151
|
Xu J, Cortellino S, Tricarico R, Chang WC, Scher G, Devarajan K, Slifker M, Moore R, Bassi MR, Caretti E, Clapper M, Cooper H, Bellacosa A. Thymine DNA Glycosylase (TDG) is involved in the pathogenesis of intestinal tumors with reduced APC expression. Oncotarget 2017; 8:89988-89997. [PMID: 29163805 PMCID: PMC5685726 DOI: 10.18632/oncotarget.21219] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/21/2017] [Indexed: 12/22/2022] Open
Abstract
Thymine DNA Glycosylase (TDG) is a base excision repair enzyme that acts as a thymine and uracil DNA N-glycosylase on G:T and G:U mismatches, thus protecting CpG sites in the genome from mutagenesis by deamination. In addition, TDG has an epigenomic function by removing the novel cytosine derivatives 5-formylcytosine and 5-carboxylcytosine (5caC) generated by Ten-Eleven Translocation (TET) enzymes during active DNA demethylation. We and others previously reported that TDG is essential for mammalian development. However, its involvement in tumor formation is unknown. To study the role of TDG in tumorigenesis, we analyzed the effects of its inactivation in a well-characterized model of tumor predisposition, the ApcMin mouse strain. Mice bearing a conditional Tdgflox allele were crossed with Fabpl::Cre transgenic mice, in the context of the ApcMin mutation, in order to inactivate Tdg in the small intestinal and colonic epithelium. We observed an approximately 2-fold increase in the number of small intestinal adenomas in the test Tdg-mutant ApcMin mice in comparison to control genotypes (p=0.0001). This increase occurred in female mice, and is similar to the known increase in intestinal adenoma formation due to oophorectomy. In the human colorectal cancer (CRC) TCGA database, the subset of patients with TDG and APC expression in the lowest quartile exhibits an excess of female cases. We conclude that TDG inactivation plays a role in intestinal tumorigenesis initiated by mutation/underexpression of APC. Our results also indicate that TDG may be involved in sex-specific protection from CRC.
Collapse
Affiliation(s)
- Jinfei Xu
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Salvatore Cortellino
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Rossella Tricarico
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Wen-Chi Chang
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Gabrielle Scher
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Karthik Devarajan
- Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Michael Slifker
- Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Robert Moore
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Maria Rosaria Bassi
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Elena Caretti
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Margie Clapper
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Harry Cooper
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Alfonso Bellacosa
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
152
|
Šebera J, Hattori Y, Sato D, Reha D, Nencka R, Kohno T, Kojima C, Tanaka Y, Sychrovský V. The mechanism of the glycosylase reaction with hOGG1 base-excision repair enzyme: concerted effect of Lys249 and Asp268 during excision of 8-oxoguanine. Nucleic Acids Res 2017; 45:5231-5242. [PMID: 28334993 PMCID: PMC5435939 DOI: 10.1093/nar/gkx157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/24/2017] [Indexed: 12/14/2022] Open
Abstract
The excision of 8-oxoguanine (oxoG) by the human 8-oxoguanine DNA glycosylase 1 (hOGG1) base-excision repair enzyme was studied by using the QM/MM (M06-2X/6-31G(d,p):OPLS2005) calculation method and nuclear magnetic resonance (NMR) spectroscopy. The calculated glycosylase reaction included excision of the oxoG base, formation of Lys249-ribose enzyme–substrate covalent adduct and formation of a Schiff base. The formation of a Schiff base with ΔG# = 17.7 kcal/mol was the rate-limiting step of the reaction. The excision of the oxoG base with ΔG# = 16.1 kcal/mol proceeded via substitution of the C1΄-N9 N-glycosidic bond with an H-N9 bond where the negative charge on the oxoG base and the positive charge on the ribose were compensated in a concerted manner by NH3+(Lys249) and CO2−(Asp268), respectively. The effect of Asp268 on the oxoG excision was demonstrated with 1H NMR for WT hOGG1 and the hOGG1(D268N) mutant: the excision of oxoG was notably suppressed when Asp268 was mutated to Asn. The loss of the base-excision function was rationalized with QM/MM calculations and Asp268 was confirmed as the electrostatic stabilizer of ribose oxocarbenium through the initial base-excision step of DNA repair. The NMR experiments and QM/MM calculations consistently illustrated the base-excision reaction operated by hOGG1.
Collapse
Affiliation(s)
- Jakub Šebera
- The Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo námestí 2, 166 10 Praha, Czech Republic
| | - Yoshikazu Hattori
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama-Boji 180, Yamashiro-cho, Tokushima 770 8514, Japan
| | - Daichi Sato
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980 8578, Japan
| | - David Reha
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Zámek 136, 373 33 Nové Hrady, Czech Republic
| | - Radim Nencka
- The Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo námestí 2, 166 10 Praha, Czech Republic
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104 0045, Japan
| | - Chojiro Kojima
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240 8501, Japan
| | - Yoshiyuki Tanaka
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama-Boji 180, Yamashiro-cho, Tokushima 770 8514, Japan.,Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980 8578, Japan
| | - Vladimír Sychrovský
- The Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Praha, Czech Republic.,Department of Electrotechnology, Electrical Engineering Czech Technical University, Technická 2, 166 27 Praha, Czech Republic
| |
Collapse
|
153
|
Li YL, Wei F, Li YP, Zhang LH, Bai YZ. A case-control study on association of nucleotide excision repair polymorphisms and its interaction with environment factors with the susceptibility to non-melanoma skin cancer. Oncotarget 2017; 8:80994-81000. [PMID: 29113361 PMCID: PMC5655256 DOI: 10.18632/oncotarget.20942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/19/2017] [Indexed: 12/24/2022] Open
Abstract
Aims To investigate the association of several single nucleotide polymorphisms (SNPs) within nucleotide excision repair (NER) gene and additional gene- gene and gene- smoking interaction with non-melanoma skin cancer (NMSC) risk in a Chinese population. Methods A total of 1322 participants (939 males, 383 females) were selected, including 660 NMSC patients and 662 control participants. Generalized multifactor dimensionality reduction (GMDR) was used to screen the best interaction combination among SNPs and smoking. Logistic regression was performed to investigate association between 4 SNPs within NER gene, additional gene- gene and gene- smoking interaction on NMSC risk. Results NMSC risk was significantly higher in carriers with G allele of rs2228527 than those with AA genotype (AG + GG versus AA), adjusted OR (95%CI) =1.76 (1.24-2.37), and higher in carriers with the G allele of rs2228529 than those with AA genotype (AG + GG versus AA), adjusted OR (95%CI) = 1.66 (1.24-2.13). However, we did not find any direct association of the rs4134822 and rs1799793 with NMSC risk after covariates adjustment. GMDR model indicated a significant interaction combination (p=0.0010), including rs2228529 and current smoking. Overall, the cross-validation consistency of this model was 9/ 10, and the testing accuracy was 60.72%. Current smokers with rs2228529- GA or GG genotype have the highest NMSC risk, compared to never- smokers with rs2228529- AA genotype, OR (95%CI) = 2.92 (1.61-4.29). Conclusions We found that the G allele of rs2228527 and the G allele of rs2228529 within NER gene, interaction between rs2228529 and current smoking were all associated with increased NMSC risk.
Collapse
Affiliation(s)
- Yan-Ling Li
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, People's Republic of China
| | - Feng Wei
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, People's Republic of China
| | - Yu-Ping Li
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, People's Republic of China
| | - Li-Hua Zhang
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, People's Republic of China
| | - Yan-Zhi Bai
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, People's Republic of China
| |
Collapse
|
154
|
Genetic variants in ERCC1 and XPC predict survival outcome of non-small cell lung cancer patients treated with platinum-based therapy. Sci Rep 2017; 7:10702. [PMID: 28878296 PMCID: PMC5587538 DOI: 10.1038/s41598-017-10800-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/15/2017] [Indexed: 01/06/2023] Open
Abstract
Nucleotide excision repair (NER) plays a vital role in platinum-induced DNA damage during chemotherapy. We hypothesize that regulatory single nucleotide polymorphisms (rSNPs) of the core NER genes modulate clinical outcome of patients with advanced non-small cell lung cancer (NSCLC) treated with platinum-based chemotherapy (PBS). We investigated associations of 25 rSNPs in eight NER genes with progression free survival (PFS) and overall survival (OS) in 710 NSCLC patients. We found that ERCC1 rs3212924 AG/GG and XPC rs2229090 GC/CC genotypes were associated with patients’ PFS (HRadj = 1.21, 95% CI = 1.03–1.43, Padj = 0.021 for ERCC1 and HRadj = 0.80, 95% CI = 0.68–0.94, Padj = 0.007 for XPC), compared with the AA and GG genotypes, respectively. The association of XPC rs2229090 was more apparent in adenocarcinoma than in squamous cell carcinoma patients. Additionally, ERCC4 rs1799798 GA/AA genotypes were associated with poorer OS (HRadj = 1.32, 95% CI = 1.04–1.69, Padj = 0.026), compared with the GG genotype. The expression quantitative trait loci analysis revealed that ERCC1 rs3212924 and XPC rs2229090 might regulate transcription of their genes, which is consistent with their associations with survival. Larger studies are needed to validate our findings with further functional studies to elucidate the mechanisms underlying these observed associations.
Collapse
|
155
|
Genome Stability by DNA Polymerase β in Neural Progenitors Contributes to Neuronal Differentiation in Cortical Development. J Neurosci 2017; 37:8444-8458. [PMID: 28765330 DOI: 10.1523/jneurosci.0665-17.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/06/2017] [Accepted: 07/27/2017] [Indexed: 01/21/2023] Open
Abstract
DNA repair is crucial for genome stability in the developing cortex, as somatic de novo mutations cause neurological disorders. However, how DNA repair contributes to neuronal development is largely unknown. To address this issue, we studied the spatiotemporal roles of DNA polymerase β (Polβ), a key enzyme in DNA base excision repair pathway, in the developing cortex using distinct forebrain-specific conditional knock-out mice, Emx1-Cre/Polβ fl/fl and Nex-Cre/Polβ fl/fl mice. Polβ expression was absent in both neural progenitors and postmitotic neurons in Emx1-Cre/Polβ fl/fl mice, whereas only postmitotic neurons lacked Polβ expression in Nex-Cre/Polβ fl/fl mice. We found that DNA double-strand breaks (DSBs) were frequently detected during replication in cortical progenitors of Emx1-Cre/Polβ fl/fl mice. Increased DSBs remained in postmitotic cells, which resulted in p53-mediated neuronal apoptosis. This neuronal apoptosis caused thinning of the cortical plate, although laminar structure was normal. In addition, accumulated DSBs also affected growth of corticofugal axons but not commissural axons. These phenotypes were not observed in Nex-Cre/Polβ fl/fl mice. Moreover, cultured Polβ-deficient neural progenitors exhibited higher sensitivity to the base-damaging agent methylmethanesulfonate, resulting in enhanced DSB formation. Similar damage was found by vitamin C treatment, which induces TET1-mediated DNA demethylation via 5-hydroxymethylcytosine. Together, genome stability mediated by Polβ-dependent base excision repair is crucial for the competence of neural progenitors, thereby contributing to neuronal differentiation in cortical development.SIGNIFICANCE STATEMENT DNA repair is crucial for development of the nervous system. However, how DNA polymerase β (Polβ)-dependent DNA base excision repair pathway contributes to the process is still unknown. We found that loss of Polβ in cortical progenitors rather than postmitotic neurons led to catastrophic DNA double-strand breaks (DSBs) during replication and p53-mediated neuronal apoptosis, which resulted in thinning of the cortical plate. The DSBs also affected corticofugal axon growth in surviving neurons. Moreover, induction of base damage and DNA demethylation intermediates in the genome increased DSBs in cultured Polβ-deficient neural progenitors. Thus, genome stability by Polβ-dependent base excision repair in neural progenitors is required for the viability and differentiation of daughter neurons in the developing nervous system.
Collapse
|
156
|
He H, Wang J, Liu T. UV-Induced RPA1 Acetylation Promotes Nucleotide Excision Repair. Cell Rep 2017; 20:2010-2025. [DOI: 10.1016/j.celrep.2017.08.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/21/2017] [Accepted: 07/14/2017] [Indexed: 12/31/2022] Open
|
157
|
Takatsuka R, Ito S, Iwai S, Kuraoka I. An assay to detect DNA-damaging agents that induce nucleotide excision-repairable DNA lesions in living human cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 820:1-7. [PMID: 28676261 DOI: 10.1016/j.mrgentox.2017.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/02/2017] [Accepted: 05/19/2017] [Indexed: 10/19/2022]
Abstract
Biochemical risk assessment studies of chemicals that induce DNA lesions are important, because lesions in genomic DNA frequently result in cancer, neurodegeneration, and aging in humans. Many classes of DNA lesions induced by chemical agents are eliminated via DNA repair mechanisms, such as nucleotide excision repair (NER) and base excision repair (BER), for the maintenance of genomic integrity. Individuals with NER-defective xeroderma pigmentosum (XP), in which bulky DNA lesions are not efficiently removed, are cancer-prone and suffer neurodegeneration. For research into cancer and neurological diseases, therefore, it might be important to identify DNA damage from agents that induce NER-repairable bulky DNA lesions. However, simple and quick assays to detect such damaging agents have not been developed using human cells. Here, we report a simple, non-isotopic assay for determining DNA damaging agents that induce NER-repairable DNA lesions by visualizing gene expression from treated fluorescent protein vectors in a mammalian cell system. This assay is based on a comparison of fluorescent protein expression in NER-proficient and NER-deficient cells. When we tested UV-irradiated fluorescent protein vectors, the fluorescent protein was observed in NER-proficient cells, but not in NER-deficient cells. Similar results were obtained for vectors treated with the anticancer drug, cisplatin. In contrast, when treated with the DNA alkylating agent methyl methanesulfonate, believed to cause BER-repairable damage, no difference in gene expression between NER-proficient and NER-deficient cells was observed. These results suggest that our assay can specifically detect DNA-damaging agents that induce NER-repairable DNA lesions, and could be used to analyze chemicals with the potential to cause cancer and neurological diseases. With further validation, the assay might be also applicable to XP diagnosis.
Collapse
Affiliation(s)
- Reine Takatsuka
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Shunsuke Ito
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Isao Kuraoka
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka, Japan.
| |
Collapse
|
158
|
Kolbanovskiy M, Chowdhury MA, Nadkarni A, Broyde S, Geacintov NE, Scicchitano DA, Shafirovich V. The Nonbulky DNA Lesions Spiroiminodihydantoin and 5-Guanidinohydantoin Significantly Block Human RNA Polymerase II Elongation in Vitro. Biochemistry 2017; 56:3008-3018. [PMID: 28514164 DOI: 10.1021/acs.biochem.7b00295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The most common, oxidatively generated lesion in cellular DNA is 8-oxo-7,8-dihydroguanine, which can be oxidized further to yield highly mutagenic spiroiminodihydantoin (Sp) and 5-guanidinohydantoin (Gh) in DNA. In human cell-free extracts, both lesions can be excised by base excision repair and global genomic nucleotide excision repair. However, it is not known if these lesions can be removed by transcription-coupled DNA repair (TCR), a pathway that clears lesions from DNA that impede RNA synthesis. To determine if Sp or Gh impedes transcription, which could make each a viable substrate for TCR, either an Sp or a Gh lesion was positioned on the transcribed strand of DNA under the control of a promoter that supports transcription by human RNA polymerase II. These constructs were incubated in HeLa nuclear extracts that contained active RNA polymerase II, and the resulting transcripts were resolved by denaturing polyacrylamide gel electrophoresis. The structurally rigid Sp strongly blocks transcription elongation, permitting 1.6 ± 0.5% nominal lesion bypass. In contrast, the conformationally flexible Gh poses less of a block to human RNAPII, allowing 9 ± 2% bypass. Furthermore, fractional lesion bypass for Sp and Gh is minimally affected by glycosylase activity found in the HeLa nuclear extract. These data specifically suggest that both Sp and Gh may well be susceptible to TCR because each poses a significant block to human RNA polymerase II progression. A more general principle is also proposed: Conformational flexibility may be an important structural feature of DNA lesions that enhances their transcriptional bypass.
Collapse
Affiliation(s)
- Marina Kolbanovskiy
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003-5180, United States
| | - Moinuddin A Chowdhury
- Department of Biology, New York University , 100 Washington Square East, New York, New York 10003-5180, United States
| | - Aditi Nadkarni
- Department of Biology, New York University , 100 Washington Square East, New York, New York 10003-5180, United States
| | - Suse Broyde
- Department of Biology, New York University , 100 Washington Square East, New York, New York 10003-5180, United States
| | - Nicholas E Geacintov
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003-5180, United States
| | - David A Scicchitano
- Department of Biology, New York University , 100 Washington Square East, New York, New York 10003-5180, United States.,Division of Science, New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Vladimir Shafirovich
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003-5180, United States
| |
Collapse
|
159
|
Tuteja R. Unraveling the importance of the malaria parasite helicases. FEBS J 2017; 284:2592-2603. [DOI: 10.1111/febs.14109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Renu Tuteja
- Parasite Biology Group; International Centre for Genetic Engineering and Biotechnology; New Delhi India
| |
Collapse
|
160
|
Li X, Xu X, Song J, Xue Q, Li C, Jiang W. Sensitive detection of T4 polynucleotide kinase activity based on multifunctional magnetic probes and polymerization nicking reactions mediated hyperbranched rolling circle amplification. Biosens Bioelectron 2017; 91:631-636. [DOI: 10.1016/j.bios.2017.01.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/22/2016] [Accepted: 01/11/2017] [Indexed: 11/26/2022]
|
161
|
Coey CT, Drohat AC. Kinetic Methods for Studying DNA Glycosylases Functioning in Base Excision Repair. Methods Enzymol 2017; 592:357-376. [PMID: 28668127 DOI: 10.1016/bs.mie.2017.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Base excision repair (BER) is a conserved and ubiquitous pathway that is initiated by DNA glycosylases, which recognize and remove damaged or mismatched nucleobases, setting the stage for restoration of the correct DNA sequence by follow-on BER enzymes. DNA glycosylases employ a nucleotide-flipping step prior to cleavage of the N-glycosyl bond, and most exhibit slow release of the abasic DNA product and/or strong product inhibition. As such, studying the catalytic mechanism of these enzymes requires care in the design, execution, and interpretation of single- and multiple-turnover kinetics experiments, which is the topic of this chapter.
Collapse
Affiliation(s)
| | - Alexander C Drohat
- University of Maryland School of Medicine, Baltimore, MD, United States; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
162
|
Khanam S, Fatima A, Jyoti RS, Ali F, Naz F, Shakya B, Siddique YH. Protective effect of capsaicin against methyl methanesulphonate induced toxicity in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg9. Chin J Nat Med 2017; 15:271-280. [DOI: 10.1016/s1875-5364(17)30044-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Indexed: 11/28/2022]
|
163
|
Increased genome instability is not accompanied by sensitivity to DNA damaging agents in aged yeast cells. DNA Repair (Amst) 2017; 54:1-7. [PMID: 28384494 DOI: 10.1016/j.dnarep.2017.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 11/21/2022]
Abstract
The budding yeast Saccharomyces cerevisiae divides asymmetrically, producing a new daughter cell from the original mother cell. While daughter cells are born with a full lifespan, a mother cell ages with each cell division and can only generate on average 25 daughter cells before dying. Aged yeast cells exhibit genomic instability, which is also a hallmark of human aging. However, it is unclear how this genomic instability contributes to aging. To shed light on this issue, we investigated endogenous DNA damage in S. cerevisiae during replicative aging and tested for age-dependent sensitivity to exogenous DNA damaging agents. Using live-cell imaging in a microfluidic device, we show that aging yeast cells display an increase in spontaneous Rad52 foci, a marker of endogenous DNA damage. Strikingly, this elevated DNA damage is not accompanied by increased sensitivity of aged yeast cells to genotoxic agents nor by global changes in the proteome or transcriptome that would indicate a specific "DNA damage signature". These results indicate that DNA repair proficiency is not compromised in aged yeast cells, suggesting that yeast replicative aging and age-associated genomic instability is likely not a consequence of an inability to repair DNA damage.
Collapse
|
164
|
Loeb LA. Human Cancers Express a Mutator Phenotype: Hypothesis, Origin, and Consequences. Cancer Res 2017; 76:2057-9. [PMID: 27197248 DOI: 10.1158/0008-5472.can-16-0794] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 11/16/2022]
Abstract
The mutator phenotype hypothesis was postulated more than 40 years ago. It was based on the multiple enzymatic steps required to precisely replicate the 6 billion bases in the human genome each time a normal cell divides. A reduction in this accuracy during tumor progression could be responsible for the striking heterogeneity of malignant cells within a tumor and for the rapidity by which cancers become resistant to therapy. Cancer Res; 76(8); 2057-9. ©2016 AACRSee related article by Loeb et al. Cancer Res. 1974;34:2311-21.
Collapse
Affiliation(s)
- Lawrence A Loeb
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington. Department of Biochemistry, University of Washington School of Medicine, Seattle, Washington.
| |
Collapse
|
165
|
Chen Y, Zhang J, Liu H, Gao Y, Li X, Zheng L, Cui R, Yao Q, Rong L, Li J, Huang Z, Ma J, Gan J. Unique 5'-P recognition and basis for dG:dGTP misincorporation of ASFV DNA polymerase X. PLoS Biol 2017; 15:e1002599. [PMID: 28245220 PMCID: PMC5330486 DOI: 10.1371/journal.pbio.1002599] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/20/2017] [Indexed: 12/22/2022] Open
Abstract
African swine fever virus (ASFV) can cause highly lethal disease in pigs and is becoming a global threat. ASFV DNA Polymerase X (AsfvPolX) is the most distinctive DNA polymerase identified to date; it lacks two DNA-binding domains (the thumb domain and 8-KD domain) conserved in the homologous proteins. AsfvPolX catalyzes the gap-filling reaction during the DNA repair process of the ASFV virus genome; it is highly error prone and plays an important role during the strategic mutagenesis of the viral genome. The structural basis underlying the natural substrate binding and the most frequent dG:dGTP misincorporation of AsfvPolX remain poorly understood. Here, we report eight AsfvPolX complex structures; our structures demonstrate that AsfvPolX has one unique 5′-phosphate (5′-P) binding pocket, which can favor the productive catalytic complex assembly and enhance the dGTP misincorporation efficiency. In combination with mutagenesis and in vitro catalytic assays, our study also reveals the functional roles of the platform His115-Arg127 and the hydrophobic residues Val120 and Leu123 in dG:dGTP misincorporation and can provide information for rational drug design to help combat ASFV in the future. The African swine fever virus genome encodes the most distinctive DNA polymerase known, AsfvPolX. A structural and functional study reveals the basis for its strategic error-prone misincorporation of dGTP opposite a dG residue. African swine fever virus (ASFV) is highly contagious and can cause lethal disease in pigs. AsfvPolX catalyzes the gap-filling reaction during the DNA repair process of the virus genome; it is highly error prone and plays an important role in the strategic mutagenesis of the virus genome. Unlike the homologous proteins, AsfvPolX has several unique structural features, including a 5′-P binding pocket, a His115-Arg127 platform, and hydrophobic residues Val120 and Leu123, which can all affect the catalytic efficiency (especially during dG:dGTP misincorporation) of AsfvPolX. These properties, especially the 5′-P binding pocket, provide an ideal structural basis for designing of small molecules, which can specifically inhibit the activity of AsfvPolX and disrupt the DNA repair process of the ASFV genome.
Collapse
Affiliation(s)
- Yiqing Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Hehua Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanqing Gao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xuhang Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Lina Zheng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ruixue Cui
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Qingqing Yao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Liang Rong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhen Huang
- Department of Chemistry, Georgia State University, Atlanta, Georgia, United States of America
- College of Life Sciences, Sichuan University, Chengdu, China
- * E-mail: (ZH); (JBM); (JHG)
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (ZH); (JBM); (JHG)
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (ZH); (JBM); (JHG)
| |
Collapse
|
166
|
The Intra-S Checkpoint Responses to DNA Damage. Genes (Basel) 2017; 8:genes8020074. [PMID: 28218681 PMCID: PMC5333063 DOI: 10.3390/genes8020074] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 02/03/2023] Open
Abstract
Faithful duplication of the genome is a challenge because DNA is susceptible to damage by a number of intrinsic and extrinsic genotoxins, such as free radicals and UV light. Cells activate the intra-S checkpoint in response to damage during S phase to protect genomic integrity and ensure replication fidelity. The checkpoint prevents genomic instability mainly by regulating origin firing, fork progression, and transcription of G1/S genes in response to DNA damage. Several studies hint that regulation of forks is perhaps the most critical function of the intra-S checkpoint. However, the exact role of the checkpoint at replication forks has remained elusive and controversial. Is the checkpoint required for fork stability, or fork restart, or to prevent fork reversal or fork collapse, or activate repair at replication forks? What are the factors that the checkpoint targets at stalled replication forks? In this review, we will discuss the various pathways activated by the intra-S checkpoint in response to damage to prevent genomic instability.
Collapse
|
167
|
Li H, Endutkin AV, Bergonzo C, Fu L, Grollman A, Zharkov DO, Simmerling C. DNA Deformation-Coupled Recognition of 8-Oxoguanine: Conformational Kinetic Gating in Human DNA Glycosylase. J Am Chem Soc 2017; 139:2682-2692. [PMID: 28098999 DOI: 10.1021/jacs.6b11433] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
8-Oxoguanine (8-oxoG), a mutagenic DNA lesion generated under oxidative stress, differs from its precursor guanine by only two substitutions (O8 and H7). Human 8-oxoguanine glycosylase 1 (OGG1) can locate and remove 8-oxoG through extrusion and excision. To date, it remains unclear how OGG1 efficiently distinguishes 8-oxoG from a large excess of undamaged DNA bases. We recently showed that formamidopyrimidine-DNA glycosylase (Fpg), a bacterial functional analog of OGG1, can selectively facilitate eversion of oxoG by stabilizing several intermediate states, and it is intriguing whether OGG1 also employs a similar mechanism in lesion recognition. Here, we use molecular dynamics simulations to explore the mechanism by which OGG1 discriminates between 8-oxoG and guanine along the base-eversion pathway. The MD results suggest an important role for kinking of the DNA by the glycosylase, which positions DNA phosphates in a way that assists lesion recognition during base eversion. The computational predictions were validated through experimental enzyme assays on phosphorothioate substrate analogs. Our simulations suggest that OGG1 distinguishes between 8-oxoG and G using their chemical dissimilarities not only at the active site but also at earlier stages during base eversion, and this mechanism is at least partially conserved in Fpg despite a lack of structural homology. The similarity also suggests that lesion recognition through multiple gating steps may be a common theme in DNA repair. Our results provide new insight into how enzymes can exploit kinetics and DNA conformational changes to probe the chemical modifications present in DNA lesions.
Collapse
Affiliation(s)
| | - Anton V Endutkin
- Novosibirsk State University , 2 Pirogova Street, Novosibirsk 630090, Russia.,SB RAS Institute of Chemical Biology and Fundamental Medicine , 8 Lavrentieva Avenue, Novosibirsk 630090, Russia
| | | | - Lin Fu
- School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035, P. R. China
| | | | - Dmitry O Zharkov
- Novosibirsk State University , 2 Pirogova Street, Novosibirsk 630090, Russia.,SB RAS Institute of Chemical Biology and Fundamental Medicine , 8 Lavrentieva Avenue, Novosibirsk 630090, Russia
| | | |
Collapse
|
168
|
Zhou T, Pan F, Cao Y, Han Y, Zhao J, Sun H, Zhou X, Wu X, He L, Hu Z, Chen H, Shen B, Guo Z. R152C DNA Pol β mutation impairs base excision repair and induces cellular transformation. Oncotarget 2017; 7:6902-15. [PMID: 26760506 PMCID: PMC4872757 DOI: 10.18632/oncotarget.6849] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 01/03/2016] [Indexed: 12/20/2022] Open
Abstract
DNA polymerase β (Pol β) is a key enzyme in DNA base excision repair (BER), a pathway that maintains genome integrity and stability. Pol β mutations have been detected in various types of cancers, suggesting a possible linkage between Pol β mutations and cancer. However, it is not clear whether and how Pol β mutations cause cancer onset and progression. In the current work, we show that a substitution mutation, R152C, impairs Pol β polymerase activity and BER efficiency. Cells harboring Pol β R152C are sensitive to the DNA damaging agents methyl methanesulfonate (MMS) and H2O2. Moreover, the mutant cells display a high frequency of chromatid breakages and aneuploidy and also form foci. Taken together, our data indicate that Pol β R152C can drive cellular transformation.
Collapse
Affiliation(s)
- Ting Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China 210023
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China 210023
| | - Yan Cao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China 210023
| | - Ying Han
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China 210023
| | - Jing Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China 210023
| | - Hongfang Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China 210023
| | - Xiaolong Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China 210023
| | - Xuping Wu
- The Second Hospital of Nanjing, The Second Affiliated Hospital of Southeast University, Nanjing, China 210003
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China 210023
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China 210023
| | - Haoyan Chen
- Division of Gastroenterology and Hepatology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China 200001
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA 91010
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China 210023
| |
Collapse
|
169
|
Roy S. Impact of UV Radiation on Genome Stability and Human Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 996:207-219. [DOI: 10.1007/978-3-319-56017-5_17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
170
|
Fischer JA, Caradonna SJ. Analysis of Nuclear Uracil DNA-Glycosylase (nUDG) Turnover During the Cell Cycle. Methods Mol Biol 2017; 1524:177-188. [PMID: 27815903 DOI: 10.1007/978-1-4939-6603-5_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Uracil-DNA glycosylases (UDG/UNG) are enzymes that remove uracil from DNA and initiate base-excision repair. These enzymes play a key role in maintaining genomic integrity by reducing the mutagenic events caused by G:C to A:T transition mutations. The recent finding that a family of RNA editing enzymes (AID/APOBECs) can deaminate cytosine in DNA has raised the interest in these base-excision repair enzymes. The methodology presented here focuses on determining the regulation of the nuclear isoform of uracil-DNA glycosylase (nUDG), a 36,000 Da protein. In synchronized HeLa cells, nUDG protein levels decrease to barely detectable levels during the S phase of the cell cycle. Immunoblot analysis of immunoprecipitated or affinity-isolated nUDG reveals ubiquitin-conjugated nUDG when proteolysis is inhibited by agents that block proteasomal-dependent protein degradation.
Collapse
Affiliation(s)
- Jennifer A Fischer
- Department of Molecular Biology, University of Medicine and Dentistry of New Jersey, Stratford, NJ, USA
| | - Salvatore J Caradonna
- Department of Molecular Biology, Rowan School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Two Medical Center Drive, Stratford, NJ, 08084, USA.
| |
Collapse
|
171
|
Processing of the abasic sites clustered with the benzo[a]pyrene adducts by the base excision repair enzymes. DNA Repair (Amst) 2016; 50:43-53. [PMID: 28065385 DOI: 10.1016/j.dnarep.2016.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/02/2016] [Accepted: 12/12/2016] [Indexed: 11/23/2022]
Abstract
The major enzyme in eukaryotic cells that catalyzes the cleavage of apurinic/apyrimidinic (AP or abasic) sites is AP endonuclease 1 (APE1) that cleaves the phosphodiester bond on the 5'-side of AP sites. We found that the efficiency of AP site cleavage by APE1 was affected by the benzo[a]pyrenyl-DNA adduct (BPDE-dG) in the opposite strand. AP sites directly opposite of the modified dG or shifted toward the 5' direction were hydrolyzed by APE1 with an efficiency moderately lower than the AP site in the control DNA duplex, whereas AP sites shifted toward the 3' direction were hydrolyzed significantly less efficiently. For all DNA structures except DNA with the AP site shifted by 3 nucleotides in the 3' direction (AP+3-BP-DNA), hydrolysis was more efficient in the case of (+)-trans-BPDE-dG. Using molecular dynamic simulation, we have shown that in the complex of APE1 with the AP+3-BP-DNA, the BP residue is located within the DNA bend induced by APE1 and contacts the amino acids in the enzyme catalytic center and the catalytic metal ion. The geometry of the APE1 active site is perturbed more significantly by the trans-isomer of BPDE-dG that intercalates into the APE1-DNA complex near the cleaved phosphodiester bond. The ability of DNA polymerases β (Polβ), λ and ι to catalyze gap-filling synthesis in cooperation with APE1 was also analyzed. Polβ was shown to inhibit the 3'→5' exonuclease activity of APE1 when both enzymes were added simultaneously and to insert the correct nucleotide into the gap arising after AP site hydrolysis. Therefore, further evidence for the functional cooperation of APE1 and Polβ in base excision repair was obtained.
Collapse
|
172
|
Shi Q, Maas L, Veith C, Van Schooten FJ, Godschalk RW. Acidic cellular microenvironment modifies carcinogen-induced DNA damage and repair. Arch Toxicol 2016; 91:2425-2441. [PMID: 28005143 PMCID: PMC5429366 DOI: 10.1007/s00204-016-1907-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 12/06/2016] [Indexed: 12/08/2022]
Abstract
Chronic inflammation creates an acidic microenvironment, which plays an important role in cancer development. To investigate how low pH changes the cellular response to the carcinogen benzo[a]pyrene (B[a]P), we incubated human pulmonary epithelial cells (A549 and BEAS-2B) with nontoxic doses of B[a]P using culturing media of various pH’s (extracellular pH (pHe) of 7.8, 7.0, 6.5, 6.0 and 5.5) for 6, 24 and 48 h. In most incubations (pHe 7.0–6.5), the pH in the medium returned to the physiological pH 7.8 after 48 h, but at the lowest pH (pHe < 6.0), this recovery was incomplete. Similar changes were observed for the intracellular pH (pHi). We observed that acidic conditions delayed B[a]P metabolism and at t = 48 h, and the concentration of unmetabolized extracellular B[a]P and B[a]P-7,8-diol was significantly higher in acidic samples than under normal physiological conditions (pHe 7.8) for both cell lines. Cytochrome P450 (CYP1A1/CYP1B1) expression and its activity (ethoxyresorufin-O-deethylase activity) were repressed at low pHe after 6 and 24 h, but were significantly higher at t = 48 h. In addition, a DNA repair assay showed that the incision activity was ~80% inhibited for 6 h at low pHe and concomitant exposure to B[a]P. However, at t = 48 h, the incision activity recovered to more than 100% of the initial activity observed at neutral pHe. After 48 h, higher B[a]P-DNA adduct levels and γ-H2AX foci were observed at low pH samples than at pHe 7.8. In conclusion, acidic pH delayed the metabolism of B[a]P and inhibited DNA repair, ultimately leading to increased B[a]P-induced DNA damage.
Collapse
Affiliation(s)
- Q Shi
- Department of Pharmacology and Toxicology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - L Maas
- Department of Pharmacology and Toxicology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - C Veith
- Department of Pharmacology and Toxicology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - F J Van Schooten
- Department of Pharmacology and Toxicology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - R W Godschalk
- Department of Pharmacology and Toxicology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
173
|
Cadmium(II) inhibition of human uracil-DNA glycosylase by catalytic water supplantation. Sci Rep 2016; 6:39137. [PMID: 27974818 PMCID: PMC5156901 DOI: 10.1038/srep39137] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/17/2016] [Indexed: 12/22/2022] Open
Abstract
Toxic metals are known to inhibit DNA repair but the underlying mechanisms of inhibition are still not fully understood. DNA repair enzymes such as human uracil-DNA glycosylase (hUNG) perform the initial step in the base excision repair (BER) pathway. In this work, we showed that cadmium [Cd(II)], a known human carcinogen, inhibited all activity of hUNG at 100 μM. Computational analyses based on 2 μs equilibrium, 1.6 μs steered molecular dynamics (SMD), and QM/MM MD determined that Cd(II) ions entered the enzyme active site and formed close contacts with both D145 and H148, effectively replacing the catalytic water normally found in this position. Geometry refinement by density functional theory (DFT) calculations showed that Cd(II) formed a tetrahedral structure with D145, P146, H148, and one water molecule. This work for the first time reports Cd(II) inhibition of hUNG which was due to replacement of the catalytic water by binding the active site D145 and H148 residues. Comparison of the proposed metal binding site to existing structural data showed that D145:H148 followed a general metal binding motif favored by Cd(II). The identified motif offered structural insights into metal inhibition of other DNA repair enzymes and glycosylases.
Collapse
|
174
|
Huang X, Liu C, Cui Y, Zhang H, Liu Y, Zhou X, Luo J. Association between XRCC1 and ERCC1 single-nucleotide polymorphisms and the efficacy of concurrent radiochemotherapy in patients with esophageal squamous cell carcinoma. Oncol Lett 2016; 13:704-714. [PMID: 28356949 PMCID: PMC5351381 DOI: 10.3892/ol.2016.5496] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/30/2016] [Indexed: 12/20/2022] Open
Abstract
The aim of the present study was to investigate the association between single-nucleotide polymorphisms (SNPs) in X-ray repair cross-complementing 1–399 (XRCC1-399) or excision repair cross-complementation group 1–118 (ERCC1-118) and the short-term efficacy of radiochemotherapy, tumor metastasis and relapse, as well as the survival time in patients with esophageal squamous cell carcinoma (ESCC). TaqMan probe-based quantitative polymerase chain reaction (qPCR) was conducted to examine the levels of XRCC1-399 and ERCC1-118 SNPs in the peripheral blood of 50 patients with pathologically confirmed ESCC. In addition, the associations between different genotypes and short-term therapeutic efficacy [the complete remission (CR) rate], tumor metastasis and relapse, as well as the survival time following concurrent radiochemotherapy, were determined. A total of 50 ESCC patients who received concurrent radiochemotherapy were enrolled. It was found that the short-term therapeutic efficacy (CR rate) was higher in the group of patients carrying the homozygous mutation of XRCC1-399 (A/A genotype) than in the group of patients without the XRCC1-399 mutation (G/G genotype). In addition, the CR rate was significantly increased in patients carrying one or two ERCC1-118 C alleles (C/C or C/T genotype) compared with patients lacking the C allele (T/T genotype). The differences were statistically significant (A/A vs. G/G, P=0.014; TT vs. C/T+C/C, P=0.040). During the follow-up period, the group of patients carrying the homozygous mutation of XRCC1-399 (A/A genotype) exhibited a markedly reduced risk of metastasis and relapse compared with the group of patients carrying non-mutated XRCC1-399 (G/G genotype; P=0.031). By contrast, ERCC1-118 SNP was not associated with the risk of metastasis and recurrence (P>0.05). The combined results of univariate and multivariate Cox regression analysis showed that the SNP in ERCC1-118 was closely associated with survival time. The mean survival time was significantly prolonged in patients carrying 1 or 2 C alleles (C/C or C/T genotype) compared with patients lacking the C allele (T/T genotype) [T/T vs. C/C, HR=12.96, 95% confidence interval (CI)=3.08–54.61, P<0.001; TT vs. C/T+C/C, HR=11.71, 95% CI=3.06–44.83, P<0.001]. However, XRCC1-399SNP had no effect on survival time (P>0.05). XRCCl-399 SNP was associated with the short-term therapeutic efficacy (the CR rate) and tumor metastasis/relapse in ESCC patients who received the docetaxel plus cisplatin (TP) regimen-based concurrent radiochemotherapy. By contrast, ERCC1-118 SNP was significantly associated with the short-term therapeutic efficacy (the CR rate) and survival time in ESCC patients who received TP regimen-based concurrent radiochemotherapy.
Collapse
Affiliation(s)
- Xue Huang
- Department of Radiation Oncology, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, Jiangsu 213001, P.R. China
| | - Changmin Liu
- Department of Oncology, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, P.R. China
| | - Yayun Cui
- Department of Radiation Oncology, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Heping Zhang
- Department of Radiation Oncology, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, Jiangsu 213001, P.R. China
| | - Yongping Liu
- Department of Radiation Oncology, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, Jiangsu 213001, P.R. China
| | - Xifa Zhou
- Department of Radiation Oncology, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, Jiangsu 213001, P.R. China
| | - Judong Luo
- Department of Radiation Oncology, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, Jiangsu 213001, P.R. China
| |
Collapse
|
175
|
Acuna-Hidalgo R, Veltman JA, Hoischen A. New insights into the generation and role of de novo mutations in health and disease. Genome Biol 2016; 17:241. [PMID: 27894357 PMCID: PMC5125044 DOI: 10.1186/s13059-016-1110-1] [Citation(s) in RCA: 288] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aside from inheriting half of the genome of each of our parents, we are born with a small number of novel mutations that occurred during gametogenesis and postzygotically. Recent genome and exome sequencing studies of parent-offspring trios have provided the first insights into the number and distribution of these de novo mutations in health and disease, pointing to risk factors that increase their number in the offspring. De novo mutations have been shown to be a major cause of severe early-onset genetic disorders such as intellectual disability, autism spectrum disorder, and other developmental diseases. In fact, the occurrence of novel mutations in each generation explains why these reproductively lethal disorders continue to occur in our population. Recent studies have also shown that de novo mutations are predominantly of paternal origin and that their number increases with advanced paternal age. Here, we review the recent literature on de novo mutations, covering their detection, biological characterization, and medical impact.
Collapse
Affiliation(s)
- Rocio Acuna-Hidalgo
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Joris A Veltman
- Department of Human Genetics, Donders Institute of Neuroscience, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.
- Department of Clinical Genetics, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | - Alexander Hoischen
- Department of Human Genetics, Donders Institute of Neuroscience, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
176
|
Kim JI, Tohashi K, Iwai S, Kuraoka I. Inosine-specific ribonuclease activity of natural variants of human endonuclease V. FEBS Lett 2016; 590:4354-4360. [PMID: 27800608 DOI: 10.1002/1873-3468.12470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 10/13/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022]
Abstract
Adenine bases in DNA, RNA, and nucleotides are deaminated during normal metabolism via hydrolytic and nitrosative reactions. In RNA, the deaminated product inosine is resolved by human endonuclease V, and mice deficient in this enzyme are cancer-prone. We have now produced, purified, and characterized naturally occurring variants of human endonuclease V (V29I, R112Q, K114R, H141Y, and D201N). We found that H141Y, but not other variants, is catalytically impaired, suggesting that individuals homozygous for H141Y may be predisposed to disease.
Collapse
Affiliation(s)
- Jung In Kim
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Kosuke Tohashi
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Isao Kuraoka
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| |
Collapse
|
177
|
Ivy SP, de Bono J, Kohn EC. The 'Pushmi-Pullyu' of DNA REPAIR: Clinical Synthetic Lethality. Trends Cancer 2016; 2:646-656. [PMID: 28741503 PMCID: PMC5527674 DOI: 10.1016/j.trecan.2016.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 12/31/2022]
Abstract
Maintenance of genomic integrity is critical for adaptive survival in the face of endogenous and exogenous environmental stress. The loss of stability and fidelity in the genome caused by cancer and cancer treatment provides therapeutic opportunities to leverage the critical balance between DNA injury and repair. Blocking repair and pushing damaged DNA through the cell cycle using therapeutic inhibitors exemplify the 'pushmi-pullyu' effect of disrupted DNA repair. DNA repair inhibitors (DNARi) can be separated into five biofunctional categories: sensors, mediators, transducers, effectors, and collaborators that recognize DNA damage, propagate injury DNA messages, regulate cell cycle checkpoints, and alter the microenvironment. The result is cancer therapeutics that takes advantage of clinical synthetic lethality, resulting in selective tumor cell kill. Here, we review recent considerations related to DNA repair and new DNARi agents and organize those findings to address future directions and clinical opportunities.
Collapse
Affiliation(s)
- S Percy Ivy
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Drive, Room 5W458, MSC 9739, Bethesda, MD 20852, USA.
| | - Johann de Bono
- ICR, Royal Marsden NHS Foundation Trust, Sycamore House, Downs Road, Sutton, SM2 5PT, UK
| | - Elise C Kohn
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Drive, Room 5W458, MSC 9739, Bethesda, MD 20852, USA
| |
Collapse
|
178
|
Nagel ZD, Kitange GJ, Gupta SK, Joughin BA, Chaim IA, Mazzucato P, Lauffenburger DA, Sarkaria JN, Samson LD. DNA Repair Capacity in Multiple Pathways Predicts Chemoresistance in Glioblastoma Multiforme. Cancer Res 2016; 77:198-206. [PMID: 27793847 DOI: 10.1158/0008-5472.can-16-1151] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/28/2016] [Accepted: 10/20/2016] [Indexed: 12/21/2022]
Abstract
Cancer cells can resist the effects of DNA-damaging therapeutic agents via utilization of DNA repair pathways, suggesting that DNA repair capacity (DRC) measurements in cancer cells could be used to identify patients most likely to respond to treatment. However, the limitations of available technologies have so far precluded adoption of this approach in the clinic. We recently developed fluorescence-based multiplexed host cell reactivation (FM-HCR) assays to measure DRC in multiple pathways. Here we apply a mathematical model that uses DRC in multiple pathways to predict cellular resistance to killing by DNA-damaging agents. This model, developed using FM-HCR and drug sensitivity measurements in 24 human lymphoblastoid cell lines, was applied to a panel of 12 patient-derived xenograft (PDX) models of glioblastoma to predict glioblastoma response to treatment with the chemotherapeutic DNA-damaging agent temozolomide. This work showed that, in addition to changes in O6-methylguanine DNA methyltransferase (MGMT) activity, small changes in mismatch repair (MMR), nucleotide excision repair (NER), and homologous recombination (HR) capacity contributed to acquired temozolomide resistance in PDX models and led to reduced relative survival prolongation following temozolomide treatment of orthotopic mouse models in vivo Our data indicate that measuring the combined status of MMR, HR, NER, and MGMT provided a more robust prediction of temozolomide resistance than assessments of MGMT activity alone. Cancer Res; 77(1); 198-206. ©2016 AACR.
Collapse
Affiliation(s)
- Zachary D Nagel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Gaspar J Kitange
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Shiv K Gupta
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Brian A Joughin
- David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts
| | - Isaac A Chaim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Patrizia Mazzucato
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
179
|
Vaz B, Popovic M, Newman JA, Fielden J, Aitkenhead H, Halder S, Singh AN, Vendrell I, Fischer R, Torrecilla I, Drobnitzky N, Freire R, Amor DJ, Lockhart PJ, Kessler BM, McKenna GW, Gileadi O, Ramadan K. Metalloprotease SPRTN/DVC1 Orchestrates Replication-Coupled DNA-Protein Crosslink Repair. Mol Cell 2016; 64:704-719. [PMID: 27871366 PMCID: PMC5128727 DOI: 10.1016/j.molcel.2016.09.032] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/15/2016] [Accepted: 09/22/2016] [Indexed: 01/12/2023]
Abstract
The cytotoxicity of DNA-protein crosslinks (DPCs) is largely ascribed to their ability to block the progression of DNA replication. DPCs frequently occur in cells, either as a consequence of metabolism or exogenous agents, but the mechanism of DPC repair is not completely understood. Here, we characterize SPRTN as a specialized DNA-dependent and DNA replication-coupled metalloprotease for DPC repair. SPRTN cleaves various DNA binding substrates during S-phase progression and thus protects proliferative cells from DPC toxicity. Ruijs-Aalfs syndrome (RJALS) patient cells with monogenic and biallelic mutations in SPRTN are hypersensitive to DPC-inducing agents due to a defect in DNA replication fork progression and the inability to eliminate DPCs. We propose that SPRTN protease represents a specialized DNA replication-coupled DPC repair pathway essential for DNA replication progression and genome stability. Defective SPRTN-dependent clearance of DPCs is the molecular mechanism underlying RJALS, and DPCs are contributing to accelerated aging and cancer. DNA-protein crosslinks (DPCs) stall DNA replication and induce genomic instability SPARTAN (SPRTN) is a DNA replication-coupled metalloprotease which proteolyses DPCs SPRTN metalloprotease is a fundamental enzyme in DPC repair pathway Ruijs-Aalfs syndrome is caused by a defect in DPC repair due to mutations in SPRTN
Collapse
Affiliation(s)
- Bruno Vaz
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Marta Popovic
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Joseph A Newman
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK
| | - John Fielden
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Hazel Aitkenhead
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK
| | - Swagata Halder
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Abhay Narayan Singh
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Iolanda Vendrell
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Roman Fischer
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Ignacio Torrecilla
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Neele Drobnitzky
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n, 38320 La Laguna, Tenerife, Spain
| | - David J Amor
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Paul J Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Benedikt M Kessler
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Gillies W McKenna
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Opher Gileadi
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK
| | - Kristijan Ramadan
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
180
|
Abstract
Our understanding of the chronology of human evolution relies on the “molecular clock” provided by the steady accumulation of substitutions on an evolutionary lineage. Recent analyses of human pedigrees have called this understanding into question by revealing unexpectedly low germline mutation rates, which imply that substitutions accrue more slowly than previously believed. Translating mutation rates estimated from pedigrees into substitution rates is not as straightforward as it may seem, however. We dissect the steps involved, emphasizing that dating evolutionary events requires not “a mutation rate” but a precise characterization of how mutations accumulate in development in males and females—knowledge that remains elusive.
Collapse
Affiliation(s)
- Priya Moorjani
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
- * E-mail: (PM); (ZG); (MP)
| | - Ziyue Gao
- Howard Hughes Medical Institute & Dept. of Genetics, Stanford University, Stanford, California, United States of America
- * E-mail: (PM); (ZG); (MP)
| | - Molly Przeworski
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- * E-mail: (PM); (ZG); (MP)
| |
Collapse
|
181
|
Abstract
Biological electron transfer reactions between metal cofactors are critical to many essential processes within the cell. Duplex DNA is, moreover, capable of mediating the transport of charge through its π-stacked nitrogenous bases. Increasingly, [4Fe4S] clusters, generally redox-active cofactors, have been found to be associated with enzymes involved in DNA processing. DNA-binding enzymes containing [4Fe4S] clusters can thus utilize DNA charge transport (DNA CT) for redox signaling to coordinate reactions over long molecular distances. In particular, DNA CT signaling may represent the first step in the search for DNA lesions by proteins containing [4Fe4S] clusters that are involved in DNA repair. Here we describe research carried out to examine the chemical characteristics and biological consequences of DNA CT. We are finding that DNA CT among metalloproteins represents powerful chemistry for redox signaling at long range within the cell.
Collapse
Affiliation(s)
- Elizabeth O’Brien
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena CA 91125
| | - Rebekah M.B. Silva
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena CA 91125
| | - Jacqueline K. Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena CA 91125
| |
Collapse
|
182
|
Abstract
The host takes use of pattern recognition receptors (PRRs) to defend against pathogen invasion or cellular damage. Among microorganism-associated molecular patterns detected by host PRRs, nucleic acids derived from bacteria or viruses are tightly supervised, providing a fundamental mechanism of host defense. Pathogenic DNAs are supposed to be detected by DNA sensors that induce the activation of NFκB or TBK1-IRF3 pathway. DNA sensor cGAS is widely expressed in innate immune cells and is a key sensor of invading DNAs in several cell types. cGAS binds to DNA, followed by a conformational change that allows the synthesis of cyclic guanosine monophosphate–adenosine monophosphate (cGAMP) from adenosine triphosphate and guanosine triphosphate. cGAMP is a strong activator of STING that can activate IRF3 and subsequent type I interferon production. Here we describe recent progresses in DNA sensors especially cGAS in the innate immune responses against pathogenic DNAs.
Collapse
|
183
|
Prasad R, Poltoratsky V, Hou EW, Wilson SH. Rev1 is a base excision repair enzyme with 5'-deoxyribose phosphate lyase activity. Nucleic Acids Res 2016; 44:10824-10833. [PMID: 27683219 PMCID: PMC5159550 DOI: 10.1093/nar/gkw869] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/16/2016] [Accepted: 09/21/2016] [Indexed: 12/28/2022] Open
Abstract
Rev1 is a member of the Y-family of DNA polymerases and is known for its deoxycytidyl transferase activity that incorporates dCMP into DNA and its ability to function as a scaffold factor for other Y-family polymerases in translesion bypass events. Rev1 also is involved in mutagenic processes during somatic hypermutation of immunoglobulin genes. In light of the mutation pattern consistent with dCMP insertion observed earlier in mouse fibroblast cells treated with a base excision repair-inducing agent, we questioned whether Rev1 could also be involved in base excision repair (BER). Here, we uncovered a weak 5′-deoxyribose phosphate (5′-dRP) lyase activity in mouse Rev1 and demonstrated the enzyme can mediate BER in vitro. The full-length Rev1 protein and its catalytic core domain are similar in their ability to support BER in vitro. The dRP lyase activity in both of these proteins was confirmed by NaBH4 reduction of the Schiff base intermediate and kinetics studies. Limited proteolysis, mass spectrometry and deletion analysis localized the dRP lyase active site to the C-terminal segment of Rev1's catalytic core domain. These results suggest that Rev1 could serve as a backup polymerase in BER and could potentially contribute to AID-initiated antibody diversification through this activity.
Collapse
Affiliation(s)
- Rajendra Prasad
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F3-01, Research Triangle Park, NC 27709, USA
| | - Vladimir Poltoratsky
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F3-01, Research Triangle Park, NC 27709, USA
| | - Esther W Hou
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F3-01, Research Triangle Park, NC 27709, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F3-01, Research Triangle Park, NC 27709, USA
| |
Collapse
|
184
|
Ge Y, Wang Y, Shao W, Jin J, Du M, Ma G, Chu H, Wang M, Zhang Z. Rare variants in BRCA2 and CHEK2 are associated with the risk of urinary tract cancers. Sci Rep 2016; 6:33542. [PMID: 27632928 PMCID: PMC5025839 DOI: 10.1038/srep33542] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/30/2016] [Indexed: 01/07/2023] Open
Abstract
Previous studies have shown that two rare variants, rs11571833 in BRCA2 and rs17879961 in CHEK2 were associated with lung cancer. However, the associations between these two variants and urinary tract cancers risk remain largely unexplored. We applied imputation of three genome-wide association studies published in the database of Genotypes and Phenotypes (dbGaP). Unconditional logistic regression analysis and meta-analysis were performed to assess the association between these two variants and the risk of urinary tract cancers. Our results showed that rs11571833[T] had an effect on urinary tract cancers predisposition (ORmeta = 1.45, Pmeta = 0.013), especially associated with increased the risk of bladder cancer (ORmeta = 1.60, Pmeta = 0.010). Moreover, rs17879961[C] had a protective effect on the urinary tract cancers (ORmeta = 0.67, Pmeta = 1.0 × 10(-3)) and was mostly associated with a lower incidence of renal cell carcinoma (ORmeta = 0.51, Pmeta = 2.0 × 10(-3)). Together, our study indicates that BRCA2 and CHEK2 play an important role in the genetic susceptibility to urinary tract cancers.
Collapse
Affiliation(s)
- Yuqiu Ge
- Department of Environmental Genomics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yunyan Wang
- Department of Urology, Huai-An First People's Hospital Affiliated to Nanjing Medical University, Huai-An, China
| | - Wei Shao
- Department of Environmental Genomics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jing Jin
- Department of Environmental Genomics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Gaoxiang Ma
- Department of Environmental Genomics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
185
|
Pollum M, Ashwood B, Jockusch S, Lam M, Crespo-Hernández CE. Unintended Consequences of Expanding the Genetic Alphabet. J Am Chem Soc 2016; 138:11457-60. [DOI: 10.1021/jacs.6b06822] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Marvin Pollum
- Department
of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Brennan Ashwood
- Department
of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Steffen Jockusch
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Minh Lam
- Department
of Dermatology, Case Western Reserve School of Medicine, Cleveland, Ohio 44106, United States
| | | |
Collapse
|
186
|
|
187
|
Abstract
Ten eleven translocation (TET) genes, and especially TET2, are frequently mutated in various cancers, but how the TET proteins contribute to the onset and maintenance of these malignancies is largely unknown. In this review, Rasmussen and Helin highlight recent advances in understanding the physiological function of the TET proteins and their role in regulating DNA methylation and transcription. The pattern of DNA methylation at cytosine bases in the genome is tightly linked to gene expression, and DNA methylation abnormalities are often observed in diseases. The ten eleven translocation (TET) enzymes oxidize 5-methylcytosines (5mCs) and promote locus-specific reversal of DNA methylation. TET genes, and especially TET2, are frequently mutated in various cancers, but how the TET proteins contribute to prevent the onset and maintenance of these malignancies is largely unknown. Here, we highlight recent advances in understanding the physiological function of the TET proteins and their role in regulating DNA methylation and transcription. In addition, we discuss some of the key outstanding questions in the field.
Collapse
Affiliation(s)
- Kasper Dindler Rasmussen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; Centre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark; Centre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark; The Danish Stem Cell Center (Danstem), University of Copenhagen, 2200 Copenhagen, Denmark; Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
188
|
Drohat AC, Coey CT. Role of Base Excision "Repair" Enzymes in Erasing Epigenetic Marks from DNA. Chem Rev 2016; 116:12711-12729. [PMID: 27501078 DOI: 10.1021/acs.chemrev.6b00191] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Base excision repair (BER) is one of several DNA repair pathways found in all three domains of life. BER counters the mutagenic and cytotoxic effects of damage that occurs continuously to the nitrogenous bases in DNA, and its critical role in maintaining genomic integrity is well established. However, BER also performs essential functions in processes other than DNA repair, where it acts on naturally modified bases in DNA. A prominent example is the central role of BER in mediating active DNA demethylation, a multistep process that erases the epigenetic mark 5-methylcytosine (5mC), and derivatives thereof, converting them back to cytosine. Herein, we review recent advances in the understanding of how BER mediates this critical component of epigenetic regulation in plants and animals.
Collapse
Affiliation(s)
- Alexander C Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| | - Christopher T Coey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| |
Collapse
|
189
|
Mullane SA, Werner L, Guancial EA, Lis RT, Stack EC, Loda M, Kantoff PW, Choueiri TK, Rosenberg J, Bellmunt J. Expression Levels of DNA Damage Repair Proteins Are Associated With Overall Survival in Platinum-Treated Advanced Urothelial Carcinoma. Clin Genitourin Cancer 2016; 14:352-9. [PMID: 26778300 PMCID: PMC5508512 DOI: 10.1016/j.clgc.2015.12.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/17/2015] [Accepted: 12/19/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Combination platinum chemotherapy is standard first-line therapy for metastatic urothelial carcinoma (mUC). Defining the platinum response biomarkers for patients with mUC could establish personalize medicine and provide insights into mUC biology. Although DNA repair mechanisms have been hypothesized to mediate the platinum response, we sought to analyze whether increased expression of DNA damage genes would correlate with worse overall survival (OS) in patients with mUC. PATIENTS AND METHODS We retrospectively identified a clinically annotated cohort of patients with mUC, who had been treated with first-line platinum combination chemotherapy. A tissue microarray was constructed from formalin-fixed paraffin-embedded tissue from the primary tumor before treatment. Immunohistochemical analysis of the following DNA repair proteins was performed: ERCC1, RAD51, BRCA1/2, PAR, and PARP-1. Nuclear and cytoplasmic expression was analyzed using multispectral imaging. Nuclear staining was used for the survival analysis. Cox regression analysis was used to evaluate the associations between the percentage of positive nuclear staining and OS in multivariable analysis, controlling for known prognostic variables. RESULTS In a cohort of 104 patients with mUC, a greater percentage of nuclear staining of ERCC1 (hazard ratio [HR], 2.7; 95% confidence interval [CI], 1.5-4.9; P = .0007), RAD51 (HR, 5.6; 95% CI, 1.7-18.3; P = .005), and PAR (HR, 2.2; 95% CI, 1.1-4.4; P = .026) was associated with worse OS. BRCA1, BRCA2, and PARP-1 expression was not associated with OS (P = .76, P = .38, and P = .09, respectively). A greater percentage of combined ERCC1 and RAD51 nuclear staining was strongly associated with worse OS (P = .005). CONCLUSION A high percentage of nuclear staining of ERCC1, RAD51, and PAR, assessed by immunohistochemistry, correlated with worse OS for patients with mUC treated with first-line platinum combination chemotherapy, supporting the evidence of the DNA repair pathways' role in the prognosis of mUC. We also report new evidence that RAD51 and PAR might play a role in the platinum response. Additional prospective studies are required to determine the prognostic or predictive nature of these biomarkers in mUC.
Collapse
Affiliation(s)
- Stephanie A Mullane
- Bladder Cancer Center, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, MA
| | - Lillian Werner
- Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Elizabeth A Guancial
- Department of Medicine, Wilmot Cancer Institute, University of Rochester, Rochester, NY
| | - Rosina T Lis
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
| | - Edward C Stack
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
| | - Massimo Loda
- Department of Pathology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Philip W Kantoff
- Bladder Cancer Center, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Toni K Choueiri
- Bladder Cancer Center, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | | | - Joaquim Bellmunt
- Bladder Cancer Center, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA.
| |
Collapse
|
190
|
Liu J, Deng N, Xu Q, Sun L, Tu H, Wang Z, Xing C, Yuan Y. Polymorphisms of multiple genes involved in NER pathway predict prognosis of gastric cancer. Oncotarget 2016; 7:48130-48142. [PMID: 27340861 PMCID: PMC5217006 DOI: 10.18632/oncotarget.10173] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/04/2016] [Indexed: 12/14/2022] Open
Abstract
Nucleotide excision repair (NER) is a versatile system that repairs various DNA damage. Polymorphisms of core NER genes could change NER ability and affect gastric cancer (GC) prognosis. We systematically analyzed the association between 43 SNPs of ten key NER pathway genes (ERCC1, ERCC2, ERCC3, ERCC4, ERCC5, ERCC6, ERCC8, XPA, XPC, and DDB2) and overall survival (OS) of 373 GC patients in Chinese. Genotyping was performed by Sequenom MassARRAY platform. We found for the first time that carriers of ERCC2 rs50871 GG genotype demonstrated significantly increased hazards of death than GT/TT individuals (HR=2.55, P=0.002); ERCC6 rs1917799 heterozygote GT were associated with significantly shorter OS than wild-type TT (adjusted HR=1.68, P=0.048); patients with DDB2 rs3781619 GG genotype suffered higher hazards of death compared with AG/AA carriers (adjusted HR=2.30, P=0.003). Patients with ERCC1 rs3212961 AA/AC genotype exhibited longer OS than CC genotype (adjusted HR=0.63, P=0.028); ERCC5 rs2094258 AA/AG genotype revealed significantly favorable OS compared with GG genotype (adjusted HR=0.65, P=0.033); DDB2 rs830083 CG genotype could increase OS compared with GG genotype (adjusted HR=0.61, P=0.042). Furthermore, patients simultaneously carrying two "hazard" genotypes exhibited even significantly worse survival with HR of 3.75, 3.76 and 6.30, respectively. Similarly, combination of "favorable" genotypes predicted better prognosis with HR of 0.56, 0.49 and 0.33, respectively. In conclusion, ERCC2 rs50871 G/T, ERCC6 rs1917799 G/T, DDB2 rs3781619 A/G polymorphisms could predict shorter OS while ERCC1 rs3212961 A/C, ERCC5 rs2094258 A/G, DDB2 rs830083 C/G polymorphisms could predict longer OS of GC, which might serve as promising biomarkers for GC prognosis.
Collapse
Affiliation(s)
- Jingwei Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Na Deng
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Liping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Huakang Tu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Zhenning Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Chengzhong Xing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| |
Collapse
|
191
|
McMullen PD, Pendse S, Adeleye Y, Carmichael PL, Andersen ME, Clewell RA. Using Transcriptomics to Evaluate Thresholds in Genotoxicity Dose–Response. TOXICOGENOMICS IN PREDICTIVE CARCINOGENICITY 2016. [DOI: 10.1039/9781782624059-00185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Several genotoxic chemicals have been reported to produce threshold-shaped dose–response curves for mutation and genotoxicity assays, both in vivo and in vitro, challenging the current default practice for risk assessment of genotoxic chemicals, which assumes a linear dose–response below the lowest tested dose. Statistical methods cannot determine whether a biological threshold exists with sufficient confidence to overturn this assumption of linearity. Indeed, to truly define the shape of the dose–response curves, we must look to the underlying biology and develop targeted experiments to identify and measure the key processes governing the response of the cell to DNA damage. This chapter describes a series of studies aimed at defining the key transcriptional responses. Two approaches were taken to evaluate transcriptional responses preventing micronucleus induction: (1) comparison of gene signatures for several prototype compounds at a single chemical dose that led to a similar activation of the p53-DNA damage pathway (i.e. 1.5-fold increase in total p53); and (2) evaluation of a subset of chemicals with in-depth dose–response studies. The goal of these efforts was to determine the transcriptional pathways responsible for maintaining homeostasis at low levels of DNA damage, i.e., the biological underpinning of threshold-shaped dose–response curves for mutagenicity.
Collapse
Affiliation(s)
| | - Salil Pendse
- The Hamner Institutes for Health Sciences Research Triangle Park NC USA
| | | | | | | | | |
Collapse
|
192
|
Wang LJ, Ma F, Tang B, Zhang CY. Base-Excision-Repair-Induced Construction of a Single Quantum-Dot-Based Sensor for Sensitive Detection of DNA Glycosylase Activity. Anal Chem 2016; 88:7523-9. [DOI: 10.1021/acs.analchem.6b00664] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Li-juan Wang
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Fei Ma
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Bo Tang
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Chun-yang Zhang
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
193
|
Rozacky J, Nemec AA, Sweasy JB, Kidane D. Gastric cancer associated variant of DNA polymerase beta (Leu22Pro) promotes DNA replication associated double strand breaks. Oncotarget 2016; 6:24474-87. [PMID: 26090616 PMCID: PMC4695199 DOI: 10.18632/oncotarget.4426] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 05/31/2015] [Indexed: 12/14/2022] Open
Abstract
DNA polymerase beta (Pol β) is a key enzymefor the protection against oxidative DNA lesions via itsrole in base excision repair (BER). Approximately 1/3 of tumors studied to date express Pol β variant proteins, and several tumors overexpress Pol β. Pol β possesses DNA polymerase and dRP lyase activities, both of which are known to be important for efficient BER. The dRP lyase activity resides within the 8kDa amino terminal domain of Pol β, is responsible for removal of the 5′ phosphate group (5′-dRP). The DNA polymerase subsequently fills the gaps. Previously, we demonstrated that the human gastric cancer-associated variant of Pol β (Leu22Pro (L22P)) lacks dRP lyase function in vitro. Here, we report that L22P-expressing cells harbor significantly increased replication associated DNA double strand breaks (DSBs) and defective maintenance of the nascent DNA strand (NDS) during replication stress. Moreover, L22P-expressing cells are sensitive to PARP1 inhibitors, which suggests trapped PARP1 binds to the 5′-dRP group and blocks replications forks, resulting in fork collapse and DSBs. Our data suggest that the normal function of the dRP lyase is critical to maintain replication fork integrity and prevent replication fork collapse to DSBs and cellular transformation.
Collapse
Affiliation(s)
- Jenna Rozacky
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX, USA
| | - Antoni A Nemec
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Joann B Sweasy
- Departments of Therapeutic Radiology and Genetics, The Yale Comprehensive Cancer Center, New Haven CT, USA
| | - Dawit Kidane
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX, USA
| |
Collapse
|
194
|
Single nucleotide polymorphisms in DNA repair genes and putative cancer risk. Arch Toxicol 2016; 90:2369-88. [PMID: 27334373 DOI: 10.1007/s00204-016-1771-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/15/2016] [Indexed: 02/07/2023]
Abstract
Single nucleotide polymorphisms (SNPs) are the most frequent type of genetic alterations between individuals. An SNP located within the coding sequence of a gene may lead to an amino acid substitution and in turn might alter protein function. Such a change in protein sequence could be functionally relevant and therefore might be associated with susceptibility to human diseases, such as cancer. DNA repair mechanisms are known to play an important role in cancer development, as shown in various human cancer syndromes, which arise due to mutations in DNA repair genes. This leads to the question whether subtle genetic changes such as SNPs in DNA repair genes may contribute to cancer susceptibility. In numerous epidemiological studies, efforts have been made to associate specific SNPs in DNA repair genes with altered DNA repair and cancer. The present review describes some of the common and most extensively studied SNPs in DNA repair genes and discusses whether they are functionally relevant and subsequently increase the likelihood that cancer will develop.
Collapse
|
195
|
The FEN1 L209P mutation interferes with long-patch base excision repair and induces cellular transformation. Oncogene 2016; 36:194-207. [PMID: 27270424 PMCID: PMC5140775 DOI: 10.1038/onc.2016.188] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 12/20/2022]
Abstract
Flap endonuclease-1 (FEN1) is a multifunctional, structure-specific nuclease that has a critical role in maintaining human genome stability. FEN1 mutations have been detected in human cancer specimens and have been suggested to cause genomic instability and cancer predisposition. However, the exact relationship between FEN1 deficiency and cancer susceptibility remains unclear. In the current work, we report a novel colorectal cancer-associated FEN1 mutation, L209P. This mutant protein lacks the FEN, exonuclease (EXO) and gap endonuclease (GEN) activities of FEN1 but retains DNA-binding affinity. The L209P FEN1 variant interferes with the function of the wild-type FEN1 enzyme in a dominant-negative manner and impairs long-patch base excision repair in vitro and in vivo. Expression of L209P FEN1 sensitizes cells to DNA damage, resulting in endogenous genomic instability and cellular transformation, as well as tumor growth in a mouse xenograft model. These data indicate that human cancer-associated genetic alterations in the FEN1 gene can contribute substantially to cancer development.
Collapse
|
196
|
Sghaier MB, Ismail MB, Bouhlel I, Ghedira K, Chekir-Ghedira L. Leaf extracts from Teucrium ramosissimum protect against DNA damage in human lymphoblast cell K562 and enhance antioxidant, antigenotoxic and antiproliferative activity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 44:44-52. [PMID: 27105156 DOI: 10.1016/j.etap.2016.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 12/19/2015] [Accepted: 04/08/2016] [Indexed: 06/05/2023]
Abstract
The in vitro antioxidant, antigenotoxic and antiproliferative activities of Teucrium ramosissimum extracts were investigated. The antioxidant activities of the tested extracts were evaluated through three chemical assays: The Cupric reducing antioxidant capacity, the reducing power and the ferric reducing antioxidant power. TR1 fraction from methanol extract showed the best antioxidant activity evaluated by the CUPRAC, RP and FRAP assays with TEAC values of 4.04, 1.77 and 1.48μM respectively compared to control. Yet, TR2 fraction exhibited the lowest antioxidant effect with a TEAC values of 1.97, 0.408 and 0.35μM respectively. All the tested extracts were also found to be effective in protecting plasmid DNA against the strand breakage induced by hydroxyl radicals. Furthermore, the effects of T. ramosissimum extracts on cell proliferation were also examined. The cytotoxic study revealed that methanol extract significantly inhibited the proliferation of K562 cells (IC50=150μg/mL). The antigenotoxic properties of these extracts were investigated by assessing the induction and inhibition of the genotoxicity induced by the direct-acting mutagen, hydrogen peroxide (H2O2), using an eukaryotic system; the "Comet assay." The results showed that all the extracts inhibited the genotoxicity induced by H2O2, and particularly TR2 fraction (96.99%) and methanol extract (96.64%). The present study has demonstrated that T. ramosissimum extract possess potent antioxidant, antiproliferative and antigenotoxic activities, which could be derived from compounds such as flavonoids and polyphenols.
Collapse
Affiliation(s)
- Mohamed Ben Sghaier
- Laboratory for Forest Ecology, National Institute for Research in Rural Engineering, Water and Forests, BP 10, 2080 Ariana, University of Carthage, Tunisia.
| | - Manel Ben Ismail
- Laboratory of Biophysic, Faculty of medicine, University of Monastir, Tunisia
| | - Ines Bouhlel
- Unity of Natural Bioactive substances and Biotechnology UR12ES12, Faculty of Pharmacy, Rue Avicenne, University of Monastir, Tunisia
| | - Kamel Ghedira
- Unity of Natural Bioactive substances and Biotechnology UR12ES12, Faculty of Pharmacy, Rue Avicenne, University of Monastir, Tunisia
| | - Leila Chekir-Ghedira
- Unity of Natural Bioactive substances and Biotechnology UR12ES12, Faculty of Pharmacy, Rue Avicenne, University of Monastir, Tunisia; Laboratory of Cellular and Molecular Biology, Faculty of Dental Medicine, Rue Avicenne, University of Monastir, Tunisia
| |
Collapse
|
197
|
Wolf C, Rapp A, Berndt N, Staroske W, Schuster M, Dobrick-Mattheuer M, Kretschmer S, König N, Kurth T, Wieczorek D, Kast K, Cardoso MC, Günther C, Lee-Kirsch MA. RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA. Nat Commun 2016; 7:11752. [PMID: 27230542 PMCID: PMC4895045 DOI: 10.1038/ncomms11752] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/26/2016] [Indexed: 11/15/2022] Open
Abstract
Immune recognition of cytosolic DNA represents a central antiviral defence mechanism. Within the host, short single-stranded DNA (ssDNA) continuously arises during the repair of DNA damage induced by endogenous and environmental genotoxic stress. Here we show that short ssDNA traverses the nuclear membrane, but is drawn into the nucleus by binding to the DNA replication and repair factors RPA and Rad51. Knockdown of RPA and Rad51 enhances cytosolic leakage of ssDNA resulting in cGAS-dependent type I IFN activation. Mutations in the exonuclease TREX1 cause type I IFN-dependent autoinflammation and autoimmunity. We demonstrate that TREX1 is anchored within the outer nuclear membrane to ensure immediate degradation of ssDNA leaking into the cytosol. In TREX1-deficient fibroblasts, accumulating ssDNA causes exhaustion of RPA and Rad51 resulting in replication stress and activation of p53 and type I IFN. Thus, the ssDNA-binding capacity of RPA and Rad51 constitutes a cell intrinsic mechanism to protect the cytosol from self DNA. A central antiviral defence is immune recognition of cystolic DNA. Here the authors show that RPA and RAD51, in cooperation with TREX1, function to protect the cytosol from self-DNA.
Collapse
Affiliation(s)
- Christine Wolf
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Alexander Rapp
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Nicole Berndt
- Department of Dermatology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Wolfgang Staroske
- Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Max Schuster
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Manuela Dobrick-Mattheuer
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stefanie Kretschmer
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Nadja König
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Thomas Kurth
- Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany.,Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, Heinrich-Heine-University, Medical Faculty, 40225 Düsseldorf, Germany
| | - Karin Kast
- Department of Gynecology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - M Cristina Cardoso
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Claudia Günther
- Department of Dermatology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
198
|
Kong XJ, Wu S, Cen Y, Yu RQ, Chu X. “Light-up” Sensing of human 8-oxoguanine DNA glycosylase activity by target-induced autocatalytic DNAzyme-generated rolling circle amplification. Biosens Bioelectron 2016; 79:679-84. [DOI: 10.1016/j.bios.2015.12.106] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/26/2015] [Accepted: 12/29/2015] [Indexed: 12/11/2022]
|
199
|
Liu B, Xue Q, Tang Y, Cao J, Guengerich FP, Zhang H. Mechanisms of mutagenesis: DNA replication in the presence of DNA damage. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2016; 768:53-67. [PMID: 27234563 PMCID: PMC5237373 DOI: 10.1016/j.mrrev.2016.03.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 02/07/2016] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
Abstract
Environmental mutagens cause DNA damage that disturbs replication and produces mutations, leading to cancer and other diseases. We discuss mechanisms of mutagenesis resulting from DNA damage, from the level of DNA replication by a single polymerase to the complex DNA replisome of some typical model organisms (including bacteriophage T7, T4, Sulfolobus solfataricus, Escherichia coli, yeast and human). For a single DNA polymerase, DNA damage can affect replication in three major ways: reducing replication fidelity, causing frameshift mutations, and blocking replication. For the DNA replisome, protein interactions and the functions of accessory proteins can yield rather different results even with a single DNA polymerase. The mechanism of mutation during replication performed by the DNA replisome is a long-standing question. Using new methods and techniques, the replisomes of certain organisms and human cell extracts can now be investigated with regard to the bypass of DNA damage. In this review, we consider the molecular mechanism of mutagenesis resulting from DNA damage in replication at the levels of single DNA polymerases and complex DNA replisomes, including translesion DNA synthesis.
Collapse
Affiliation(s)
- Binyan Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China
| | - Qizhen Xue
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China
| | - Yong Tang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China
| | - F Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Huidong Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China.
| |
Collapse
|
200
|
Wang F, Zhang SD, Xu HM, Zhu JH, Hua RX, Xue WQ, Li XZ, Wang TM, He J, Jia WH. XPG rs2296147 T>C polymorphism predicted clinical outcome in colorectal cancer. Oncotarget 2016; 7:11724-11732. [PMID: 26887052 PMCID: PMC4905506 DOI: 10.18632/oncotarget.7352] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/23/2016] [Indexed: 02/07/2023] Open
Abstract
Xeroderma pigmentosum group G (XPG), one of key components of nucleotide excision repair pathway (NER), is involved in excision repair of UV-induced DNA damage. Single nucleotide polymorphisms (SNPs) in the XPG gene have been reported to associate with the clinical outcome of various cancer patients. We aimed to assess the impact of four potentially functional SNPs (rs2094258 C>T, rs2296147 T>C, rs751402 G>A, and rs873601 G>A) in the XPG gene on prognosis in colorectal cancer (CRC) patients. A total of 1901 patients diagnosed with pathologically confirmed CRC were genotyped for four XPG polymorphisms. Cox proportional hazards model analysis controlled for several confounding factors was conducted to compute hazard ratios (HRs) and 95% confidence intervals (CIs). Of the four included SNPs, only rs2296147 was shown to significantly affect progression-free survival (PFS) in CRC. Patients carrying rs2296147 CT/TT genotype had a significantly shorter median 10 years PFS than those carrying CC genotype (88.5 months vs. 118.1 months), and an increased progression risk were observed with rs2296147 (HR = 1.324, 95% CI = 1.046-1.667). Moreover, none of the four SNPs were associated with overall survival. In conclusion, our study showed that XPG rs2296147 CT/TT variants conferred significant survival disadvantage in CRC patients in term of PFS. XPG rs2296147 polymorphism could be predictive of unfavorable prognosis of CRC patients.
Collapse
Affiliation(s)
- Fang Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Shao-Dan Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Hong-Mei Xu
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Guangzhou 510120, Guangdong, China
| | - Jin-Hong Zhu
- Molecular Epidemiology Laboratory and Department of Laboratory Medicine, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China
| | - Rui-Xi Hua
- Department of Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Wen-Qiong Xue
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Xi-Zhao Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Tong-Min Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Jing He
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Wei-Hua Jia
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China
| |
Collapse
|