151
|
Cederquist K, Emanuelsson M, Göransson I, Holinski-Feder E, Müller-Koch Y, Golovleva I, Grönberg H. Mutation analysis of the MLH1, MSH2 and MSH6 genes in patients with double primary cancers of the colorectum and the endometrium: a population-based study in northern Sweden. Int J Cancer 2004; 109:370-6. [PMID: 14961575 DOI: 10.1002/ijc.11718] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant disorder that predisposes to predominantly colorectal and endometrial cancers due to germline mutations in DNA mismatch repair genes, mainly MLH1, MSH2 and in families with excess endometrial cancer also MSH6. In this population-based study, we analysed the mutation spectrum of the MLH1, MSH2 and MSH6 genes in a cohort of patients with microsatellite unstable double primary tumours of the colorectum and the endometrium by PCR, DHPLC and sequencing. Fourteen of the 23 patients (61%) had sequence variants in MLH1, MSH2 or MSH6 that likely affect the protein function. A majority (10/14) of the mutations was found among probands diagnosed before age 50. Five of the mutations (36%) were located in MLH1, 3 (21%) in MSH2 and 6 (43%) in MSH6. MSH6 seem to have larger impact in our population than in other populations, due to a founder effect since all of the MSH6 families originate from the same geographical area. MSH6 mutation carriers have later age of onset of both colorectal cancer (62 vs. 51 years) and endometrial cancer (58 vs. 48 years) and a larger proportion of endometrial cancer than MLH1 or MSH2 mutation carriers. We can conclude that patients with microsatellite unstable double primary cancers of the colorectum and the endometrium have a very high risk of carrying a mutation not only in MLH1 or MSH2 but also in MSH6, especially if they get their first cancer diagnosis before the age of 50.
Collapse
Affiliation(s)
- Kristina Cederquist
- Unit of Medical and Clinical Genetics, Department of Medical Biosciences, Umeå University, Sweden.
| | | | | | | | | | | | | |
Collapse
|
152
|
Yuan F, Gu L, Guo S, Wang C, Li GM. Evidence for involvement of HMGB1 protein in human DNA mismatch repair. J Biol Chem 2004; 279:20935-40. [PMID: 15014079 DOI: 10.1074/jbc.m401931200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Defects in human DNA mismatch repair predispose to cancer, but many components of the pathway have not been identified. We report here the identification and characterization of a novel component required for mismatch repair in human cells. A 30-kDa protein was purified to homogeneity by virtue of its ability to complement a depleted HeLa extract in repair of mismatched heteroduplexes. The complementing activity was identified as HMGB1 (the high mobility group box 1 protein), a non-histone chromatin protein that facilitates protein-protein interactions and recognizes DNA damage. Evidence is also presented that HMGB1 physically interacts with MutSalpha and is required at a step prior to the excision of mispaired nucleotide in mismatch repair.
Collapse
Affiliation(s)
- Fenghua Yuan
- Department of Pathology and Laboratory Medicine, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
153
|
Abstract
We have developed a purified system that supports mismatch-dependent 5'-->3' excision. In the presence of RPA, ATP, and a mismatch, MutSalpha activates 5'-->3' excision by EXOI, and excision terminates after removal of the mispair. MutSalpha confers high processivity on EXOI, and termination is due to RPA-dependent displacement of this processive complex from the helix and a weak ability of EXOI to reload at the RPA-bound gap in the product, as well as MutSalpha- and MutLalpha-dependent suppression of EXOI activity in the absence of a mismatch cofactor. As observed in the purified system, excision directed by a 5' strand break in HeLa nuclear extract can proceed in the absence of MutLalpha or PCNA, although 3' excision in the extract system requires both proteins.
Collapse
Affiliation(s)
- Jochen Genschel
- Department of Biochemistry, Box 3711, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
154
|
Construction of heteroduplex DNA andin vitro model for functional analysis of mismatch repair. CHINESE SCIENCE BULLETIN-CHINESE 2004. [DOI: 10.1007/bf02901740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
155
|
Lucci-Cordisco E, Rovella V, Carrara S, Percesepe A, Pedroni M, Bellacosa A, Caluseriu O, Forasarig M, Anti M, Neri G, Ponz de Leon M, Viel A, Genuardi M. Mutations of the 'minor' mismatch repair gene MSH6 in typical and atypical hereditary nonpolyposis colorectal cancer. Fam Cancer 2003; 1:93-9. [PMID: 14574004 DOI: 10.1023/a:1013872914474] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mutations of the mismatch repair (MMR) genes MLH1 and MSH2 are associated with hereditary nonpolyposis colorectal cancer (HNPCC), a highly penetrant autosomal dominant condition characterized by hypermutability of short tandemly repeated sequences in tumor DNA. Mutations of another MMR gene, MSH6, seem to be less common than MLH1 and MSH2 defects, and have been mostly observed in atypical HNPCC families, characterized by a weaker tumor family history, higher age at disease onset, and low degrees of microsatellite instability (MSI), predominantly involving mononucleotide runs. We have investigated the MSH6 gene sequence in the peripheral blood of 4 HNPCC and 20 atypical HNPCC probands. Two frameshift mutations within exon 4 were detected in 2 patients. One mutation was found in a proband from a typical HNPCC family, who had developed a colorectal cancer (CRC), a gastric cancer and a rectal adenoma. The CRC and the adenoma showed mild MSI limited to mononucleotide tracts, while the gastric carcinoma was microsatellite stable. The other mutation was detected in an atypical HNPCC proband, whose CRC showed widespread MSI involving both mono- and dinucleotide repeats. The phenotypic variability associated with MSH6 constitutional mutations represents a complicating factor for the optimization of strategies aimed at identifying candidates to MSH6 genetic testing.
Collapse
Affiliation(s)
- E Lucci-Cordisco
- Institutes of Medical Genetics, A.Gemelli School of Medicine, Catholic University, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Gazzoli I, Kolodner RD. Regulation of the human MSH6 gene by the Sp1 transcription factor and alteration of promoter activity and expression by polymorphisms. Mol Cell Biol 2003; 23:7992-8007. [PMID: 14585961 PMCID: PMC262342 DOI: 10.1128/mcb.23.22.7992-8007.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Defects in human DNA mismatch repair have been reported to underlie a variety of hereditary and sporadic cancer cases. We characterized the structure of the MSH6 promoter region to examine the mechanisms of transcriptional regulation of the MSH6 gene. The 5'-flanking region of the MSH6 gene was found to contain seven functional Sp1 transcription factor binding sites that each bind Sp1 and Sp3 and contribute to promoter activity. Transcription did not appear to require a TATA box and resulted in multiple start sites, including two major start sites and at least nine minor start sites. Three common polymorphisms were identified in the promoter region (-557 T-->G, -448 G-->A, and -159 C-->T): the latter two were always associated, and each of these functionally inactivated a different Sp1 site. The polymorphic allele -448 A -159 T was demonstrated to be a common Caucasian polymorphism found in 16% of Caucasians and resulted in a five-Sp1-site promoter that had 50% less promoter activity and was more sensitive to inactivation by DNA methylation than the more common seven Sp1 site promoter allele, which was only partially inactivated by DNA methylation. In cell lines, this five-Sp1-site polymorphism resulted in reduced MSH6 expression at both the mRNA and protein level. An additional 2% of Caucasians contained another polymorphism, -210 C-->T, which inactivated a single Sp1 site that also contributes to promoter activity.
Collapse
Affiliation(s)
- Isabella Gazzoli
- Ludwig Institute for Cancer Research. University of California-San Diego School of Medicine, CMME 3058, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | |
Collapse
|
157
|
Hirose Y, Katayama M, Stokoe D, Haas-Kogan DA, Berger MS, Pieper RO. The p38 mitogen-activated protein kinase pathway links the DNA mismatch repair system to the G2 checkpoint and to resistance to chemotherapeutic DNA-methylating agents. Mol Cell Biol 2003; 23:8306-15. [PMID: 14585987 PMCID: PMC262371 DOI: 10.1128/mcb.23.22.8306-8315.2003] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Although human cells exposed to DNA-methylating agents undergo mismatch repair (MMR)-dependent G(2) arrest, the basis for the linkage between MMR and the G(2) checkpoint is unclear. We noted that mitogen-activated protein kinase p38alpha was activated in MMR-proficient human glioma cells exposed to the chemotherapeutic methylating agent temozolomide (TMZ) but not in paired cells made MMR deficient by expression of a short inhibitory RNA (siRNA) targeted to the MMR protein Mlh1. Furthermore, activation of p38alpha in MMR-proficient cells was associated with nuclear inactivation of the cell cycle regulator Cdc25C phosphatase and its downstream target Cdc2 and with activation of the G(2) checkpoint, actions which were suppressed by the p38alpha/beta inhibitors SB203580 and SB202590 or by expression of a p38alpha siRNA. Finally, pharmacologic or genetic inhibition of p38alpha increased the sensitivity of MMR-proficient cells to the cytotoxic actions of TMZ by increasing the percentage of cells that underwent mitotic catastrophe as a consequence of G(2) checkpoint bypass. These results suggest that p38alpha links DNA MMR to the G(2) checkpoint and to resistance to chemotherapeutic DNA-methylating agents. The p38 pathway may therefore represent a new target for the development of agents to sensitize tumor cells to chemotherapeutic methylating agents.
Collapse
Affiliation(s)
- Yuichi Hirose
- UCSF Cancer Center, Department of Neurological Surgery, University of California-San Francisco, 2340 Sutter Street, San Francisco, CA 94115-0875, USA
| | | | | | | | | | | |
Collapse
|
158
|
Wang Y, Qin J. MSH2 and ATR form a signaling module and regulate two branches of the damage response to DNA methylation. Proc Natl Acad Sci U S A 2003; 100:15387-92. [PMID: 14657349 PMCID: PMC307577 DOI: 10.1073/pnas.2536810100] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mismatch repair proteins function upstream in the DNA damage signaling pathways induced by the DNA methylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). We report that MSH2 (MutS homolog 2) protein interacts with the ATR (ATM- and Rad3-related) kinase to form a signaling module and regulate the phosphorylation of Chk1 and SMC1 (structure maintenance of chromosome 1). We found that phosphorylation of Chk1 by ATR also requires checkpoint proteins Rad17 and replication protein A. In contrast, phosphorylation of SMC1 by ATR is independent of Rad17 and replication protein A, suggesting that the signaling pathway leading to SMC1 phosphorylation is distinct from that mediated by the checkpoint proteins. In addition, both MSH2 and Rad17 are required for the activation of the S-phase checkpoint to suppress DNA synthesis in response to MNNG, and phosphorylation of SMC1 is required for cellular survival. These data support a model in which MSH2 and ATR function upstream to regulate two branches of the response pathway to DNA damage caused by MNNG.
Collapse
Affiliation(s)
- Yi Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
159
|
Peterlongo P, Nafa K, Lerman GS, Glogowski E, Shia J, Ye TZ, Markowitz AJ, Guillem JG, Kolachana P, Boyd JA, Offit K, Ellis NA. MSH6 germline mutations are rare in colorectal cancer families. Int J Cancer 2003; 107:571-9. [PMID: 14520694 DOI: 10.1002/ijc.11415] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Germline mutations in MSH6 can cause HNPCC, which is associated with a tumor phenotype featuring MSI. However, tumors arising in persons with disease-causing mutations of MSH6 may or may not exhibit MSI. We used D-HPLC to screen for germline mutations in the promoter region, the coding region and the 3'-UTR of MSH6. Eighty-four families, enrolled on the basis of Amsterdam I and II criteria (HNPCC families) and less stringent criteria (HNPCC-like families), were tested for MMR gene mutations; 27 families had a disease-causing mutation in MLH1 or MSH2, and the remaining 57 families were tested for mutations in MSH6. Two protein-truncating mutations were identified in each of 2 families fulfilling the Amsterdam I criteria, being present in persons affected with early-onset colorectal cancers exhibiting MSI. Immunohistochemical analysis showed that expression of both MSH2 and MSH6 proteins was lost in the cancer cells of the 2 mutation carriers but only MSH6 protein expression was lost in 2 adenomatous polyps. A third possibly disease-causing mutation was found in a person affected with a tumor that did not exhibit MSI. In addition, we found 4 new polymorphisms and determined that neither of the 2 studied by association analysis conferred susceptibility to colorectal or endometrial cancer. Altogether, our results indicate that disease-causing germline mutations of MSH6 are rare in HNPCC and HNPCC-like families.
Collapse
Affiliation(s)
- Paolo Peterlongo
- Cell Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Arnold CN, Goel A, Boland CR. Role of hMLH1 promoter hypermethylation in drug resistance to 5-fluorouracil in colorectal cancer cell lines. Int J Cancer 2003; 106:66-73. [PMID: 12794758 DOI: 10.1002/ijc.11176] [Citation(s) in RCA: 209] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Loss of DNA mismatch repair (MMR) occurs in 10-15% of sporadic colorectal cancer, is usually caused by hMLH1 hypermethylation, and has been shown to confer resistance to various chemotherapeutic reagents, including 5-fluorouracil (5-FU). We tested the hypothesis that demethylation of the hMLH1 promoter in hypermethylated colorectal cancer cells would restore MMR proficiency and drug sensitivity to 5-FU. We used the MMR-deficient cell lines SW48, HCT116, HCT116+chr2 and the -proficient cell line HCT116+chr3. After treatment with the demethylating agent 5-Aza-2'-deoxycytidine (5 aza-dC), hMLH1 mRNA and protein expression were determined by RT-PCR and immunoblots. The methylation status for hMLH1 was investigated by methylation-specific PCR. Cells were subsequently treated with 5-FU and the growth characteristics ascertained by clonogenic assays. hMLH1 hypermethylation was reverted in SW48 cells 24 hr after treatment with 5 aza-dC and was accompanied by hMLH1 mRNA and protein reexpression. While 5 aza-dC alone did not affect the growth of SW48 cells, all other cell lines responded with a pronounced growth inhibition. 5-FU treatment strongly reduced the colony formation of HCT116+chr3 cells. These effects were significantly less in the MMR-deficient cells. Combined treatment of SW48 cells resulted in a similar growth pattern as seen in 5-FU only treated HCT116+chr3 cells. We demonstrate that in vitro resistance to 5-FU can be overcome by reexpression of hMLH1 protein through 5 aza-dC-induced demethylation in hypermethylated cell lines. Induction of the expression of methylated tumor suppressor or MMR genes could have a significant impact on the development of future chemotherapy strategies.
Collapse
Affiliation(s)
- Christian N Arnold
- Department of Medicine, University of California at San Diego, San Diego, CA, USA
| | | | | |
Collapse
|
161
|
Fishel R, Acharya S, Berardini M, Bocker T, Charbonneau N, Cranston A, Gradia S, Guerrette S, Heinen CD, Mazurek A, Snowden T, Schmutte C, Shim KS, Tombline G, Wilson T. Signaling mismatch repair: the mechanics of an adenosine-nucleotide molecular switch. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:217-24. [PMID: 12760035 DOI: 10.1101/sqb.2000.65.217] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- R Fishel
- Genetics and Molecular Biology Program, Department of Microbiology and Immunology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Fourrier L, Brooks P, Malinge JM. Binding discrimination of MutS to a set of lesions and compound lesions (base damage and mismatch) reveals its potential role as a cisplatin-damaged DNA sensing protein. J Biol Chem 2003; 278:21267-75. [PMID: 12654906 DOI: 10.1074/jbc.m301390200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The DNA mismatch repair (MMR) system plays a critical role in sensitizing both prokaryotic and eukaryotic cells to the clinically potent anticancer drug cisplatin. It is thought to mediate cytotoxicity through recognition of cisplatin DNA lesions. This drug generates a range of lesions that may also give rise to compound lesions resulting from the misincorporation of a base during translesion synthesis. Using gel mobility shift competition assays and surface plasmon resonance, we have analyzed the interaction of Escherichia coli MutS protein with site-specifically modified DNA oligonucleotides containing each of the four cisplatin cross-links or a set of compound lesions. The major 1,2-d(GpG) cisplatin intrastrand cross-link was recognized with only a 1.5-fold specificity, whereas a 47-fold specificity was found with a natural G/T containing DNA substrate. The rate of association, kon, for binding to the 1,2-d(GpG) adduct was 3.1 x 104 m-1 s-1 and the specificity of binding was essentially dependent on koff. DNA duplexes containing a single 1,2-d(ApG), 1,3-d(GpCpG) adduct, and an interstrand cross-link of cisplatin were not preferentially recognized. Among 12 DNA substrates, each containing a different cisplatin compound lesion derived from replicative misincorporation of one base opposite either of the 1,2-intrastrand adducts, 10 were specifically recognized including those that are more likely formed in vivo based on cisplatin mutation spectra. Moreover, among these lesions, two compound lesions formed when an adenine was misincorporated opposite a 1,2-d(GpG) adduct were not substrates for the MutY-dependent mismatch repair pathway. The ability of MutS to sense differentially various platinated DNA substrates suggests that cisplatin compound lesions formed during misincorporation of a base opposite either adducted base of both 1,2-intrastrand cross-links are more plausible critical lesions for MMR-mediated cisplatin cytotoxicity.
Collapse
Affiliation(s)
- Laurence Fourrier
- Centre de Biophysique Moléculaire, CNRS, Rue Charles Sadron, 45071 Orléans Cedex 02, France
| | | | | |
Collapse
|
163
|
Yeh FL, Yan HL, Wang SY, Jung TY, Hsu T. Molecular cloning of zebrafish (Danio rerio) MutS homolog 6(MSH6) and noncoordinate expression of MSH6 gene activity and G-T mismatch binding proteins in zebrafish larvae. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, COMPARATIVE EXPERIMENTAL BIOLOGY 2003; 297:118-29. [PMID: 12945748 DOI: 10.1002/jez.a.10236] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Eukaryotic MutS homolog 6(MSH6) is a DNA mismatch recognition protein associated with mismatch repair of simple base-base mispairs and small insertion-deletion loops. As replication or recombination errors generated during embryonic development of living organisms should be efficiently corrected to maintain the integrity of genetic materials, we attempted to study MSH6 gene expression in developing zebrafish (Danio rerio) and the influence of MSH6 expression on the production of mismatch binding factors. A full-length cDNA encoding zebrafish MSH6 (zMSH6) was first obtained by rapid amplification of cDNA ends (RACE). The deduced amino acid sequence of zMSH6 shares 57% and 56% identity with human and mouse MSH6, respectively. The 190-kDa recombinant zMSH6 containing 1,369 amino acids bound preferentially to a heteroduplex than to a homoduplex DNA. Northern blot and semiquantitative RT-PCR analysis detected apparent levels of zMSH6 mRNA expression in 12 and 36-hr-old zebrafish embryos, while this expression in 84-hr-old larvae was dramatically reduced to 23% of that in 12-hr-old embryos when beta-actin mRNA was constitutively synthesized. Incubation of G-T and G-G heteroduplex probes with 12 to 60-hr-old zebrafish extracts produced predominantly high-shifting binding complexes with very similar band intensity. Although low in zMSH6 mRNA production, the extracts of 84-hr-old larvae interacted significantly stronger than the embryonic extracts with both G-T and G-G mispairs, producing high and low-shifting complexes. Heteroduplex-recognition proteins in 108-hr-old larvae gave a similar pattern of mismatch binding. The intensities of G-T complexes produced by 84 and 108-hr-old zebrafish extracts were 2.5 to 3-fold higher than those of G-G complexes. Our data indicate that the production of efficient MSH6-independent binding factors, particularly G-T-specific recognition proteins, is upregulated in zebrafish at the larval stage when MSH6 gene activity is downregulated.
Collapse
Affiliation(s)
- Fu-Lung Yeh
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
164
|
Bjornson KP, Modrich P. Differential and simultaneous adenosine di- and triphosphate binding by MutS. J Biol Chem 2003; 278:18557-62. [PMID: 12624105 DOI: 10.1074/jbc.m301101200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The roles of ATP binding and hydrolysis in the function of MutS in mismatch repair are poorly understood. As one means of addressing this question, we have determined the affinities and number of adenosine di- and triphosphate binding sites within MutS. Nitrocellulose filter binding assay and equilibrium fluorescence anisotropy measurements have demonstrated that MutS has one high affinity binding site for ADP and one high affinity site for nonhydrolyzable ATP analogues per dimer equivalent. Low concentrations of 5'-adenylylimidodiphosphate (AMPPNP) promote ADP binding and a large excess of AMPPNP is required to displace ADP from the protein. Fluorescence energy transfer and filter binding assays indicate that ADP and nonhydrolyzable ATP analogues can bind simultaneously to adjacent subunits within the MutS oligomer with affinities in the low micromolar range. These findings suggest that the protein exists primarily as the ATP.MutS.ADP ternary complex in solution and that this may be the form of the protein that is involved in DNA encounters in vivo.
Collapse
Affiliation(s)
- Keith P Bjornson
- Department of Biochemistry and Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
165
|
Goodfellow PJ, Buttin BM, Herzog TJ, Rader JS, Gibb RK, Swisher E, Look K, Walls KC, Fan MY, Mutch DG. Prevalence of defective DNA mismatch repair and MSH6 mutation in an unselected series of endometrial cancers. Proc Natl Acad Sci U S A 2003; 100:5908-13. [PMID: 12732731 PMCID: PMC156300 DOI: 10.1073/pnas.1030231100] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Endometrial cancer is the most common gynecologic malignancy in the United States and the most frequent extracolonic tumor in hereditary nonpolyposis colorectal cancer (HNPCC). HNPCC patients have inherited defects in DNA mismatch repair and the microsatellite instability (MSI) tumor phenotype. Sporadic endometrial cancers also exhibit MSI, usually associated with methylation of the MLH1 promoter. Germ-line MSH6 mutations, which are rare in HNPCC, have been reported in several families with multiple members affected with endometrial carcinoma. We reasoned that MSH6 mutation might account for loss of mismatch repair in MSI-positive endometrial cancers in which the cause of MSI is unknown. We therefore investigated MSI and MLH1 promoter methylation in 441 endometrial cancer patients unselected for age or personal and family history of cancers. MSI and MLH1 promoter methylation status were associated with age of onset and tumor histology. One hundred cases (23% of the entire series) were evaluated for MSH6 defects. Inactivating germ-line MSH6 mutations were identified in seven women with MSI-positive, MLH1 promoter unmethylated cancers. Most of the MSI in these cases was seen with mononucleotide repeat markers. The MSH6 mutation carriers were significantly younger than the rest of the population (mean age 54.8 versus 64.6, P = 0.04). Somatic mutations were seen in 17 tumors, all of which had MSI. Our data suggest that inherited defects in MSH6 in women with endometrial cancer are relatively common. The minimum estimate of the prevalence of inherited MSH6 mutation in endometrial cancer is 1.6% (7 of 441), comparable with the predicted prevalence for patients with colorectal cancer.
Collapse
Affiliation(s)
- Paul J Goodfellow
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Arita M, Zhong X, Min Z, Hemmi H, Shimatake H. Multiple sites required for expression in 5'-flanking region of the hMLH1 gene. Gene 2003; 306:57-65. [PMID: 12657467 DOI: 10.1016/s0378-1119(03)00385-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Expression of the hMLH1 gene, one of the DNA mismatch repair genes, is frequently repressed in various cancers such as colorectal, ovarian, gastric, and endometrial origins with a microsatellite instable phenotype. In this study, we investigated details of the relationship between the transcriptional activity and the protein-binding sites in the 5'-flanking region of the hMLH1 gene. Luciferase reporter gene analysis with a series of deletion mutants revealed that a region containing -301 to -76 relative to a translation start site is essential for maximal expression. Eight protein-binding sites in this region were identified by in vivo methylation footprinting analysis and homology search. A presence of binding proteins to CCAAT-box at -145 to -139 was confirmed by the electrophoresis mobility shift assay. Partial involvement of NF-Y was seen by the super gel shift assay. Three reporter plasmids having a single site-directed mutation at -163 to -158, -145 to -139, or -96 to -93 showed 14-30% less activities to that of having the wild-type. Dual or triple mutations were no greater effect than the single mutation on the activity. These results indicate that three cis-elements are essential for full expression of the hMLH1 gene and may work co-operatively.
Collapse
Affiliation(s)
- Michitsune Arita
- Department of Molecular Biology, Toho University School of Medicine, 5-21-16 Ohmori-Nishi, Ohta-ku, Tokyo 143-8540, Japan.
| | | | | | | | | |
Collapse
|
167
|
McCulloch SD, Gu L, Li GM. Bi-directional processing of DNA loops by mismatch repair-dependent and -independent pathways in human cells. J Biol Chem 2003; 278:3891-6. [PMID: 12458199 DOI: 10.1074/jbc.m210687200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous work has shown that small DNA loop heterologies are repaired not only through the mismatch repair (MMR) pathway but also via an MMR-independent pathway in human cells. However, how DNA loop repair is partitioned between these pathways and how the MMR-independent repair is processed are not clear. Using a novel construct that completely and specifically inhibits MMR in HeLa extracts, we demonstrate here that although MMR is capable of bi-directionally processing DNA loops of 2, 4, 5, 8, 10, or 12 nucleotides in length, the repair activity decreases with the increase of the loop size. Evidence is presented that the largest loop that the MMR system can process is 16 nucleotides. We also show that strand-specific MMR-independent loop repair occurs for all looped substrates tested and rigorously demonstrate that this repair is bi-directional. Analysis of repair intermediates generated by the MMR-independent pathway revealed that although the processing of looped substrates with a strand break 5' to the heterology occurred similarly to MMR (i.e. excision is conducted by exonucleases from the pre-existing strand break to the heterology), the processing of the heterology in substrates with a 3' strand break is consistent with the involvement of endonucleases.
Collapse
Affiliation(s)
- Scott D McCulloch
- Graduate Center for Toxicology, University of Kentucky Medical Center, Lexington 40536, USA
| | | | | |
Collapse
|
168
|
de las Alas MM, Los G, Lin X, Kurdi-Haidar B, Manorek G, Howell SB. Identification of transdominant-negative genetic suppressor elements derived from hMSH2 that mediate resistance to 6-thioguanine. Mol Pharmacol 2002; 62:1198-206. [PMID: 12391284 DOI: 10.1124/mol.62.5.1198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using random screening for genetic suppressor elements, we sought to identify portions of hMSH2 important to the ability of the mismatch repair system to recognize and process DNA adducts that mimic mismatches. All recovered candidate genetic suppressor elements were derived from the region containing amino acids 782 to 844. Expression of a peptide corresponding to this region partially disabled mismatch repair as evidenced by 1.5- to 3.3-fold resistance to 6-thioguanine, cisplatin, and N-methyl-N'-nitrosoguanidine, an increase in the rate of generation of drug resistant variants, and the appearance of microsatellite instability. Even low-level expression of this protein was sufficient to partially impair mismatch repair. The results suggest that this region is important to the ability of the mismatch repair system to mediate drug sensitivity and to maintain genomic stability.
Collapse
Affiliation(s)
- Maida M de las Alas
- Cancer Center, University of California, San Diego, La Jolla, California, USA.
| | | | | | | | | | | |
Collapse
|
169
|
Miturski R, Bogusiewicz M, Ciotta C, Bignami M, Gogacz M, Burnouf D. Mismatch repair genes and microsatellite instability as molecular markers for gynecological cancer detection. Exp Biol Med (Maywood) 2002; 227:579-86. [PMID: 12192099 DOI: 10.1177/153537020222700805] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Due to major developments in genetics over the past decade, molecular biology tests are serving promising tools in early diagnosis and follow-up of cancer patients. Recent epidemiological studies revealed that the risk for each individual to develop cancer is closely linked to his/her own genetic potentialities. Some populations that are defective in DNA repair processes, for example in Xeroderma pigmentosum or in the Lynch syndrome, are particularly prone to cancer due to the accumulation of mutations within the genome. Such populations would benefit from the development of tests aimed at identifying people who are particularly at risk. Here, we review some data suggesting that the inactivation of mismatch repair is often found in endometrial cancer and we discuss molecular-based strategies that would help to identify the affected individuals in families with cases of glandular malignancies.
Collapse
Affiliation(s)
- Roman Miturski
- Second Department of Gynecological Surgery, University School of Medicine, Lublin, Poland.
| | | | | | | | | | | |
Collapse
|
170
|
Iams K, Larson ED, Drummond JT. DNA template requirements for human mismatch repair in vitro. J Biol Chem 2002; 277:30805-14. [PMID: 12077119 DOI: 10.1074/jbc.m200846200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human mismatch repair pathway is competent to correct DNA mismatches in a strand-specific manner. At present, only nicks are known to support strand discrimination, although the DNA end within the active site of replication is often proposed to serve this role. We therefore tested the competence of DNA ends or gaps to direct mismatch correction. Eight G.T templates were constructed which contained a nick or gap of 4, 28, or approximately 200 nucleotides situated approximately 330 bp away in either orientation. A competition was established in which the mismatch repair machinery had to compete with gap-filling replication and ligation activities for access to the strand discontinuity. Gaps of 4 or 28 nucleotides were the most effective strand discrimination signals for mismatch repair, whereas double strand breaks did not direct repair to either strand. To define the minimal spatial requirements for access to either the strand signal or mismatch site, the nicked templates were linearized close to either site and assayed. As few as 14 bp beyond the nick supported mismatch excision, although repair synthesis failed using 5'-nicked templates. Finally, asymmetric G.T templates with a remote nick and a nearby DNA end were repaired efficiently.
Collapse
Affiliation(s)
- Keith Iams
- Department of Biology, Indiana University, 1001 E Third Street, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
171
|
Gu L, Cline-Brown B, Zhang F, Qiu L, Li GM. Mismatch repair deficiency in hematological malignancies with microsatellite instability. Oncogene 2002; 21:5758-64. [PMID: 12173046 DOI: 10.1038/sj.onc.1205695] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2002] [Revised: 05/15/2002] [Accepted: 05/20/2002] [Indexed: 12/25/2022]
Abstract
Mutations in human mismatch repair (MMR) genes are the genetic basis for certain types of solid tumors displaying microsatellite instability (MSI). MSI has also been observed in hematological malignancies, but whether these hematological malignancies are associated with MMR deficiency is still unclear. Using both biochemical and genetic approaches, this study analysed MMR proficiency in 11 cell lines derived from patients with hematological malignancies and demonstrated that six out of seven hematological cancer cell lines with MSI were defective in strand-specific MMR. In vitro complementation experiments, using characterized MMR mutant extracts or purified proteins, showed that these hematological cancer cells were defective in either hMutS(alpha) (a heterodimer of hMSH2 and hMSH6) or hMutL(alpha) (a heterodimer of hMLH1 and hPMS2). Furthermore, cell lines deficient in hMutS(alpha) showed large deletions or point mutations in hMSH2, while those deficient in hMutL(alpha) exhibited point mutations in hMLH1 or a lack of expression of hPMS2. From these results, we conclude that, as in solid tumors, hematological malignancies with MSI are also associated with MMR deficiency, and that the cause of MMR deficiency in these cell lines is due to a defective MutS(alpha) or MutL(alpha). We also report here, for the first time, that an MSI-positive cell line derived from Burkitt's lymphoma is proficient in MMR.
Collapse
Affiliation(s)
- Liya Gu
- Department of Pathology and Laboratory Medicine, University of Kentucky Medical Center, Lexington, Kentucky, KY 40536, USA.
| | | | | | | | | |
Collapse
|
172
|
Wang H, Hays JB. Mismatch repair in human nuclear extracts. Time courses and ATP requirements for kinetically distinguishable steps leading to tightly controlled 5' to 3' and aphidicolin-sensitive 3' to 5' mispair-provoked excision. J Biol Chem 2002; 277:26143-8. [PMID: 12006561 DOI: 10.1074/jbc.m200358200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mismatch repair (MMR) systems enhance genomic stability by correcting DNA replication errors. The events in mammalian MMR pathways remain poorly understood. Using HeLa cell nuclear extracts, we analyzed correction of mispairs in circular DNA substrates with single defined nicks and measured excision in the absence of exogenous dNTPs by annealing specific oligonucleotide probes. In reactions initiated by concomitant temperature shift and addition of ATP or Mg(2+) to otherwise complete mixtures on ice, ATP-initiated excision and final error correction lagged behind Mg(2+)-initiated reactions, suggesting a very early requirement for ATP but not its hydrolysis. Subsequent stable commitment (resistance to added excess competitor substrate) began within 30 s, required hydrolyzable ATP, and plateaued after 60-70 s. This may reflect formation of hydrolysis-dependent translocating and/or pre-excision complexes. Excision along shorter nick-mispair paths began 15 s later than commitment. Both 3' to 5' and 5' to 3' excision gaps appeared at rates of approximately 0.0055 of final yields per second, respectively, 30 or 2.5 times the nonspecific excision rates. The lag between 3' to 5' excision gaps at two different positions yielded an excision progress rate of 5.2 nucleotides/s. In both substrates, corrected products appeared at fractional rates of 0.0027 of final yield per second. Aphidicolin, known to inhibit both the DNA synthesis and 3' to 5' exonuclease activities of polymerases delta and epsilon, reduced appearance of 3' to 5' excision tracts roughly 4-fold at 90 microm but had no effect on 5' to 3' excision.
Collapse
Affiliation(s)
- Huixian Wang
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, USA
| | | |
Collapse
|
173
|
Wang H, Hays JB. Mismatch repair in human nuclear extracts. Quantitative analyses of excision of nicked circular mismatched DNA substrates, constructed by a new technique employing synthetic oligonucleotides. J Biol Chem 2002; 277:26136-42. [PMID: 12006560 DOI: 10.1074/jbc.m200357200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian mismatch repair (MMR) systems respond to broad ranges of DNA mismatches and lesions. Kinetic analyses of MMR processing in vitro have focused on base mismatches in a few sequence contexts, because of a lack of general and quantitative MMR assays and because of the difficulty of constructing a multiplicity of MMR substrates, particularly those with DNA lesions. We describe here simple and efficient construction of 11 different MMR substrates, by ligating synthetic oligomers into gapped plasmids generated using sequence-specific N.BstNBI nicking endonuclease, then using sequence-specific nicking endonuclease N.AlwI to introduce single nicks for initiation of 3' to 5' or 5' to 3' excision. To quantitatively assay MMR excision gaps in base-mispaired substrates, generated in human nuclear extracts lacking exogenous dNTPs, we used position- and strand-specific oligomer probes. Mispair-provoked excision along the shorter path from the pre-existing nick toward the mismatch, either 3' to 5' or 5' to 3', predominated over longer path excision by roughly 10:1 to 20:1. MMR excision was complete within 7 min, was highly specific (90:1) for the nicked strand, and was strongly mispair-dependent (at least 40:1). Nonspecific (mismatch-independent) 5' to 3' excision was considerably greater than nonspecific 3' to 5' excision, especially at pre-existing gaps, but was not processive. These techniques can be used to construct and analyze MMR substrates with DNA mismatches or lesions in any sequence context.
Collapse
Affiliation(s)
- Huixian Wang
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, USA
| | | |
Collapse
|
174
|
Hess MT, Gupta RD, Kolodner RD. Dominant Saccharomyces cerevisiae msh6 mutations cause increased mispair binding and decreased dissociation from mispairs by Msh2-Msh6 in the presence of ATP. J Biol Chem 2002; 277:25545-53. [PMID: 11986324 DOI: 10.1074/jbc.m202282200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A previous study described four dominant msh6 mutations that interfere with both the Msh2-Msh6 and Msh2-Msh3 mismatch recognition complexes (Das Gupta, R., and Kolodner, R. D. (2000) Nat. Genet. 24, 53-56). Modeling predicted that two of the amino acid substitutions (G1067D and G1142D) interfere with protein-protein interactions at the ATP-binding site-associated dimer interface, one (S1036P) similarly interferes with protein-protein interactions and affects the Msh2 ATP-binding site, and one (H1096A) affects the Msh6 ATP-binding site. The ATPase activity of the Msh2-Msh6-G1067D and Msh2-Msh6-G1142D complexes was inhibited by GT, +A, and +AT mispairs, and these complexes showed increased binding to GT and +A mispairs in the presence of ATP. The ATPase activity of the Msh2-Msh6-S1036P complex was inhibited by a GT mispair, and it bound the GT mispair in the presence of ATP, whereas its interaction with insertion mispairs was unchanged compared with the wild-type complex. The ATPase activity of the Msh2-Msh6-H1096A complex was generally attenuated, and its mispair-binding behavior was unaffected. These results are in contrast to those obtained with the wild-type Msh2-Msh6 complex, which showed mispair-stimulated ATPase activity and ATP inhibition of mispair binding. These results indicate that the dominant msh6 mutations cause more stable binding to mispairs and suggest that there may be differences in how base base and insertion mispairs are recognized.
Collapse
Affiliation(s)
- Martin T Hess
- Ludwig Institute for Cancer Research, Cancer Center, and Department of Medicine, University of California San Diego School of Medicine, La Jolla 92093-0660, USA
| | | | | |
Collapse
|
175
|
Rossi BM, Lopes A, Oliveira Ferreira F, Nakagawa WT, Napoli Ferreira CC, Casali Da Rocha JC, Simpson CC, Simpson AJG. hMLH1 and hMSH2 gene mutation in Brazilian families with suspected hereditary nonpolyposis colorectal cancer. Ann Surg Oncol 2002; 9:555-61. [PMID: 12095971 DOI: 10.1007/bf02573891] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND The aim of this study was to search for mutations in the human mutS homolog 2 (hMSH2) and human mutL homolog 1 (hMLH1) genes in 25 unrelated Brazilian kindreds with suspected hereditary nonpolyposis colorectal cancer (HNPCC). METHODS The families were grouped according to the following clinical criteria: Amsterdam I or II; familial colorectal cancer (CRC); an early age of onset of CRC in the proband only; or with at least one or two relatives who had HNPCC-related cancers; CRC in the proband only. All patients were studied with direct sequencing. RESULTS Ten mutations were detected (10 of 25 [40%]); of nine different mutations, seven were novel. The hMLH1 gene had a higher mutation detection rate than hMSH2 (8 of 25 [32%] vs. 2 of 25 [8%]). Only 3 of these 10 families fulfilled the Amsterdam criteria. Two different polymorphisms were detected in the hMLH1 gene and four in the hMSH2 gene. CONCLUSIONS The hMLH1 gene had a higher mutation detection rate than hMSH2. The physician who deals with CRC must take into consideration the heredity issue with patients who present with an early age of onset or a familial history of CRC- or HNPCC-related cancers, including gastric cancer, even if they do not fulfill the former Amsterdam criteria.
Collapse
Affiliation(s)
- Benedito Mauro Rossi
- Department of Pelvic Surgery, the Hospital do Câncer A. C. Camargo, Fundação Antonio Prudente, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Gu L, Wu J, Zhu BB, Li GM. Deficiency of a novel mismatch repair activity in a bladder tumor cell line. Nucleic Acids Res 2002; 30:2758-63. [PMID: 12087158 PMCID: PMC117065 DOI: 10.1093/nar/gkf410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We demonstrate here that a cell line derived from a bladder cancer is defective in strand-specific mismatch repair. The mismatch repair deficiency in this cell line is associated with microsatellite instability and blocks an early step in the repair pathway. Since the addition of a known mismatch repair component hMutSalpha, hMutSbeta, hMutLalpha, replication protein A or proliferating cellular nuclear antigen could not restore mismatch repair to the mutant extract, the bladder tumor cell line is likely to be defective in an uncharacterized repair component. However, the repair in the mutant extract could be complemented by a partially purified activity derived from HeLa nuclear extracts. Therefore, in addition to revealing that a loss of mismatch repair function is associated with bladder cancer, this study provides information implicating a new mismatch repair activity.
Collapse
Affiliation(s)
- Liya Gu
- Department of Pathology and Laboratory Medicine, Suite MS 117, Markey Cancer Center, University of Kentucky Medical Center, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
177
|
Tomer G, Buermeyer AB, Nguyen MM, Liskay RM. Contribution of human mlh1 and pms2 ATPase activities to DNA mismatch repair. J Biol Chem 2002; 277:21801-9. [PMID: 11897781 DOI: 10.1074/jbc.m111342200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MutLalpha, a heterodimer composed of Mlh1 and Pms2, is the major MutL activity in mammalian DNA mismatch repair. Highly conserved motifs in the N termini of both subunits predict that the protein is an ATPase. To study the significance of these motifs to mismatch repair, we have expressed in insect cells wild type human MutLalpha and forms altered in conserved glutamic acid residues, predicted to catalyze ATP hydrolysis of Mlh1, Pms2, or both. Using an in vitro assay, we showed that MutLalpha proteins altered in either glutamic acid residue were each partially defective in mismatch repair, whereas the double mutant showed no detectable mismatch repair. Neither strand specificity nor directionality of repair was affected in the single mutant proteins. Limited proteolysis studies of MutLalpha demonstrated that both Mlh1 and Pms2 N-terminal domains undergo ATP-induced conformational changes, but the extent of the conformational change for Mlh1 was more apparent than for Pms2. Furthermore, Mlh1 was protected at lower ATP concentrations than Pms2, suggesting Mlh1 binds ATP with higher affinity. These findings imply that ATP hydrolysis is required for MutLalpha activity in mismatch repair and that this activity is associated with differential conformational changes in Mlh1 and Pms2.
Collapse
Affiliation(s)
- Guy Tomer
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97201, USA
| | | | | | | |
Collapse
|
178
|
Räschle M, Dufner P, Marra G, Jiricny J. Mutations within the hMLH1 and hPMS2 subunits of the human MutLalpha mismatch repair factor affect its ATPase activity, but not its ability to interact with hMutSalpha. J Biol Chem 2002; 277:21810-20. [PMID: 11948175 DOI: 10.1074/jbc.m108787200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The MutL family of mismatch repair proteins belongs to the GHKL class of ATPases, which contains also type II topoisomerases, HSP90, and histidine kinases. The nucleotide binding domains of these polypeptides are highly conserved, but this similarity has failed to help us understand the biological role of the ATPase activity of the MutL proteins in mismatch repair. hMutLalpha is a heterodimer of the human MutL homologues hMLH1 and hPMS2, and we decided to exploit its asymmetry to study this function. We now show that although the two subunits contribute differently to the ATPase activity of the heterodimer, hMutLalpha variants in which one subunit was able to bind but not hydrolyze ATP displayed similarly reduced mismatch repair activities in vitro. In contrast, variants in which either subunit was unable to bind the nucleotide were inactive. Mutation of the catalytic sites of both subunits abolished repair without altering the ability of these peptides to interact with one another. Since the binding of the nucleotide in hMutLalpha was not required for the formation of ternary complexes with the mismatch recognition factor hMutSalpha bound to a heteroduplex substrate, we propose that the ATPase activity of hMutLalpha is required downstream from this process.
Collapse
Affiliation(s)
- Markus Räschle
- Institute of Medical Radiobiology, August Forel-Strasse 7, Zürich 8008, Switzerland
| | | | | | | |
Collapse
|
179
|
Gu L, Wu J, Qiu L, Jennings CD, Li GM. Involvement of DNA mismatch repair in folate deficiency-induced apoptosis small star, filled. J Nutr Biochem 2002; 13:355-363. [PMID: 12088801 DOI: 10.1016/s0955-2863(02)00178-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Folate is a critical factor for DNA metabolism and its deficiency is associated with a number of human diseases and cancers. Although it has been shown that folate deficiency induces genomic instability and apoptotic cell death, the underlying mechanism is largely unknown. Given the role of mismatch repair in maintaining genomic integrity, mismatch repair was tested for its involvement in folate deficiency-induced genomic instability and cell death. Cells proficient in mismatch repair were highly sensitive to folate deficiency compared with cells defective in either hMutSalpha or hMutLalpha. Since wild-type cells but not mutant cells underwent apoptosis upon extensive folate depletion, the apoptotic response is dependent on a functional mismatch repair system. Our data also indicate that p53 is required for the folate depletion-induced apoptosis. In vitro biochemical studies demonstrated that hMutSalpha specifically recognized DNA damage induced by folate deficiency, suggesting a direct participation of mismatch repair proteins in mediating the apoptotic response. We conclude that while the mismatch repair-dependent apoptosis is necessary to protect damaged cells from tumorigenesis, it may damage a whole tissue or organ, as seen in patients with megaloblastic anemia, during extensive folate deficiency.
Collapse
Affiliation(s)
- Liya Gu
- Department of Pathology and Laboratory Medicine, Markey Cancer Center, University of Kentucky Medical Center, University of Kentucky Medical Center, 40536, Lexington, Kentucky, USA
| | | | | | | | | |
Collapse
|
180
|
Abstract
Increasing evidence suggests that human tumors sequentially accumulate multiple mutations that cannot be explained by the low rates of spontaneous mutations in normal cells (2-3 mutations/cell). The mathematical models estimate that for the solid tumors to develop, as many as 6-12 mutations are required in each tumor cell. Therefore, to account for such high mutation rates, it is proposed that tumor cells are genetically unstable, i.e. they have genome-wide mutations at short repetitive DNA sequences called microsatellites. Microsatellite repeats are scattered throughout the human genome, primarily in the non-coding regions, and can give rise to variants with increased or reduced lengths, i.e. microsatellite instability (MSI). This instability has been reported in an increasing number of cutaneous tumors including: melanocytic tumors, basal cell carcinomas and primary cutaneous T-cell lymphomas. Moreover, MSI has been observed in skin tumors arising in the context of some hereditary disorders such as Muir-Torre syndrome, Von Recklinghausen's disease and disseminated superficial porokeratosis. While MSI in some of these disorders reflects underlying DNA replication errors, the mechanism of instability in others is still unknown. Thus far, MSI is considered to be a distinct tumorigenic pathway that reveals surprising versatility. The ramifications for cutaneous neoplasms warrant further investigation.
Collapse
Affiliation(s)
- Mahmoud R Hussein
- The Department of Medicine (Dermatology), University of Wisconsin and William S. Middleton Memorial Veteran Hospital, Madison, WI 53705, USA
| | | |
Collapse
|
181
|
Genschel J, Bazemore LR, Modrich P. Human exonuclease I is required for 5' and 3' mismatch repair. J Biol Chem 2002; 277:13302-11. [PMID: 11809771 DOI: 10.1074/jbc.m111854200] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have partially purified a human activity that restores mismatch-dependent, bi-directional excision to a human nuclear extract fraction depleted for one or more mismatch repair excision activities. Human EXOI co-purifies with the excision activity, and the purified activity can be replaced by near homogeneous recombinant hEXOI. Despite the reported 5' to 3' hydrolytic polarity of this activity, hEXOI participates in mismatch-provoked excision directed by a strand break located either 5' or 3' to the mispair. When the strand break that directs repair is located 3' to the mispair, hEXOI- and mismatch-dependent gap formation in excision-depleted extracts requires both hMutSalpha and hMutLalpha. However, excision directed by a 5' strand break requires hMutSalpha but can occur in absence of hMutLalpha. In systems comprised of pure components, the 5' to 3' hydrolytic activity of hEXOI is activated by hMutSalpha in a mismatch-dependent manner. These observations indicate a hydrolytic function for hEXOI in 5'-heteroduplex correction. The involvement of hEXOI in 3'-heteroduplex repair suggests that it has a regulatory/structural role in assembly of the 3'-excision complex or that the protein possesses a cryptic 3' to 5' hydrolytic activity.
Collapse
Affiliation(s)
- Jochen Genschel
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
182
|
Abstract
Unpaired and mispaired bases in DNA can arise by replication errors, spontaneous or induced base modifications, and during recombination. The major pathway for correction of mismatches arising during replication is the MutHLS pathway of Escherichia coli and related pathways in other organisms. MutS initiates repair by binding to the mismatch, and activates together with MutL the MutH endonuclease, which incises at hemimethylated dam sites and thereby mediates strand discrimination. Multiple MutS and MutL homologues exist in eukaryotes, which play different roles in the mismatch repair (MMR) pathway or in recombination. No MutH homologues have been identified in eukaryotes, suggesting that strand discrimination is different to E. coli. Repair can be initiated by the heterodimers MSH2-MSH6 (MutSalpha) and MSH2-MSH3 (MutSbeta). Interestingly, MSH3 (and thus MutSbeta) is missing in some genomes, as for example in Drosophila, or is present as in Schizosaccharomyces pombe but appears to play no role in MMR. MLH1-PMS1 (MutLalpha) is the major MutL homologous heterodimer. Again some, but not all, eukaryotes have additional MutL homologues, which all form a heterodimer with MLH1 and which play a minor role in MMR. Additional factors with a possible function in eukaryotic MMR are PCNA, EXO1, and the DNA polymerases delta and epsilon. MMR-independent pathways or factors that can process some types of mismatches in DNA are nucleotide-excision repair (NER), some base excision repair (BER) glycosylases, and the flap endonuclease FEN-1. A pathway has been identified in Saccharomyces cerevisiae and human that corrects loops with about 16 to several hundreds of unpaired nucleotides. Such large loops cannot be processed by MMR.
Collapse
Affiliation(s)
- Thomas M Marti
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
183
|
Zhang N, Lu X, Zhang X, Peterson CA, Legerski RJ. hMutSbeta is required for the recognition and uncoupling of psoralen interstrand cross-links in vitro. Mol Cell Biol 2002; 22:2388-97. [PMID: 11884621 PMCID: PMC133700 DOI: 10.1128/mcb.22.7.2388-2397.2002] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The removal of interstrand cross-links (ICLs) from DNA in higher eucaryotes is not well understood. Here, we show that processing of psoralen ICLs in mammalian cell extracts is dependent upon the mismatch repair complex hMutSbeta but is not dependent upon the hMutSalpha complex or hMlh1. The processing of psoralen ICLs is also dependent upon the nucleotide excision repair proteins Ercc1 and Xpf but not upon other components of the excision stage of this pathway or upon Fanconi anemia proteins. Products formed during the in vitro reaction indicated that the ICL has been removed or uncoupled from the cross-linked substrate in the mammalian cell extracts. Finally, the hMutSbeta complex is shown to specifically bind to psoralen ICLs, and this binding is stimulated by the addition of PCNA. Thus, a novel pathway for processing ICLs has been identified in mammalian cells which involves components of the mismatch repair and nucleotide excision repair pathways.
Collapse
Affiliation(s)
- Nianxiang Zhang
- Department of Molecular Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
184
|
Ramilo C, Gu L, Guo S, Zhang X, Patrick SM, Turchi JJ, Li GM. Partial reconstitution of human DNA mismatch repair in vitro: characterization of the role of human replication protein A. Mol Cell Biol 2002; 22:2037-46. [PMID: 11884592 PMCID: PMC133689 DOI: 10.1128/mcb.22.7.2037-2046.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
DNA mismatch repair (MMR) is a critical genome-stabilization system. However, the molecular mechanism of MMR in human cells remains obscure because many of the components have not yet been identified. Using a functional in vitro reconstitution system, this study identified three HeLa cell fractions essential for in vitro MMR. These fractions divide human MMR into two distinct stages: mismatch-provoked excision and repair synthesis. In vitro dissection of the MMR reaction and crucial intermediates elucidated biochemical functions of individual fractions in human MMR and identified hitherto unknown functions of human replication protein A (hRPA) in MMR. Thus, one fraction carries out nick-directed and mismatch-dependent excision; the second carries out DNA repair synthesis and DNA ligation; and the third provides hRPA, which plays multiple roles in human MMR by protecting the template DNA strand from degradation, enhancing repair excision, and facilitating repair synthesis. It is anticipated that further analysis of these fractions will identify additional MMR components and enable the complete reconstitution of the human MMR pathway with purified proteins.
Collapse
Affiliation(s)
- Cecilia Ramilo
- Department of Pathology and Laboratory Medicine, Lucille P. Markey Cancer Center, University of Kentucky Medical Center, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | |
Collapse
|
185
|
Saeki A, Tamura S, Ito N, Kiso S, Matsuda Y, Yabuuchi I, Kawata S, Matsuzawa Y. Frequent impairment of the spindle assembly checkpoint in hepatocellular carcinoma. Cancer 2002; 94:2047-54. [PMID: 11932908 DOI: 10.1002/cncr.10448] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Chromosomal instability (CI) leading to aneuploidy is one form of genetic instability, a characteristic feature of various types of cancers. Recent work has suggested that CI can be induced by a spindle assembly checkpoint defect. The aim of the current study was to determine the frequency of a defect of the checkpoint in hepatocellular carcinoma (HCC) and to establish whether alterations of genes encoding the checkpoint were associated with CI in HCC. METHODS Aneuploidy and the function of the spindle assembly checkpoint were examined using DNA flow cytometry and morphologic analysis with microtubule disrupting drugs. To explore the molecular basis, the authors examined the expression and alterations of the mitotic checkpoint gene, BUB1, using Northern hybridization and direct sequencing in 8 HCC cell lines and 50 HCC specimens. Furthermore, the authors examined the alterations of other mitotic checkpoint genes, BUBR1, BUB3, MAD2B, and CDC20, using direct sequencing in HCC cell lines with aneuploidy. RESULTS An impaired spindle assembly checkpoint was found in five (62.5%) of the eight aneuploid cell lines. Transcriptional expressions of the BUB1 gene appeared in all cell lines. While some polymorphic base changes were noted in BUB1, BUBR1, and CDC20, no mutations responsible for impairment of the mitotic checkpoint were found in either the HCC cell lines or HCC specimens, which suggests that these genes did not seem to be involved in tumor development in HCC. CONCLUSIONS The loss of spindle assembly checkpoint occurred with a high frequency in HCC with CI. However, other mechanisms might also contribute to CI in HCC.
Collapse
Affiliation(s)
- Ayuko Saeki
- Department of Internal Medicine and Molecular Science, Graduate School of Medicine, Osaka University, 2-2 B-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Gu Y, Parker A, Wilson TM, Bai H, Chang DY, Lu AL. Human MutY homolog, a DNA glycosylase involved in base excision repair, physically and functionally interacts with mismatch repair proteins human MutS homolog 2/human MutS homolog 6. J Biol Chem 2002; 277:11135-42. [PMID: 11801590 DOI: 10.1074/jbc.m108618200] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Adenines mismatched with guanines or 7,8-dihydro-8-oxo-deoxyguanines that arise through DNA replication errors can be repaired by either base excision repair or mismatch repair. The human MutY homolog (hMYH), a DNA glycosylase, removes adenines from these mismatches. Human MutS homologs, hMSH2/hMSH6 (hMutSalpha), bind to the mismatches and initiate the repair on the daughter DNA strands. Human MYH is physically associated with hMSH2/hMSH6 via the hMSH6 subunit. The interaction of hMutSalpha and hMYH is not observed in several mismatch repair-defective cell lines. The hMutSalpha binding site is mapped to amino acid residues 232-254 of hMYH, a region conserved in the MutY family. Moreover, the binding and glycosylase activities of hMYH with an A/7,8-dihydro-8-oxo-deoxyguanine mismatch are enhanced by hMutSalpha. These results suggest that protein-protein interactions may be a means by which hMYH repair and mismatch repair cooperate in reducing replicative errors caused by oxidized bases.
Collapse
Affiliation(s)
- Yesong Gu
- Department of Biochemistry, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
187
|
Berends MJ, Wu Y, Sijmons RH, Hofstra RM, van der Zee AG, Buys CH, Kleibeuker JH. Clinical definition of hereditary non-polyposis colorectal cancer: a search for the impossible? SCANDINAVIAN JOURNAL OF GASTROENTEROLOGY. SUPPLEMENT 2002:61-7. [PMID: 11768563 DOI: 10.1080/003655201753265127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hereditary non-polyposis colorectal cancer is an autosomal dominant inherited disorder that predisposes its carriers to an almost 100% lifetime risk of cancer, in particular colorectal and endometrial cancer. Germline mutations, resulting in a deficient DNA mismatch repair system, are responsible for the disease. Because of the lack of specific phenotypical features, clinical diagnosis in an individual patient is impossible and relies heavily on family history. Genetic diagnosis by mismatch detection is now possible in a substantial proportion of families. Thus there is a great need for reliable but simple criteria that will help clinicians to recognize patients and families who can be referred for genetic diagnostics. In this article the different criteria that have been formulated and published in recent years are reviewed and the results, in terms of the proportions of subjects satisfying the criteria who were found to have a germline mutation, are discussed. In most studies the criteria were evaluated in only a small number of subjects. A population-based study is currently being carried out in the north of The Netherlands that aims to include 400 patients fulfilling one of a few simple criteria. Mutation analysis will be performed in all patients. The results of this study will help in the formulation of accurate and simple criteria for use in clinical practice.
Collapse
Affiliation(s)
- M J Berends
- Dept. of Gastroenterology, University Hospital, Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
188
|
Larson ED, Nickens D, Drummond JT. Construction and characterization of mismatch-containing circular DNA molecules competent for assessment of nick-directed human mismatch repair in vitro. Nucleic Acids Res 2002; 30:E14. [PMID: 11809902 PMCID: PMC100313 DOI: 10.1093/nar/30.3.e14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ability of cell-free extracts to correct DNA mismatches has been demonstrated in both prokaryotes and eukaryotes. Such an assay requires a template containing both a mismatch and a strand discrimination signal, and the multi-step construction process can be technically difficult. We have developed a three-step procedure for preparing DNA heteroduplexes containing a site-specific nick. The mismatch composition, sequence context, distance to the strand signal, and the means for assessing repair in each strand are adjustable features built into a synthetic oligonucleotide. Controlled ligation events involving three of the four DNA strands incorporate the oligonucleotide into a circular template and generate the repair-directing nick. Mismatch correction in either strand of a prototype G.T mismatch was achieved by placing a nick 10-40 bp away from the targeted base. This proximity of nick and mismatch represents a setting where repair has not been well characterized, but the presence of a nick was shown to be essential, as was the MSH2/MSH6 heterodimer, although low levels of repair occurred in extract defective in each protein. All repair events were inhibited by a peptide that interacts with proliferating cell nuclear antigen and inhibits both mismatch repair and long-patch replication.
Collapse
Affiliation(s)
- Erik D Larson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
189
|
Szadkowski M, Jiricny J. Identification and functional characterization of the promoter region of the human MSH6 gene. Genes Chromosomes Cancer 2002; 33:36-46. [PMID: 11746986 DOI: 10.1002/gcc.1211] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Postreplicative mismatch repair (MMR) corrects polymerase errors arising during DNA replication. Consistent with this role, the Saccharomyces cerevisiae MMR genes MSH2, MSH6, and PMS1 were reported to be transcriptionally upregulated during late G(1) phase of the cell cycle. Surprisingly, despite the high degree of conservation of the MMR system in evolution, the human MMR genes studied to date, MSH2, MLH1, and PMS2, appear to be transcribed from classical housekeeping promoters, and the amounts of the polypeptides encoded by them fluctuate little during the cell cycle. Only the amounts of the 160-kDa MSH6 protein were reported to vary, both during development and following stimulation of cell growth. Moreover, transcription of this gene was found to be downregulated by CpG methylation of the promoter region in a subset of clones treated with alkylating agents. In an attempt to understand the molecular basis underlying these phenomena, we isolated the 5' region of the MSH6 gene and subjected it to functional analysis. We now show that the MSH6 gene is also transcribed from a classical housekeeping gene promoter. Despite housing putative binding sites for the transcription factors AP1, NF-kappaB, and MTF-1, the MSH6 promoter failed to respond to ionizing radiation or heavy metals. Interestingly, MSH6 transcription was upregulated during late G(1) phase, even though the levels of the protein remained essentially constant during the cell cycle.
Collapse
Affiliation(s)
- Marta Szadkowski
- Institute of Medical Radiobiology of the University of Zürich and the Paul Scherrer Institute, August Forel-Strasse 7, CH-8008 Zürich, Switzerland
| | | |
Collapse
|
190
|
Berends MJW, Wu Y, Sijmons RH, Mensink RGJ, van der Sluis T, Hordijk-Hos JM, de Vries EGE, Hollema H, Karrenbeld A, Buys CHCM, van der Zee AGJ, Hofstra RMW, Kleibeuker JH. Molecular and clinical characteristics of MSH6 variants: an analysis of 25 index carriers of a germline variant. Am J Hum Genet 2002; 70:26-37. [PMID: 11709755 PMCID: PMC384896 DOI: 10.1086/337944] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The MSH6 gene is one of the mismatch-repair genes involved in hereditary nonpolyposis colorectal cancer (HNPCC). Three hundred sixteen individuals who were known or suspected to have HNPCC were analyzed for MSH6 germline mutations. For 25 index patients and 8 relatives with MSH6 variants, molecular and clinical features are described. For analysis of microsatellite instability (MSI), the five consensus markers were used. Immunohistochemical analysis of the MLH1, MSH2, and MSH6 proteins was performed. Five truncating MSH6 mutations, of which one was detected seven times, were found in 12 index patients, and 10 MSH6 variants with unknown pathogenicity were found in 13 index patients. Fourteen (54%) of 26 colorectal cancers (CRCs) and endometrial cancers showed no, or only weak, MSI. Twelve of 18 tumors of truncating-mutation carriers and 3 of 17 tumors of missense-mutation carriers showed loss of MSH6 staining. Six of the families that we studied fulfilled the original Amsterdam criteria; most families with MSH6, however, were only suspected to have HNPCC. In families that did not fulfill the revised Amsterdam criteria, the prevalence of MSH6 variants is about the same as the prevalence of those in MLH1/MSH2. Endometrial cancer and/or atypical hyperplasia were diagnosed in 8 of 12 female carriers of MSH6 truncating mutations. Most CRCs were localized distally in the colon. Although, molecularly, missense variants are labeled as doubtfully pathogenic, clinical data disclose a great resemblance between missense-variant carriers and truncating-mutation carriers. We conclude that, in all patients suspected to have HNPCC, MSH6-mutation analysis should be considered. Neither MSI nor immunohistochemistry should be a definitive selection criterion for MSH6-mutation analysis.
Collapse
Affiliation(s)
- Maran J W Berends
- Department of Gastroenterology, University Hospital Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Hussein MR, Wood GS. Microsatellite instability in human melanocytic skin tumors: an incidental finding or a pathogenetic mechanism? J Cutan Pathol 2002; 29:1-4. [PMID: 11841510 DOI: 10.1034/j.1600-0560.2002.290101.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Mahmoud R Hussein
- The Department of Medicine (Dermatology), University of Wisconsin, Madison, Wisconsin 53705, USA
| | | |
Collapse
|
192
|
Trojan J, Zeuzem S, Randolph A, Hemmerle C, Brieger A, Raedle J, Plotz G, Jiricny J, Marra G. Functional analysis of hMLH1 variants and HNPCC-related mutations using a human expression system. Gastroenterology 2002; 122:211-9. [PMID: 11781295 DOI: 10.1053/gast.2002.30296] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Germline mutations in the DNA mismatch repair (MMR) genes hMLH1 and hMSH2 are associated with susceptibility to hereditary nonpolyposis colorectal cancer (HNPCC). Because a significant proportion of hMLH1 mutations are missense, the assessment of their pathogenic role may be difficult. To date, functional analysis of missense mutations has been performed primarily in Saccharomyces cerevisiae. The aim of this study was to examine the biochemical properties of hMLH1 protein variants in a human expression system. METHODS The HNPCC-related hMLH1 mutations T117M, V185G, R217C, G244D, R265C, V326A, and K618T, the polymorphisms I219V and R265H, and a hMLH1 splicing variant lacking exon 9 and 10 (hMLH1 Delta 9/10) were cloned. On transfection of these constructs into human 293T cells, which do not express hMLH1 because of promoter hypermethylation, the hMLH1 protein variants were analyzed by Western blotting and in a MMR assay. RESULTS Transfection was successful for all hMLH1 constructs. As anticipated, the mutations K618T and T117M, which affect the highly conserved domains of hMLH1 that are necessary for interaction with hPMS2 or for adenosine triphosphate (ATP) binding, respectively, affected protein stability or its ability to complement MMR-deficient 293T-cell extracts. The V185G, G244D, and Delta 9/10 variants were also unable to complement MMR in 293T cells, whereas hMLH1 proteins carrying the I219V, R265H, R265C, R217C, and V326A mutations were MMR competent. CONCLUSIONS These data show that the pathogenic role of hMLH1 missense mutations and splicing variants can be assessed by analyzing the biochemical properties of their protein products in a homologous expression system.
Collapse
Affiliation(s)
- Joerg Trojan
- Second Department of Medicine, Johann Wolfgang Goethe-University, Frankfurt a. M., Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Baranovskaya S, Soto JL, Perucho M, Malkhosyan SR. Functional significance of concomitant inactivation of hMLH1 and hMSH6 in tumor cells of the microsatellite mutator phenotype. Proc Natl Acad Sci U S A 2001; 98:15107-12. [PMID: 11742074 PMCID: PMC64991 DOI: 10.1073/pnas.251234498] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Genetic or epigenetic inactivation of one of the DNA mismatch repair (MMR) genes in tumor precursor cells causes a profound mutator phenotype, known as the microsatellite mutator phenotype (MMP). This mutator phenotype induces mutations not only in cancer genes that drive tumorigenesis but also in other DNA repair genes. The functional significance of these successive DNA repair gene mutations, however, has not been substantiated. Here we show that the concomitant inactivation of two DNA MMR genes (hMLH1 and hMSH6) increases the mutator phenotype. We isolated cell clones of the SW48 MMP-positive cell line with either active or inactive hMSH6. All of these clones lacked expression of hMLH1 because of promoter hypermethylation. Compared with inactivation of hMLH1 alone, the additional inactivation of hMSH6 produced a higher mutation rate and a different spectrum of mutations in the endogenous hprt gene. These results confirm our model that the mutator phenotype can increase during tumorigenesis by the consecutive inactivation of different members of the DNA MMR system. Thus, a stronger mutator phenotype accelerates the accumulation of mutations in target cancer genes, which, in turn, speeds up tumor progression. The results of this study also have significant impact on our understanding of the mechanism of DNA MMR.
Collapse
Affiliation(s)
- S Baranovskaya
- The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
194
|
Drotschmann K, Yang W, Brownewell FE, Kool ET, Kunkel TA. Asymmetric recognition of DNA local distortion. Structure-based functional studies of eukaryotic Msh2-Msh6. J Biol Chem 2001; 276:46225-9. [PMID: 11641390 DOI: 10.1074/jbc.c100450200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Crystal structures of bacterial MutS homodimers bound to mismatched DNA reveal asymmetric interactions of the two subunits with DNA. A phenylalanine and glutamate of one subunit make mismatched base-specific interactions, and residues of both subunits contact the DNA backbone surrounding the mismatched base, but asymmetrically. A number of amino acids in MutS that contact the DNA are conserved in the eukaryotic Msh2-Msh6 heterodimer. We report here that yeast strains with amino acids substituted for residues inferred to interact with the DNA backbone or mismatched base have elevated spontaneous mutation rates consistent with defective mismatch repair. Purified Msh2-Msh6 with substitutions in the conserved Phe(337) and Glu(339) in Msh6 thought to stack or hydrogen bond, respectively, with the mismatched base do have reduced DNA binding affinity but normal ATPase activity. Moreover, wild-type Msh2-Msh6 binds with lower affinity to mismatches with thymine replaced by difluorotoluene, which lacks the ability to hydrogen bond. The results suggest that yeast Msh2-Msh6 interacts asymmetrically with the DNA through base-specific stacking and hydrogen bonding interactions and backbone contacts. The importance of these contacts decreases with increasing distance from the mismatch, implying that interactions at and near the mismatch are important for binding in a kinked DNA conformation.
Collapse
Affiliation(s)
- K Drotschmann
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
195
|
Abstract
We determined the localizations of mismatch repair proteins in living Bacillus subtilis cells. MutS-GFP colocalized with the chromosome in all cells and formed foci in a subset of cells. MutL-GFP formed foci in a subset of cells, and its localization was MutS dependent. The introduction of mismatches by growth in 2-aminopurine caused a replication-dependent increase in the number of cells with MutS and MutL foci. Approximately half of the MutS foci colocalized with DNA polymerase foci. We conclude that MutS is associated with the entire chromosome, poised to detect mismatches. After detection, it appears that mismatch repair foci assemble at mismatches as they emerge from the DNA polymerase and are then carried away from the replisome by continuing replication.
Collapse
Affiliation(s)
- B T Smith
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
196
|
Nyström-Lahti M, Perrera C, Räschle M, Panyushkina-Seiler E, Marra G, Curci A, Quaresima B, Costanzo F, D'Urso M, Venuta S, Jiricny J. Functional analysis ofMLH1mutations linked to hereditary nonpolyposis colon cancer. Genes Chromosomes Cancer 2001. [DOI: 10.1002/gcc.1225] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
197
|
Bellacosa A. Functional interactions and signaling properties of mammalian DNA mismatch repair proteins. Cell Death Differ 2001; 8:1076-92. [PMID: 11687886 DOI: 10.1038/sj.cdd.4400948] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2000] [Revised: 07/11/2001] [Accepted: 08/30/2001] [Indexed: 12/15/2022] Open
Abstract
The mismatch repair (MMR) system promotes genomic fidelity by repairing base-base mismatches, insertion-deletion loops and heterologies generated during DNA replication and recombination. This function is critically dependent on the assembling of multimeric complexes involved in mismatch recognition and signal transduction to downstream repair events. In addition, MMR proteins coordinate a complex network of physical and functional interactions that mediate other DNA transactions, such as transcription-coupled repair, base excision repair and recombination. MMR proteins are also involved in activation of cell cycle checkpoint and induction of apoptosis when DNA damage overwhelms a critical threshold. For this reason, they play a role in cell death by alkylating agents and other chemotherapeutic drugs, including cisplatin. Inactivation of MMR genes in hereditary and sporadic cancer is associated with a mutator phenotype and inhibition of apoptosis. In the future, a deeper understanding of the molecular mechanisms and functional interactions of MMR proteins will lead to the development of more effective cancer prevention and treatment strategies.
Collapse
Affiliation(s)
- A Bellacosa
- Human Genetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
198
|
Blackwell LJ, Bjornson KP, Allen DJ, Modrich P. Distinct MutS DNA-binding modes that are differentially modulated by ATP binding and hydrolysis. J Biol Chem 2001; 276:34339-47. [PMID: 11454861 DOI: 10.1074/jbc.m104256200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of MutS ATPase in mismatch repair is controversial. To clarify further the function of this activity, we have examined adenine nucleotide effects on interactions of Escherichia coli MutS with homoduplex and heteroduplex DNAs. In contrast to previous results with human MutS alpha, we find that a physical block at one end of a linear heteroduplex is sufficient to support stable MutS complex formation in the presence of ATP.Mg(2+). Surface plasmon resonance analysis at low ionic strength indicates that the lifetime of MutS complexes with heteroduplex DNA depends on the nature of the nucleotide present when MutS binds. Whereas complexes prepared in the absence of nucleotide or in the presence of ADP undergo rapid dissociation upon challenge with ATP x Mg(2+), complexes produced in the presence of ATP x Mg(2+), adenosine 5'-(beta,gamma-imino)triphosphate (AMPPNP) x Mg(2+), or ATP (no Mg(2+)) are resistant to dissociation upon ATP challenge. AMPPNP x Mg(2+) and ATP (no Mg(2+)) reduce MutS affinity for heteroduplex but have little effect on homoduplex affinity, resulting in abolition of specificity for mispaired DNA at physiological salt concentrations. Conversely, the highest mismatch specificity is observed in the absence of nucleotide or in the presence of ADP. ADP has only a limited effect on heteroduplex affinity but reduces MutS affinity for homoduplex DNA.
Collapse
Affiliation(s)
- L J Blackwell
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
199
|
Blackwell LJ, Wang S, Modrich P. DNA chain length dependence of formation and dynamics of hMutSalpha.hMutLalpha.heteroduplex complexes. J Biol Chem 2001; 276:33233-40. [PMID: 11441019 DOI: 10.1074/jbc.m105076200] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Formation of a ternary complex between human MutSalpha, MutLalpha, and heteroduplex DNA has been demonstrated by surface plasmon resonance spectroscopy and electrophoretic gel shift methods. Formation of the hMutLalpha.hMutSalpha.heteroduplex complex requires a mismatch and ATP hydrolysis, and depends on DNA chain length. Ternary complex formation was supported by a 200-base pair G-T heteroduplex, a 100-base pair substrate was somewhat less effective, and a 41-base pair heteroduplex was inactive. As judged by surface plasmon resonance spectroscopy, ternary complexes produced with the 200-base pair G-T DNA contained approximately 0.8 mol of hMutLalpha/mol of heteroduplex-bound hMutSalpha. Although the steady-state levels of the hMutLalpha.hMutSalpha. heteroduplex were substantial, this complex was found to turn over, as judged by surface plasmon resonance spectroscopy and electrophoretic gel shift analysis. With the former method, the majority of the complexes dissociated rapidly upon termination of protein flow, and dissociation occurred in the latter case upon challenge with competitor DNA. However, ternary complex dissociation as monitored by gel shift assay was prevented if both ends of the heteroduplex were physically blocked with streptavidin.biotin complexes. This observation suggests that, like hMutSalpha, the hMutLalpha.hMutSalpha complex can migrate along the helix contour to dissociate at DNA ends.
Collapse
Affiliation(s)
- L J Blackwell
- Department of Biochemistry and Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
200
|
Wang Q, Zhang H, Guerrette S, Chen J, Mazurek A, Wilson T, Slupianek A, Skorski T, Fishel R, Greene MI. Adenosine nucleotide modulates the physical interaction between hMSH2 and BRCA1. Oncogene 2001; 20:4640-9. [PMID: 11498787 DOI: 10.1038/sj.onc.1204625] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2001] [Revised: 04/26/2001] [Accepted: 05/24/2001] [Indexed: 12/15/2022]
Abstract
We have identified the physical interaction between the Breast Cancer susceptibility gene product BRCA1 and the Hereditary Non-Polyposis Colorectal Cancer (HNPCC) and DNA mismatch repair (MMR) gene product hMSH2, both in vitro and in vivo. The BRCA1-hMSH2 association involved several well-defined regions of both proteins which include the adenosine nucleotide binding domain of hMSH2. Moreover, the interaction of BRCA1 with purified hMSH2-hMSH6 appears to be modulated by adenosine nucleotide much like G protein downstream interaction/signaling is modulated by guanosine nucleotide. BARD1, another BRCA1-interacting protein, was also found to interact with hMSH2. In addition, BRCA1 was found to associate with both hMSH3 and hMSH6, the heterodimeric partners of hMSH2. These observations implicate BRCA1/BARD1 as downstream effectors of the adenosine nucleotide-activated hMSH2-hMSH6 signaling complex, and suggest a global role for BRCA1 in DNA damage processing. The functional interaction between BRCA1 and hMSH2 may provide a partial explanation for the background of gynecological and colorectal cancer in both HNPCC and BRCA1 kindreds, respectively.
Collapse
Affiliation(s)
- Q Wang
- Department of Pathology and Laboratory Medicine, The Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|