Centre, Norwich Research ParkNorwich, NR4 7UH, UK
| | - Caroline Dean
- John Innes Centre, Norwich Research ParkNorwich, NR4 7UH, UK
- * For correspondence (e-mail )
| |
Collapse
|
195
|
Annunziato AT. The Fork in the Road: Histone Partitioning During DNA Replication. Genes (Basel) 2015; 6:353-71. [PMID: 26110314 PMCID: PMC4488668 DOI: 10.3390/genes6020353] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 12/22/2022] Open
Abstract
In the following discussion the distribution of histones at the replication fork is examined, with specific attention paid to the question of H3/H4 tetramer "splitting." After a presentation of early experiments surrounding this topic, more recent contributions are detailed. The implications of these findings with respect to the transmission of histone modifications and epigenetic models are also addressed.
Collapse
Affiliation(s)
- Anthony T Annunziato
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
196
|
Berry S, Hartley M, Olsson TSG, Dean C, Howard M. Local chromatin environment of a Polycomb target gene instructs its own epigenetic inheritance. eLife 2015; 4:e07205. [PMID: 25955967 PMCID: PMC4450441 DOI: 10.7554/elife.07205] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/07/2015] [Indexed: 01/10/2023] Open
Abstract
Inheritance of gene expression states is fundamental for cells to 'remember' past events, such as environmental or developmental cues. The conserved Polycomb Repressive Complex 2 (PRC2) maintains epigenetic repression of many genes in animals and plants and modifies chromatin at its targets. Histones modified by PRC2 can be inherited through cell division. However, it remains unclear whether this inheritance can direct long-term memory of individual gene expression states (cis memory) or instead if local chromatin states are dictated by the concentrations of diffusible factors (trans memory). By monitoring the expression of two copies of the Arabidopsis Polycomb target gene FLOWERING LOCUS C (FLC) in the same plants, we show that one copy can be repressed while the other is active. Furthermore, this 'mixed' expression state is inherited through many cell divisions as plants develop. These data demonstrate that epigenetic memory of FLC expression is stored not in trans but in cis.
Collapse
|
197
|
Feng L, Chen X. Epigenetic regulation of germ cells-remember or forget? Curr Opin Genet Dev 2015; 31:20-7. [PMID: 25930104 DOI: 10.1016/j.gde.2015.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/02/2015] [Indexed: 12/18/2022]
Abstract
Unlike somatic cells, germ cells retain the potential to reproduce an entire new organism upon fertilization. In order to accomplish the process of fertilization, germ cells undergo an extreme cellular differentiation process known as gametogenesis in order to produce morphologically and functionally distinct oocyte and sperm. In addition to changes in genetic content changes from diploid to haploid, epigenetic mechanisms that modify chromatin state without altering primary DNA sequences have profound influence on germ cell differentiation and moreover, the transgenerational effect. In this review, we will go over the most recent discoveries on epigenetic regulations in germline differentiation and transgenerational inheritance across different metazoan species.
Collapse
Affiliation(s)
- Lijuan Feng
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, United States
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, United States.
| |
Collapse
|
198
|
Greer EL, Blanco MA, Gu L, Sendinc E, Liu J, Aristizábal-Corrales D, Hsu CH, Aravind L, He C, Shi Y. DNA Methylation on N6-Adenine in C. elegans. Cell 2015; 161:868-78. [PMID: 25936839 DOI: 10.1016/j.cell.2015.04.005] [Citation(s) in RCA: 484] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 03/02/2015] [Accepted: 03/31/2015] [Indexed: 02/02/2023]
Abstract
In mammalian cells, DNA methylation on the fifth position of cytosine (5mC) plays an important role as an epigenetic mark. However, DNA methylation was considered to be absent in C. elegans because of the lack of detectable 5mC, as well as homologs of the cytosine DNA methyltransferases. Here, using multiple approaches, we demonstrate the presence of adenine N(6)-methylation (6mA) in C. elegans DNA. We further demonstrate that this modification increases trans-generationally in a paradigm of epigenetic inheritance. Importantly, we identify a DNA demethylase, NMAD-1, and a potential DNA methyltransferase, DAMT-1, which regulate 6mA levels and crosstalk between methylations of histone H3K4 and adenines and control the epigenetic inheritance of phenotypes associated with the loss of the H3K4me2 demethylase spr-5. Together, these data identify a DNA modification in C. elegans and raise the exciting possibility that 6mA may be a carrier of heritable epigenetic information in eukaryotes.
Collapse
Affiliation(s)
- Eric Lieberman Greer
- Division of Newborn Medicine, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Mario Andres Blanco
- Division of Newborn Medicine, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Lei Gu
- Division of Newborn Medicine, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Erdem Sendinc
- Division of Newborn Medicine, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jianzhao Liu
- Department of Chemistry and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - David Aristizábal-Corrales
- Division of Newborn Medicine, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Chih-Hung Hsu
- Division of Newborn Medicine, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 208943, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Yang Shi
- Division of Newborn Medicine, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
199
|
Multigenerational and transgenerational inheritance of drug exposure: The effects of alcohol, opiates, cocaine, marijuana, and nicotine. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:21-33. [PMID: 25839742 DOI: 10.1016/j.pbiomolbio.2015.03.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 03/02/2015] [Accepted: 03/06/2015] [Indexed: 12/15/2022]
Abstract
Familial inheritance of drug abuse is composed of both genetic and environmental factors. Additionally, epigenetic transgenerational inheritance may provide a means by which parental drug use can influence several generations of offspring. Recent evidence suggests that parental drug exposure produces behavioral, biochemical, and neuroanatomical changes in future generations. The focus of this review is to discuss these multigenerational and transgenerational phenotypes in the offspring of animals exposed to drugs of abuse. Specifically, changes found following the administration of alcohol, opioids, cocaine, marijuana, and nicotine will be discussed. In addition, epigenetic modifications to the genome following administration of these drugs will be detailed as well as their potential for transmission to the next generation.
Collapse
|
200
|
Guantes R, Rastrojo A, Neves R, Lima A, Aguado B, Iborra FJ. Global variability in gene expression and alternative splicing is modulated by mitochondrial content. Genome Res 2015; 25:633-44. [PMID: 25800673 PMCID: PMC4417112 DOI: 10.1101/gr.178426.114] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 03/16/2015] [Indexed: 11/24/2022]
Abstract
Noise in gene expression is a main determinant of phenotypic variability. Increasing experimental evidence suggests that genome-wide cellular constraints largely contribute to the heterogeneity observed in gene products. It is still unclear, however, which global factors affect gene expression noise and to what extent. Since eukaryotic gene expression is an energy demanding process, differences in the energy budget of each cell could determine gene expression differences. Here, we quantify the contribution of mitochondrial variability (a natural source of ATP variation) to global variability in gene expression. We find that changes in mitochondrial content can account for ∼50% of the variability observed in protein levels. This is the combined result of the effect of mitochondria dosage on transcription and translation apparatus content and activities. Moreover, we find that mitochondrial levels have a large impact on alternative splicing, thus modulating both the abundance and type of mRNAs. A simple mathematical model in which mitochondrial content simultaneously affects transcription rate and splicing site choice can explain the alternative splicing data. The results of this study show that mitochondrial content (and/or probably function) influences mRNA abundance, translation, and alternative splicing, which ultimately affects cellular phenotype.
Collapse
Affiliation(s)
- Raul Guantes
- Department of Condensed Matter Physics, Materials Science Institute "Nicolás Cabrera" and Institute of Condensed Matter Physics (IFIMAC), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Alberto Rastrojo
- Centro Biología Molecular "Severo Ochoa," CSIC-UAM, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Ricardo Neves
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford OX3 9DS, United Kingdom
| | - Ana Lima
- UC Biotech, Center for Neuroscience and Cell Biology, Biocant, Center of Innovation in Biotechnology, 3060-197 Cantanhede, Portugal
| | - Begoña Aguado
- Centro Biología Molecular "Severo Ochoa," CSIC-UAM, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Francisco J Iborra
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford OX3 9DS, United Kingdom; Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|