151
|
Lantz O, Teyton L. Identification of T cell antigens in the 21st century, as difficult as ever. Semin Immunol 2022; 60:101659. [PMID: 36183497 PMCID: PMC10332289 DOI: 10.1016/j.smim.2022.101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Identifying antigens recognized by T cells is still challenging, particularly for innate like T cells that do not recognize peptides but small metabolites or lipids in the context of MHC-like molecules or see non-MHC restricted antigens. The fundamental reason for this situation is the low affinity of T cell receptors for their ligands coupled with a level of degeneracy that makes them bind to similar surfaces on antigen presenting cells. Herein we will describe non-exhaustively some of the methods that were used to identify peptide antigens and briefly mention the high throughput methods more recently proposed for that purpose. We will then present how the molecules recognized by innate like T cells (NKT, MAIT and γδ T cells) were discovered. We will show that serendipity was instrumental in many cases.
Collapse
Affiliation(s)
- Olivier Lantz
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France; Laboratoire d'Immunologie Clinique, Institut Curie, Paris 75005, France; Centre d'investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428) Institut Curie, Paris 75005, France
| | - Luc Teyton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
152
|
Recent Developments of Circulating Tumor Cell Analysis for Monitoring Cutaneous Melanoma Patients. Cancers (Basel) 2022; 14:cancers14040859. [PMID: 35205608 PMCID: PMC8870206 DOI: 10.3390/cancers14040859] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Circulating tumor cells (CTCs) originating from cutaneous melanoma patients have been studied for several decades as surrogates for real-time clinical status and disease outcomes. Here, we will review clinical studies from the last 15 years that assessed CTCs and disease outcomes for melanoma patients. Assessment of multiple molecular melanoma-associated antigen (MAA) markers by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was the most common assay allowing for the improvement of assay sensitivity, to address tumor heterogeneity, and to predict patient outcomes. Multicenter studies demonstrate the utility of CTC assays reducing the bias observed in single-center trials. Recent development of CTC enrichment platforms has provided reproducible methods. CTC assessment enables both multiple mRNAs and DNAs genomic profiling. CTC provides specific important translational information on tumor progression, prediction of treatment response, and survival outcomes for cutaneous melanoma patients. Abstract Circulating tumor cells (CTCs) have been studied using multiple technical approaches for interrogating various cancers, as they allow for the real-time assessment of tumor progression, disease recurrence, treatment response, and tumor molecular profiling without the need for a tumor tissue biopsy. Here, we will review studies from the last 15 years on the assessment of CTCs in cutaneous melanoma patients in relation to different clinical outcomes. The focus will be on CTC detection in blood samples obtained from cutaneous melanoma patients of different clinical stages and treatments utilizing multiple platforms. Assessment of multiple molecular melanoma-associated antigen (MAA) markers by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was the most common assay allowing for the improvement of assay sensitivity, tumor heterogeneity, and to predict patient outcomes. Multicenter studies demonstrate the utility of CTC assays reducing the bias observed in single- center trials. The recent development of CTC enrichment platforms has provided reproducible methods. CTC assessment enables both multiple mRNAs and DNAs genomic aberration profiling. CTC provides specific important translational information on tumor progression, prediction of treatment response, and survival outcomes for cutaneous melanoma patients. The molecular studies on melanoma CTCs have provided and may set standards for other solid tumor CTC analyses.
Collapse
|
153
|
Kumai T, Yamaki H, Kono M, Hayashi R, Wakisaka R, Komatsuda H. Antitumor Peptide-Based Vaccine in the Limelight. Vaccines (Basel) 2022; 10:vaccines10010070. [PMID: 35062731 PMCID: PMC8778374 DOI: 10.3390/vaccines10010070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023] Open
Abstract
The success of the immune checkpoint blockade has provided a proof of concept that immune cells are capable of attacking tumors in the clinic. However, clinical benefit is only observed in less than 20% of the patients due to the non-specific activation of immune cells by the immune checkpoint blockade. Developing tumor-specific immune responses is a challenging task that can be achieved by targeting tumor antigens to generate tumor-specific T-cell responses. The recent advancements in peptide-based immunotherapy have encouraged clinicians and patients who are struggling with cancer that is otherwise non-treatable with current therapeutics. By selecting appropriate epitopes from tumor antigens with suitable adjuvants, peptides can elicit robust antitumor responses in both mice and humans. Although recent experimental data and clinical trials suggest the potency of tumor reduction by peptide-based vaccines, earlier clinical trials based on the inadequate hypothesis have misled that peptide vaccines are not efficient in eliminating tumor cells. In this review, we highlighted the recent evidence that supports the rationale of peptide-based antitumor vaccines. We also discussed the strategies to select the optimal epitope for vaccines and the mechanism of how adjuvants increase the efficacy of this promising approach to treat cancer.
Collapse
Affiliation(s)
- Takumi Kumai
- Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
- Correspondence: ; Tel.: +81-166-68-2554; Fax: +81-166-68-2559
| | - Hidekiyo Yamaki
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
| | - Michihisa Kono
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
| | - Ryusuke Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
| | - Risa Wakisaka
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
| | - Hiroki Komatsuda
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
| |
Collapse
|
154
|
Yasuda T, Nishiki K, Hiraki Y, Kato H, Iwama M, Shiraishi O, Yasuda A, Shinkai M, Kimura Y, Sukegawa Y, Chiba Y, Imano M, Takeda K, Satou T, Shiozaki H, Nakamura Y. Phase II Adjuvant Cancer-specific Vaccine Therapy for Esophageal Cancer Patients Curatively Resected After Preoperative Therapy With Pathologically Positive Nodes; Possible Significance of Tumor Immune Microenvironment in its Clinical Effects. Ann Surg 2022; 275:e155-e162. [PMID: 33055588 DOI: 10.1097/sla.0000000000003880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To elucidate the efficacy of adjuvant vaccine monotherapy using 3 Human Leukocyte Antigen (HLA)-A∗24-restricted tumor-specific peptide antigens for ESCC, upregulated lung cancer 10, cell division cycle associated 1, and KH domain-containing protein overexpressed in cancer 1. SUMMARY OF BACKGROUND DATA ESCC patients with pathologically positive nodes (pN(+)) have a high risk for postoperative recurrence, despite curative resection after preoperative therapy. Subclinical micrometastases are an appropriate target for cancer vaccine. METHODS This is a non-randomized prospective phase II clinical trial (UMIN000003557). ESCC patients curatively resected after preoperative therapy with pN(+) were allocated into the control and vaccine groups (CG and VG) according to the HLA-A status. One mg each of three epitope peptides was postoperatively injected 10 times weekly followed by 10 times biweekly to the VG. The primary and secondary endpoints were relapse-free survival (RFS) and esophageal cancer-specific survival (ECSS), respectively. RESULTS Thirty were in the CG and 33 in the VG. No significant difference was observed in RFS between the CG and VG (5-year RFS: 32.5% vs 45.3%), but the recurrence rate significantly decreased with the number of peptides which induced antigen-specific cytotoxic T lymphocytes. The VG showed a significantly higher 5-year ECSS than the CG (60.0% vs 32.4%, P = 0.045) and this difference was more prominent in patients with CD8+ and programmed death-ligand 1 double negative tumor (68.0% vs 17.7%, P = 0.010). CONCLUSIONS Our cancer peptide vaccine might improve the survival of ESCC patients, which is warranted to be verified in the phase III randomized controlled study.
Collapse
Affiliation(s)
- Takushi Yasuda
- Department of Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kohei Nishiki
- Department of Surgery, Ohita Nakamura Hospital, Ohita, Japan
| | - Yoko Hiraki
- Department of Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hiroaki Kato
- Department of Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Mitsuru Iwama
- Department of Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Osamu Shiraishi
- Department of Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Atsushi Yasuda
- Department of Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masayuki Shinkai
- Department of Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yutaka Kimura
- Department of Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yasushi Sukegawa
- Life Science Research Institute, Kindai University, Osaka, Japan
| | - Yasutaka Chiba
- Clinical Research Center, Kindai University Hospital, Osaka, Japan
| | - Motohiro Imano
- Department of Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kazuyoshi Takeda
- Division of Cell Biology, Biomedical Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takao Satou
- Division of Hospital Pathology, Kindai University Hospital, Osaka, Japan
| | - Hitoshi Shiozaki
- Department of Surgery, Kindai University Faculty of Medicine, Osaka, Japan
| | | |
Collapse
|
155
|
Ashi MO, Mami-Chouaib F, Corgnac S. Mutant and non-mutant neoantigen-based cancer vaccines: recent advances and future promises. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:746-762. [PMID: 36654823 PMCID: PMC9834040 DOI: 10.37349/etat.2022.00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022] Open
Abstract
Major advances in cancer treatment have emerged with the introduction of immunotherapies using blocking antibodies that target T-cell inhibitory receptors, such as programmed death-1 (PD-1) and cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), known as immune checkpoints. However, most cancer patients do not respond to immune checkpoint blockade (ICB) therapies, suggesting the development of resistance mechanisms associated with either an insufficient number of preexisting tumor-specific T-cell precursors and/or inappropriate T-cell reactivation. To broaden clinical benefit, anti-PD-1/PD-1 ligand (PD-L1) neutralizing antibodies have been combined with therapeutic cancer vaccines based on non-mutant and/or mutant tumor antigens, to stimulate and expand tumor-specific T lymphocytes. Although these combination treatments achieve the expected goal in some patients, relapse linked to alterations in antigen presentation machinery (APM) of cancer cells often occurs leading to tumor escape from CD8 T-cell immunity. Remarkably, an alternative antigenic peptide repertoire, referred to as T-cell epitopes associated with impaired peptide processing (TEIPP), arises on these malignant cells with altered APM. TEIPP are derived from ubiquitous non-mutant self-proteins and represent a unique resource to target immune-edited tumors that have acquired resistance to cytotoxic T lymphocytes (CTLs) related to defects in transporter associated with antigen processing (TAP) and possibly also to ICB. The present review discusses tumor-associated antigens (TAAs) and mutant neoantigens and their use as targets in peptide- and RNA-based therapeutic cancer vaccines. Finally, this paper highlights TEIPP as a promising immunogenic non-mutant neoantigen candidates for active cancer immunotherapy and combination with TAA and mutant neoantigens. Combining these polyepitope cancer vaccines with ICB would broaden T-cell specificity and reinvigorate exhausted antitumor CTL, resulting in the eradication of all types of neoplastic cells, including immune-escaped subtypes.
Collapse
Affiliation(s)
- Mohamad Omar Ashi
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, 94805 Villejuif, France
| | - Fathia Mami-Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, 94805 Villejuif, France,Correspondence: Fathia Mami-Chouaib,
| | - Stéphanie Corgnac
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, 94805 Villejuif, France,Stéphanie Corgnac, . INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, 94805 Villejuif, France
| |
Collapse
|
156
|
Korman AJ, Garrett-Thomson SC, Lonberg N. The foundations of immune checkpoint blockade and the ipilimumab approval decennial. Nat Rev Drug Discov 2021; 21:509-528. [PMID: 34937915 DOI: 10.1038/s41573-021-00345-8] [Citation(s) in RCA: 310] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 12/11/2022]
Abstract
Cancer immunity, and the potential for cancer immunotherapy, have been topics of scientific discussion and experimentation for over a hundred years. Several successful cancer immunotherapies - such as IL-2 and interferon-α (IFNα) - have appeared over the past 30 years. However, it is only in the past decade that immunotherapy has made a broad impact on patient survival in multiple high-incidence cancer indications. The emergence of immunotherapy as a new pillar of cancer treatment (adding to surgery, radiation, chemotherapy and targeted therapies) is due to the success of immune checkpoint blockade (ICB) drugs, the first of which - ipilimumab - was approved in 2011. ICB drugs block receptors and ligands involved in pathways that attenuate T cell activation - such as cytotoxic T lymphocyte antigen 4 (CTLA4), programmed cell death 1 (PD1) and its ligand, PDL1 - and prevent, or reverse, acquired peripheral tolerance to tumour antigens. In this Review we mark the tenth anniversary of the approval of ipilimumab and discuss the foundational scientific history of ICB, together with the history of the discovery, development and elucidation of the mechanism of action of the first generation of drugs targeting the CTLA4 and PD1 pathways.
Collapse
|
157
|
Aureli A, Marziani B, Sconocchia T, Del Principe MI, Buzzatti E, Pasqualone G, Venditti A, Sconocchia G. Immunotherapy as a Turning Point in the Treatment of Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13246246. [PMID: 34944865 PMCID: PMC8699368 DOI: 10.3390/cancers13246246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Despite recent progress achieved in the management of acute myeloid leukemia (AML), it remains a life-threatening disease with a poor prognosis, particularly in the elderly, having an average 5-year survival of approximately 28%. However, recent evidence suggests that immunotherapy can provide the background for developing personalized targeted therapy to improve the clinical course of AML patients. Our review aimed to assess the immunotherapy effectiveness in AML by discussing the impact of monoclonal antibodies, immune checkpoint inhibitors, chimeric antigen receptor T cells, and vaccines in AML preclinical and clinical studies. Abstract Acute myeloid leukemia (AML) is a malignant disease of hematopoietic precursors at the earliest stage of maturation, resulting in a clonalproliferation of myoblasts replacing normal hematopoiesis. AML represents one of the most common types of leukemia, mostly affecting elderly patients. To date, standard chemotherapy protocols are only effective in patients at low risk of relapse and therapy-related mortality. The average 5-year overall survival (OS) is approximately 28%. Allogeneic hematopoietic stem cell transplantation (HSCT) improves prognosis but is limited by donor availability, a relatively young age of patients, and absence of significant comorbidities. Moreover, it is associated with significant morbidity and mortality. However, increasing understanding of AML immunobiology is leading to the development of innovative therapeutic strategies. Immunotherapy is considered an attractive strategy for controlling and eliminating the disease. It can be a real breakthrough in the treatment of leukemia, especially in patients who are not eligible forintensive chemotherapy. In this review, we focused on the progress of immunotherapy in the field of AML by discussing monoclonal antibodies (mAbs), immune checkpoint inhibitors, chimeric antigen receptor T cells (CAR-T cells), and vaccine therapeutic choices.
Collapse
Affiliation(s)
- Anna Aureli
- CNR Institute of Translational Pharmacology, 00133 Rome, Italy
- Correspondence: (A.A.); (G.S.)
| | - Beatrice Marziani
- Emergency and Urgent Department, University Hospital Sant’Anna of Ferrara, 44124 Ferrara, Italy;
| | | | - Maria Ilaria Del Principe
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (M.I.D.P.); (E.B.); (G.P.); (A.V.)
| | - Elisa Buzzatti
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (M.I.D.P.); (E.B.); (G.P.); (A.V.)
| | - Gianmario Pasqualone
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (M.I.D.P.); (E.B.); (G.P.); (A.V.)
| | - Adriano Venditti
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (M.I.D.P.); (E.B.); (G.P.); (A.V.)
| | - Giuseppe Sconocchia
- CNR Institute of Translational Pharmacology, 00133 Rome, Italy
- Correspondence: (A.A.); (G.S.)
| |
Collapse
|
158
|
Davis L, Tarduno A, Lu YC. Neoantigen-Reactive T Cells: The Driving Force behind Successful Melanoma Immunotherapy. Cancers (Basel) 2021; 13:cancers13236061. [PMID: 34885172 PMCID: PMC8657037 DOI: 10.3390/cancers13236061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Cancer immunotherapy is a revolutionary type of cancer therapy. It uses the patient’s own immune system to fight and potentially cure cancer. The first major breakthrough of immunotherapy came from successful clinical trials for melanoma treatments. Since then, researchers have focused on understanding the science behind immunotherapy, so that patients with other types of cancer may also benefit. One of the major findings is that the T cells in melanoma patients may recognize a specific type of tumor antigen, called neoantigens, and then kill tumor cells that present these neoantigens. The neoantigens mainly arise from the DNA mutations found in tumor cells. These mutations are translated into mutated proteins that are then distinguished by T cells. In this article, we discuss the critical role of T cells in immunotherapy, as well as the clinical trials that shaped the treatments for melanoma. Abstract Patients with metastatic cutaneous melanoma have experienced significant clinical responses after checkpoint blockade immunotherapy or adoptive cell therapy. Neoantigens are mutated proteins that arise from tumor-specific mutations. It is hypothesized that the neoantigen recognition by T cells is the critical step for T-cell-mediated anti-tumor responses and subsequent tumor regressions. In addition to describing neoantigens, we review the sentinel and ongoing clinical trials that are helping to shape the current treatments for patients with cutaneous melanoma. We also present the existing evidence that establishes the correlations between neoantigen-reactive T cells and clinical responses in melanoma immunotherapy.
Collapse
Affiliation(s)
- Lindy Davis
- Department of Surgery, Albany Medical Center, Albany, NY 12208, USA; (L.D.); (A.T.)
| | - Ashley Tarduno
- Department of Surgery, Albany Medical Center, Albany, NY 12208, USA; (L.D.); (A.T.)
| | - Yong-Chen Lu
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence:
| |
Collapse
|
159
|
Kandalaft LE, Harari A. Vaccines as Priming Tools for T Cell Therapy for Epithelial Cancers. Cancers (Basel) 2021; 13:cancers13225819. [PMID: 34830973 PMCID: PMC8616276 DOI: 10.3390/cancers13225819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/09/2022] Open
Abstract
Simple Summary Despite all of the impressive progress that has been made in the field of cancer therapy, cancer continues to devastate the lives of many. Recent efforts have focused on taking advantage of the patients’ immune system, modifying and employing it to attack cancer cells more efficiently. Therapeutic cancer vaccines are part of the armamentarium used for that purpose. In this review, we discuss the role of the immune system in the fight against cancer, the various strategies that are aimed at engaging the immune system, and how therapeutic cancer vaccines can be used as a self-standing strategy or as a means to leverage other immunotherapies to deliver more efficient results. We elaborate on the obstacles that are present, why immune therapies do not work equally well on all patients, and how vaccines can potentially play a role in improving cancer outcomes. Abstract Impressive progress has recently been made in the field of cancer immunotherapy with the adoptive transfer of T cells, a successful personalized strategy, and checkpoint inhibitors (CPI) having extended the survival of numerous patients. However, not all patients have been able to benefit from these innovations. A key determinant of the responsiveness to cancer immunotherapies is the presence of T cells within the tumors. These tumor-infiltrating lymphocytes (TILs) are crucial in controlling tumor growth and their activity is being potentiated by immunotherapies. Although some epithelial cancers are associated with spontaneous T-cell and B-cell responses, which makes them good candidates for immunotherapies, it remains to create strategies that would promote lymphocyte infiltration and enable sustained immune responses in immune-resistant tumors. Therapeutic cancer vaccines hold the potential of being able to render “cold”, poorly infiltrated tumors into “hot” tumors that would be receptive to cellular immunotherapies. In this review, we elaborate on the obstacles that need to be overcome and the strategies that are being explored to that end, including various types of antigen repertoires and different vaccine platforms and combinations with other available treatments.
Collapse
Affiliation(s)
- Lana E. Kandalaft
- Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
- Correspondence: (L.E.K.); (A.H.)
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
- Correspondence: (L.E.K.); (A.H.)
| |
Collapse
|
160
|
Wang N, Zhou Y, Zuo Z, Wang R, Li J, Han T, Yang B. Construction of a competing endogenous RNA network related to the prognosis of cholangiocarcinoma and comprehensive analysis of the immunological correlation. J Gastrointest Oncol 2021; 12:2287-2309. [PMID: 34790393 DOI: 10.21037/jgo-21-619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/19/2021] [Indexed: 12/21/2022] Open
Abstract
Background Cholangiocarcinoma (CCA) is a malignant tumor of the digestive system, with occult onset in the early stage, a high degree of malignancy in the late stage, and poor prognosis. At present, the pathogenesis of CCA is not clear, and there is a lack of effective immunotherapy. The purpose of this study was to identify the potential regulatory mechanism of CCA and analyze the possibility of its related immunotherapy. Methods The circular RNAs (circRNAs) expression profile data of CCA was downloaded from the Gene Expression Omnibus (GEO) database; the miRNA and mRNA expression profile data of CCA were downloaded from The Cancer Genome Atlas (TCGA) database. Prognostic factors were screened by univariate Cox regression analysis, and the competing endogenous RNA (ceRNA) network was constructed via survival analysis. Multivariate Cox analysis was used to screen the independent prognostic factors and construct a prognostic correlation subnetwork. Analyzing the tumor microenvironment of CCA and survival analysis were performed according to the score of the microenvironment, and the distribution of tumor infiltrating immune cells (TICs) in CCA was calculated using the CIBERSORT algorithm. We explored the expression pattern of the target genes in pan-cancer, and the correlation between the key genes in the ceRNA subnetwork, TICs and immune checkpoints was analyzed using an online database. Finally, the expression levels of target genes were validated based on the Human Protein Atlas (HPA) databases. Results We screened four circRNAs, 10 miRNAs, and 17 mRNAs with significant differences, and constructed the ceRNA network. Independent prognostic factors were screened by multivariate Cox regression analysis, and a subnetwork containing five nodes (hsa_circ_0002073→hsa-mir-4524a-3p→SLC16A3/SLC35E4/DDX4) was constructed. Further analysis showed that SLC16A3 was not only an independent posterior factor of CCA, but was also closely correlated with immune cells, immune checkpoints, and immunotherapy, and had a certain regulatory effect on the tumor microenvironment. Conclusions Our study identified a novel prognostic marker of CCA, SLC16A3, and revealed the regulatory role of SLC16A3 in the tumor microenvironment, which is expected to provide new insights for the early diagnosis, prognosis, and targeted therapy of CCA.
Collapse
Affiliation(s)
- Ning Wang
- Department of Oncology, the Second Affiliated Hospital of Liaoning Traditional Chinese Medicine University, Shenyang, China
| | - Yinghui Zhou
- Jinzhou Medical University, General Hospital of Northern Theater Command Training Base for Graduate, Shenyang, China.,Department of Hepatobiliary surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Zhifan Zuo
- Department of Oncology, the First Hospital of China Medical University, Shenyang, China
| | - Ruoyu Wang
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Jing Li
- Liaoning Academy of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Tao Han
- Department of Oncology, the First Hospital of China Medical University, Shenyang, China
| | - Bin Yang
- Department of General Surgery, 967 Hospital of PLA, Dalian, China
| |
Collapse
|
161
|
Shin GT, Park JE, Lee MJ. MAGEH1 interacts with GADD45G and induces renal tubular cell apoptosis. PLoS One 2021; 16:e0260135. [PMID: 34788311 PMCID: PMC8598065 DOI: 10.1371/journal.pone.0260135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/03/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Melanoma-associated antigen H1 (MAGEH1) is a protein that belongs to melanoma-associated antigen (MAGE) superfamily. Growth arrest and DNA damage 45G (GADD45G) is a member of the DNA damage-inducible gene family which responds to environmental stresses. We have previously shown that GADD45G is a protein that promotes apoptosis of renal tubular cells in response to a nephrotoxic injury. In this study, we show evidence that MAGEH1 interacts with GADD45G and is involved in the induction of nephrotoxin-induced apoptosis of renal tubular cells. METHODS Primary human renal tubular epithelial (HRE) cells and human kidney 2 (HK-2) cells were used in this study. To produce stable cell lines in which MAGEH1 expression was silenced, HRE cells were transduced with a lentiviral vector encoding a single guide RNA construct targeting the MAGEH1 gene. To knockdown GADD45G expression in HRE cells, a vector containing short hairpin RNA (shRNA) was used. We used short interfering RNAs (siRNA) to achieve transient silencing of genes in HK-2 cells. Recombinant adenoviruses were synthesized to overexpress MAGEH1 and GADD45G proteins. Human protein microarray was used to identify proteins that binds to GADD45G. Co-immunoprecipitation assays were then performed to confirm microarray results. Cell death was induced by cyclosporine A (CsA). Real-time quantitative PCR assay was used to evaluate gene expression levels. The degree of apoptosis and necrosis of cultured cells was evaluated by flow cytometry. Expression levels of caspases were examined using western blot analysis. RESULTS We found that GADD45G bound to one protein spotted in the protein microarray, which was subsequently identified as MAGEH1. We confirmed the interaction between GADD45G and MAGEH1 protein using the co-immunoprecipitation assay. MAGEH1 gene expression was not altered by CsA-induced cytotoxic injury, whereas GADD45G gene expression was increased significantly upon CsA treatment. MAGEH1 expression was significantly downregulated in GADD45G knockdown HRE stable cells suggesting that MAGEH1 expression may be dependent on GADD45G expression. CsA-induced apoptosis was significantly reduced in MAGEH1 knockdown HRE stable cells which led to an increased survival of these cells. Similar results were observed in GADD45G knockdown HRE stable cells. Accordingly, CsA-induced apoptosis was significantly decreased in MAGEH1 siRNA and GADD45G siRNA transfected HK-2 cells. CsA-induced activation of caspase-7 and caspase-9 was inhibited in MAGEH1 knockdown HRE stable cells, and similarly in GADD45G knockdown HRE stable cells. CONCLUSIONS To the best of our knowledge, this is the first study to show that MAGEH1 interacts with GADD45G and that MAGEH1 is involved in caspase-dependent apoptosis of renal tubular cells induced by nephrotoxic drugs.
Collapse
Affiliation(s)
- Gyu-Tae Shin
- Department of Nephrology, Ajou University School of Medicine, Suwon, Korea
| | - Ji Eun Park
- Department of Nephrology, Ajou University School of Medicine, Suwon, Korea
| | - Min-Jeong Lee
- Department of Nephrology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
162
|
Wu SC, Münger K. Role and Clinical Utility of Cancer/Testis Antigens in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13225690. [PMID: 34830845 PMCID: PMC8616139 DOI: 10.3390/cancers13225690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer/testis (CT) antigens exhibit selective expression predominantly in immunoprivileged tissues in non-pathological contexts but are aberrantly expressed in diverse cancers. Due to their expression pattern, they have historically been attractive targets for immunotherapies. A growing number of studies implicate CT antigens in almost all hallmarks of cancer, suggesting that they may act as cancer drivers. CT antigens are expressed in head and neck squamous cell carcinomas. However, their role in the pathogenesis of these cancers remains poorly studied. Given that CT antigens hold intriguing potential as therapeutic targets and as biomarkers for prognosis and that they can provide novel insights into oncogenic mechanisms, their further study in the context of head and squamous cell carcinoma is warranted.
Collapse
Affiliation(s)
- Sharon Changshan Wu
- Molecular Microbiology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
| | - Karl Münger
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
- Correspondence:
| |
Collapse
|
163
|
Liu L, Xu K, Zhou Y. Development of a novel embryonic germline gene-related prognostic model of lung adenocarcinoma. PeerJ 2021; 9:e12257. [PMID: 34721973 PMCID: PMC8542372 DOI: 10.7717/peerj.12257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/15/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Emerging evidence implicates the correlation of embryonic germline genes with the tumor progress and patient's outcome. However, the prognostic value of these genes in lung adenocarcinoma (LUAD) has not been fully studied. Here we systematically evaluated this issue, and constructed a novel signature and a nomogram associated with embryonic germline genes for predicting the outcomes of lung adenocarcinoma. METHODS The LUAD cohorts retrieved from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database were used as training set and testing set, respectively. The embryonic germline genes were downloaded from the website https://venn.lodder.dev. Then, the differentially expressed embryonic germline genes (DEGGs) between the tumor and normal samples were identified by limma package. The functional enrichment and pathway analyses were also performed by clusterProfiler package. The prognostic model was constructed by the least absolute shrinkage and selection operator (LASSO)-Cox regression method. Survival and Receiver Operating Characteristic (ROC) analyses were performed to validate the model using training set and four testing GEO datasets. Finally, a prognostic nomogram based on the signature genes was constructed using multivariate regression method. RESULTS Among the identified 269 DEGGs, 249 were up-regulated and 20 were down-regulated. GO and KEGG analyses revealed that these DEGGs were mainly enriched in the process of cell proliferation and DNA damage repair. Then, 103 DEGGs with prognostic value were identified by univariate Cox regression and further filtered by LASSO method. The resulting sixteen DEGGs were included in step multivariate Cox regression and an eleven embryonic germline gene related signature (EGRS) was constructed. The model could robustly stratify the LUAD patients into high-risk and low-risk groups in both training and testing sets, and low-risk patients had much better outcomes. The multi-ROC analysis also showed that the EGRS model had the best predictive efficacy compared with other common clinicopathological factors. The EGRS model also showed robust predictive ability in four independent external datasets, and the area under curve (AUC) was 0.726 (GSE30219), 0.764 (GSE50081), 0.657 (GSE37745) and 0.668 (GSE72094). More importantly, the expression level of some genes in EGRS has a significant correlation with the progression of LUAD clinicopathology, suggesting these genes might play an important role in the progression of LUAD. Finally, based on EGRS genes, we built and calibrated a nomogram for conveniently evaluating patients' outcomes.
Collapse
Affiliation(s)
- Linjun Liu
- Department of Biotechnology, College of Life Science & Chemistry, Beijing University of Technology, Chaoyang, Beijing, China
| | - Ke Xu
- NHC Key Laboratory of Biosafety, China CDC, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Yubai Zhou
- Department of Biotechnology, College of Life Science & Chemistry, Beijing University of Technology, Chaoyang, Beijing, China
| |
Collapse
|
164
|
Verma P, Biswas S, Yadav N, Khatri A, Siddiqui H, Panda JJ, Rawat BS, Tailor P, Chauhan VS. Delivery of a Cancer-Testis Antigen-Derived Peptide Using Conformationally Restricted Dipeptide-Based Self-Assembled Nanotubes. Mol Pharm 2021; 18:3832-3842. [PMID: 34499836 DOI: 10.1021/acs.molpharmaceut.1c00451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Use of tumor-associated antigens for cancer immunotherapy is limited due to their poor in vivo stability and low cellular uptake. Delivery of antigenic peptides using synthetic polymer-based nanostructures has been actively pursued but with limited success. Peptide-based nanostructures hold much promise as delivery vehicles due to their easy design and synthesis and inherent biocompatibility. Here, we report self-assembly of a dipeptide containing a non-natural amino acid, α,β-dehydrophenylalanine (ΔF), into nanotubes, which efficiently entrapped a MAGE-3-derived peptide (M3). M3 entrapped in F-ΔF nanotubes was more stable to a nonspecific protease treatment and both F-ΔF and F-ΔF-M3 showed no cellular toxicity for four cancerous and noncancerous cell lines used. F-ΔF-M3 showed significantly higher cellular uptake in RAW 267.4 macrophage cells compared to M3 alone and also induced in vitro maturation of dendritic cells (DCs). Immunization of mice with F-ΔF-M3 selected a higher number of IFN-γ secreting CD8+ T cells and CD4+ T compared to M3 alone. On day 21, a tumor growth inhibition ratio (TGI, %) of 41% was observed in a murine melanoma model. These results indicate that F-ΔF nanotubes are highly biocompatible, efficiently delivered M3 to generate cytotoxic T lymphocytes responses, and able to protect M3 from degradation under in vivo conditions. The F-ΔF dipeptide-based nanotubes may be considered as a good platform for further development as delivery agents.
Collapse
Affiliation(s)
- Priyanka Verma
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Saikat Biswas
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Nitin Yadav
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Anjali Khatri
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Hamda Siddiqui
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.,Institute of Liver and Biliary Sciences, New Delhi 110070, India
| | - Jiban Jyoti Panda
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.,Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | | | | | | |
Collapse
|
165
|
Zhou L, Liu H, Liu K, Wei S. Gold Compounds and the Anticancer Immune Response. Front Pharmacol 2021; 12:739481. [PMID: 34588987 PMCID: PMC8473785 DOI: 10.3389/fphar.2021.739481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
Gold compounds are not only well-explored for cytotoxic effects on tumors, but are also known to interact with the cancer immune system. The immune system deploys innate and adaptive mechanisms to protect against pathogens and prevent malignant transformation. The combined action of gold compounds with the activated immune system has shown promising results in cancer therapy through in vivo and in vitro experiments. Gold compounds are known to induce innate immune responses; however, these responses may contribute to adaptive immune responses. Gold compounds play the role of a major hapten that acts synergistically in innate immunity. Gold compounds support cancer cell antigenicity and promote anti-tumor immune response by inducing the release of CRT, ATP, HMGB1, HSP, and NKG2D to enhance immunogenicity. Gold compounds affect various immune cells (including suppressor regulatory T cells), inhibit myeloid derived suppressor cells, and enhance the function and number of dendritic cells. Gold nanoparticles (AuNPs) have potential for improving the effect of immunotherapy and reducing the toxicity and side effects of the treatment process. Thus, AuNPs provide an ideal opportunity for exploring the combination of anticancer gold compounds and immunotherapeutic interventions.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Kui Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
166
|
Abstract
Despite the ability of immune-based interventions to dramatically increase the survival of patients with melanoma, a significant subset fail to benefit from this treatment, underscoring the need for accurate means to identify the patient population likely to respond to immunotherapy. Understanding how melanoma evades natural or manipulated immune responses could provide the information needed to identify such resistant individuals. Efforts to address this challenge are hampered by the vast immune diversity characterizing tumor microenvironments that remain largely understudied. It is thus important to more clearly elucidate the complex interactions that take place between the tumor microenvironment and host immune system.
Collapse
|
167
|
Hui J, Wang C, Miao Y, Liu R, Xu J. The pancancer landscape of Wnt family expression reveals potential biomarkers in urinary system tumors. Cancer Gene Ther 2021; 28:1035-1045. [PMID: 33311568 DOI: 10.1038/s41417-020-00273-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/03/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
Immunotherapy and targeted therapy have been particularly effective in treating tumors of the urinary system; however, the mechanisms of the Wnt family of proteins in the tumorigenesis, development, and immune response of urinary system tumors are not fully understood. Here, we show that the Wnt family was extensively upregulated in and impacted the prognosis of patients with prostate adenocarcinoma (PRAD) and bladder urothelial carcinoma (BLCA). Moreover, the Wnt family correlated with the levels of infiltrating immune cells, including B cells, CD4 + T cells, CD8 + T cells, neutrophils, macrophages, and dendritic cells. The expression levels of Wnt family members were closely related to neoantigens, the mismatch repair system (MMRS) and DNA methyltransferases, and the mutation rate was generally low. Wnt family members are potential biomarkers for precision immunotherapy of urinary system tumors.
Collapse
Affiliation(s)
- Jialiang Hui
- Department of Organ Transplant, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Chengxinqiao Wang
- Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Yun Miao
- Department of Organ Transplant, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Ruiyu Liu
- Department of Urology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
| | - Jian Xu
- Department of Organ Transplant, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
| |
Collapse
|
168
|
Xu Y, Su GH, Ma D, Xiao Y, Shao ZM, Jiang YZ. Technological advances in cancer immunity: from immunogenomics to single-cell analysis and artificial intelligence. Signal Transduct Target Ther 2021; 6:312. [PMID: 34417437 PMCID: PMC8377461 DOI: 10.1038/s41392-021-00729-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/06/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Immunotherapies play critical roles in cancer treatment. However, given that only a few patients respond to immune checkpoint blockades and other immunotherapeutic strategies, more novel technologies are needed to decipher the complicated interplay between tumor cells and the components of the tumor immune microenvironment (TIME). Tumor immunomics refers to the integrated study of the TIME using immunogenomics, immunoproteomics, immune-bioinformatics, and other multi-omics data reflecting the immune states of tumors, which has relied on the rapid development of next-generation sequencing. High-throughput genomic and transcriptomic data may be utilized for calculating the abundance of immune cells and predicting tumor antigens, referring to immunogenomics. However, as bulk sequencing represents the average characteristics of a heterogeneous cell population, it fails to distinguish distinct cell subtypes. Single-cell-based technologies enable better dissection of the TIME through precise immune cell subpopulation and spatial architecture investigations. In addition, radiomics and digital pathology-based deep learning models largely contribute to research on cancer immunity. These artificial intelligence technologies have performed well in predicting response to immunotherapy, with profound significance in cancer therapy. In this review, we briefly summarize conventional and state-of-the-art technologies in the field of immunogenomics, single-cell and artificial intelligence, and present prospects for future research.
Collapse
Affiliation(s)
- Ying Xu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guan-Hua Su
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ding Ma
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
169
|
Abken H. Building on Synthetic Immunology and T Cell Engineering: A Brief Journey Through the History of Chimeric Antigen Receptors. Hum Gene Ther 2021; 32:1011-1028. [PMID: 34405686 PMCID: PMC10112879 DOI: 10.1089/hum.2021.165] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Advancement in our understanding of immune cell recognition and emerging cellular engineering technologies during the last decades made active manipulation of the T cell response possible. Synthetic immunology is providing us with an expanding set of composite receptor molecules capable to reprogram immune cell function in a predefined fashion. Since the first prototypes in the late 1980s, the design of chimeric antigen receptors (CARs; T-bodies, immunoreceptors), has followed a clear line of stepwise improvements from antigen-redirected targeting to designed "living factories" delivering transgenic products on demand. Building on basic research and creative clinical exploration, CAR T cell therapy has been achieving spectacular success in the treatment of hematologic malignancies, now beginning to improve the outcome of cancer patients. In this study, we briefly review the history of CARs and outline how the progress in the basic understanding of T cell recognition and of cell engineering technologies made novel therapies possible.
Collapse
Affiliation(s)
- Hinrich Abken
- Department of Genetic Immunotherapy, Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| |
Collapse
|
170
|
Jay A, Reitz D, Namekawa SH, Heyer WD. Cancer testis antigens and genomic instability: More than immunology. DNA Repair (Amst) 2021; 108:103214. [PMID: 34481156 PMCID: PMC9196322 DOI: 10.1016/j.dnarep.2021.103214] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/29/2022]
Abstract
Cancer testis antigens or genes (CTA, CTG) are predominantly expressed in adult testes while silenced in most or all somatic tissues with sporadic expression in many human cancers. Concerted misexpression of numerous CTA/CTGs is rarely observed. This finding argues against the germ cell theory of cancer. A surprising number of CTA/CTGs are involved in meiotic chromosome metabolism and specifically in meiotic recombination. Recent discoveries with a group of CTGs established that their misexpression in somatic cells results in genomic instability by interfering with homologous recombination (HR), a DNA repair pathway for complex DNA damage such as DNA double-stranded breaks, interstrand crosslinks, and single-stranded DNA gaps. HR-deficient tumors have specific vulnerabilities and show synthetic lethality with inhibition of polyADP-ribose polymerase, opening the possibility that expression of CTA/CTGs that result in an HR-defect could be used as an additional biomarker for HR status. Here, we review the repertoire of CTA/CTGs focusing on a cohort that functions in meiotic chromosome metabolism by interrogating relevant cancer databases and discussing recent discoveries.
Collapse
Affiliation(s)
- Ash Jay
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616-8665, USA
| | - Diedre Reitz
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616-8665, USA
| | - Satoshi H Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616-8665, USA; Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, 95616-8665, USA.
| |
Collapse
|
171
|
Wang YX, Li FL, Du LX, Liu JF, Huo LG, Li SQ, Tian B. The Co-Expression of Melanoma-Antigen Family a Proteins and New York Esophageal Squamous Cell Carcinoma-1 in Breast Cancer: A Pilot Study. Cancer Manag Res 2021; 13:6123-6128. [PMID: 34377031 PMCID: PMC8349529 DOI: 10.2147/cmar.s316759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/13/2021] [Indexed: 11/23/2022] Open
Abstract
Objective The aim of this study was to quantify the expression of melanoma-antigen family A proteins (MAGE-A) and New York esophageal squamous cell carcinoma-1 (NY-ESO-1) in breast cancer and establish the prognosis of breast cancer patients with MAGE-A and NY-ESO-1 co-expression. Methods A total of 122 patients with breast cancer were recruited for this study. Their clinicopathological data were collected retrospectively, and the MAGE-A and NY-ESO-1 expressions in paraffin-embedded specimens from the 122 patients were evaluated using immunohistochemical analysis. In addition, the survival states of the patients were recorded. Results Fifty-four patients (44.26%) were MAGE-A positive and 46 (37.70%) were NY-ESO-1 positive. Interestingly, 22 of the 46 NY-ESO-1-positive cases co-expressed MAGE-A. The expression of MAGE-A was positively associated with estrogen-receptor status (χ2 = 4.026, p = 0.045) and human epidermal growth factor receptor 2 status (χ2 = 5.482, p = 0.019), while the expression of NY-ESO-1 was positively associated with p53 expression (χ2 = 4.541, p = 0.033). Of the 122 patients, the lowest survival rate was observed in patients with NY-ESO-1 (+)/MAGE-A (+), with a 5-year survival rate of 59.09% and a median survival of 97 months. Conclusion The results showed that MAGE-A and NY-ESO-1 were frequently expressed in breast cancer patients. The co-expression of MAGE-A and NY-ESO-1 occurred in about 18% of these patients, and it may indicate a poor prognosis.
Collapse
Affiliation(s)
- Yu-Xin Wang
- Department of Clinical Laboratory, Hengshui Fifth People's Hospital, Hengshui City, 053000, People's Republic of China
| | - Feng-Lian Li
- Department of Clinical Laboratory, Hengshui Fifth People's Hospital, Hengshui City, 053000, People's Republic of China
| | - Li-Xin Du
- Department of Clinical Laboratory, Hengshui Fifth People's Hospital, Hengshui City, 053000, People's Republic of China
| | - Jun-Fang Liu
- Department of Pathology, Hengshui Fifth People's Hospital, Hengshui City, 053000, People's Republic of China
| | - Li-Gang Huo
- Department of Clinical Laboratory, Hengshui Fifth People's Hospital, Hengshui City, 053000, People's Republic of China
| | - Shu-Qing Li
- Department of cardiothoracic surgery, Hengshui Fifth People's Hospital, Hengshui City, 053000, People's Republic of China
| | - Bin Tian
- Department of Clinical Laboratory, Hengshui Fifth People's Hospital, Hengshui City, 053000, People's Republic of China
| |
Collapse
|
172
|
Jiang X, Wen J, Paver E, Wu Y, Sun G, Bullman A, Dahlstrom J, Tremethick DJ, Soboleva TA. H2A.B is a cancer/testis factor involved in the activation of ribosome biogenesis in Hodgkin lymphoma. EMBO Rep 2021; 22:e52462. [PMID: 34350706 PMCID: PMC8339673 DOI: 10.15252/embr.202152462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/02/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Testis-specific regulators of chromatin function are commonly ectopically expressed in human cancers, but their roles are poorly understood. Examination of 81 primary Hodgkin lymphoma (HL) samples showed that the ectopic expression of the eutherian testis-specific histone variant H2A.B is an inherent feature of HL. In experiments using two HL cell lines derived from different subtypes of HL, H2A.B knockdown inhibited cell proliferation. H2A.B was enriched in both nucleoli of these HL cell lines and primary HL samples. We found that H2A.B enhanced ribosomal DNA (rDNA) transcription, was enriched at the rDNA promoter and transcribed regions, and interacted with RNA Pol I. Depletion of H2A.B caused the loss of RNA Pol I from rDNA chromatin. Remarkably, H2A.B was also required for high levels of ribosomal protein gene expression being located at the transcriptional start site and within the gene body. H2A.B knockdown reduced gene body chromatin accessibility of active RNA Pol II genes concurrent with a decrease in transcription. Taken together, our data show that in HL H2A.B has acquired a new function, the ability to increase ribosome biogenesis.
Collapse
Affiliation(s)
- Xuanzhao Jiang
- The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Jiayu Wen
- The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Elizabeth Paver
- Department of Tissue Pathology and Diagnostic OncologyRoyal Prince Alfred HospitalSydneyNSWAustralia
| | - Yu‐Huan Wu
- The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
- Present address:
IQVIA Solutions Taiwan Ltd.Taipei CityTaiwan
| | - Gege Sun
- The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
- Present address:
Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug DiscoveryHong Kong Polytechnic UniversityHong KongChina
| | - Amanda Bullman
- Department of Anatomical PathologyACT PathologyThe Canberra HospitalCanberraACTAustralia
| | - Jane E Dahlstrom
- Department of Anatomical PathologyACT PathologyThe Canberra HospitalCanberraACTAustralia
- Australian National University Medical SchoolThe Australian National UniversityCanberraACTAustralia
| | - David J Tremethick
- The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Tatiana A Soboleva
- The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| |
Collapse
|
173
|
Yoshikawa K. Necdin: A purposive integrator of molecular interaction networks for mammalian neuron vitality. Genes Cells 2021; 26:641-683. [PMID: 34338396 PMCID: PMC9290590 DOI: 10.1111/gtc.12884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 12/29/2022]
Abstract
Necdin was originally found in 1991 as a hypothetical protein encoded by a neural differentiation‐specific gene transcript in murine embryonal carcinoma cells. Virtually all postmitotic neurons and their precursor cells express the necdin gene (Ndn) during neuronal development. Necdin mRNA is expressed only from the paternal allele through genomic imprinting, a placental mammal‐specific epigenetic mechanism. Necdin and its homologous MAGE (melanoma antigen) family, which have evolved presumedly from a subcomplex component of the SMC5/6 complex, are expressed exclusively in placental mammals. Paternal Ndn‐mutated mice totally lack necdin expression and exhibit various types of neuronal abnormalities throughout the nervous system. Ndn‐null neurons are vulnerable to detrimental stresses such as DNA damage. Necdin also suppresses both proliferation and apoptosis of neural stem/progenitor cells. Functional analyses using Ndn‐manipulated cells reveal that necdin consistently exerts antimitotic, anti‐apoptotic and prosurvival effects. Necdin interacts directly with a number of regulatory proteins including E2F1, p53, neurotrophin receptors, Sirt1 and PGC‐1α, which serve as major hubs of protein–protein interaction networks for mitosis, apoptosis, differentiation, neuroprotection and energy homeostasis. This review focuses on necdin as a pleiotropic protein that integrates molecular interaction networks to promote neuronal vitality in modern placental mammals.
Collapse
|
174
|
Cancer-Testis Antigens in Triple-Negative Breast Cancer: Role and Potential Utility in Clinical Practice. Cancers (Basel) 2021; 13:cancers13153875. [PMID: 34359776 PMCID: PMC8345750 DOI: 10.3390/cancers13153875] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer cells commonly express tumour-associated antigens that can induce immune responses to eradicate the tumour. Triple-negative breast cancer (TNBC) is a form of breast cancer lacking the expression of hormone receptors and cerbB2 (HER2) and tends to be more aggressive and associated with poorer prognoses due to the limited treatment options. Characterisation of biomarkers or treatment targets is thus of great significance in revealing additional therapeutic options. Cancer-testis antigens (CTAs) are tumour-associated antigens that have garnered strong attention as potential clinical biomarkers in targeted immunotherapy due to their cancer-restricted expressions and robust immunogenicity. Previous clinical studies reported that CTAs correlated with negative hormonal status, advanced tumour behaviour and a poor prognosis in a variety of cancers. Various studies also demonstrated the oncogenic potential of CTAs in cell proliferation by inhibiting cell death and inducing metastasis. Multiple clinical trials are in progress to evaluate the role of CTAs as treatment targets in various cancers. CTAs hold great promise as potential treatment targets and biomarkers in cancer, and further research could be conducted on elucidating the mechanism of actions of CTAs in breast cancer or combination therapy with other immune modulators. In the current review, we summarise the current understandings of CTAs in TNBC, addressing the role and utility of CTAs in TNBC, as well as discussing the potential applications and advantage of incorporating CTAs in clinical practise.
Collapse
|
175
|
Kubo T, Shinkawa T, Kikuchi Y, Murata K, Kanaseki T, Tsukahara T, Hirohashi Y, Torigoe T. Fundamental and Essential Knowledge for Pathologists Engaged in the Research and Practice of Immune Checkpoint Inhibitor-Based Cancer Immunotherapy. Front Oncol 2021; 11:679095. [PMID: 34290982 PMCID: PMC8289279 DOI: 10.3389/fonc.2021.679095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022] Open
Abstract
Extensive research over 100 years has demonstrated that tumors can be eliminated by the autologous immune system. Without doubt, immunotherapy is now a standard treatment along with surgery, chemotherapy, and radiotherapy; however, the field of cancer immunotherapy is continuing to develop. The current challenges for the use of immunotherapy are to enhance its clinical efficacy, reduce side effects, and develop predictive biomarkers. Given that histopathological analysis provides molecular and morphological information on humans in vivo, its importance will continue to grow. This review article outlines the basic knowledge that is essential for the research and daily practice of immune checkpoint inhibitor-based cancer immunotherapy from the perspective of histopathology.
Collapse
Affiliation(s)
- Terufumi Kubo
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Tomoyo Shinkawa
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Yasuhiro Kikuchi
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Kenji Murata
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Takayuki Kanaseki
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Tomohide Tsukahara
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Toshihiko Torigoe
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
176
|
Wei Q, Fang ZY, Zhang ZM, Zhang TF. Therapeutic tumor vaccines — a rising star to benefit cancer patients. Artif Intell Cancer 2021; 2:25-41. [DOI: 10.35713/aic.v2.i3.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/11/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Affiliation(s)
- Qian Wei
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Zhao-Yuan Fang
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai 200031, China
| | - Zi-Meng Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Teng-Fei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
177
|
Oh C, Kim HR, Oh S, Ko JY, Kim Y, Kang K, Yang Y, Kim J, Park JH, Roe JS, Yoo KH. Epigenetic Upregulation of MAGE-A Isoforms Promotes Breast Cancer Cell Aggressiveness. Cancers (Basel) 2021; 13:cancers13133176. [PMID: 34202157 PMCID: PMC8268034 DOI: 10.3390/cancers13133176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 01/28/2023] Open
Abstract
Simple Summary Breast cancer is a heterogeneous disease that has complex causes and mechanisms of development. Currently, patient treatment options depend on the breast cancer molecular subtype, which is classified based on the presence or absence of hormone receptors and HER2. However, this classification system has limitations in terms of predicting responsiveness to anticancer drugs and patient outcomes. In this study, we present a new approach to classifying molecular breast cancer subtypes: it is based on changes in histone modifications in the promoter region of the MAGEA12 locus, which we found related closely to MAGEA12 expression and MAGEA12-associated malignancy of breast cancer cells. Abstract After decades-long efforts to diagnose and treat breast cancer, the management strategy that has proved most successful to date is molecular-subtype-specific inhibition of the hormone receptors and HER2 that are expressed by individual cancers. Melanoma-associated antigen (MAGE) proteins comprise >40 highly conserved members that contain the MAGE homology domain. They are often overexpressed in multiple cancers and contribute to cancer progression and metastasis. However, it remains unclear whether the biological activity arising from MAGE gene expression is associated with breast cancer subtypes. In this study, we analyzed the RNA-sequencing (RNA-seq) data of 70 breast cancer cell lines and found that MAGEA12 and MAGEA3 were highly expressed in a subset of these lines. Significantly, MAGEA12 and MAGEA3 expression levels were independent of hormone receptor expression levels but were closely associated with markers of active histone modifications. This indicates that overexpression of these genes is attributable to epigenetic deregulation. RNA-seq of MAGEA12-depleted cells was then used to identify 382 candidate targets of MAGEA12 that were downregulated by MAGEA12 depletion. Furthermore, our gain-of-function experiments showed that MAGEA12 overexpression promoted aggressive behaviors of malignant breast cancer cells, including enhancing their cell migration and invasion. These changes were associated with increased epigenetic deregulation of the MAGEA12 signature genes. Thus, MAGEA12 may play an important role in breast cancer malignancy. Taken together, our findings suggest that MAGEA12 could be a promising therapeutic target in breast cancer, and its overexpression and epigenetic changes could serve as subtype classification biomarkers.
Collapse
Affiliation(s)
- Chaeun Oh
- Laboratory of Biomedical Genomics, Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; (C.O.); (S.O.)
| | - Hwa-Ryeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea;
| | - Sumin Oh
- Laboratory of Biomedical Genomics, Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; (C.O.); (S.O.)
- Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea
| | - Je Yeong Ko
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; (J.Y.K.); (Y.K.); (Y.Y.); (J.K.); (J.H.P.)
| | - Yesol Kim
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; (J.Y.K.); (Y.K.); (Y.Y.); (J.K.); (J.H.P.)
| | - Keunsoo Kang
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Korea;
| | - Young Yang
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; (J.Y.K.); (Y.K.); (Y.Y.); (J.K.); (J.H.P.)
| | - Jongmin Kim
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; (J.Y.K.); (Y.K.); (Y.Y.); (J.K.); (J.H.P.)
| | - Jong Hoon Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; (J.Y.K.); (Y.K.); (Y.Y.); (J.K.); (J.H.P.)
| | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea;
- Correspondence: (J.-S.R.); (K.H.Y.); Tel.: +82-2-2123-2700 (J.-S.R.); +82-2-2077-7836 (K.H.Y.)
| | - Kyung Hyun Yoo
- Laboratory of Biomedical Genomics, Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; (C.O.); (S.O.)
- Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea
- Correspondence: (J.-S.R.); (K.H.Y.); Tel.: +82-2-2123-2700 (J.-S.R.); +82-2-2077-7836 (K.H.Y.)
| |
Collapse
|
178
|
Wang Y, Wang M, Wu HX, Xu RH. Advancing to the era of cancer immunotherapy. Cancer Commun (Lond) 2021; 41:803-829. [PMID: 34165252 PMCID: PMC8441060 DOI: 10.1002/cac2.12178] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/04/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer greatly affects the quality of life of humans worldwide and the number of patients suffering from it is continuously increasing. Over the last century, numerous treatments have been developed to improve the survival of cancer patients but substantial progress still needs to be made before cancer can be truly cured. In recent years, antitumor immunity has become the most debated topic in cancer research and the booming development of immunotherapy has led to a new epoch in cancer therapy. In this review, we describe the relationships between tumors and the immune system, and the rise of immunotherapy. Then, we summarize the characteristics of tumor‐associated immunity and immunotherapeutic strategies with various molecular mechanisms by showing the typical immune molecules whose antibodies are broadly used in the clinic and those that are still under investigation. We also discuss important elements from individual cells to the whole human body, including cellular mutations and modulation, metabolic reprogramming, the microbiome, and the immune contexture. In addition, we also present new observations and technical advancements of both diagnostic and therapeutic methods aimed at cancer immunotherapy. Lastly, we discuss the controversies and challenges that negatively impact patient outcomes.
Collapse
Affiliation(s)
- Yun Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, 510060, P. R. China
| | - Min Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, 510060, P. R. China
| | - Hao-Xiang Wu
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, 510060, P. R. China.,Department of Clinical Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Rui-Hua Xu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, 510060, P. R. China
| |
Collapse
|
179
|
Shklovskaya E, Rizos H. MHC Class I Deficiency in Solid Tumors and Therapeutic Strategies to Overcome It. Int J Mol Sci 2021; 22:ijms22136741. [PMID: 34201655 PMCID: PMC8268865 DOI: 10.3390/ijms22136741] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
It is now well accepted that the immune system can control cancer growth. However, tumors escape immune-mediated control through multiple mechanisms and the downregulation or loss of major histocompatibility class (MHC)-I molecules is a common immune escape mechanism in many cancers. MHC-I molecules present antigenic peptides to cytotoxic T cells, and MHC-I loss can render tumor cells invisible to the immune system. In this review, we examine the dysregulation of MHC-I expression in cancer, explore the nature of MHC-I-bound antigenic peptides recognized by immune cells, and discuss therapeutic strategies that can be used to overcome MHC-I deficiency in solid tumors, with a focus on the role of natural killer (NK) cells and CD4 T cells.
Collapse
|
180
|
Cancer Vaccines: Promising Therapeutics or an Unattainable Dream. Vaccines (Basel) 2021; 9:vaccines9060668. [PMID: 34207062 PMCID: PMC8233841 DOI: 10.3390/vaccines9060668] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 02/08/2023] Open
Abstract
The advent of cancer immunotherapy has revolutionized the field of cancer treatment and offers cancer patients new hope. Although this therapy has proved highly successful for some patients, its efficacy is not all encompassing and several cancer types do not respond. Cancer vaccines offer an alternate approach to promote anti-tumor immunity that differ in their mode of action from antibody-based therapies. Cancer vaccines serve to balance the equilibrium of the crosstalk between the tumor cells and the host immune system. Recent advances in understanding the nature of tumor-mediated tolerogenicity and antigen presentation has aided in the identification of tumor antigens that have the potential to enhance anti-tumor immunity. Cancer vaccines can either be prophylactic (preventative) or therapeutic (curative). An exciting option for therapeutic vaccines is the emergence of personalized vaccines, which are tailor-made and specific for tumor type and individual patient. This review summarizes the current standing of the most promising vaccine strategies with respect to their development and clinical efficacy. We also discuss prospects for future development of stem cell-based prophylactic vaccines.
Collapse
|
181
|
Abstract
AbstractReal innovations in medicine and science are historic and singular; the stories behind each occurrence are precious. At Molecular Medicine we have established the Anthony Cerami Award in Translational Medicine to document and preserve these histories. The monographs recount the seminal events as told in the voice of the original investigators who provided the crucial early insight. These essays capture the essence of discovery, chronicling the birth of ideas that created new fields of research and launched trajectories that persisted and ultimately influenced how disease is prevented, diagnosed, and treated. In this volume, the Cerami Award Monograph is by Steven A. Rosenberg, Chief of Surgery at the National Cancer Institute in Bethesda, Maryland, USA. A pioneer in the development of immunotherapies and gene therapies for advanced cancers, this is the story of Dr. Rosenberg’s scientific journey.
Collapse
Affiliation(s)
- Steven A Rosenberg
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
182
|
4-1BBL as a Mediator of Cross-Talk between Innate, Adaptive, and Regulatory Immunity against Cancer. Int J Mol Sci 2021; 22:ijms22126210. [PMID: 34207500 PMCID: PMC8227424 DOI: 10.3390/ijms22126210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/25/2023] Open
Abstract
The ability of tumor cells to evade the immune system is one of the main challenges we confront in the fight against cancer. Multiple strategies have been developed to counteract this situation, including the use of immunostimulant molecules that play a key role in the anti-tumor immune response. Such a response needs to be tumor-specific to cause as little damage as possible to healthy cells and also to track and eliminate disseminated tumor cells. Therefore, the combination of immunostimulant molecules and tumor-associated antigens has been implemented as an anti-tumor therapy strategy to eliminate the main obstacles confronted in conventional therapies. The immunostimulant 4-1BBL belongs to the tumor necrosis factor (TNF) family and it has been widely reported as the most effective member for activating lymphocytes. Hence, we will review the molecular, pre-clinical, and clinical applications in conjunction with tumor-associated antigens in antitumor immunotherapy, as well as the main molecular pathways involved in this association.
Collapse
|
183
|
Scotto L, Kinahan C, Douglass E, Deng C, Safari M, Casadei B, Marchi E, Lue JK, Montanari F, Falchi L, Qiao C, Renu N, Bates SE, Califano A, O'Connor OA. Targeting the T-Cell Lymphoma Epigenome Induces Cell Death, Cancer Testes Antigens, Immune-Modulatory Signaling Pathways. Mol Cancer Ther 2021; 20:1422-1430. [PMID: 34108263 DOI: 10.1158/1535-7163.mct-20-0377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/13/2020] [Accepted: 06/07/2021] [Indexed: 11/16/2022]
Abstract
The peripheral T-cell lymphomas (PTCL) could be considered the prototypical epigenetic disease. As a disease, they are uniquely sensitive to histone deacetylase (HDAC) and DNA methyltransferase (DNMT) inhibitors, both alone and in combination, are characterized by a host of mutations in epigenetic genes, and can develop spontaneously in genetically engineered murine models predicated on established recurring mutations in (RHOAG17V) and TET2, an epigenetic gene governing DNA methylation. Given the clinical benefit of HDAC inhibitors (HDACi) and hypomethlyation agents alone and in combination in PTCL, we sought to explore a mechanistic basis for these agents in PTCL. Herein, we reveal profound class synergy between HDAC and DNMT inhibitors in PTCL, and that the combination induces degrees of gene expression that are substantially different and more extensive than that observed for the single agents. A prominent signature of the combination relates to the transcriptional induction of cancer testis antigens and genes involved in the immune response. Interestingly, TBX21 and STAT4, master regulators of TH1 differentiation, were among the genes upregulated by the combination, suggesting the induction of a TH1-like phenotype. Moreover, suppression of genes involved in cholesterol metabolism and the matrisome were also identified. We believe that these data provide a strong rationale for clinical studies, and future combinations leveraging an immunoepigenetic platform.
Collapse
Affiliation(s)
- Luigi Scotto
- Center for Lymphoid Malignancies, Columbia University, Medical Center, New York, New York.,Division of Experimental Therapeutics, Columbia University, Medical Center, New York, New York
| | - Cristina Kinahan
- Center for Lymphoid Malignancies, Columbia University, Medical Center, New York, New York.,Division of Experimental Therapeutics, Columbia University, Medical Center, New York, New York
| | - Eugene Douglass
- Department of Systems Biology, Columbia University, New York, New York
| | - Changchun Deng
- Center for Lymphoid Malignancies, Columbia University, Medical Center, New York, New York.,Division of Experimental Therapeutics, Columbia University, Medical Center, New York, New York
| | - Maryam Safari
- Division of Hematology and Oncology, Columbia University, Medical Center, New York, New York
| | - Beatrice Casadei
- Center for Lymphoid Malignancies, Columbia University, Medical Center, New York, New York.,Division of Experimental Therapeutics, Columbia University, Medical Center, New York, New York
| | - Enrica Marchi
- Center for Lymphoid Malignancies, Columbia University, Medical Center, New York, New York.,Division of Experimental Therapeutics, Columbia University, Medical Center, New York, New York
| | - Jennifer K Lue
- Center for Lymphoid Malignancies, Columbia University, Medical Center, New York, New York.,Division of Experimental Therapeutics, Columbia University, Medical Center, New York, New York
| | - Francesca Montanari
- Center for Lymphoid Malignancies, Columbia University, Medical Center, New York, New York.,Division of Experimental Therapeutics, Columbia University, Medical Center, New York, New York
| | - Lorenzo Falchi
- Center for Lymphoid Malignancies, Columbia University, Medical Center, New York, New York.,Division of Experimental Therapeutics, Columbia University, Medical Center, New York, New York
| | - Changhong Qiao
- Department of Medicine, Biomarkers Core Laboratory, Columbia University, Medical Center, New York, New York
| | - Nandakumar Renu
- Department of Medicine, Biomarkers Core Laboratory, Columbia University, Medical Center, New York, New York
| | - Susan E Bates
- Division of Hematology and Oncology, Columbia University, Medical Center, New York, New York
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York.,Department of Biomedical Informatics, Columbia University, New York, New York.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York.,Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York.,J.P. Sulzberger Columbia Genome Center, New York, New York
| | - Owen A O'Connor
- Department of Medicine, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
184
|
Dlamini Z, Hull R, Mbatha SZ, Alaouna M, Qiao YL, Yu H, Chatziioannou A. Prognostic Alternative Splicing Signatures in Esophageal Carcinoma. Cancer Manag Res 2021; 13:4509-4527. [PMID: 34113176 PMCID: PMC8186946 DOI: 10.2147/cmar.s305464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/06/2021] [Indexed: 01/10/2023] Open
Abstract
Alternative splicing (AS) is a method of increasing the number of proteins that the genome is capable of coding for, by altering the pre-mRNA during its maturation. This process provides the ability of a broad range of proteins to arise from a single gene. AS events are known to occur in up to 94% of human genes. Cumulative data have shown that aberrant AS functionality is a major factor in human diseases. This review focuses on the contribution made by aberrant AS functionality in the development and progression of esophageal cancer. The changes in the pattern of expression of alternately spliced isoforms in esophageal cancer can be used as diagnostic or prognostic biomarkers. Additionally, these can be used as targets for the development of new treatments for esophageal cancer.
Collapse
Affiliation(s)
- Zodwa Dlamini
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa
| | - Rodney Hull
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa
| | - Sikhumbuzo Z Mbatha
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Mohammed Alaouna
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa.,Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - You-Lin Qiao
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa.,Cancer Institute/Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Herbert Yu
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa.,University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Aristotelis Chatziioannou
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa.,Center of Systems Biology, Biomedical Research Foundation Academy of Athens, Athens, Greece.,e-NIOS Applications PC, Kallithea, Athens, 17676, Greece
| |
Collapse
|
185
|
Mitchell G, Pollack SM, Wagner MJ. Targeting cancer testis antigens in synovial sarcoma. J Immunother Cancer 2021; 9:jitc-2020-002072. [PMID: 34083416 PMCID: PMC8183285 DOI: 10.1136/jitc-2020-002072] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 02/02/2023] Open
Abstract
Synovial sarcoma (SS) is a rare cancer that disproportionately affects children and young adults. Cancer testis antigens (CTAs) are proteins that are expressed early in embryonic development, but generally not expressed in normal tissue. They are aberrantly expressed in many different cancer types and are an attractive therapeutic target for immunotherapies. CTAs are expressed at high levels in SS. This high level of CTA expression makes SS an ideal cancer for treatment strategies aimed at harnessing the immune system to recognize aberrant CTA expression and fight against the cancer. Pivotal clinical trials are now underway, with the potential to dramatically alter the landscape of SS management and treatment from current standards of care. In this review, we describe the rationale for targeting CTAs in SS with a focus on NY-ESO-1 and MAGE-A4, the current state of vaccine and T-cell receptor-based therapies, and consider emerging opportunities for future development.
Collapse
Affiliation(s)
| | - Seth M Pollack
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Oncology, University of Washington, Seattle, Washington, USA.,Lurie Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Michael J Wagner
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA .,Oncology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
186
|
Kosaka A, Yajima Y, Hatayama M, Ikuta K, Sasaki T, Hirai N, Yasuda S, Nagata M, Hayashi R, Harabuchi S, Ohara K, Ohara M, Kumai T, Ishibashi K, Hirata-Nozaki Y, Nagato T, Oikawa K, Harabuchi Y, Celis E, Okumura T, Ohsaki Y, Kobayashi H, Ohkuri T. A stealth antigen SPESP1, which is epigenetically silenced in tumors, is a suitable target for cancer immunotherapy. Cancer Sci 2021; 112:2705-2713. [PMID: 34009705 PMCID: PMC8253266 DOI: 10.1111/cas.14973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
Recent studies have revealed that tumor cells decrease their immunogenicity by epigenetically repressing the expression of highly immunogenic antigens to survive in immunocompetent hosts. We hypothesized that these epigenetically hidden “stealth” antigens should be favorable targets for cancer immunotherapy due to their high immunogenicity. To identify these stealth antigens, we treated human lung cell line A549 with DNA methyltransferase inhibitor 5‐aza‐2′‐deoxycytidine (5Aza) and its prodrug guadecitabine for 3 d in vitro and screened it using cDNA microarray analysis. We found that the gene encoding sperm equatorial segment protein 1 (SPESP1) was re‐expressed in cell lines including solid tumors and leukemias treated with 5Aza, although SPESP1 was not detected in untreated tumor cell lines. Using normal human tissue cDNA panels, we demonstrated that SPESP1 was not detected in normal human tissue except for testis and placenta. Moreover, we found using immunohistochemistry SPESP1 re‐expression in xenografts in BALB/c‐nu/nu mice that received 5Aza treatment. To assess the antigenicity of SPESP1, we stimulated human CD4+ T‐cells with a SPESP1‐derived peptide designed using a computer algorithm. After repetitive stimulation, SPESP1‐specific helper T‐cells were obtained; these cells produced interferon‐γ against HLA‐matched tumor cell lines treated with 5Aza. We also detected SPESP1 expression in freshly collected tumor cells derived from patients with acute myeloid leukemia or lung cancer. In conclusion, SPESP1 can be classified as a stealth antigen, a molecule encoded by a gene that is epigenetically silenced in tumor cells but serves as a highly immunogenic antigen suitable for cancer immunotherapy.
Collapse
Affiliation(s)
- Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yuki Yajima
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Mayumi Hatayama
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Katsuya Ikuta
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Takaaki Sasaki
- Respiratory Center, Asahikawa Medical University, Asahikawa, Japan
| | - Noriko Hirai
- Respiratory Center, Asahikawa Medical University, Asahikawa, Japan
| | - Syunsuke Yasuda
- Respiratory Center, Asahikawa Medical University, Asahikawa, Japan
| | - Marino Nagata
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Ryusuke Hayashi
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Shohei Harabuchi
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Kenzo Ohara
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Mizuho Ohara
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Takumi Kumai
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Kei Ishibashi
- Respiratory Center, Asahikawa Medical University, Asahikawa, Japan
| | - Yui Hirata-Nozaki
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Kensuke Oikawa
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yasuaki Harabuchi
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Esteban Celis
- Georgia Cancer Center, Augusta University Medical College of Georgia, Augusta, GA, USA
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yoshinobu Ohsaki
- Respiratory Center, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
187
|
Craig AJ, Garcia-Lezana T, Ruiz de Galarreta M, Villacorta-Martin C, Kozlova EG, Martins-Filho SN, von Felden J, Ahsen ME, Bresnahan E, Hernandez-Meza G, Labgaa I, D’Avola D, Schwartz M, Llovet JM, Sia D, Thung S, Losic B, Lujambio A, Villanueva A. Transcriptomic characterization of cancer-testis antigens identifies MAGEA3 as a driver of tumor progression in hepatocellular carcinoma. PLoS Genet 2021; 17:e1009589. [PMID: 34166362 PMCID: PMC8224860 DOI: 10.1371/journal.pgen.1009589] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 05/07/2021] [Indexed: 01/15/2023] Open
Abstract
Cancer testis antigens (CTAs) are an extensive gene family with a unique expression pattern restricted to germ cells, but aberrantly reactivated in cancer tissues. Studies indicate that the expression (or re-expression) of CTAs within the MAGE-A family is common in hepatocellular carcinoma (HCC). However, no systematic characterization has yet been reported. The aim of this study is to perform a comprehensive profile of CTA de-regulation in HCC and experimentally evaluate the role of MAGEA3 as a driver of HCC progression. The transcriptomic analysis of 44 multi-regionally sampled HCCs from 12 patients identified high intra-tumor heterogeneity of CTAs. In addition, a subset of CTAs was significantly overexpressed in histologically poorly differentiated regions. Further analysis of CTAs in larger patient cohorts revealed high CTA expression related to worse overall survival and several other markers of poor prognosis. Functional analysis of MAGEA3 was performed in human HCC cell lines by gene silencing and in a genetic mouse model by overexpression of MAGEA3 in the liver. Knockdown of MAGEA3 decreased cell proliferation, colony formation and increased apoptosis. MAGEA3 overexpression was associated with more aggressive tumors in vivo. In conclusion MAGEA3 enhances tumor progression and should be considered as a novel therapeutic target in HCC.
Collapse
Affiliation(s)
- Amanda J. Craig
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Teresa Garcia-Lezana
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Marina Ruiz de Galarreta
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Oncological Sciences, The Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Precision Immunology Institute at Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Carlos Villacorta-Martin
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Edgar G. Kozlova
- Department of Genetics and Genomic Sciences, Cancer Immunology Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Sebastiao N. Martins-Filho
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Laboratory Medicine and Pathobiology, University Health Network, University of Toronto, Toronto, Canada
| | - Johann von Felden
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mehmet Eren Ahsen
- Department of Genetics and Genomic Sciences, Cancer Immunology Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Erin Bresnahan
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Oncological Sciences, The Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Precision Immunology Institute at Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Gabriela Hernandez-Meza
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Ismail Labgaa
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Visceral Surgery, Lausanne University Hospital CHUV, Lausanne, Switzerland
| | - Delia D’Avola
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Liver Unit and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Clínica Universidad de Navarra, Pamplona, Spain
| | - Myron Schwartz
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Josep M. Llovet
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Translational Research Laboratory, BCLC Group, IDIBAPS, Hospital Clinic, Universitat de Barcelona, Catalonia and Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
| | - Daniela Sia
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Swan Thung
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Bojan Losic
- Department of Genetics and Genomic Sciences, Cancer Immunology Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Amaia Lujambio
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Oncological Sciences, The Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Precision Immunology Institute at Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Augusto Villanueva
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| |
Collapse
|
188
|
Recent Progress in Dendritic Cell-Based Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13102495. [PMID: 34065346 PMCID: PMC8161242 DOI: 10.3390/cancers13102495] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Cancer immunotherapy has now attracted much attention because of the recent success of immune checkpoint inhibitors. However, they are only beneficial in a limited fraction of patients most probably due to lack of sufficient CD8+ cytotoxic T-lymphocytes against tumor antigens in the host. In this regard, dendritic cells are useful tools to induce host immune responses against exogenous antigens. In particular, recently characterized cross-presenting dendritic cells are capable of inducing CD8+ cytotoxic T-lymphocytes against exogenous antigens such as tumor antigens and uniquely express the chemokine receptor XCR1. Here we focus on the recent progress in DC-based cancer vaccines and especially the use of the XCR1 and its ligand XCL1 axis for the targeted delivery of cancer vaccines to cross-presenting dendritic cells. Abstract Cancer immunotherapy aims to treat cancer by enhancing cancer-specific host immune responses. Recently, cancer immunotherapy has been attracting much attention because of the successful clinical application of immune checkpoint inhibitors targeting the CTLA-4 and PD-1/PD-L1 pathways. However, although highly effective in some patients, immune checkpoint inhibitors are beneficial only in a limited fraction of patients, possibly because of the lack of enough cancer-specific immune cells, especially CD8+ cytotoxic T-lymphocytes (CTLs), in the host. On the other hand, studies on cancer vaccines, especially DC-based ones, have made significant progress in recent years. In particular, the identification and characterization of cross-presenting DCs have greatly advanced the strategy for the development of effective DC-based vaccines. In this review, we first summarize the surface markers and functional properties of the five major DC subsets. We then describe new approaches to induce antigen-specific CTLs by targeted delivery of antigens to cross-presenting DCs. In this context, the chemokine receptor XCR1 and its ligand XCL1, being selectively expressed by cross-presenting DCs and mainly produced by activated CD8+ T cells, respectively, provide highly promising molecular tools for this purpose. In the near future, CTL-inducing DC-based cancer vaccines may provide a new breakthrough in cancer immunotherapy alone or in combination with immune checkpoint inhibitors.
Collapse
|
189
|
Ishii H, Afify SM, Hassan G, Salomon DS, Seno M. Cripto-1 as a Potential Target of Cancer Stem Cells for Immunotherapy. Cancers (Basel) 2021; 13:cancers13102491. [PMID: 34065315 PMCID: PMC8160785 DOI: 10.3390/cancers13102491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cancer immunotherapy is gaining attention as a potential fourth treatment following surgery, chemotherapy, and radiation therapy. Cancer stem cells have recently been recognized and validated as a key target for cancer treatment. Cripto-1, which is a GPI-anchored membrane-bound protein that functions as a co-receptor of Nodal, is a marker of cancer stem cells. Since Nodal is a member of the TGF-β family, which performs an important role in stem cells and cancer stem cells, the inhibition of Cripto-1 could be a strategy by which to block Nodal signaling and thereby suppress cancer stem cells. We propose that Cripto-1 may be a novel target for cancer immunotherapy. Abstract The immune system has been found to be suppressed in cancer patients. Cancer cells are extremely resistant to chemotherapeutic drugs, conventional immunotherapy, or cancer antigen vaccine therapy. Cancer immunotherapy, which is mainly based on immune checkpoint inhibitors, such as those for PD-1, PD-L1, and CTLA4, is an effective treatment method. However, no immunotherapeutic target has been found that retains validity in the face of tumor diversity. The transforming growth factor (TGF)-β cytokine family possesses broad biological activity and is involved in the induction and/or transdifferentiation of helper T cells, which are important in immunotherapy. Nodal is a member of the TGF-β family playing important roles in tissue stem cells and cancer stem cells (CSCs), interacting with the co-receptor Cripto-1, as well as with Activin type IB (Alk4) and Activin typeIIreceptors, and maintaining stemness and Notch and Wnt/β-catenin signaling in CSCs. In recent years, it has been reported that Cripto-1 could be a potential therapeutic target in CSCs. Here, we review the accumulated literature on the molecular mechanisms by which Cripto-1 functions in CSCs and discuss the potential of Cripto-1 as an immunotherapeutic target in CSCs.
Collapse
Affiliation(s)
- Hiroko Ishii
- GSP Enterprise, Inc., 1-4-38 12F Minato-machi, Naniwa-ku, Osaka 556-0017, Japan;
| | - Said M. Afify
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (S.M.A.); (G.H.)
- Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Shebin ElKoum Menoufia 32511, Egypt
| | - Ghmkin Hassan
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (S.M.A.); (G.H.)
| | - David S. Salomon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Masaharu Seno
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (S.M.A.); (G.H.)
- Correspondence: ; Tel.: +81-86-251-8216
| |
Collapse
|
190
|
Advances in immunotherapeutic targets for childhood cancers: A focus on glypican-2 and B7-H3. Pharmacol Ther 2021; 223:107892. [PMID: 33992682 DOI: 10.1016/j.pharmthera.2021.107892] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
Cancer immunotherapies have revolutionized how we can treat adult malignancies and are being translated to pediatric oncology. Chimeric antigen receptor T-cell therapy and bispecific antibodies targeting CD19 have shown success for the treatment of pediatric patients with B-cell acute lymphoblastic leukemia. Anti-GD2 monoclonal antibody has demonstrated efficacy in neuroblastoma. In this review, we summarize the immunotherapeutic agents that have been approved for treating childhood cancers and provide an updated review of molecules expressed by pediatric cancers that are under study or are emerging candidates for future immunotherapies. Advances in our knowledge of tumor immunology and in genome profiling of cancers has led to the identification of new tumor-specific/associated antigens. While cell surface antigens are normally targeted in a major histocompatibility complex (MHC)-independent manner using antibody-based therapies, intracellular antigens are normally targeted with MHC-dependent T cell therapies. Glypican 2 (GPC2) and B7-H3 (CD276) are two cell surface antigens that are expressed by a variety of pediatric tumors such as neuroblastoma and potentially can have a positive impact on the treatment of pediatric cancers in the clinic.
Collapse
|
191
|
MAGEA4 Coated Extracellular Vesicles Are Stable and Can Be Assembled In Vitro. Int J Mol Sci 2021; 22:ijms22105208. [PMID: 34069064 PMCID: PMC8155938 DOI: 10.3390/ijms22105208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/02/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) are valued candidates for the development of new tools for medical applications. Vesicles carrying melanoma-associated antigen A (MAGEA) proteins, a subfamily of cancer-testis antigens, are particularly promising tools in the fight against cancer. Here, we have studied the biophysical and chemical properties of MAGEA4-EVs and show that they are stable under common storage conditions such as keeping at +4 °C and -80 °C for at least 3 weeks after purification. The MAGEA4-EVs can be freeze-thawed two times without losing MAGEA4 in detectable quantities. The attachment of MAGEA4 to the surface of EVs cannot be disrupted by high salt concentrations or chelators, but the vesicles are sensitive to high pH. The MAGEA4 protein can bind to the surface of EVs in vitro, using robust passive incubation. In addition, EVs can be loaded with recombinant proteins fused to the MAGEA4 open reading frame within the cells and also in vitro. The high stability of MAGEA4-EVs ensures their potential for the development of EV-based anti-cancer applications.
Collapse
|
192
|
Liang J, Zhao X. Nanomaterial-based delivery vehicles for therapeutic cancer vaccine development. Cancer Biol Med 2021; 18:j.issn.2095-3941.2021.0004. [PMID: 33979069 PMCID: PMC8185868 DOI: 10.20892/j.issn.2095-3941.2021.0004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/26/2021] [Indexed: 12/20/2022] Open
Abstract
Nanomaterial-based delivery vehicles such as lipid-based, polymer-based, inorganics-based, and bio-inspired vehicles often carry distinct and attractive advantages in the development of therapeutic cancer vaccines. Based on various delivery vehicles, specifically designed nanomaterials-based vaccines are highly advantageous in boosting therapeutic and prophylactic antitumor immunities. Specifically, therapeutic vaccines featuring unique properties have made major contributions to the enhancement of antigen immunogenicity, encapsulation efficiency, biocompatibility, and stability, as well as promoting antigen cross-presentation and specific CD8+ T cell responses. However, for clinical applications, tumor-associated antigen-derived vaccines could be an obstacle, involving immune tolerance and deficiency of tumor specificities, in achieving maximum therapeutic indices. However, when using bioinformatics predictions with emerging innovations of in silico tools, neoantigen-based therapeutic vaccines might become potent personalized vaccines for tumor treatments. In this review, we summarize the development of preclinical therapeutic cancer vaccines and the advancements of nanomaterial-based delivery vehicles for cancer immunotherapies, which provide the basis for a personalized vaccine delivery platform. Moreover, we review the existing challenges and future perspectives of nanomaterial-based personalized vaccines for novel tumor immunotherapies.
Collapse
Affiliation(s)
- Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
193
|
Herrera-Álvarez S, Karlsson E, Ryder OA, Lindblad-Toh K, Crawford AJ. How to Make a Rodent Giant: Genomic Basis and Tradeoffs of Gigantism in the Capybara, the World's Largest Rodent. Mol Biol Evol 2021; 38:1715-1730. [PMID: 33169792 PMCID: PMC8097284 DOI: 10.1093/molbev/msaa285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gigantism results when one lineage within a clade evolves extremely large body size relative to its small-bodied ancestors, a common phenomenon in animals. Theory predicts that the evolution of giants should be constrained by two tradeoffs. First, because body size is negatively correlated with population size, purifying selection is expected to be less efficient in species of large body size, leading to increased mutational load. Second, gigantism is achieved through generating a higher number of cells along with higher rates of cell proliferation, thus increasing the likelihood of cancer. To explore the genetic basis of gigantism in rodents and uncover genomic signatures of gigantism-related tradeoffs, we assembled a draft genome of the capybara (Hydrochoerus hydrochaeris), the world's largest living rodent. We found that the genome-wide ratio of nonsynonymous to synonymous mutations (ω) is elevated in the capybara relative to other rodents, likely caused by a generation-time effect and consistent with a nearly neutral model of molecular evolution. A genome-wide scan for adaptive protein evolution in the capybara highlighted several genes controlling postnatal bone growth regulation and musculoskeletal development, which are relevant to anatomical and developmental modifications for an increase in overall body size. Capybara-specific gene-family expansions included a putative novel anticancer adaptation that involves T-cell-mediated tumor suppression, offering a potential resolution to the increased cancer risk in this lineage. Our comparative genomic results uncovered the signature of an intragenomic conflict where the evolution of gigantism in the capybara involved selection on genes and pathways that are directly linked to cancer.
Collapse
Affiliation(s)
| | - Elinor Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Oliver A Ryder
- San Diego Zoo Institute for Conservation Research, San Diego Zoo Global, Escondido, CA, USA
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Andrew J Crawford
- Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
194
|
Lezcano C, Müller AM, Frosina D, Hernandez E, Geronimo JA, Busam KJ, Jungbluth AA. Immunohistochemical Detection of Cancer-Testis Antigen PRAME. Int J Surg Pathol 2021; 29:826-835. [PMID: 33890816 DOI: 10.1177/10668969211012085] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cancer-testis (CT) antigens were identified by their ability to elicit T- or B-cell immune responses in the autologous host. They are typically expressed in a wide variety of neoplasms and in normal adult tissues are restricted to testicular germ cells. PReferentially expressed Antigen of Melanoma (PRAME) is a member of the family of nonclassical CT antigens being expressed in a few other normal tissues besides testis. Interestingly, knowledge about the protein expression of many CT antigens is still incomplete due to the limited availability of reagents for their immunohistochemical detection. Here, we tested several commercially available serological reagents and identified a monoclonal antibody suitable for the immunohistochemical detection of PRAME in formalin-fixed paraffin-embedded specimens. We also tested a wide array of normal and neoplastic tissues. PRAME protein expression in normal tissues is congruent with original molecular data being present in the testis, and at low levels in the endometrium, adrenal cortex, and adult as well as fetal ovary. In tumors, there is diffuse PRAME immunoreactivity in most metastatic melanomas, myxoid liposarcomas, and synovial sarcomas. Other neoplasms such as seminomas and carcinomas of various origins including endometrial, serous ovarian, mammary ductal, lung, and renal showed an intermediate proportion of cases and variable extent of tumor cells positive for PRAME protein expression. As seen with other CT antigens, hepatocellular and colorectal carcinoma, Leydig cell tumors, mesothelioma, and leiomyosarcoma are poor expressers of PRAME.
Collapse
Affiliation(s)
| | | | - Denise Frosina
- 5803Memorial Sloan-Kettering Cancer Center, New York, USA
| | | | | | - Klaus J Busam
- 5803Memorial Sloan-Kettering Cancer Center, New York, USA
| | | |
Collapse
|
195
|
Goncalves G, Mullan KA, Duscharla D, Ayala R, Croft NP, Faridi P, Purcell AW. IFNγ Modulates the Immunopeptidome of Triple Negative Breast Cancer Cells by Enhancing and Diversifying Antigen Processing and Presentation. Front Immunol 2021; 12:645770. [PMID: 33968037 PMCID: PMC8100505 DOI: 10.3389/fimmu.2021.645770] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Peptide vaccination remains a viable approach to induce T-cell mediated killing of tumors. To identify potential T-cell targets for Triple-Negative Breast Cancer (TNBC) vaccination, we examined the effect of the pro-inflammatory cytokine interferon-γ (IFNγ) on the transcriptome, proteome, and immunopeptidome of the TNBC cell line MDA-MB-231. Using high resolution mass spectrometry, we identified a total of 84,131 peptides from 9,647 source proteins presented by human leukocyte antigen (HLA)-I and HLA-II alleles. Treatment with IFNγ resulted in a remarkable remolding of the immunopeptidome, with only a 34% overlap between untreated and treated cells across the HLA-I immunopeptidome, and expression of HLA-II only detected on treated cells. IFNγ increased the overall number, diversity, and abundance of peptides contained within the immunopeptidome, as well increasing the coverage of individual source antigens. The suite of peptides displayed under conditions of IFNγ treatment included many known tumor associated antigens, with the HLA-II repertoire sampling 17 breast cancer associated antigens absent from those sampled by HLA-I molecules. Quantitative analysis of the transcriptome (10,248 transcripts) and proteome (6,783 proteins) of these cells revealed 229 common proteins and transcripts that were differentially expressed. Most of these represented downstream targets of IFNγ signaling including components of the antigen processing machinery such as tapasin and HLA molecules. However, these changes in protein expression did not explain the dramatic modulation of the immunopeptidome following IFNγ treatment. These results demonstrate the high degree of plasticity in the immunopeptidome of TNBC cells following cytokine stimulation and provide evidence that under pro-inflammatory conditions a greater variety of potential HLA-I and HLA-II vaccine targets are unveiled to the immune system. This has important implications for the development of personalized cancer vaccination strategies.
Collapse
Affiliation(s)
- Gabriel Goncalves
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Kerry A Mullan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Divya Duscharla
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Rochelle Ayala
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nathan P Croft
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Pouya Faridi
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
196
|
Ray SK, Meshram Y, Mukherjee S. Cancer Immunology and CAR-T Cells: A Turning Point Therapeutic Approach in Colorectal Carcinoma with Clinical Insight. Curr Mol Med 2021; 21:221-236. [PMID: 32838717 DOI: 10.2174/1566524020666200824103749] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/24/2020] [Accepted: 08/28/2020] [Indexed: 12/24/2022]
Abstract
Cancer immunotherapy endeavours in harnessing the delicate strength and specificity of the immune system for therapy of different malignancies, including colorectal carcinoma. The recent challenge for cancer immunotherapy is to practice and develop molecular immunology tools to create tactics that efficiently and securely boost antitumor reactions. After several attempts of deceptive outcomes, the wave has lastly altered and immunotherapy has become a clinically confirmed treatment for several cancers. Immunotherapeutic methods include the administration of antibodies or modified proteins that either block cellular activity or co-stimulate cells through immune control pathways, cancer vaccines, oncolytic bacteria, ex vivo activated adoptive transfer of T cells and natural killer cells. Engineered T cells are used to produce a chimeric antigen receptor (CAR) to treat different malignancies, including colorectal carcinoma in a recent decade. Despite the considerable early clinical success, CAR-T therapies are associated with some side effects and sometimes display minimal efficacy. It gives special emphasis on the latest clinical evidence with CAR-T technology and also other related immunotherapeutic methods with promising performance, and highlighted how this therapy can affect the therapeutic outcome and next upsurge as a key clinical aspect of colorectal carcinoma. In this review, we recapitulate the current developments produced to improve the efficacy and specificity of CAR-T therapies in colon cancer.
Collapse
Affiliation(s)
- Suman K Ray
- Independent Researcher, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| | - Yamini Meshram
- Independent Researcher, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| |
Collapse
|
197
|
Wu L, Xie S, Wang L, Li J, Han L, Qin B, Zhang G, Wu Q, Gao W, Zhang L, Wei H, Liu T, Jiao S. The Ratio of IP10 to IL-8 in Plasma Reflects and Predicts the Response of Patients With Lung Cancer to Anti-PD-1 Immunotherapy Combined With Chemotherapy. Front Immunol 2021; 12:665147. [PMID: 33912192 PMCID: PMC8072287 DOI: 10.3389/fimmu.2021.665147] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/19/2021] [Indexed: 12/28/2022] Open
Abstract
Antibodies against checkpoint inhibitors such as anti-programmed cell death protein 1 (PD-1) and its ligand anti-programmed death ligand 1 (PD-L1) have shown clinical efficacy in the treatment of multiple cancers. However, there are only a few studies on biomarkers for these targeted immunotherapies, especially in peripheral blood. We first studied the role of interferon-induced protein-10 (IP10) combined with interleukin-8 (IL-8) in peripheral blood as a biomarker of immune-combined chemotherapy for lung cancer and multiple cancers. We used the high-throughput cytokine detection platform and performed bioinformatics analysis of blood samples from 67 patients with lung cancer and 24 with multiple cancers. We selected the ratio of IP-10 to IL-8 (S2/S0, ratio of changes at 10-12 weeks after treatment to baseline) to predict the response to immunotherapy combined with chemotherapy and evaluate the survival of lung cancer patients and mixed cancer patients. In patients treated with the combination therapy, the specificity and sensitivity of IL-8 and IP10 together as predictors were improved compared with those of IL-8 and IP10 alone. Our conclusion was verified in not only lung cancer but also multiple cancer research cohorts. We then further validated the predictive effect of biomarkers in different histologic types of NSCLC and chemotherapy combined with different PD-1 drug groups. Subsequent validation should be conducted with a larger number of patients. The proposed marker IP10 (S2/S0)/IL-8 (S2/S0), as a predictive immunotherapy biomarker, has broad prospects for future clinical applications in treating patients with multiple intractable neoplasms.
Collapse
Affiliation(s)
- Liangliang Wu
- Institute of oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Shengzhi Xie
- Department of Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Lingxiong Wang
- Institute of oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jinfeng Li
- Institute of oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Lu Han
- Department of Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Boyu Qin
- Institute of oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Guoqing Zhang
- Department of Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Qiyan Wu
- Institute of oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Wenjuan Gao
- Institute of oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Lijun Zhang
- Institute of oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Huafeng Wei
- Department of Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Tianyi Liu
- Institute of oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Shunchang Jiao
- Department of Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
198
|
Liberini V, Laudicella R, Capozza M, Huellner MW, Burger IA, Baldari S, Terreno E, Deandreis D. The Future of Cancer Diagnosis, Treatment and Surveillance: A Systemic Review on Immunotherapy and Immuno-PET Radiotracers. Molecules 2021; 26:2201. [PMID: 33920423 PMCID: PMC8069316 DOI: 10.3390/molecules26082201] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy is an effective therapeutic option for several cancers. In the last years, the introduction of checkpoint inhibitors (ICIs) has shifted the therapeutic landscape in oncology and improved patient prognosis in a variety of neoplastic diseases. However, to date, the selection of the best patients eligible for these therapies, as well as the response assessment is still challenging. Patients are mainly stratified using an immunohistochemical analysis of the expression of antigens on biopsy specimens, such as PD-L1 and PD-1, on tumor cells, on peritumoral immune cells and/or in the tumor microenvironment (TME). Recently, the use and development of imaging biomarkers able to assess in-vivo cancer-related processes are becoming more important. Today, positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) is used routinely to evaluate tumor metabolism, and also to predict and monitor response to immunotherapy. Although highly sensitive, FDG-PET in general is rather unspecific. Novel radiopharmaceuticals (immuno-PET radiotracers), able to identify specific immune system targets, are under investigation in pre-clinical and clinical settings to better highlight all the mechanisms involved in immunotherapy. In this review, we will provide an overview of the main new immuno-PET radiotracers in development. We will also review the main players (immune cells, tumor cells and molecular targets) involved in immunotherapy. Furthermore, we report current applications and the evidence of using [18F]FDG PET in immunotherapy, including the use of artificial intelligence (AI).
Collapse
MESH Headings
- Antineoplastic Agents, Immunological/therapeutic use
- Artificial Intelligence
- B7-H1 Antigen/genetics
- B7-H1 Antigen/immunology
- Fluorodeoxyglucose F18/administration & dosage
- Fluorodeoxyglucose F18/chemistry
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Immune Checkpoint Inhibitors/chemistry
- Immune Checkpoint Inhibitors/metabolism
- Immunotherapy, Adoptive/methods
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Neoplasms/diagnostic imaging
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/therapy
- Positron-Emission Tomography/methods
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/immunology
- Radiopharmaceuticals/administration & dosage
- Radiopharmaceuticals/chemical synthesis
- Signal Transduction
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Virginia Liberini
- Department of Medical Science, Division of Nuclear Medicine, University of Torino, 10126 Torino, Italy;
| | - Riccardo Laudicella
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, 98125 Messina, Italy; (R.L.); (S.B.)
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland; (M.W.H.); (I.A.B.)
| | - Martina Capozza
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (M.C.); (E.T.)
| | - Martin W. Huellner
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland; (M.W.H.); (I.A.B.)
| | - Irene A. Burger
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland; (M.W.H.); (I.A.B.)
- Department of Nuclear Medicine, Kantonsspital Baden, 5004 Baden, Switzerland
| | - Sergio Baldari
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, 98125 Messina, Italy; (R.L.); (S.B.)
| | - Enzo Terreno
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (M.C.); (E.T.)
| | - Désirée Deandreis
- Department of Medical Science, Division of Nuclear Medicine, University of Torino, 10126 Torino, Italy;
| |
Collapse
|
199
|
Xu X, Zhou Z, Li H, Fan Y. Towards customized cancer vaccines: a promising filed in personalized cancer medicine. Expert Rev Vaccines 2021; 20:545-557. [PMID: 33769185 DOI: 10.1080/14760584.2021.1909479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Cancer remains a major source of disease burden worldwide. Although cancer vaccines have been developed, most currently available cancer vaccines have limited therapeutic efficacy. Recent research using novel sequencing and bioinformatic tools has led scientists to realize that each tumor harbors a unique set of genetic mutations that can manifest as tumor-specific neoantigens. Therefore, it would be useful to develop personalized cancer vaccines that target neoantigens, which might improve the efficacy of these cancer treatments. AREAS COVERED This review covers cancer vaccine development and the emerging field of personalized cancer vaccines, with a discussion of future clinical trials for this promising treatment strategy. EXPERT OPINION Developing vaccines to treat tumors is one of the most promising and exciting fields in cancer research. However, cancer vaccines have shown limited efficacy in clinical trials for several decades, which may be related to the unique and complex processes underlying tumor development and progression. Recent studies have indicated that tumors express highly specific neoantigens, which are distinct from self-antigens. Thus, developing cancer vaccines that target these tumor-specific neoantigens is a promising strategy for developing personalized cancer vaccines.
Collapse
Affiliation(s)
- Xiaoling Xu
- Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital),Hangzhou City, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences,Hangzhou City, China
| | - Zichao Zhou
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences,Hangzhou City, China.,Department of Thoracic Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou City, China
| | - Hui Li
- Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital),Hangzhou City, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences,Hangzhou City, China
| | - Yun Fan
- Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital),Hangzhou City, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences,Hangzhou City, China
| |
Collapse
|
200
|
Paston SJ, Brentville VA, Symonds P, Durrant LG. Cancer Vaccines, Adjuvants, and Delivery Systems. Front Immunol 2021; 12:627932. [PMID: 33859638 PMCID: PMC8042385 DOI: 10.3389/fimmu.2021.627932] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/12/2021] [Indexed: 12/11/2022] Open
Abstract
Vaccination was first pioneered in the 18th century by Edward Jenner and eventually led to the development of the smallpox vaccine and subsequently the eradication of smallpox. The impact of vaccination to prevent infectious diseases has been outstanding with many infections being prevented and a significant decrease in mortality worldwide. Cancer vaccines aim to clear active disease instead of aiming to prevent disease, the only exception being the recently approved vaccine that prevents cancers caused by the Human Papillomavirus. The development of therapeutic cancer vaccines has been disappointing with many early cancer vaccines that showed promise in preclinical models often failing to translate into efficacy in the clinic. In this review we provide an overview of the current vaccine platforms, adjuvants and delivery systems that are currently being investigated or have been approved. With the advent of immune checkpoint inhibitors, we also review the potential of these to be used with cancer vaccines to improve efficacy and help to overcome the immune suppressive tumor microenvironment.
Collapse
Affiliation(s)
| | | | - Peter Symonds
- Biodiscovery Institute, Scancell Limited, Nottingham, United Kingdom
| | - Lindy G. Durrant
- Biodiscovery Institute, University of Nottingham, Faculty of Medicine and Health Sciences, Nottingham, United Kingdom
| |
Collapse
|