151
|
Leffler EM, Band G, Busby GBJ, Kivinen K, Le QS, Clarke GM, Bojang KA, Conway DJ, Jallow M, Sisay-Joof F, Bougouma EC, Mangano VD, Modiano D, Sirima SB, Achidi E, Apinjoh TO, Marsh K, Ndila CM, Peshu N, Williams TN, Drakeley C, Manjurano A, Reyburn H, Riley E, Kachala D, Molyneux M, Nyirongo V, Taylor T, Thornton N, Tilley L, Grimsley S, Drury E, Stalker J, Cornelius V, Hubbart C, Jeffreys AE, Rowlands K, Rockett KA, Spencer CCA, Kwiatkowski DP. Resistance to malaria through structural variation of red blood cell invasion receptors. Science 2017; 356:science.aam6393. [PMID: 28522690 DOI: 10.1126/science.aam6393] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/08/2017] [Indexed: 12/29/2022]
Abstract
The malaria parasite Plasmodium falciparum invades human red blood cells by a series of interactions between host and parasite surface proteins. By analyzing genome sequence data from human populations, including 1269 individuals from sub-Saharan Africa, we identify a diverse array of large copy-number variants affecting the host invasion receptor genes GYPA and GYPB We find that a nearby association with severe malaria is explained by a complex structural rearrangement involving the loss of GYPB and gain of two GYPB-A hybrid genes, which encode a serologically distinct blood group antigen known as Dantu. This variant reduces the risk of severe malaria by 40% and has recently increased in frequency in parts of Kenya, yet it appears to be absent from west Africa. These findings link structural variation of red blood cell invasion receptors with natural resistance to severe malaria.
Collapse
Affiliation(s)
- Ellen M Leffler
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.,Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Gavin Band
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.,Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - George B J Busby
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Katja Kivinen
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Quang Si Le
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Geraldine M Clarke
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Kalifa A Bojang
- Medical Research Council Unit, Atlantic Boulevard, Fajara, Post Office Box 273, The Gambia
| | - David J Conway
- Medical Research Council Unit, Atlantic Boulevard, Fajara, Post Office Box 273, The Gambia.,Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Muminatou Jallow
- Medical Research Council Unit, Atlantic Boulevard, Fajara, Post Office Box 273, The Gambia.,Royal Victoria Teaching Hospital, Independence Drive, Post Office Box 1515, Banjul, The Gambia
| | - Fatoumatta Sisay-Joof
- Medical Research Council Unit, Atlantic Boulevard, Fajara, Post Office Box 273, The Gambia
| | - Edith C Bougouma
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), 01 BP 2208 Ouagadougou 01, Burkina Faso
| | | | - David Modiano
- University of Rome La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Sodiomon B Sirima
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), 01 BP 2208 Ouagadougou 01, Burkina Faso
| | - Eric Achidi
- Department of Medical Laboratory Sciences, University of Buea, Post Office Box 63, Buea, South West Region, Cameroon
| | - Tobias O Apinjoh
- Department of Biochemistry and Molecular Biology, University of Buea, Post Office Box 63, Buea, South West Region, Cameroon
| | - Kevin Marsh
- Kenyan Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Post Office Box 230-80108, Kilifi, Kenya.,Nuffield Department of Medicine, NDM Research Building, Roosevelt Drive, Headington, Oxford OX3 7FZ, UK
| | - Carolyne M Ndila
- Kenyan Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Post Office Box 230-80108, Kilifi, Kenya
| | - Norbert Peshu
- Kenyan Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Post Office Box 230-80108, Kilifi, Kenya
| | - Thomas N Williams
- Kenyan Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Post Office Box 230-80108, Kilifi, Kenya.,Faculty of Medicine, Department of Medicine, Imperial College, Exhibition Road, London SW7 2AZ, UK
| | - Chris Drakeley
- Joint Malaria Programme, Kilimanjaro Christian Medical Centre, Post Office Box 2228, Moshi, Tanzania.,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Alphaxard Manjurano
- Joint Malaria Programme, Kilimanjaro Christian Medical Centre, Post Office Box 2228, Moshi, Tanzania.,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.,National Institute for Medical Research, Mwanza Research Centre, Mwanza City, Tanzania
| | - Hugh Reyburn
- Joint Malaria Programme, Kilimanjaro Christian Medical Centre, Post Office Box 2228, Moshi, Tanzania.,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Eleanor Riley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - David Kachala
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, College of Medicine, Post Office Box 30096, Chichiri, Blantyre 3, Malawi
| | - Malcolm Molyneux
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, College of Medicine, Post Office Box 30096, Chichiri, Blantyre 3, Malawi.,Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Vysaul Nyirongo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, College of Medicine, Post Office Box 30096, Chichiri, Blantyre 3, Malawi
| | - Terrie Taylor
- Blantyre Malaria Project, Queen Elizabeth Central Hospital, College of Medicine, Post Office Box 30096, Chichiri, Blantyre 3, Malawi.,College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Nicole Thornton
- International Blood Group Reference Laboratory, National Health Service (NHS) Blood and Transplant, 500 North Bristol Park, Filton, Bristol BS34 7QH, UK
| | - Louise Tilley
- International Blood Group Reference Laboratory, National Health Service (NHS) Blood and Transplant, 500 North Bristol Park, Filton, Bristol BS34 7QH, UK
| | - Shane Grimsley
- International Blood Group Reference Laboratory, National Health Service (NHS) Blood and Transplant, 500 North Bristol Park, Filton, Bristol BS34 7QH, UK
| | - Eleanor Drury
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Jim Stalker
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Victoria Cornelius
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Christina Hubbart
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Anna E Jeffreys
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Kate Rowlands
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Kirk A Rockett
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.,Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Chris C A Spencer
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| | - Dominic P Kwiatkowski
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK. .,Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | |
Collapse
|
152
|
Terekhanova NV, Seplyarskiy VB, Soldatov RA, Bazykin GA. Evolution of Local Mutation Rate and Its Determinants. Mol Biol Evol 2017; 34:1100-1109. [PMID: 28138076 PMCID: PMC5850301 DOI: 10.1093/molbev/msx060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mutation rate varies along the human genome, and part of this variation is explainable by measurable local properties of the DNA molecule. Moreover, mutation rates differ between orthologous genomic regions of different species, but the drivers of this change are unclear. Here, we use data on human divergence from chimpanzee, human rare polymorphism, and human de novo mutations to predict the substitution rate at orthologous regions of non-human mammals. We show that the local mutation rates are very similar between human and apes, implying that their variation has a strong underlying cryptic component not explainable by the known genomic features. Mutation rates become progressively less similar in more distant species, and these changes are partially explainable by changes in the local genomic features of orthologous regions, most importantly, in the recombination rate. However, they are much more rapid, implying that the cryptic component underlying the mutation rate is more ephemeral than the known genomic features. These findings shed light on the determinants of mutation rate evolution. Key words local mutation rate, molecular evolution, recombination rate.
Collapse
Affiliation(s)
- Nadezhda V. Terekhanova
- Sector for Molecular Evolution, Institute for Information Transmission Problems of the RAS (Kharkevich Institute), Moscow, Russia
- M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir B. Seplyarskiy
- Sector for Molecular Evolution, Institute for Information Transmission Problems of the RAS (Kharkevich Institute), Moscow, Russia
| | - Ruslan A. Soldatov
- Sector for Molecular Evolution, Institute for Information Transmission Problems of the RAS (Kharkevich Institute), Moscow, Russia
- M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Georgii A. Bazykin
- Sector for Molecular Evolution, Institute for Information Transmission Problems of the RAS (Kharkevich Institute), Moscow, Russia
- M. V. Lomonosov Moscow State University, Moscow, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
| |
Collapse
|
153
|
Bhérer C, Campbell CL, Auton A. Refined genetic maps reveal sexual dimorphism in human meiotic recombination at multiple scales. Nat Commun 2017; 8:14994. [PMID: 28440270 PMCID: PMC5414043 DOI: 10.1038/ncomms14994] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 02/20/2017] [Indexed: 11/09/2022] Open
Abstract
In humans, males have lower recombination rates than females over the majority of the genome, but the opposite is usually true near the telomeres. These broad-scale differences have been known for decades, yet little is known about differences at the fine scale. By combining data sets, we have collected recombination events from over 100,000 meioses and have constructed sex-specific genetic maps at a previously unachievable resolution. Here we show that, although a substantial fraction of the genome shows some degree of sexually dimorphic recombination, the vast majority of hotspots are shared between the sexes, with only a small number of putative sex-specific hotspots. Wavelet analysis indicates that most of the differences can be attributed to the fine scale, and that variation in rate between the sexes can mostly be explained by differences in hotspot magnitude, rather than location. Nonetheless, known recombination-associated genomic features, such as THE1B repeat elements, show systematic differences between the sexes. It is known that males have lower recombination rates than females over much of the genome but little is known about differences at a fine scale. Here the authors combine data from over 100,000 meioses and show that the majority of differences can be explained by variation in hotspot magnitude.
Collapse
Affiliation(s)
- Claude Bhérer
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, New York 10461, USA
| | - Christopher L Campbell
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, New York 10461, USA
| | - Adam Auton
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, New York 10461, USA
| |
Collapse
|
154
|
Grey C, Clément JAJ, Buard J, Leblanc B, Gut I, Gut M, Duret L, de Massy B. In vivo binding of PRDM9 reveals interactions with noncanonical genomic sites. Genome Res 2017; 27:580-590. [PMID: 28336543 PMCID: PMC5378176 DOI: 10.1101/gr.217240.116] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/23/2017] [Indexed: 02/02/2023]
Abstract
In mouse and human meiosis, DNA double-strand breaks (DSBs) initiate homologous recombination and occur at specific sites called hotspots. The localization of these sites is determined by the sequence-specific DNA binding domain of the PRDM9 histone methyl transferase. Here, we performed an extensive analysis of PRDM9 binding in mouse spermatocytes. Unexpectedly, we identified a noncanonical recruitment of PRDM9 to sites that lack recombination activity and the PRDM9 binding consensus motif. These sites include gene promoters, where PRDM9 is recruited in a DSB-dependent manner. Another subset reveals DSB-independent interactions between PRDM9 and genomic sites, such as the binding sites for the insulator protein CTCF. We propose that these DSB-independent sites result from interactions between hotspot-bound PRDM9 and genomic sequences located on the chromosome axis.
Collapse
Affiliation(s)
- Corinne Grey
- Institut de Génétique Humaine UMR9002 CNRS-Université de Montpellier, 34396 Montpellier Cedex 05, France
| | - Julie A J Clément
- Institut de Génétique Humaine UMR9002 CNRS-Université de Montpellier, 34396 Montpellier Cedex 05, France
| | - Jérôme Buard
- Institut de Génétique Humaine UMR9002 CNRS-Université de Montpellier, 34396 Montpellier Cedex 05, France
| | - Benjamin Leblanc
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Laurent Duret
- Université de Lyon, Université Claude Bernard, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69100, Villeurbanne, France
| | - Bernard de Massy
- Institut de Génétique Humaine UMR9002 CNRS-Université de Montpellier, 34396 Montpellier Cedex 05, France
| |
Collapse
|
155
|
Padhi A, Shen B, Jiang J, Zhou Y, Liu GE, Ma L. Ruminant-specific multiple duplication events of PRDM9 before speciation. BMC Evol Biol 2017; 17:79. [PMID: 28292260 PMCID: PMC5351255 DOI: 10.1186/s12862-017-0892-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 01/26/2017] [Indexed: 11/30/2022] Open
Abstract
Background Understanding the genetic and evolutionary mechanisms of speciation genes in sexually reproducing organisms would provide important insights into mammalian reproduction and fitness. PRDM9, a widely known speciation gene, has recently gained attention for its important role in meiotic recombination and hybrid incompatibility. Despite the fact that PRDM9 is a key regulator of recombination and plays a dominant role in hybrid incompatibility, little is known about the underlying genetic and evolutionary mechanisms that generated multiple copies of PRDM9 in many metazoan lineages. Results The present study reports (1) evidence of ruminant-specific multiple gene duplication events, which likely have had occurred after the ancestral ruminant population diverged from its most recent common ancestor and before the ruminant speciation events, (2) presence of three copies of PRDM9, one copy (lineages I) in chromosome 1 (chr1) and two copies (lineages II & III) in chromosome X (chrX), thus indicating the possibility of ancient inter- and intra-chromosomal unequal crossing over and gene conversion events, (3) while lineages I and II are characterized by the presence of variable tandemly repeated C2H2 zinc finger (ZF) arrays, lineage III lost these arrays, and (4) C2H2 ZFs of lineages I and II, particularly the amino acid residues located at positions −1, 3, and 6 have evolved under strong positive selection. Conclusions Our results demonstrated two gene duplication events of PRDM9 in ruminants: an inter-chromosomal duplication that occurred between chr1 and chrX, and an intra-chromosomal X-linked duplication, which resulted in two additional copies of PRDM9 in ruminants. The observation of such duplication between chrX and chr1 is rare and may possibly have happened due to unequal crossing-over millions of years ago when sex chromosomes were independently derived from a pair of ancestral autosomes. Two copies (lineages I & II) are characterized by the presence of variable sized tandem-repeated C2H2 ZFs and evolved under strong positive selection and concerted evolution, supporting the notion of well-established Red Queen hypothesis. Collectively, gene duplication, concerted evolution, and positive selection are the likely driving forces for the expansion of ruminant PRDM9 sub-family. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0892-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abinash Padhi
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA.
| | - Botong Shen
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Jicai Jiang
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Yang Zhou
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA.,College of Animal Science and Technology, Northwest A & F University, Shaanxi Key Laboratory of Agricultural Molecular Biology, Yangling, Shaanxi, 712100, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
156
|
Striedner Y, Schwarz T, Welte T, Futschik A, Rant U, Tiemann-Boege I. The long zinc finger domain of PRDM9 forms a highly stable and long-lived complex with its DNA recognition sequence. Chromosome Res 2017; 25:155-172. [PMID: 28155083 PMCID: PMC5440498 DOI: 10.1007/s10577-017-9552-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/09/2017] [Accepted: 01/18/2017] [Indexed: 01/23/2023]
Abstract
PR domain containing protein 9 (PRDM9) is a meiosis-specific, multi-domain protein that regulates the location of recombination hotspots by targeting its DNA recognition sequence for double-strand breaks (DSBs). PRDM9 specifically recognizes DNA via its tandem array of zinc fingers (ZnFs), epigenetically marks the local chromatin by its histone methyltransferase activity, and is an important tether that brings the DNA into contact with the recombination initiation machinery. A strong correlation between PRDM9-ZnF variants and specific DNA motifs at recombination hotspots has been reported; however, the binding specificity and kinetics of the ZnF domain are still obscure. Using two in vitro methods, gel mobility shift assays and switchSENSE, a quantitative biophysical approach that measures binding rates in real time, we determined that the PRDM9-ZnF domain forms a highly stable and long-lived complex with its recognition sequence, with a dissociation halftime of many hours. The ZnF domain exhibits an equilibrium dissociation constant (K D) in the nanomolar (nM) range, with polymorphisms in the recognition sequence directly affecting the binding affinity. We also determined that alternative sequences (15-16 nucleotides in length) can be specifically bound by different subsets of the ZnF domain, explaining the binding plasticity of PRDM9 for different sequences. Finally, longer binding targets are preferred than predicted from the numbers of ZnFs contacting the DNA. Functionally, a long-lived complex translates into an enzymatically active PRDM9 at specific DNA-binding sites throughout meiotic prophase I that might be relevant in stabilizing the components of the recombination machinery to a specific DNA target until DSBs are initiated by Spo11.
Collapse
Affiliation(s)
- Yasmin Striedner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020, Linz, Austria
| | - Theresa Schwarz
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020, Linz, Austria
| | - Thomas Welte
- Dynamic Biosensors GmbH, 82152, Planegg, Germany
| | - Andreas Futschik
- Department of Applied Statistics, Johannes Kepler University, 4040, Linz, Austria
| | - Ulrich Rant
- Dynamic Biosensors GmbH, 82152, Planegg, Germany
| | - Irene Tiemann-Boege
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020, Linz, Austria.
| |
Collapse
|
157
|
An exploratory study of predisposing genetic factors for DiGeorge/velocardiofacial syndrome. Sci Rep 2017; 7:40031. [PMID: 28059126 PMCID: PMC5216377 DOI: 10.1038/srep40031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 12/01/2016] [Indexed: 12/13/2022] Open
Abstract
DiGeorge/velocardiofacial syndrome (DGS/VCFS) is a disorder caused by a 22q11.2 deletion mediated by non-allelic homologous recombination (NAHR) between low-copy repeats (LCRs). We have evaluated the role of LCR22 genomic architecture and PRDM9 variants as DGS/VCFS predisposing factors. We applied FISH using fosmid probes on chromatin fibers to analyze the number of tandem repeat blocks in LCR22 in two DGS/VCFS fathers-of-origin with proven 22q11.2 NAHR susceptibility. Results revealed copy number variations (CNVs) of L9 and K3 fosmids in these individuals compared to controls. The total number of L9 and K3 copies was also characterized using droplet digital PCR (ddPCR). Although we were unable to confirm variations, we detected an additional L9 amplicon corresponding to a pseudogene. Moreover, none of the eight DGS/VCFS parents-of-origin was heterozygote for the inv(22)(q11.2) haplotype. PRDM9 sequencing showed equivalent allelic distributions between DGS/VCFS parents-of-origin and controls, although a new PRDM9 allele (L50) was identified in one case. Our results support the hypothesis that LCR22s variations influences 22q11.2 NAHR events, however further studies are needed to confirm this association and clarify the contribution of pseudogenes and rare PDRM9 alleles to NAHR susceptibility.
Collapse
|
158
|
Mihola O, Trachtulec Z. A Mutation of the Prdm9 Mouse Hybrid Sterility Gene Carried by a Transgene. Folia Biol (Praha) 2017; 63:27-30. [PMID: 28374672 DOI: 10.14712/fb2017063010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
PRDM9 is a protein with histone-3-methyltransferase activity, which specifies the sites of meiotic recombination in mammals. Deficiency of the Prdm9 gene in the laboratory mouse results in complete arrest of the meiotic prophase of both sexes. Moreover, the combination of certain PRDM9 alleles from different mouse subspecies causes hybrid sterility, e.g., the male-specific meiotic arrest found in the (PWD/Ph × C57BL/6J)F1 animals. The fertility of all these mice can be rescued using a Prdm9-containing transgene. Here we characterized a transgene made from the clone RP24-346I22 that was expected to encompass the entire Prdm9 gene. Both (PWD/Ph × C57BL/6J)F1 intersubspecific hybrid males and Prdm9-deficient laboratory mice of both sexes carrying this transgene remained sterile, suggesting that Prdm9 inactivation occurred in the Tg(RP24-346I22) transgenics. Indeed, comparative qRT-PCR analysis of testicular RNAs from transgene-positive versus negative animals revealed similar expression levels of Prdm9 mRNAs from the exons encoding the C-terminal part of the protein but elevated expression from the regions coding for the N-terminus of PRDM9, indicating that the transgenic carries a new null Prdm9 allele. Two naturally occurring alternative Prdm9 mRNA isoforms were overexpressed in Tg(RP24-346I22), one formed via splicing to a 3'-terminal exon consisting of short interspersed element B2 and one isoform including an alternative internal exon of 28 base pairs. However, the overexpression of these alternative transcripts was apparently insufficient for Prdm9 function or for increasing the fertility of the hybrid males.
Collapse
Affiliation(s)
- O Mihola
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, v. v. i., Prague, Czech Republic
| | - Z Trachtulec
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, v. v. i., Prague, Czech Republic
| |
Collapse
|
159
|
Liu H, Jia Y, Sun X, Tian D, Hurst LD, Yang S. Direct Determination of the Mutation Rate in the Bumblebee Reveals Evidence for Weak Recombination-Associated Mutation and an Approximate Rate Constancy in Insects. Mol Biol Evol 2017; 34:119-130. [PMID: 28007973 PMCID: PMC5854123 DOI: 10.1093/molbev/msw226] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Accurate knowledge of the mutation rate provides a base line for inferring expected rates of evolution, for testing evolutionary hypotheses and for estimation of key parameters. Advances in sequencing technology now permit direct estimates of the mutation rate from sequencing of close relatives. Within insects there have been three prior such estimates, two in nonsocial insects (Drosophila: 2.8 × 10-9 per bp per haploid genome per generation; Heliconius: 2.9 × 10-9) and one in a social species, the honeybee (3.4 × 10-9). Might the honeybee's rate be ∼20% higher because it has an exceptionally high recombination rate and recombination may be directly or indirectly mutagenic? To address this possibility, we provide a direct estimate of the mutation rate in the bumblebee (Bombus terrestris), this being a close relative of the honeybee but with a much lower recombination rate. We confirm that the crossover rate of the bumblebee is indeed much lower than honeybees (8.7 cM/Mb vs. 37 cM/Mb). Importantly, we find no significant difference in the mutation rates: we estimate for bumblebees a rate of 3.6 × 10-9 per haploid genome per generation (95% confidence intervals 2.38 × 10-9 and 5.37 × 10-9) which is just 5% higher than the estimate that of honeybees. Both genomes have approximately one new mutation per haploid genome per generation. While we find evidence for a direct coupling between recombination and mutation (also seen in honeybees), the effect is so weak as to leave almost no footprint on any between-species differences. The similarity in mutation rates suggests an approximate constancy of the mutation rate in insects.
Collapse
Affiliation(s)
- Haoxuan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yanxiao Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaoguang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Dacheng Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Laurence D Hurst
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
160
|
Seplyarskiy VB, Andrianova MA, Bazykin GA. APOBEC3A/B-induced mutagenesis is responsible for 20% of heritable mutations in the TpCpW context. Genome Res 2016; 27:175-184. [PMID: 27940951 PMCID: PMC5287224 DOI: 10.1101/gr.210336.116] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022]
Abstract
APOBEC3A/B cytidine deaminase is responsible for the majority of cancerous mutations in a large fraction of cancer samples. However, its role in heritable mutagenesis remains very poorly understood. Recent studies have demonstrated that both in yeast and in human cancerous cells, most APOBEC3A/B-induced mutations occur on the lagging strand during replication and on the nontemplate strand of transcribed regions. Here, we use data on rare human polymorphisms, interspecies divergence, and de novo mutations to study germline mutagenesis and to analyze mutations at nucleotide contexts prone to attack by APOBEC3A/B. We show that such mutations occur preferentially on the lagging strand and on nontemplate strands of transcribed regions. Moreover, we demonstrate that APOBEC3A/B-like mutations tend to produce strand-coordinated clusters, which are also biased toward the lagging strand. Finally, we show that the mutation rate is increased 3' of C→G mutations to a greater extent than 3' of C→T mutations, suggesting pervasive trans-lesion bypass of the APOBEC3A/B-induced damage. Our study demonstrates that 20% of C→T and C→G mutations in the TpCpW context-where W denotes A or T, segregating as polymorphisms in human population-or 1.4% of all heritable mutations are attributable to APOBEC3A/B activity.
Collapse
Affiliation(s)
- Vladimir B Seplyarskiy
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow 127994, Russia.,Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Maria A Andrianova
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow 127994, Russia.,Pirogov Russian National Research Medical University, Moscow 117997, Russia.,Lomonosov Moscow State University, Moscow 119234, Russia
| | - Georgii A Bazykin
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow 127994, Russia.,Pirogov Russian National Research Medical University, Moscow 117997, Russia.,Lomonosov Moscow State University, Moscow 119234, Russia.,Skolkovo Institute of Science and Technology, Skolkovo 143026, Russia
| |
Collapse
|
161
|
Oliver TR, Middlebrooks C, Harden A, Scott N, Johnson B, Jones J, Walker C, Wilkerson C, Saffold SH, Akinseye A, Smith T, Feingold E, Sherman SL. Variation in the Zinc Finger of PRDM9 is Associated with the Absence of Recombination along Nondisjoined Chromosomes 21 of Maternal Origin. JOURNAL OF DOWN SYNDROME & CHROMOSOME ABNORMALITIES 2016; 2:115. [PMID: 28702511 PMCID: PMC5502783 DOI: 10.4172/2472-1115.1000115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Variation in the zinc finger-binding domain (ZFBD) of the protein PR Domain-Containing Protein 9 (PRDM9) is associated with altered placement of recombination in the human genome. As both the absence and altered placement of recombination are observed among chromosomes 21 that nondisjoin, we genotyped the PRDM9 ZFBD among mothers of children with Trisomy 21 in efforts to determine if variation within this region is associated with the recombination-related risk for chromosome 21 nondisjunction (NDJ). In our approach, PCR was used to amplify the ZFBD of PRDM9 and products were then subjected to bi-directional Sanger sequencing. DNA sequencing reads were aligned and compared to the sequence of the PRDM9 alleles previously identified. Chi-Square analysis was used to compare allele frequencies between cases (N=235, mothers of children with maternally-derived Trisomy 21) and controls (N=48, fathers of children with maternally-derived Trisomy 21). Results of our analysis showed that the frequency of PRDM9 ZF minor alleles is significantly increased among women displaying NDJ of chromosome 21 and no recombination on 21q (p=0.02). Even more, when compared to those for the PRDM9 major A-allele, these minor alleles displayed fewer predicted binding sites on 21q. These findings suggest that allelic variation in the ZF of PRDM9 may play a role in the risk for chromosome 21 NDJ by leading to reduced recombination on 21q.
Collapse
Affiliation(s)
| | - Candace Middlebrooks
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI/NIH, Bethesda, MD, 20892, USA
| | - Ariel Harden
- Department of Biology, Spelman College, Atlanta, GA, 30314, USA
| | - Nyeisha Scott
- Department of Biology, Spelman College, Atlanta, GA, 30314, USA
| | - Blair Johnson
- Department of Biology, Spelman College, Atlanta, GA, 30314, USA
| | - Jillian Jones
- Department of Biology, Spelman College, Atlanta, GA, 30314, USA
| | - Christin Walker
- Department of Biology, Spelman College, Atlanta, GA, 30314, USA
| | | | | | | | - Tunde Smith
- Department of Biology, Morehouse College, Atlanta, GA, 30314, USA
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
162
|
Abstract
Meiosis, the mechanism of creating haploid gametes, is a complex cellular process observed across sexually reproducing organisms. Fundamental to meiosis is the process of homologous recombination, whereby DNA double-strand breaks are introduced into the genome and are subsequently repaired to generate either noncrossovers or crossovers. Although homologous recombination is essential for chromosome pairing during prophase I, the resulting crossovers are critical for maintaining homolog interactions and enabling accurate segregation at the first meiotic division. Thus, the placement, timing, and frequency of crossover formation must be exquisitely controlled. In this review, we discuss the proteins involved in crossover formation, the process of their formation and designation, and the rules governing crossovers, all within the context of the important landmarks of prophase I. We draw together crossover designation data across organisms, analyze their evolutionary divergence, and propose a universal model for crossover regulation.
Collapse
Affiliation(s)
- Stephen Gray
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, New York 14853; ,
| | - Paula E Cohen
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, New York 14853; ,
| |
Collapse
|
163
|
Medhi D, Goldman AS, Lichten M. Local chromosome context is a major determinant of crossover pathway biochemistry during budding yeast meiosis. eLife 2016; 5. [PMID: 27855779 PMCID: PMC5222560 DOI: 10.7554/elife.19669] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/17/2016] [Indexed: 12/20/2022] Open
Abstract
The budding yeast genome contains regions where meiotic recombination initiates more frequently than in others. This pattern parallels enrichment for the meiotic chromosome axis proteins Hop1 and Red1. These proteins are important for Spo11-catalyzed double strand break formation; their contribution to crossover recombination remains undefined. Using the sequence-specific VMA1-derived endonuclease (VDE) to initiate recombination in meiosis, we show that chromosome structure influences the choice of proteins that resolve recombination intermediates to form crossovers. At a Hop1-enriched locus, most VDE-initiated crossovers, like most Spo11-initiated crossovers, required the meiosis-specific MutLγ resolvase. In contrast, at a locus with lower Hop1 occupancy, most VDE-initiated crossovers were MutLγ-independent. In pch2 mutants, the two loci displayed similar Hop1 occupancy levels, and VDE-induced crossovers were similarly MutLγ-dependent. We suggest that meiotic and mitotic recombination pathways coexist within meiotic cells, and that features of meiotic chromosome structure determine whether one or the other predominates in different regions. DOI:http://dx.doi.org/10.7554/eLife.19669.001 Inside the cells of many species, double-stranded DNA is packaged together with specialized proteins to form structures called chromosomes. Breaks that span across both strands of the DNA can cause cell death because if the break is incorrectly repaired, a segment of the DNA may be lost. Cells use a process known as homologous recombination to repair such breaks correctly. This uses an undamaged DNA molecule as a template that can be copied to replace missing segments of the DNA sequence. During the repair of double-strand breaks, connections called crossovers may form. This results in the damaged and undamaged DNA molecules swapping a portion of their sequences. In meiosis, a type of cell division that produces sperm and eggs, cells deliberately break their chromosomes and then repair them using homologous recombination. The crossovers that form during this process are important for sharing chromosomes between the newly forming cells. It is crucial that the crossovers form at the right time and place along the chromosomes. Chromosomes have different structures depending on whether a cell is undergoing meiosis or normal (mitotic) cell division. This structure may influence how and where crossovers form. Enzymes called resolvases catalyze the reactions that occur during the last step in homologous recombination to generate crossovers. One particular resolvase acts only during meiosis, whereas others are active in both mitotic and meiotic cells. However, it is not known whether local features of the chromosome structure – such as the proteins packaged in the chromosome alongside the DNA – influence when and where meiotic crossover occurs. Medhi et al. have now studied how recombination occurs along different regions of the chromosomes in budding yeast cells, which undergo meiosis in a similar way to human cells. The results of the experiments reveal that the mechanism by which crossovers form depends on proteins called axis proteins, one type of which is specifically found in meiotic chromosomes. In regions that had high levels of meiotic axis proteins, crossovers mainly formed using the meiosis-specific resolvase enzyme. In regions that had low levels of meiotic axis proteins, crossovers formed using resolvases that are active in mitotic cells. Further experiments demonstrated that altering the levels of one of the meiotic axis proteins changed which resolvase was used. Overall, the results presented by Medhi et al. show that differences in chromosome structure, in particular the relative concentration of meiotic axis proteins, influence how crossovers form in yeast. Future studies will investigate whether this is observed in other organisms such as humans, and whether local chromosome structure influences other steps of homologous recombination in meiosis. DOI:http://dx.doi.org/10.7554/eLife.19669.002
Collapse
Affiliation(s)
- Darpan Medhi
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, United States.,Sheffield Institute for Nucleic Acids, The University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Alastair Sh Goldman
- Sheffield Institute for Nucleic Acids, The University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, United States
| |
Collapse
|
164
|
Besenbacher S, Sulem P, Helgason A, Helgason H, Kristjansson H, Jonasdottir A, Jonasdottir A, Magnusson OT, Thorsteinsdottir U, Masson G, Kong A, Gudbjartsson DF, Stefansson K. Multi-nucleotide de novo Mutations in Humans. PLoS Genet 2016; 12:e1006315. [PMID: 27846220 PMCID: PMC5147774 DOI: 10.1371/journal.pgen.1006315] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 08/22/2016] [Indexed: 01/23/2023] Open
Abstract
Mutation of the DNA molecule is one of the most fundamental processes in biology. In this study, we use 283 parent-offspring trios to estimate the rate of mutation for both single nucleotide variants (SNVs) and short length variants (indels) in humans and examine the mutation process. We found 17812 SNVs, corresponding to a mutation rate of 1.29 × 10-8 per position per generation (PPPG) and 1282 indels corresponding to a rate of 9.29 × 10-10 PPPG. We estimate that around 3% of human de novo SNVs are part of a multi-nucleotide mutation (MNM), with 558 (3.1%) of mutations positioned less than 20kb from another mutation in the same individual (median distance of 525bp). The rate of de novo mutations is greater in late replicating regions (p = 8.29 × 10-19) and nearer recombination events (p = 0.0038) than elsewhere in the genome.
Collapse
Affiliation(s)
| | | | - Agnar Helgason
- deCODE genetics/Amgen, Inc., Iceland.,Department of Anthropology, University of Iceland, Iceland
| | - Hannes Helgason
- deCODE genetics/Amgen, Inc., Iceland.,School of Engineering and Natural Sciences, University of Iceland, Iceland
| | | | | | | | | | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Inc., Iceland.,Faculty of Medicine, University of Iceland, Iceland
| | | | | | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Inc., Iceland.,School of Engineering and Natural Sciences, University of Iceland, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., Iceland.,Faculty of Medicine, University of Iceland, Iceland
| |
Collapse
|
165
|
Ahlawat S, De S, Sharma P, Sharma R, Arora R, Kataria RS, Datta TK, Singh RK. Evolutionary dynamics of meiotic recombination hotspots regulator PRDM9 in bovids. Mol Genet Genomics 2016; 292:117-131. [DOI: 10.1007/s00438-016-1260-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/11/2016] [Indexed: 12/15/2022]
|
166
|
Lange J, Yamada S, Tischfield SE, Pan J, Kim S, Zhu X, Socci ND, Jasin M, Keeney S. The Landscape of Mouse Meiotic Double-Strand Break Formation, Processing, and Repair. Cell 2016; 167:695-708.e16. [PMID: 27745971 DOI: 10.1016/j.cell.2016.09.035] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/13/2016] [Accepted: 09/21/2016] [Indexed: 01/09/2023]
Abstract
Heritability and genome stability are shaped by meiotic recombination, which is initiated via hundreds of DNA double-strand breaks (DSBs). The distribution of DSBs throughout the genome is not random, but mechanisms molding this landscape remain poorly understood. Here, we exploit genome-wide maps of mouse DSBs at unprecedented nucleotide resolution to uncover previously invisible spatial features of recombination. At fine scale, we reveal a stereotyped hotspot structure-DSBs occur within narrow zones between methylated nucleosomes-and identify relationships between SPO11, chromatin, and the histone methyltransferase PRDM9. At large scale, DSB formation is suppressed on non-homologous portions of the sex chromosomes via the DSB-responsive kinase ATM, which also shapes the autosomal DSB landscape at multiple size scales. We also provide a genome-wide analysis of exonucleolytic DSB resection lengths and elucidate spatial relationships between DSBs and recombination products. Our results paint a comprehensive picture of features governing successive steps in mammalian meiotic recombination.
Collapse
Affiliation(s)
- Julian Lange
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shintaro Yamada
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Memorial Sloan Kettering Cancer Center, Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Sam E Tischfield
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jing Pan
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Seoyoung Kim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xuan Zhu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Nicholas D Socci
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maria Jasin
- Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Memorial Sloan Kettering Cancer Center, Howard Hughes Medical Institute, New York, NY 10065, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.
| |
Collapse
|
167
|
The rate of meiotic gene conversion varies by sex and age. Nat Genet 2016; 48:1377-1384. [PMID: 27643539 PMCID: PMC5083143 DOI: 10.1038/ng.3669] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 08/16/2016] [Indexed: 12/14/2022]
Abstract
Meiotic recombination involves a combination of gene conversion and crossover events that, along with mutations, produce germline genetic diversity. Here we report the discovery of 3,176 SNP and 61 indel gene conversions. Our estimate of the non-crossover (NCO) gene conversion rate (G) is 7.0 for SNPs and 5.8 for indels per megabase per generation, and the GC bias is 67.6%. For indels, we demonstrate a 65.6% preference for the shorter allele. NCO gene conversions from mothers are longer than those from fathers, and G is 2.17 times greater in mothers. Notably, G increases with the age of mothers, but not the age of fathers. A disproportionate number of NCO gene conversions in older mothers occur outside double-strand break (DSB) regions and in regions with relatively low GC content. This points to age-related changes in the mechanisms of meiotic gene conversion in oocytes.
Collapse
|
168
|
Abstract
It has been long understood that mutation distribution is not completely random across genomic space and in time. Indeed, recent surprising discoveries identified multiple simultaneous mutations occurring in tiny regions within chromosomes while the rest of the genome remains relatively mutation-free. Mechanistic elucidation of these phenomena, called mutation showers, mutation clusters, or kataegis, in parallel with findings of abundant clustered mutagenesis in cancer genomes, is ongoing. So far, the combination of factors most important for clustered mutagenesis is the induction of DNA lesions within unusually long and persistent single-strand DNA intermediates. In addition to being a fascinating phenomenon, clustered mutagenesis also became an indispensable tool for identifying a previously unrecognized major source of mutation in cancer, APOBEC cytidine deaminases. Future research on clustered mutagenesis may shed light onto important mechanistic details of genome maintenance, with potentially profound implications for human health.
Collapse
Affiliation(s)
- Kin Chan
- Mechanisms of Genome Dynamics Group, National Institute of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health, Durham, North Carolina 27709; ,
| | - Dmitry A Gordenin
- Mechanisms of Genome Dynamics Group, National Institute of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health, Durham, North Carolina 27709; ,
| |
Collapse
|
169
|
Ahlawat S, Sharma P, Sharma R, Arora R, Verma NK, Brahma B, Mishra P, De S. Evidence of positive selection and concerted evolution in the rapidly evolving PRDM9 zinc finger domain in goats and sheep. Anim Genet 2016; 47:740-751. [PMID: 27621101 DOI: 10.1111/age.12487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2016] [Indexed: 01/20/2023]
Abstract
Meiotic recombination contributes to augmentation of genetic diversity, exclusion of deleterious alleles and proper segregation of chromatids. PRDM9 has been identified as the gene responsible for specifying the location of recombination hotspots during meiosis and is also the only known vertebrate gene associated with reproductive isolation between species. PRDM9 encodes a protein with a highly variable zinc finger (ZF) domain that varies between as well as within species. In the present study, the ZF domain of PRDM9 on chromosome 1 was characterized for the first time in 15 goat breeds and 25 sheep breeds of India. A remarkable variation in the number and sequence of ZF domains was observed. The number of ZF repeats in the ZF array varied from eight to 12 yielding five homozygous and 10 heterozygous genotypes. The number of different ZF domains was 84 and 52 producing 36 and 26 unique alleles in goats and sheep respectively. The posterior mean of dN/dS or omega values were calculated using the codeml tool of pamlx to identify amino acids that are evolving positively in goats and sheep, as positions -1, +3 and +6 in the ZF domain have been reported to experience strong positive selection across different lineages. Our study identified sites -5, -1, +3, +4 and +6 to be experiencing positive selection. Small ruminant zinc fingers were also found to be evolving under concerted evolution. Our results demonstrate the existence of a vast diversity of PRDM9 in goats and sheep, which is in concert with reports in many metazoans.
Collapse
Affiliation(s)
- S Ahlawat
- National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India.
| | - P Sharma
- National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India
| | - R Sharma
- National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India
| | - R Arora
- National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India
| | - N K Verma
- National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India
| | - B Brahma
- National Dairy Research Institute, Karnal 132001, Haryana, India
| | - P Mishra
- National Dairy Research Institute, Karnal 132001, Haryana, India
| | - S De
- National Dairy Research Institute, Karnal 132001, Haryana, India
| |
Collapse
|
170
|
Zelazowski MJ, Cole F. X marks the spot: PRDM9 rescues hybrid sterility by finding hidden treasure in the genome. Nat Struct Mol Biol 2016; 23:267-9. [PMID: 27045445 DOI: 10.1038/nsmb.3201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Maciej J Zelazowski
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Francesca Cole
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| |
Collapse
|
171
|
Pugacheva EM, Teplyakov E, Wu Q, Li J, Chen C, Meng C, Liu J, Robinson S, Loukinov D, Boukaba A, Hutchins AP, Lobanenkov V, Strunnikov A. The cancer-associated CTCFL/BORIS protein targets multiple classes of genomic repeats, with a distinct binding and functional preference for humanoid-specific SVA transposable elements. Epigenetics Chromatin 2016; 9:35. [PMID: 27588042 PMCID: PMC5007689 DOI: 10.1186/s13072-016-0084-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/18/2016] [Indexed: 12/20/2022] Open
Abstract
Background A common aberration in cancer is the activation of germline-specific proteins. The DNA-binding proteins among them could generate novel chromatin states, not found in normal cells. The germline-specific transcription factor BORIS/CTCFL, a paralog of chromatin architecture protein CTCF, is often erroneously activated in cancers and rewires the epigenome for the germline-like transcription program. Another common feature of malignancies is the changed expression and epigenetic states of genomic repeats, which could alter the transcription of neighboring genes and cause somatic mutations upon transposition. The role of BORIS in transposable elements and other repeats has never been assessed. Results The investigation of BORIS and CTCF binding to DNA repeats in the K562 cancer cells dependent on BORIS for self-renewal by ChIP-chip and ChIP-seq revealed three classes of occupancy by these proteins: elements cohabited by BORIS and CTCF, CTCF-only bound, or BORIS-only bound. The CTCF-only enrichment is characteristic for evolutionary old and inactive repeat classes, while BORIS and CTCF co-binding predominately occurs at uncharacterized tandem repeats. These repeats form staggered cluster binding sites, which are a prerequisite for CTCF and BORIS co-binding. At the same time, BORIS preferentially occupies a specific subset of the evolutionary young, transcribed, and mobile genomic repeat family, SVA. Unlike CTCF, BORIS prominently binds to the VNTR region of the SVA repeats in vivo. This suggests a role of BORIS in SVA expression regulation. RNA-seq analysis indicates that BORIS largely serves as a repressor of SVA expression, alongside DNA and histone methylation, with the exception of promoter capture by SVA. Conclusions Thus, BORIS directly binds to, and regulates SVA repeats, which are essentially movable CpG islands, via clusters of BORIS binding sites. This finding uncovers a new function of the global germline-specific transcriptional regulator BORIS in regulating and repressing the newest class of transposable elements that are actively transposed in human genome when activated. This function of BORIS in cancer cells is likely a reflection of its roles in the germline. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0084-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Evgeny Teplyakov
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, 510530 Guangdong China
| | - Qiongfang Wu
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, 510530 Guangdong China
| | - Jingjing Li
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, 510530 Guangdong China
| | - Cheng Chen
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, 510530 Guangdong China
| | - Chengcheng Meng
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, 510530 Guangdong China
| | - Jian Liu
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, 510530 Guangdong China
| | - Susan Robinson
- Laboratory of Immunogenetics, NIH, NIAID, Rockville, MD 20852 USA
| | - Dmitry Loukinov
- Laboratory of Immunogenetics, NIH, NIAID, Rockville, MD 20852 USA
| | - Abdelhalim Boukaba
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, 510530 Guangdong China
| | - Andrew Paul Hutchins
- Department of Biology, Southern University of Science and Technology of China, Shenzhen, 518055 Guangdong China
| | | | - Alexander Strunnikov
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, 510530 Guangdong China
| |
Collapse
|
172
|
Phung TN, Huber CD, Lohmueller KE. Determining the Effect of Natural Selection on Linked Neutral Divergence across Species. PLoS Genet 2016; 12:e1006199. [PMID: 27508305 PMCID: PMC4980041 DOI: 10.1371/journal.pgen.1006199] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/25/2016] [Indexed: 11/18/2022] Open
Abstract
A major goal in evolutionary biology is to understand how natural selection has shaped patterns of genetic variation across genomes. Studies in a variety of species have shown that neutral genetic diversity (intra-species differences) has been reduced at sites linked to those under direct selection. However, the effect of linked selection on neutral sequence divergence (inter-species differences) remains ambiguous. While empirical studies have reported correlations between divergence and recombination, which is interpreted as evidence for natural selection reducing linked neutral divergence, theory argues otherwise, especially for species that have diverged long ago. Here we address these outstanding issues by examining whether natural selection can affect divergence between both closely and distantly related species. We show that neutral divergence between closely related species (e.g. human-primate) is negatively correlated with functional content and positively correlated with human recombination rate. We also find that neutral divergence between distantly related species (e.g. human-rodent) is negatively correlated with functional content and positively correlated with estimates of background selection from primates. These patterns persist after accounting for the confounding factors of hypermutable CpG sites, GC content, and biased gene conversion. Coalescent models indicate that even when the contribution of ancestral polymorphism to divergence is small, background selection in the ancestral population can still explain a large proportion of the variance in divergence across the genome, generating the observed correlations. Our findings reveal that, contrary to previous intuition, natural selection can indirectly affect linked neutral divergence between both closely and distantly related species. Though we cannot formally exclude the possibility that the direct effects of purifying selection drive some of these patterns, such a scenario would be possible only if more of the genome is under purifying selection than currently believed. Our work has implications for understanding the evolution of genomes and interpreting patterns of genetic variation. Genetic variation at neutral sites can be reduced through linkage to nearby selected sites. This pattern has been used to show the widespread effects of natural selection at shaping patterns of genetic diversity across genomes from a variety of species. However, it is not entirely clear whether natural selection has an effect on neutral divergence between species. Here we show that putatively neutral divergence between closely related species (human and chimp) and between distantly related pairs of species (humans and mice) show signatures consistent with having been affected by linkage to selected sites. Further, our theoretical models and simulations show that natural selection indirectly affecting linked neutral sites can generate these patterns. Unless substantially more of the genome is under the direct effects of purifying selection than currently believed, our results argue that natural selection has played an important role in shaping variation in levels of putatively neutral sequence divergence across the genome. Our findings further suggest that divergence-based estimates of neutral mutation rate variation across the genome as well as certain estimators of population history may be confounded by linkage to selected sites.
Collapse
Affiliation(s)
- Tanya N. Phung
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Christian D. Huber
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Kirk E. Lohmueller
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
173
|
Drillon G, Audit B, Argoul F, Arneodo A. Evidence of selection for an accessible nucleosomal array in human. BMC Genomics 2016; 17:526. [PMID: 27472913 PMCID: PMC4966569 DOI: 10.1186/s12864-016-2880-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 07/04/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Recently, a physical model of nucleosome formation based on sequence-dependent bending properties of the DNA double-helix has been used to reveal some enrichment of nucleosome-inhibiting energy barriers (NIEBs) nearby ubiquitous human "master" replication origins. Here we use this model to predict the existence of about 1.6 millions NIEBs over the 22 human autosomes. RESULTS We show that these high energy barriers of mean size 153 bp correspond to nucleosome-depleted regions (NDRs) in vitro, as expected, but also in vivo. On either side of these NIEBs, we observe, in vivo and in vitro, a similar compacted nucleosome ordering, suggesting an absence of chromatin remodeling. This nucleosomal ordering strongly correlates with oscillations of the GC content as well as with the interspecies and intraspecies mutation profiles along these regions. Comparison of these divergence rates reveals the existence of both positive and negative selections linked to nucleosome positioning around these intrinsic NDRs. Overall, these NIEBs and neighboring nucleosomes cover 37.5 % of the human genome where nucleosome occupancy is stably encoded in the DNA sequence. These 1 kb-sized regions of intrinsic nucleosome positioning are equally found in GC-rich and GC-poor isochores, in early and late replicating regions, in intergenic and genic regions but not at gene promoters. CONCLUSION The source of selection pressure on the NIEBs has yet to be resolved in future work. One possible scenario is that these widely distributed chromatin patterns have been selected in human to impair the condensation of the nucleosomal array into the 30 nm chromatin fiber, so as to facilitate the epigenetic regulation of nuclear functions in a cell-type-specific manner.
Collapse
Affiliation(s)
- Guénola Drillon
- Univ Lyon, Ens de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, Lyon, F-69342 France
| | - Benjamin Audit
- Univ Lyon, Ens de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, Lyon, F-69342 France
| | - Françoise Argoul
- Univ Lyon, Ens de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, Lyon, F-69342 France
- LOMA, Université de Bordeaux, CNRS, UMR 5798, 51 Cours de le Libération, Talence, F-33405 France
| | - Alain Arneodo
- Univ Lyon, Ens de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, Lyon, F-69342 France
- LOMA, Université de Bordeaux, CNRS, UMR 5798, 51 Cours de le Libération, Talence, F-33405 France
| |
Collapse
|
174
|
Camara PG, Rosenbloom DIS, Emmett KJ, Levine AJ, Rabadan R. Topological Data Analysis Generates High-Resolution, Genome-wide Maps of Human Recombination. Cell Syst 2016; 3:83-94. [PMID: 27345159 DOI: 10.1016/j.cels.2016.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 03/03/2016] [Accepted: 05/26/2016] [Indexed: 12/25/2022]
Abstract
Meiotic recombination is a fundamental evolutionary process driving diversity in eukaryotes. In mammals, recombination is known to occur preferentially at specific genomic regions. Using topological data analysis (TDA), a branch of applied topology that extracts global features from large data sets, we developed an efficient method for mapping recombination at fine scales. When compared to standard linkage-based methods, TDA can deal with a larger number of SNPs and genomes without incurring prohibitive computational costs. We applied TDA to 1,000 Genomes Project data and constructed high-resolution whole-genome recombination maps of seven human populations. Our analysis shows that recombination is generally under-represented within transcription start sites. However, the binding sites of specific transcription factors are enriched for sites of recombination. These include transcription factors that regulate the expression of meiosis- and gametogenesis-specific genes, cell cycle progression, and differentiation blockage. Additionally, our analysis identifies an enrichment for sites of recombination at repeat-derived loci matched by piwi-interacting RNAs.
Collapse
Affiliation(s)
- Pablo G Camara
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University College of Physicians and Surgeons, 1130 St. Nicholas Avenue, New York, NY 10032, USA.
| | - Daniel I S Rosenbloom
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University College of Physicians and Surgeons, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Kevin J Emmett
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Department of Physics, Columbia University, New York, NY 10027, USA
| | - Arnold J Levine
- The Simons Center for Systems Biology, Institute for Advanced Study, Princeton, NJ 08540, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University College of Physicians and Surgeons, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University College of Physicians and Surgeons, 1130 St. Nicholas Avenue, New York, NY 10032, USA.
| |
Collapse
|
175
|
Patel A, Horton JR, Wilson GG, Zhang X, Cheng X. Structural basis for human PRDM9 action at recombination hot spots. Genes Dev 2016; 30:257-65. [PMID: 26833727 PMCID: PMC4743056 DOI: 10.1101/gad.274928.115] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The multidomain zinc finger (ZnF) protein PRDM9 (PRD1-BF1-RIZ1 homologous domain-containing 9) is thought to influence the locations of recombination hot spots during meiosis by sequence-specific DNA binding and trimethylation of histone H3 Lys4. The most common variant of human PRDM9, allele A (hPRDM9A), recognizes the consensus sequence 5'-NCCNCCNTNNCCNCN-3'. We cocrystallized ZnF8-12 of hPRDM9A with an oligonucleotide representing a known hot spot sequence and report the structure here. ZnF12 was not visible, but ZnF8-11, like other ZnF arrays, follows the right-handed twist of the DNA, with the α helices occupying the major groove. Each α helix makes hydrogen-bond (H-bond) contacts with up to four adjacent bases, most of which are purines of the complementary DNA strand. The consensus C:G base pairs H-bond with conserved His or Arg residues in ZnF8, ZnF9, and ZnF11, and the consensus T:A base pair H-bonds with an Asn that replaces His in ZnF10. Most of the variable base pairs (N) also engage in H bonds with the protein. These interactions appear to compensate to some extent for changes from the consensus sequence, implying an adaptability of PRDM9 to sequence variations. We investigated the binding of various alleles of hPRDM9 to different hot spot sequences. Allele C was found to bind a C-specific hot spot with higher affinity than allele A bound A-specific hot spots, perhaps explaining why the former is dominant in A/C heterozygotes. Allele L13 displayed higher affinity for several A-specific sequences, allele L9/L24 displayed lower affinity, and allele L20 displayed an altered sequence preference. These differences can be rationalized structurally and might contribute to the variation observed in the locations and activities of meiotic recombination hot spots.
Collapse
Affiliation(s)
- Anamika Patel
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - John R Horton
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | - Xing Zhang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
176
|
Nambiar M, Smith GR. Repression of harmful meiotic recombination in centromeric regions. Semin Cell Dev Biol 2016; 54:188-197. [PMID: 26849908 PMCID: PMC4867242 DOI: 10.1016/j.semcdb.2016.01.042] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/27/2016] [Indexed: 11/16/2022]
Abstract
During the first division of meiosis, segregation of homologous chromosomes reduces the chromosome number by half. In most species, sister chromatid cohesion and reciprocal recombination (crossing-over) between homologous chromosomes are essential to provide tension to signal proper chromosome segregation during the first meiotic division. Crossovers are not distributed uniformly throughout the genome and are repressed at and near the centromeres. Rare crossovers that occur too near or in the centromere interfere with proper segregation and can give rise to aneuploid progeny, which can be severely defective or inviable. We review here how crossing-over occurs and how it is prevented in and around the centromeres. Molecular mechanisms of centromeric repression are only now being elucidated. However, rapid advances in understanding crossing-over, chromosome structure, and centromere functions promise to explain how potentially deleterious crossovers are avoided in certain chromosomal regions while allowing beneficial crossovers in others.
Collapse
Affiliation(s)
- Mridula Nambiar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA, United States.
| | - Gerald R Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA, United States.
| |
Collapse
|
177
|
Liddiard K, Ruis B, Takasugi T, Harvey A, Ashelford KE, Hendrickson EA, Baird DM. Sister chromatid telomere fusions, but not NHEJ-mediated inter-chromosomal telomere fusions, occur independently of DNA ligases 3 and 4. Genome Res 2016; 26:588-600. [PMID: 26941250 PMCID: PMC4864465 DOI: 10.1101/gr.200840.115] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/02/2016] [Indexed: 01/26/2023]
Abstract
Telomeres shorten with each cell division and can ultimately become substrates for nonhomologous end-joining repair, leading to large-scale genomic rearrangements of the kind frequently observed in human cancers. We have characterized more than 1400 telomere fusion events at the single-molecule level, using a combination of high-throughput sequence analysis together with experimentally induced telomeric double-stranded DNA breaks. We show that a single chromosomal dysfunctional telomere can fuse with diverse nontelomeric genomic loci, even in the presence of an otherwise stable genome, and that fusion predominates in coding regions. Fusion frequency was markedly increased in the absence of TP53 checkpoint control and significantly modulated by the cellular capacity for classical, versus alternative, nonhomologous end joining (NHEJ). We observed a striking reduction in inter-chromosomal fusion events in cells lacking DNA ligase 4, in contrast to a remarkably consistent profile of intra-chromosomal fusion in the context of multiple genetic knockouts, including DNA ligase 3 and 4 double-knockouts. We reveal distinct mutational signatures associated with classical NHEJ-mediated inter-chromosomal, as opposed to alternative NHEJ-mediated intra-chromosomal, telomere fusions and evidence for an unanticipated sufficiency of DNA ligase 1 for these intra-chromosomal events. Our findings have implications for mechanisms driving cancer genome evolution.
Collapse
Affiliation(s)
- Kate Liddiard
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, United Kingdom
| | - Brian Ruis
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Taylor Takasugi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Adam Harvey
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Kevin E Ashelford
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, United Kingdom
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Duncan M Baird
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, United Kingdom
| |
Collapse
|
178
|
Hybrid Sterility Locus on Chromosome X Controls Meiotic Recombination Rate in Mouse. PLoS Genet 2016; 12:e1005906. [PMID: 27104744 PMCID: PMC4841592 DOI: 10.1371/journal.pgen.1005906] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/08/2016] [Indexed: 11/28/2022] Open
Abstract
Meiotic recombination safeguards proper segregation of homologous chromosomes into gametes, affects genetic variation within species, and contributes to meiotic chromosome recognition, pairing and synapsis. The Prdm9 gene has a dual role, it controls meiotic recombination by determining the genomic position of crossover hotspots and, in infertile hybrids of house mouse subspecies Mus m. musculus (Mmm) and Mus m. domesticus (Mmd), it further functions as the major hybrid sterility gene. In the latter role Prdm9 interacts with the hybrid sterility X 2 (Hstx2) genomic locus on Chromosome X (Chr X) by a still unknown mechanism. Here we investigated the meiotic recombination rate at the genome-wide level and its possible relation to hybrid sterility. Using immunofluorescence microscopy we quantified the foci of MLH1 DNA mismatch repair protein, the cytological counterparts of reciprocal crossovers, in a panel of inter-subspecific chromosome substitution strains. Two autosomes, Chr 7 and Chr 11, significantly modified the meiotic recombination rate, yet the strongest modifier, designated meiotic recombination 1, Meir1, emerged in the 4.7 Mb Hstx2 genomic locus on Chr X. The male-limited transgressive effect of Meir1 on recombination rate parallels the male-limited transgressive role of Hstx2 in hybrid male sterility. Thus, both genetic factors, the Prdm9 gene and the Hstx2/Meir1 genomic locus, indicate a link between meiotic recombination and hybrid sterility. A strong female-specific modifier of meiotic recombination rate with the effect opposite to Meir1 was localized on Chr X, distally to Meir1. Mapping Meir1 to a narrow candidate interval on Chr X is an important first step towards positional cloning of the respective gene(s) responsible for variation in the global recombination rate between closely related mouse subspecies. During differentiation of germ cells into gametes, a maternal and a paternal copy of each chromosome have to find each other, pair, and synapse in order to ensure proper chromosome segregation into the gametes. Because of the unique ability to identify homologous DNA sequences between homologous chromosomes, meiotic recombination is an essential step in proper chromosome pairing and synapsis in the majority of species. However, when the paternal and maternal sets of chromosomes come from different (sub)species, the recognition of homologs can be disturbed and result in sterility of male hybrids. In this study we investigated the genetic control of variation in the global recombination rate between two closely related mouse subspecies with regard to the known infertility of their F1 hybrids. We show that the variation in the global recombination rate between both subspecies is under the control of three genomic loci. The strongest one appeared within the hybrid sterility X2 genomic locus on Chromosome X. Our findings will allow positional cloning of the gene and will shed new light on the role of meiotic recombination in reproductive isolation between closely related species.
Collapse
|
179
|
Stevison LS, Woerner AE, Kidd JM, Kelley JL, Veeramah KR, McManus KF, Bustamante CD, Hammer MF, Wall JD. The Time Scale of Recombination Rate Evolution in Great Apes. Mol Biol Evol 2016; 33:928-45. [PMID: 26671457 PMCID: PMC5870646 DOI: 10.1093/molbev/msv331] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We present three linkage-disequilibrium (LD)-based recombination maps generated using whole-genome sequence data from 10 Nigerian chimpanzees, 13 bonobos, and 15 western gorillas, collected as part of the Great Ape Genome Project (Prado-Martinez J, et al. 2013. Great ape genetic diversity and population history. Nature 499:471-475). We also identified species-specific recombination hotspots in each group using a modified LDhot framework, which greatly improves statistical power to detect hotspots at varying strengths. We show that fewer hotspots are shared among chimpanzee subspecies than within human populations, further narrowing the time scale of complete hotspot turnover. Further, using species-specific PRDM9 sequences to predict potential binding sites (PBS), we show higher predicted PRDM9 binding in recombination hotspots as compared to matched cold spot regions in multiple great ape species, including at least one chimpanzee subspecies. We found that correlations between broad-scale recombination rates decline more rapidly than nucleotide divergence between species. We also compared the skew of recombination rates at centromeres and telomeres between species and show a skew from chromosome means extending as far as 10-15 Mb from chromosome ends. Further, we examined broad-scale recombination rate changes near a translocation in gorillas and found minimal differences as compared to other great ape species perhaps because the coordinates relative to the chromosome ends were unaffected. Finally, on the basis of multiple linear regression analysis, we found that various correlates of recombination rate persist throughout the African great apes including repeats, diversity, and divergence. Our study is the first to analyze within- and between-species genome-wide recombination rate variation in several close relatives.
Collapse
Affiliation(s)
- Laurie S Stevison
- Institute for Human Genetics, University of California San Francisco Department of Biological Sciences, Auburn University
| | - August E Woerner
- Arizona Research Laboratories, Division of Biotechnology, University of Arizona Department of Genetics, University of Arizona
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan Department of Computational Medicine & Bioinformatics, University of Michigan
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University Department of Genetics, Stanford University
| | - Krishna R Veeramah
- Arizona Research Laboratories, Division of Biotechnology, University of Arizona Department of Ecology and Evolution, Stony Brook University
| | - Kimberly F McManus
- Department of Biology, Stanford University Department of Biomedical Informatics, Stanford University
| | | | - Michael F Hammer
- Arizona Research Laboratories, Division of Biotechnology, University of Arizona Department of Ecology and Evolutionary Biology, University of Arizona Department of Anthropology, University of Arizona
| | - Jeffrey D Wall
- Institute for Human Genetics, University of California San Francisco Department of Epidemiology & Biostatistics, University of California San Francisco
| |
Collapse
|
180
|
Narasimhan VM, Hunt KA, Mason D, Baker CL, Karczewski KJ, Barnes MR, Barnett AH, Bates C, Bellary S, Bockett NA, Giorda K, Griffiths CJ, Hemingway H, Jia Z, Kelly MA, Khawaja HA, Lek M, McCarthy S, McEachan R, O'Donnell-Luria A, Paigen K, Parisinos CA, Sheridan E, Southgate L, Tee L, Thomas M, Xue Y, Schnall-Levin M, Petkov PM, Tyler-Smith C, Maher ER, Trembath RC, MacArthur DG, Wright J, Durbin R, van Heel DA. Health and population effects of rare gene knockouts in adult humans with related parents. Science 2016; 352:474-7. [PMID: 26940866 DOI: 10.1126/science.aac8624] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/18/2016] [Indexed: 12/13/2022]
Abstract
Examining complete gene knockouts within a viable organism can inform on gene function. We sequenced the exomes of 3222 British adults of Pakistani heritage with high parental relatedness, discovering 1111 rare-variant homozygous genotypes with predicted loss of function (knockouts) in 781 genes. We observed 13.7% fewer homozygous knockout genotypes than we expected, implying an average load of 1.6 recessive-lethal-equivalent loss-of-function (LOF) variants per adult. When genetic data were linked to the individuals' lifelong health records, we observed no significant relationship between gene knockouts and clinical consultation or prescription rate. In this data set, we identified a healthy PRDM9-knockout mother and performed phased genome sequencing on her, her child, and control individuals. Our results show that meiotic recombination sites are localized away from PRDM9-dependent hotspots. Thus, natural LOF variants inform on essential genetic loci and demonstrate PRDM9 redundancy in humans.
Collapse
Affiliation(s)
| | - Karen A Hunt
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Dan Mason
- Bradford Institute for Health Research, Bradford Teaching Hospitals National Health Service (NHS) Foundation Trust, Bradford BD9 6RJ, UK
| | - Christopher L Baker
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Konrad J Karczewski
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA. Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael R Barnes
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Anthony H Barnett
- Diabetes and Endocrine Centre, Heart of England NHS Foundation Trust and University of Birmingham, Birmingham B9 5SS, UK
| | - Chris Bates
- TPP, Mill House, Troy Road, Leeds LS18 5TN, UK
| | - Srikanth Bellary
- Aston Research Centre for Healthy Ageing, Aston University, Birmingham B4 7ET, UK
| | - Nicholas A Bockett
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Kristina Giorda
- 10X Genomics, 7068 Koll Center Parkway, Suite 415, Pleasanton, CA 94566, USA
| | - Christopher J Griffiths
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Harry Hemingway
- Farr Institute of Health Informatics Research, London NW1 2DA, UK. Institute of Health Informatics, University College London, London NW1 2DA, UK
| | - Zhilong Jia
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - M Ann Kelly
- School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | - Hajrah A Khawaja
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Monkol Lek
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA. Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shane McCarthy
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Rosie McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals National Health Service (NHS) Foundation Trust, Bradford BD9 6RJ, UK
| | - Anne O'Donnell-Luria
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA. Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kenneth Paigen
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Constantinos A Parisinos
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Eamonn Sheridan
- Bradford Institute for Health Research, Bradford Teaching Hospitals National Health Service (NHS) Foundation Trust, Bradford BD9 6RJ, UK
| | - Laura Southgate
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Louise Tee
- School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | - Mark Thomas
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Yali Xue
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | - Petko M Petkov
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre, Box 238, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK. Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Richard C Trembath
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK. Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, UK
| | - Daniel G MacArthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA. Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals National Health Service (NHS) Foundation Trust, Bradford BD9 6RJ, UK
| | - Richard Durbin
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.
| | - David A van Heel
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| |
Collapse
|
181
|
A few of our favorite things: Pairing, the bouquet, crossover interference and evolution of meiosis. Semin Cell Dev Biol 2016; 54:135-48. [PMID: 26927691 DOI: 10.1016/j.semcdb.2016.02.024] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/22/2016] [Indexed: 12/20/2022]
Abstract
Meiosis presents many important mysteries that await elucidation. Here we discuss two such aspects. First, we consider how the current meiotic program might have evolved. We emphasize the central feature of this program: how homologous chromosomes find one another ("pair") so as to create the connections required for their regular segregation at Meiosis I. Points of emphasis include the facts that: (i) the classical "bouquet stage" is not required for initial homolog contacts in the current evolved meiotic program; and (ii) diverse observations point to commonality between molecules that mediate meiotic inter-homolog interactions and molecules that are integral to centromeres and/or to microtubule organizing centers (a.k.a. spindle pole bodies or centrosomes). Second, we provide an overview of the classical phenomenon of crossover (CO) interference in an effort to bridge the gap between description on the one hand versus logic and mechanism on the other.
Collapse
|
182
|
Abstract
During meiosis, numerous DNA double-strand breaks (DSBs) are formed as part of the normal developmental program. This seemingly destructive behavior is necessary for successful meiosis, since repair of the DSBs through homologous recombination (HR) helps to produce physical links between the homologous chromosomes essential for correct chromosome segregation later in meiosis. However, DSB formation at such a massive scale also introduces opportunities to generate gross chromosomal rearrangements. In this review, we explore ways in which meiotic DSBs can result in such genomic alterations.
Collapse
|
183
|
Davies B, Hatton E, Altemose N, Hussin JG, Pratto F, Zhang G, Hinch AG, Moralli D, Biggs D, Diaz R, Preece C, Li R, Bitoun E, Brick K, Green CM, Camerini-Otero RD, Myers SR, Donnelly P. Re-engineering the zinc fingers of PRDM9 reverses hybrid sterility in mice. Nature 2016; 530:171-176. [PMID: 26840484 PMCID: PMC4756437 DOI: 10.1038/nature16931] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/21/2015] [Indexed: 01/19/2023]
Abstract
The DNA-binding protein PRDM9 directs positioning of the double-strand breaks (DSBs) that initiate meiotic recombination in mice and humans. Prdm9 is the only mammalian speciation gene yet identified and is responsible for sterility phenotypes in male hybrids of certain mouse subspecies. To investigate PRDM9 binding and its role in fertility and meiotic recombination, we humanized the DNA-binding domain of PRDM9 in C57BL/6 mice. This change repositions DSB hotspots and completely restores fertility in male hybrids. Here we show that alteration of one Prdm9 allele impacts the behaviour of DSBs controlled by the other allele at chromosome-wide scales. These effects correlate strongly with the degree to which each PRDM9 variant binds both homologues at the DSB sites it controls. Furthermore, higher genome-wide levels of such 'symmetric' PRDM9 binding associate with increasing fertility measures, and comparisons of individual hotspots suggest binding symmetry plays a downstream role in the recombination process. These findings reveal that subspecies-specific degradation of PRDM9 binding sites by meiotic drive, which steadily increases asymmetric PRDM9 binding, has impacts beyond simply changing hotspot positions, and strongly support a direct involvement in hybrid infertility. Because such meiotic drive occurs across mammals, PRDM9 may play a wider, yet transient, role in the early stages of speciation.
Collapse
Affiliation(s)
- Benjamin Davies
- The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, UK
| | - Edouard Hatton
- The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, UK
| | - Nicolas Altemose
- The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, UK
- Department of Statistics, 24-29 St Giles, Oxford OX1 3LB, UK
| | - Julie G Hussin
- The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, UK
| | - Florencia Pratto
- Genetics and Biochemistry Branch, National Institute of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20892, USA
| | - Gang Zhang
- The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, UK
| | - Anjali Gupta Hinch
- The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, UK
| | - Daniela Moralli
- The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, UK
| | - Daniel Biggs
- The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, UK
| | - Rebeca Diaz
- The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, UK
| | - Chris Preece
- The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, UK
| | - Ran Li
- The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, UK
- Department of Statistics, 24-29 St Giles, Oxford OX1 3LB, UK
| | - Emmanuelle Bitoun
- The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, UK
| | - Kevin Brick
- Genetics and Biochemistry Branch, National Institute of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20892, USA
| | - Catherine M Green
- The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, UK
| | - R Daniel Camerini-Otero
- Genetics and Biochemistry Branch, National Institute of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20892, USA
| | - Simon R Myers
- The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, UK
- Department of Statistics, 24-29 St Giles, Oxford OX1 3LB, UK
| | - Peter Donnelly
- The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, UK
- Department of Statistics, 24-29 St Giles, Oxford OX1 3LB, UK
| |
Collapse
|
184
|
Smagulova F, Brick K, Pu Y, Camerini-Otero RD, Petukhova GV. The evolutionary turnover of recombination hot spots contributes to speciation in mice. Genes Dev 2016; 30:266-80. [PMID: 26833728 PMCID: PMC4743057 DOI: 10.1101/gad.270009.115] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/15/2015] [Indexed: 01/12/2023]
Abstract
Meiotic recombination is required for the segregation of homologous chromosomes and is essential for fertility. In most mammals, the DNA double-strand breaks (DSBs) that initiate meiotic recombination are directed to a subset of genomic loci (hot spots) by sequence-specific binding of the PRDM9 protein. Rapid evolution of the DNA-binding specificity of PRDM9 and gradual erosion of PRDM9-binding sites by gene conversion will alter the recombination landscape over time. To better understand the evolutionary turnover of recombination hot spots and its consequences, we mapped DSB hot spots in four major subspecies of Mus musculus with different Prdm9 alleles and in their F1 hybrids. We found that hot spot erosion governs the preferential usage of some Prdm9 alleles over others in hybrid mice and increases sequence diversity specifically at hot spots that become active in the hybrids. As crossovers are disfavored at such hot spots, we propose that sequence divergence generated by hot spot turnover may create an impediment for recombination in hybrids, potentially leading to reduced fertility and, eventually, speciation.
Collapse
Affiliation(s)
- Fatima Smagulova
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, Maryland 20814, USA
| | - Kevin Brick
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Yongmei Pu
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, Maryland 20814, USA
| | - R Daniel Camerini-Otero
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Galina V Petukhova
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, Maryland 20814, USA
| |
Collapse
|
185
|
Termolino P, Cremona G, Consiglio MF, Conicella C. Insights into epigenetic landscape of recombination-free regions. Chromosoma 2016; 125:301-8. [PMID: 26801812 PMCID: PMC4830869 DOI: 10.1007/s00412-016-0574-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 01/10/2016] [Accepted: 01/12/2016] [Indexed: 11/29/2022]
Abstract
Genome architecture is shaped by gene-rich and repeat-rich regions also known as euchromatin and heterochromatin, respectively. Under normal conditions, the repeat-containing regions undergo little or no meiotic crossover (CO) recombination. COs within repeats are risky for the genome integrity. Indeed, they can promote non-allelic homologous recombination (NAHR) resulting in deleterious genomic rearrangements associated with diseases in humans. The assembly of heterochromatin is driven by the combinatorial action of many factors including histones, their modifications, and DNA methylation. In this review, we discuss current knowledge dealing with the epigenetic signatures of the major repeat regions where COs are suppressed. Then we describe mutants for epiregulators of heterochromatin in different organisms to find out how chromatin structure influences the CO rate and distribution.
Collapse
Affiliation(s)
- Pasquale Termolino
- CNR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, Via Università 133, 80055, Portici, Italy
| | - Gaetana Cremona
- CNR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, Via Università 133, 80055, Portici, Italy
| | - Maria Federica Consiglio
- CNR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, Via Università 133, 80055, Portici, Italy
| | - Clara Conicella
- CNR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, Via Università 133, 80055, Portici, Italy.
| |
Collapse
|
186
|
Gruhn J, Al-Asmar N, Fasnacht R, Maylor-Hagen H, Peinado V, Rubio C, Broman K, Hunt P, Hassold T. Correlations between Synaptic Initiation and Meiotic Recombination: A Study of Humans and Mice. Am J Hum Genet 2016; 98:102-15. [PMID: 26749305 DOI: 10.1016/j.ajhg.2015.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/16/2015] [Indexed: 10/22/2022] Open
Abstract
Meiotic recombination is initiated by programmed double strand breaks (DSBs), only a small subset of which are resolved into crossovers (COs). The mechanism determining the location of these COs is not well understood. Studies in plants, fungi, and insects indicate that the same genomic regions are involved in synaptic initiation and COs, suggesting that early homolog alignment is correlated with the eventual resolution of DSBs as COs. It is generally assumed that this relationship extends to mammals, but little effort has been made to test this idea. Accordingly, we conducted an analysis of synaptic initiation sites (SISs) and COs in human and mouse spermatocytes and oocytes. In contrast to our expectation, we observed remarkable sex- and species-specific differences, including pronounced differences between human males and females in both the number and chromosomal location of SISs. Further, the combined data from our studies in mice and humans suggest that the relationship between SISs and COs in mammals is a complex one that is not dictated by the sites of synaptic initiation as reported in other organisms, although it is clearly influenced by them.
Collapse
|
187
|
Lam I, Keeney S. Nonparadoxical evolutionary stability of the recombination initiation landscape in yeast. Science 2016; 350:932-7. [PMID: 26586758 DOI: 10.1126/science.aad0814] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The nonrandom distribution of meiotic recombination shapes heredity and genetic diversification. Theoretically, hotspots--favored sites of recombination initiation--either evolve rapidly toward extinction or are conserved, especially if they are chromosomal features under selective constraint, such as promoters. We tested these theories by comparing genome-wide recombination initiation maps from widely divergent Saccharomyces species. We find that hotspots frequently overlap with promoters in the species tested, and consequently, hotspot positions are well conserved. Remarkably, the relative strength of individual hotspots is also highly conserved, as are larger-scale features of the distribution of recombination initiation. This stability, not predicted by prior models, suggests that the particular shape of the yeast recombination landscape is adaptive and helps in understanding evolutionary dynamics of recombination in other species.
Collapse
Affiliation(s)
- Isabel Lam
- Louis V. Gerstner, Jr., Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Scott Keeney
- Louis V. Gerstner, Jr., Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
188
|
He Y, Wang M, Sun Q, Pawlowski WP. Mapping Recombination Initiation Sites Using Chromatin Immunoprecipitation. Methods Mol Biol 2016; 1429:177-88. [PMID: 27511175 DOI: 10.1007/978-1-4939-3622-9_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Genome-wide maps of recombination sites provide valuable information not only on the recombination pathway itself but also facilitate the understanding of genome dynamics and evolution. Here, we describe a chromatin immunoprecipitation (ChIP) protocol to map the sites of recombination initiation in plants with maize used as an example. ChIP is a method that allows identification of chromosomal sites occupied by specific proteins. Our protocol utilizes RAD51, a protein involved in repair of double-strand breaks (DSBs) that initiate meiotic recombination, to identify DSB formation hotspots. Chromatin is extracted from meiotic flowers, sheared and enriched in fragments bound to RAD51. Genomic location of the protein is then identified by next-generation sequencing. This protocol can also be used in other species of plants, animals, and fungi.
Collapse
Affiliation(s)
- Yan He
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100083, China
| | - Minghui Wang
- Institute of Biotechnology, Biotechnology Resource Center and Section of Plant Biology in School of IntegrativePlant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Qi Sun
- Institute of Biotechnology, Biotechnology Resource Center, Cornell University, Ithaca, NY, 14853, USA
| | - Wojciech P Pawlowski
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
189
|
Conover HN, Argueso JL. Contrasting mechanisms of de novo copy number mutagenesis suggest the existence of different classes of environmental copy number mutagens. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:3-9. [PMID: 26247157 DOI: 10.1002/em.21967] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/05/2015] [Accepted: 07/07/2015] [Indexed: 05/23/2023]
Abstract
While gene copy number variations (CNVs) are abundant in the human genome, and often are associated with disease consequences, the mutagenic pathways and environmental exposures that cause these large structural mutations are understudied relative to conventional nucleotide substitutions in DNA. The members of the environmental mutagenesis community are currently seeking to remedy this deficiency, and there is a renewed interest in the development of mutagenicity assays to identify and characterize compounds that may induce de novo CNVs in humans. To achieve this goal, it is critically important to acknowledge that CNVs exist in two very distinct classes: nonrecurrent and recurrent CNVs. The goal of this commentary is to emphasize the deep contrasts that exist between the proposed pathways that lead to these two mutation classes. Nonrecurrent de novo CNVs originate primarily in mitotic cells through replication-dependent DNA repair pathways that involve microhomologies (<10 bp), and are detected at higher frequency in children of older fathers. In contrast, recurrent de novo CNVs are most often formed in meiotic cells through homologous recombination between nonallelic large low-copy repeats (>10,000 bp), without an associated paternal age effect. Given the biological differences between the two CNV classes, it is our belief that nonrecurrent and recurrent CN mutagens will probably differ substantially in their modes of action. Therefore, each CNV class may require their own uniquely designed assays, so that we as a field may succeed in uncovering the broadest possible spectrum of environmental CN mutagens.
Collapse
Affiliation(s)
- Hailey N Conover
- Department of Environmental and Radiological Health Sciences, Cell and Molecular Biology Graduate Program, Institute for Genome Architecture and Function, Colorado State University, Fort Collins, Colorado
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Cell and Molecular Biology Graduate Program, Institute for Genome Architecture and Function, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
190
|
Forsdyke DR. Complexity. Evol Bioinform Online 2016. [DOI: 10.1007/978-3-319-28755-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
191
|
Cooper TJ, Garcia V, Neale MJ. Meiotic DSB patterning: A multifaceted process. Cell Cycle 2016; 15:13-21. [PMID: 26730703 PMCID: PMC4825777 DOI: 10.1080/15384101.2015.1093709] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/12/2015] [Indexed: 11/25/2022] Open
Abstract
Meiosis is a specialized two-step cell division responsible for genome haploidization and the generation of genetic diversity during gametogenesis. An integral and distinctive feature of the meiotic program is the evolutionarily conserved initiation of homologous recombination (HR) by the developmentally programmed induction of DNA double-strand breaks (DSBs). The inherently dangerous but essential act of DSB formation is subject to multiple forms of stringent and self-corrective regulation that collectively ensure fruitful and appropriate levels of genetic exchange without risk to cellular survival. Within this article we focus upon an emerging element of this control--spatial regulation--detailing recent advances made in understanding how DSBs are evenly distributed across the genome, and present a unified view of the underlying patterning mechanisms employed.
Collapse
Affiliation(s)
- Tim J. Cooper
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Valerie Garcia
- Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Matthew J. Neale
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
192
|
Borgogno MV, Monti MR, Zhao W, Sung P, Argaraña CE, Pezza RJ. Tolerance of DNA Mismatches in Dmc1 Recombinase-mediated DNA Strand Exchange. J Biol Chem 2015; 291:4928-38. [PMID: 26709229 DOI: 10.1074/jbc.m115.704718] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Indexed: 12/30/2022] Open
Abstract
Recombination between homologous chromosomes is required for the faithful meiotic segregation of chromosomes and leads to the generation of genetic diversity. The conserved meiosis-specific Dmc1 recombinase catalyzes homologous recombination triggered by DNA double strand breaks through the exchange of parental DNA sequences. Although providing an efficient rate of DNA strand exchange between polymorphic alleles, Dmc1 must also guard against recombination between divergent sequences. How DNA mismatches affect Dmc1-mediated DNA strand exchange is not understood. We have used fluorescence resonance energy transfer to study the mechanism of Dmc1-mediated strand exchange between DNA oligonucleotides with different degrees of heterology. The efficiency of strand exchange is highly sensitive to the location, type, and distribution of mismatches. Mismatches near the 3' end of the initiating DNA strand have a small effect, whereas most mismatches near the 5' end impede strand exchange dramatically. The Hop2-Mnd1 protein complex stimulates Dmc1-catalyzed strand exchange on homologous DNA or containing a single mismatch. We observed that Dmc1 can reject divergent DNA sequences while bypassing a few mismatches in the DNA sequence. Our findings have important implications in understanding meiotic recombination. First, Dmc1 acts as an initial barrier for heterologous recombination, with the mismatch repair system providing a second level of proofreading, to ensure that ectopic sequences are not recombined. Second, Dmc1 stepping over infrequent mismatches is likely critical for allowing recombination between the polymorphic sequences of homologous chromosomes, thus contributing to gene conversion and genetic diversity.
Collapse
Affiliation(s)
- María V Borgogno
- From the Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Mariela R Monti
- From the Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Weixing Zhao
- the Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Patrick Sung
- the Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Carlos E Argaraña
- From the Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Roberto J Pezza
- the Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, and the Department of Cell Biology, Oklahoma University Health Science Center, Oklahoma City, Oklahoma 73126
| |
Collapse
|
193
|
Naranjo T. Contribution of Structural Chromosome Mutants to the Study of Meiosis in Plants. Cytogenet Genome Res 2015; 147:55-69. [PMID: 26658116 DOI: 10.1159/000442219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2015] [Indexed: 11/19/2022] Open
Abstract
Dissection of the molecular mechanisms underlying the transition through the complex events of the meiotic process requires the use of gene mutants or RNAi-mediated gene silencing. A considerable number of meiotic mutants have been isolated in plant species such as Arabidopsis thaliana, maize or rice. However, structural chromosome mutants are also important for the identification of the role developed by different chromosome domains in the meiotic process. This review summarizes the contribution of studies carried out in plants using structural chromosome variations. Meiotic events concerning the search of the homologous partner, the control of number and distribution of chiasmata, the mechanism of pairing correction, and chromosome segregation are considered.
Collapse
Affiliation(s)
- Tomás Naranjo
- Departamento de Genética, Facultad de Biología, Universidad Complutense, Madrid, Spain
| |
Collapse
|
194
|
The Double-Strand Break Landscape of Meiotic Chromosomes Is Shaped by the Paf1 Transcription Elongation Complex in Saccharomyces cerevisiae. Genetics 2015; 202:497-512. [PMID: 26627841 DOI: 10.1534/genetics.115.177287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
Histone modification is a critical determinant of the frequency and location of meiotic double-strand breaks (DSBs), and thus recombination. Set1-dependent histone H3K4 methylation and Dot1-dependent H3K79 methylation play important roles in this process in budding yeast. Given that the RNA polymerase II associated factor 1 complex, Paf1C, promotes both types of methylation, we addressed the role of the Paf1C component, Rtf1, in the regulation of meiotic DSB formation. Similar to a set1 mutation, disruption of RTF1 decreased the occurrence of DSBs in the genome. However, the rtf1 set1 double mutant exhibited a larger reduction in the levels of DSBs than either of the single mutants, indicating independent contributions of Rtf1 and Set1 to DSB formation. Importantly, the distribution of DSBs along chromosomes in the rtf1 mutant changed in a manner that was different from the distributions observed in both set1 and set1 dot1 mutants, including enhanced DSB formation at some DSB-cold regions that are occupied by nucleosomes in wild-type cells. These observations suggest that Rtf1, and by extension the Paf1C, modulate the genomic DSB landscape independently of H3K4 methylation.
Collapse
|
195
|
O’Geen H, Yu AS, Segal DJ. How specific is CRISPR/Cas9 really? Curr Opin Chem Biol 2015; 29:72-8. [PMID: 26517564 PMCID: PMC4684463 DOI: 10.1016/j.cbpa.2015.10.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/01/2015] [Indexed: 12/11/2022]
Abstract
The specificity of RNA-guided nucleases has gathered considerable interest as they become broadly applied to basic research and therapeutic development. Reports of the simple generation of animal models and genome engineering of cells raised questions about targeting precision. Conflicting early reports led the field to believe that CRISPR/Cas9 system was promiscuous, leading to a variety of strategies for improving specificity and increasingly sensitive methods to detect off-target events. However, other studies have suggested that CRISPR/Cas9 is a highly specific genome-editing tool. This review will focus on deciphering and interpreting these seemingly opposing claims.
Collapse
Affiliation(s)
- Henriette O’Geen
- Genome Center, Department of Biochemistry and Molecular Medicine, and MIND Institute, University of California, Davis, CA 95616, USA
| | - Abigail S. Yu
- Genome Center, Department of Biochemistry and Molecular Medicine, and MIND Institute, University of California, Davis, CA 95616, USA
| | - David J. Segal
- Genome Center, Department of Biochemistry and Molecular Medicine, and MIND Institute, University of California, Davis, CA 95616, USA
| |
Collapse
|
196
|
Hillmer M, Wagner D, Summerer A, Daiber M, Mautner VF, Messiaen L, Cooper DN, Kehrer-Sawatzki H. Fine mapping of meiotic NAHR-associated crossovers causing large NF1 deletions. Hum Mol Genet 2015; 25:484-96. [PMID: 26614388 DOI: 10.1093/hmg/ddv487] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
Large deletions encompassing the NF1 gene and its flanking regions belong to the group of genomic disorders caused by copy number changes that are mediated by the local genomic architecture. Although nonallelic homologous recombination (NAHR) is known to be a major mutational mechanism underlying such genomic copy number changes, the sequence determinants of NAHR location and frequency are still poorly understood since few high-resolution mapping studies of NAHR hotspots have been performed to date. Here, we have characterized two NAHR hotspots, PRS1 and PRS2, separated by 20 kb and located within the low-copy repeats NF1-REPa and NF1-REPc, which flank the human NF1 gene region. High-resolution mapping of the crossover sites identified in 78 type 1 NF1 deletions mediated by NAHR indicated that PRS2 is a much stronger NAHR hotspot than PRS1 since 80% of these deletions exhibited crossovers within PRS2, whereas 20% had crossovers within PRS1. The identification of the most common strand exchange regions of these 78 deletions served to demarcate the cores of the PRS1 and PRS2 hotspots encompassing 1026 and 1976 bp, respectively. Several sequence features were identified that may influence hotspot intensity and direct the positional preference of NAHR to the hotspot cores. These features include regions of perfect sequence identity encompassing 700 bp at the hotspot core, the presence of PRDM9 binding sites perfectly matching the consensus motif for the most common PRDM9 variant, specific pre-existing patterns of histone modification and open chromatin conformations that are likely to facilitate PRDM9 binding.
Collapse
Affiliation(s)
- Morten Hillmer
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
| | - David Wagner
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
| | - Anna Summerer
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
| | - Michaela Daiber
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
| | - Victor-Felix Mautner
- Department of Neurology, University Hospital Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Ludwine Messiaen
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35242, USA and
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | | |
Collapse
|
197
|
Singhal S, Leffler EM, Sannareddy K, Turner I, Venn O, Hooper DM, Strand AI, Li Q, Raney B, Balakrishnan CN, Griffith SC, McVean G, Przeworski M. Stable recombination hotspots in birds. Science 2015; 350:928-32. [PMID: 26586757 PMCID: PMC4864528 DOI: 10.1126/science.aad0843] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The DNA-binding protein PRDM9 has a critical role in specifying meiotic recombination hotspots in mice and apes, but it appears to be absent from other vertebrate species, including birds. To study the evolution and determinants of recombination in species lacking the gene that encodes PRDM9, we inferred fine-scale genetic maps from population resequencing data for two bird species: the zebra finch, Taeniopygia guttata, and the long-tailed finch, Poephila acuticauda. We found that both species have recombination hotspots, which are enriched near functional genomic elements. Unlike in mice and apes, most hotspots are shared between the two species, and their conservation seems to extend over tens of millions of years. These observations suggest that in the absence of PRDM9, recombination targets functional features that both enable access to the genome and constrain its evolution.
Collapse
Affiliation(s)
- Sonal Singhal
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA. Department of Systems Biology, Columbia University, New York, NY 10032, USA.
| | - Ellen M Leffler
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Keerthi Sannareddy
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Isaac Turner
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Oliver Venn
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Daniel M Hooper
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA
| | - Alva I Strand
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Qiye Li
- China National Genebank, BGI-Shenzhen, Shenzhen 518083, China
| | - Brian Raney
- Center for Biomolecular Science and Engineering, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Gil McVean
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Molly Przeworski
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA. Department of Systems Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
198
|
Cattle Sex-Specific Recombination and Genetic Control from a Large Pedigree Analysis. PLoS Genet 2015; 11:e1005387. [PMID: 26540184 PMCID: PMC4634960 DOI: 10.1371/journal.pgen.1005387] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/23/2015] [Indexed: 11/19/2022] Open
Abstract
Meiotic recombination is an essential biological process that generates genetic diversity and ensures proper segregation of chromosomes during meiosis. From a large USDA dairy cattle pedigree with over half a million genotyped animals, we extracted 186,927 three-generation families, identified over 8.5 million maternal and paternal recombination events, and constructed sex-specific recombination maps for 59,309 autosomal SNPs. The recombination map spans for 25.5 Morgans in males and 23.2 Morgans in females, for a total studied region of 2,516 Mb (986 kb/cM in males and 1,085 kb/cM in females). The male map is 10% longer than the female map and the sex difference is most pronounced in the subtelomeric regions. We identified 1,792 male and 1,885 female putative recombination hotspots, with 720 hotspots shared between sexes. These hotspots encompass 3% of the genome but account for 25% of the genome-wide recombination events in both sexes. During the past forty years, males showed a decreasing trend in recombination rate that coincided with the artificial selection for milk production. Sex-specific GWAS analyses identified PRDM9 and CPLX1 to have significant effects on genome-wide recombination rate in both sexes. Two novel loci, NEK9 and REC114, were associated with recombination rate in both sexes, whereas three loci, MSH4, SMC3 and CEP55, affected recombination rate in females only. Among the multiple PRDM9 paralogues on the bovine genome, our GWAS of recombination hotspot usage together with linkage analysis identified the PRDM9 paralogue on chromosome 1 to be associated in the U.S. Holstein data. Given the largest sample size ever reported for such studies, our results reveal new insights into the understanding of cattle and mammalian recombination.
Collapse
|
199
|
Abstract
The study of homologous recombination has its historical roots in meiosis. In this context, recombination occurs as a programmed event that culminates in the formation of crossovers, which are essential for accurate chromosome segregation and create new combinations of parental alleles. Thus, meiotic recombination underlies both the independent assortment of parental chromosomes and genetic linkage. This review highlights the features of meiotic recombination that distinguish it from recombinational repair in somatic cells, and how the molecular processes of meiotic recombination are embedded and interdependent with the chromosome structures that characterize meiotic prophase. A more in-depth review presents our understanding of how crossover and noncrossover pathways of meiotic recombination are differentiated and regulated. The final section of this review summarizes the studies that have defined defective recombination as a leading cause of pregnancy loss and congenital disease in humans.
Collapse
Affiliation(s)
- Neil Hunter
- Howard Hughes Medical Institute, Department of Microbiology & Molecular Genetics, Department of Molecular & Cellular Biology, Department of Cell Biology & Human Anatomy, University of California Davis, Davis, California 95616
| |
Collapse
|
200
|
MacLennan M, Crichton JH, Playfoot CJ, Adams IR. Oocyte development, meiosis and aneuploidy. Semin Cell Dev Biol 2015; 45:68-76. [PMID: 26454098 PMCID: PMC4828587 DOI: 10.1016/j.semcdb.2015.10.005] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/14/2015] [Accepted: 10/05/2015] [Indexed: 01/15/2023]
Abstract
Meiosis is one of the defining events in gametogenesis. Male and female germ cells both undergo one round of meiotic cell division during their development in order to reduce the ploidy of the gametes, and thereby maintain the ploidy of the species after fertilisation. However, there are some aspects of meiosis in the female germline, such as the prolonged arrest in dictyate, that appear to predispose oocytes to missegregate their chromosomes and transmit aneuploidies to the next generation. These maternally-derived aneuploidies are particularly problematic in humans where they are major contributors to miscarriage, age-related infertility, and the high incidence of Down's syndrome in human conceptions. This review will discuss how events that occur in foetal oocyte development and during the oocytes' prolonged dictyate arrest can influence meiotic chromosome segregation and the incidence of aneuploidy in adult oocytes.
Collapse
Affiliation(s)
- Marie MacLennan
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.
| | - James H Crichton
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.
| | - Christopher J Playfoot
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.
| | - Ian R Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.
| |
Collapse
|