151
|
Lee J, Liu L, Levin DE. Stressing out or stressing in: intracellular pathways for SAPK activation. Curr Genet 2018; 65:417-421. [PMID: 30377756 DOI: 10.1007/s00294-018-0898-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/17/2018] [Accepted: 10/20/2018] [Indexed: 01/03/2023]
Abstract
Stress-activated MAP kinases (SAPKs) respond to a wide variety of stressors. In most cases, the pathways through which specific stress signals are transmitted to the SAPKs are not known. Our recent findings have begun to address two important and related questions. First, do various stresses activate a SAPK through common pathways initiated at the cell surface, or through alternative, intracellular inputs? Second, how does an activated SAPK mount a specific response appropriate to the particular stress experienced? Our work has uncovered the mechanisms by which two stresses, arsenite treatment and DNA damage, stimulate the yeast SAPKs Hog1 and Mpk1, respectively. We found that these stresses activate the SAPKs through intracellular inputs that modulate their basal phosphorylation, rather than by activation of the protein kinase cascades known to stimulate them. Both stresses act through targeting, in different ways, the tyrosine-specific or dual-specificity protein phosphatases that normally maintain the SAPKs in a low-activity state. Previous work has demonstrated that basal signal flux through SAPK pathways is important for the sensitivity and dynamic response to external signals. Our work reveals that basal activity of SAPKs is additionally important to allow SAPK activation by intracellular inputs that modulate that activity. Additionally, because different stressors may activate SAPKs by modulation of basal signal through inputs at distinct nodes along the canonical activation pathway, stress-specific SAPK outputs may be controlled, in part, by the specific intracellular mechanisms of their activation. Thus, understanding the intracellular pathways through which various stressors activate SAPKs is likely to provide insight into how they elicit physiologically coherent responses to the specific stress experienced.
Collapse
Affiliation(s)
- Jongmin Lee
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA, 02118, USA
| | - Li Liu
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA, 02118, USA
| | - David E Levin
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA, 02118, USA.
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
152
|
Choo MK, Kraft S, Missero C, Park JM. The protein kinase p38α destabilizes p63 to limit epidermal stem cell frequency and tumorigenic potential. Sci Signal 2018; 11:11/551/eaau0727. [PMID: 30301786 DOI: 10.1126/scisignal.aau0727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The molecular circuitry directing tissue development and homeostasis is hardwired by genetic programs but may also be subject to fine-tuning or major modification by environmental conditions. It remains unclear whether such malleability is at work-particularly in tissues directly in contact with the environment-and contributes to their optimal maintenance and resilience. The protein kinase p38α is activated by physiological cues that signal tissue damage and neoplastic transformation. Here, we found that p38α phosphorylated and thereby destabilized p63, a transcription factor essential for epidermal development. Through this regulatory mechanism, p38α limited the frequency of keratinocytes with stem cell properties and tumorigenic potential. Correspondingly, epidermal loss of p38α expression or activity promoted or correlated with carcinogenesis in mouse and human skin, respectively. Genetic mouse models revealed a tumorigenic mechanism from p38α loss through p63-mediated suppression of the matrix metalloprotease MMP13. These findings illustrate a previously uncharacterized epidermal tumor-suppressive mechanism in which stress-activated signaling induces the contraction of stem cell-like keratinocyte pools.
Collapse
Affiliation(s)
- Min-Kyung Choo
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Stefan Kraft
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Caterina Missero
- CEINGE Biotecnologie Avanzate, 80145 Napoli, Italy.,Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Jin Mo Park
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
153
|
Stefanoska K, Bertz J, Volkerling AM, van der Hoven J, Ittner LM, Ittner A. Neuronal MAP kinase p38α inhibits c-Jun N-terminal kinase to modulate anxiety-related behaviour. Sci Rep 2018; 8:14296. [PMID: 30250211 PMCID: PMC6155170 DOI: 10.1038/s41598-018-32592-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/05/2018] [Indexed: 02/06/2023] Open
Abstract
Modulation of behavioural responses by neuronal signalling pathways remains incompletely understood. Signalling via mitogen-activated protein (MAP) kinase cascades regulates multiple neuronal functions. Here, we show that neuronal p38α, a MAP kinase of the p38 kinase family, has a critical and specific role in modulating anxiety-related behaviour in mice. Neuron-specific p38α-knockout mice show increased levels of anxiety in behaviour tests, yet no other behavioural, cognitive or motor deficits. Using CRISPR-mediated deletion of p38α in cells, we show that p38α inhibits c-Jun N-terminal kinase (JNK) activity, a function that is specific to p38α over other p38 kinases. Consistently, brains of neuron-specific p38α-knockout mice show increased JNK activity. Inhibiting JNK using a specific blood-brain barrier-permeable inhibitor reduces JNK activity in brains of p38α-knockout mice to physiological levels and reverts anxiety behaviour. Thus, our results suggest that neuronal p38α negatively regulates JNK activity that is required for specific modulation of anxiety-related behaviour.
Collapse
Affiliation(s)
- Kristie Stefanoska
- Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Josefine Bertz
- Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Alexander M Volkerling
- Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Julia van der Hoven
- Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Lars M Ittner
- Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.,Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Arne Ittner
- Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
154
|
Lubrano S, Comelli L, Piccirilli C, Marranci A, Dapporto F, Tantillo E, Gemignani F, Gutkind JS, Salvetti A, Chiorino G, Cozza G, Chiariello M, Galli A, Poliseno L, Cervelli T. Development of a yeast-based system to identify new hBRAFV600E functional interactors. Oncogene 2018; 38:1355-1366. [PMID: 30237439 DOI: 10.1038/s41388-018-0496-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 07/30/2018] [Accepted: 08/14/2018] [Indexed: 11/09/2022]
Abstract
BRAFV600E is a mutant Ser-Thr protein kinase that plays a crucial role in many types of cancer, including melanoma. Despite several aspects of BRAFV600E biology have been already elucidated, the proteins that regulate its expression and activity remain largely unknown, hampering our capacity to control its unrestrained effects. Here, we propose yeast Saccharomyces cerevisiae as a model system that can be used to achieve a better understanding of the regulation of human BRAFV600E.By showing that in osmotic stress conditions hBRAFV600E can rescue the growth of strains carrying a double or triple deletion in MAPKKK belonging to the HOG pathway, we demonstrate that this oncogenic kinase is active in yeast even if it does not have an ortholog. Moreover, we report that, in the yeast ptp3∆ptc1∆ strain that is deleted in the genes encoding for two phosphatases responsible for Hog1 de-phoshorylation, hBRAFV600E mimics the toxicity observed in the presence of constitutive Hog1 activation. Finally, we exploit such a toxicity to perform a functional screening of a human cDNA library, looking for cDNAs able to rescue yeast growth. In this way, we identify SMIM10, a mitochondrial protein that in melanoma cells selectively downregulates BRAFV600E RNA and protein levels, by acting indirectly at the post-transcriptional level. Upon SMIM10 overexpression, BRAFV600E melanoma cells show disrupted mitochondrial structure/function and undergo senescence. They also show decreased ability to proliferate and form colonies, as well as increased sensitivity to the BRAF inhibitor vemurafenib. Interestingly, the analysis of TCGA melanoma samples indicates that patients with higher SMIM10 levels have a better prognosis. Therefore, these data suggest that SMIM10 exerts an oncosuppressive role in melanoma cells.Taken together, our results unveil the potential of S. cerevisiae to study hBRAFV600E, to populate the network of its functional interactors and, in doing so, to uncover new cancer-associated genes with therapeutic potential.
Collapse
Affiliation(s)
- Simone Lubrano
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Pisa, Italy.,Institute of Clinical Physiology, IFC-CNR, Pisa, Italy.,Department of Biology, University of Pisa, Pisa, Italy
| | - Laura Comelli
- Institute of Clinical Physiology, IFC-CNR, Pisa, Italy
| | | | - Andrea Marranci
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Pisa, Italy.,Institute of Clinical Physiology, IFC-CNR, Pisa, Italy
| | | | - Elena Tantillo
- Scuola Normale Superiore, Pisa, Italy.,FPS-Pisa Science Foundation, Pisa, Italy
| | | | - J Silvio Gutkind
- Department of Pharmacology, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Alessandra Salvetti
- Unit of Experimental Biology and Genetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanna Chiorino
- Lab of Cancer Genomics, Fondazione Edo and Elvo Tempia, Biella, Italy
| | - Giorgio Cozza
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Mario Chiariello
- Institute of Clinical Physiology, IFC-CNR, Pisa, Italy.,Signal Transduction Unit, Core Research Laboratory, ISPRO, Siena, Italy
| | - Alvaro Galli
- Institute of Clinical Physiology, IFC-CNR, Pisa, Italy.
| | - Laura Poliseno
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Pisa, Italy. .,Institute of Clinical Physiology, IFC-CNR, Pisa, Italy.
| | | |
Collapse
|
155
|
The cigarette smoke components induced the cell proliferation and epithelial to mesenchymal transition via production of reactive oxygen species in endometrial adenocarcinoma cells. Food Chem Toxicol 2018; 121:657-665. [PMID: 30236600 DOI: 10.1016/j.fct.2018.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 09/11/2018] [Accepted: 09/15/2018] [Indexed: 12/27/2022]
Abstract
Cigarette smoke (CS) causes about 480,000 deaths each year worldwide and is well-known to have harmful effects on the human body, leading to heart disease, stroke, lung cancer, and cardiovascular problems. In the present study, the effects of acrylonitrile (AN), benzo(a)pyrene (B(a)P), formaldehyde (FOR), isoprene (ISO), nicotine-derived nitrosamine ketone (NNK), which are the main components of CS, on the proliferation, invasion, and the epithelial-mesenchymal transition (EMT) process of human Ishikawa endometrial adenocarcinoma cells were investigated. Treating Ishikawa cells with CS components resulted in increased cell growth and altered expression of cell cycle-related genes: the protein expression of cyclin D & E increased, while the levels of p21 & p27 were reduced following treatment of these five CS components. In addition, CS components increased the invasion capacity of Ishikawa cells. The expression of the epithelial markers, E-cadherin and occludin, were significantly decreased, while the expression of the mesenchymal marker, N-cadherin, was significantly increased by CS components. In dichloro-dihydro-fluorescein diacetate (H2DCF-DA) assay, ROS production increased by treatment of CS components. The CS components activated the ROS-p38 MAPK-EMT pathway by increasing the level of phosphorylated p38 MAPK and p44/42 (ERK1/2), and by up-regulating Snail and Slug, the transcription factors for EMT. Taken together, these results indicate that CS components can promote progression of endometrial adenocarcinoma via increasing cell proliferation and the ROS-mediated EMT process.
Collapse
|
156
|
Laudisi F, Di Fusco D, Dinallo V, Stolfi C, Di Grazia A, Marafini I, Colantoni A, Ortenzi A, Alteri C, Guerrieri F, Mavilio M, Ceccherini-Silberstein F, Federici M, MacDonald TT, Monteleone I, Monteleone G. The Food Additive Maltodextrin Promotes Endoplasmic Reticulum Stress-Driven Mucus Depletion and Exacerbates Intestinal Inflammation. Cell Mol Gastroenterol Hepatol 2018; 7:457-473. [PMID: 30765332 PMCID: PMC6369223 DOI: 10.1016/j.jcmgh.2018.09.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/27/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Food additives, such as emulsifiers, stabilizers, or bulking agents, are present in the Western diet and their consumption is increasing. However, little is known about their potential effects on intestinal homeostasis. In this study we examined the effect of some of these food additives on gut inflammation. METHODS Mice were given drinking water containing maltodextrin (MDX), propylene glycol, or animal gelatin, and then challenged with dextran sulfate sodium or indomethacin. In parallel, mice fed a MDX-enriched diet were given the endoplasmic reticulum (ER) stress inhibitor tauroursodeoxycholic acid (TUDCA). Transcriptomic analysis, real-time polymerase chain reaction, mucin-2 expression, phosphorylated p38 mitogen-activated protein (MAP) kinase quantification, and H&E staining was performed on colonic tissues. Mucosa-associated microbiota composition was characterized by 16S ribosomal RNA sequencing. For the in vitro experiments, murine intestinal crypts and the human mucus-secreting HT29-methotrexate treated cell line were stimulated with MDX in the presence or absence of TUDCA or a p38 MAP kinase inhibitor. RESULTS Diets enriched in MDX, but not propylene glycol or animal gelatin, exacerbated intestinal inflammation in both models. Analysis of the mechanisms underlying the detrimental effect of MDX showed up-regulation of inositol requiring protein 1β, a sensor of ER stress, in goblet cells, and a reduction of mucin-2 expression with no significant change in mucosa-associated microbiota. Stimulation of murine intestinal crypts and HT29-methotrexate treated cell line cells with MDX induced inositol requiring protein 1β via a p38 MAP kinase-dependent mechanism. Treatment of mice with TUDCA prevented mucin-2 depletion and attenuated colitis in MDX-fed mice. CONCLUSIONS MDX increases ER stress in gut epithelial cells with the downstream effect of reducing mucus production and enhancing colitis susceptibility.
Collapse
Affiliation(s)
- Federica Laudisi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Davide Di Fusco
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Vincenzo Dinallo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Antonio Di Grazia
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Irene Marafini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alfredo Colantoni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Angela Ortenzi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Alteri
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Guerrieri
- Center for Life NanoScience at Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Maria Mavilio
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy,Center for Atherosclerosis, Policlinico Tor Vergata, Rome, Italy
| | - Thomas Thornton MacDonald
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, United Kingdom
| | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy,Correspondence Address correspondence to: Giovanni Monteleone, MD, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy. fax: (39) 06-72596391.
| |
Collapse
|
157
|
Yang JF, Wang F, Jiang W, Zhou GY, Li CZ, Zhu XL, Hao GF, Yang GF. PADFrag: A Database Built for the Exploration of Bioactive Fragment Space for Drug Discovery. J Chem Inf Model 2018; 58:1725-1730. [DOI: 10.1021/acs.jcim.8b00285] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, P.R. China
| | - Fan Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, P.R. China
| | - Wen Jiang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, P.R. China
| | - Guang-You Zhou
- School of Computer Science, Central China Normal University, Wuhan 430079, P.R. China
| | - Cheng-Zhang Li
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, P.R. China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, P.R. China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, P.R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjing 300072, P.R. China
| |
Collapse
|
158
|
Qi J, Xian XH, Li L, Zhang M, Hu YY, Zhang JG, Li WB. Sulbactam Protects Hippocampal Neurons Against Oxygen-Glucose Deprivation by Up-Regulating Astrocytic GLT-1 via p38 MAPK Signal Pathway. Front Mol Neurosci 2018; 11:281. [PMID: 30158854 PMCID: PMC6104165 DOI: 10.3389/fnmol.2018.00281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
Sulbactam is an atypical β-lactam medication and reported to be neuroprotective by up-regulating glial glutamate transporter-1 (GLT-1) in rats. The present study was undertaken to study the role of p38 MAPK signal pathway in sulbactam induced up-regulation of GLT-1 expression in astrocytes and anti-ischemic effect. Neuron-astrocyte co-cultures and astrocyte cultures from neonatal Wistar rats were used. Cerebral ischemia was mimicked by oxygen-glucose deprivation (OGD). Hoechst (HO)/propidium iodide (PI) double fluorescence staining and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay were used to evaluate neuronal death and cell viability, respectively. Immunocytochemistry and Western blot were used to detect protein expressions. Sulbactam pre-incubation significantly and dose-dependently prevented neuronal death and decline in cell viability induced by OGD in neuron-astrocyte co-cultures, and upregulated GLT-1 expression in astrocyte cultures endured OGD, which suggested that sulbactam might protect neurons against OGD by up-regulating astrocytic GLT-1 expression. It was further shown that the phosphorylated-p38 MAPK expression in astrocytes was up-regulated after the sulbactam pre-incubation and this up-regulation was moderate in amplitude. Especially, the time course of the up-regulation of phosphorylated-p38 MAPK was obviously earlier than that of GLT-1, which suggested possibility that p38 MAPK might be an upstream signal for GLT-1 up-regulation induced by sulbactam. We further found that SB203580, the specific inhibitor of p38 MAPK, dose-dependently inhibited the GLT-1 up-regulation induced by sulbactam either in non- or OGD-treated astrocytes and the protective effect of sulbactam on co-cultured neurons against OGD. Taken together, it might be concluded that sulbactam protects cerebral neurons against OGD by up-regulating astrocytic GLT-1 expression via p38 MAPK signal pathway.
Collapse
Affiliation(s)
- Jie Qi
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Xiao-Hui Xian
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Li Li
- Department of Science and Technology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Min Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China.,Neuroscience Center, Hebei Medical University, Shijiazhuang, China
| | - Yu-Yan Hu
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Jing-Ge Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Wen-Bin Li
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China.,Neuroscience Center, Hebei Medical University, Shijiazhuang, China.,Aging and Cognition Neuroscience Laboratory of Hebei Province, Shijiazhuang, China
| |
Collapse
|
159
|
Chen L, Chen P, Liu J, Hu C, Yang S, He D, Yu P, Wu M, Zhang X. Sargassum Fusiforme Polysaccharide SFP-F2 Activates the NF-κB Signaling Pathway via CD14/IKK and P38 Axes in RAW264.7 Cells. Mar Drugs 2018; 16:E264. [PMID: 30071655 PMCID: PMC6117693 DOI: 10.3390/md16080264] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
Sargassum fusifrome is considered a "longevity vegetable" in Asia. Sargassum fusifrome polysaccharides exhibit numerous biological activities, specially, the modulation of immune response via the NF-κB signaling pathway. However, the precise mechanisms by which these polysaccharides modulate the immune response through the NF-κB signaling pathway have not been elucidated. In this study, we purified and characterized a novel fraction of Sargassum fusifrome polysaccharide and named it SFP-F2. SFP-F2 significantly upregulated the production of the cytokines TNF-α, IL-1β and IL-6 in RAW264.7 cells. It also activated the NF-κB signaling pathway. Data obtained from experiments carried out with specific inhibitors (PDTC, BAY 11-7082, IKK16 and SB203580) suggested that SFP-F2 activated the NF-κB signaling pathway via CD14/IKK and P38 axes. SFP-F2 could therefore potentially exert an immune-enhancement effect through inducing the CD14/IKK/NF-κB and P38/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Liujun Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
- Natural Resources and Environmental Studies Program, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada.
| | - Peichao Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Jian Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Chenxi Hu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Shanshan Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Dan He
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Ping Yu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Xu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
160
|
He T, Liu S, Chen S, Ye J, Wu X, Bian Z, Chen X. The p38 MAPK Inhibitor SB203580 Abrogates Tumor Necrosis Factor-Induced Proliferative Expansion of Mouse CD4 +Foxp3 + Regulatory T Cells. Front Immunol 2018; 9:1556. [PMID: 30038619 PMCID: PMC6046375 DOI: 10.3389/fimmu.2018.01556] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 06/25/2018] [Indexed: 12/27/2022] Open
Abstract
There is now compelling evidence that tumor necrosis factor (TNF) preferentially activates and expands CD4+Foxp3+ regulatory T cells (Tregs) through TNF receptor type II (TNFR2). However, it remains unclear which signaling transduction pathway(s) of TNFR2 is required for the stimulation of Tregs. Previously, it was shown that the interaction of TNF–TNFR2 resulted in the activation of a number of signaling pathways, including p38 MAPK, NF-κB, in T cells. We thus examined the role of p38 MAPK and NF-κB in TNF-mediated activation of Tregs, by using specific small molecule inhibitors. The results show that treatment with specific p38 MAPK inhibitor SB203580, rather than NF-κB inhibitors (Sulfasalazine and Bay 11-7082), abrogated TNF-induced expansion of Tregs in vitro. Furthermore, upregulation of TNFR2 and Foxp3 expression in Tregs by TNF was also markedly inhibited by SB203580. The proliferative expansion and the upregulation of TNFR2 expression on Tregs in LPS-treated mice were mediated by TNF–TNFR2 interaction, as shown by our previous study. The expansion of Tregs in LPS-treated mice were also markedly inhibited by in vivo treatment with SB203580. Taken together, our data clearly indicate that the activation of p38 MAPK is attributable to TNF/TNFR2-mediated activation and proliferative expansion of Tregs. Our results also suggest that targeting of p38 MAPK by pharmacological agent may represent a novel strategy to up- or downregulation of Treg activity for therapeutic purposes.
Collapse
Affiliation(s)
- Tianzhen He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Shuoyang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Shaokui Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Jingyi Ye
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Xueqiang Wu
- Department of Oncology, Beijing Aerospace General Hospital, Beijing, China
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
161
|
Sun Y, Li L. Cyanidin-3-glucoside inhibits inflammatory activities in human fibroblast-like synoviocytes and in mice with collagen-induced arthritis. Clin Exp Pharmacol Physiol 2018; 45:1038-1045. [PMID: 29779214 DOI: 10.1111/1440-1681.12970] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 05/02/2018] [Accepted: 05/11/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Yan Sun
- Department of Traditional Chinese Medicine; Daqing Oilfield General Hospital; Daqing China
| | - Lingling Li
- Medical Record Statistical Room; Daqing Oilfield General Hospital; Daqing China
| |
Collapse
|
162
|
Lee J, Levin DE. Intracellular mechanism by which arsenite activates the yeast stress MAPK Hog1. Mol Biol Cell 2018; 29:1904-1915. [PMID: 29846136 PMCID: PMC6085820 DOI: 10.1091/mbc.e18-03-0185] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Stress-activated MAPKs (SAPKs) respond to a wide variety of stressors. In most cases, the pathways through which specific stress signals are transmitted to the SAPKs are not known. In this study, we delineate the intracellular signaling pathway by which the trivalent toxic metalloid arsenite [As(III)] activates the yeast SAPK Hog1. We demonstrate that, to activate Hog1, As(III) must enter the cell through the glycerol channel Fps1 and must be metabolized to methyl arsenite [MAs(III)] by the dimeric methyltransferase Mtq2:Trm112. We found that Mtq2:Trm1 displays SAM-dependent methyltransferase activity toward both As(III) and MAs(III). Additionally, we present genetic and biochemical evidence that MAs(III), but not As(III), is a potent inhibitor of the protein tyrosine phosphatases (Ptp2 and Ptp3) that normally maintain Hog1 in an inactive state. Inhibition of Ptp2 and Ptp3 by MAs(III) results in elevated Hog1 phosphorylation without activation of the protein kinases that act upstream of the SAPK and raises the possibility that other Hog1-activating stressors act intracellularly at different points along the canonical Hog1 activation pathway. Finally, we show that arsenate [As(V)], a pentavalent form of arsenic, also activates Hog1, but through a pathway that is distinct from that of As(III) and involves activation of the Hog1 MEK Pbs2.
Collapse
Affiliation(s)
- Jongmin Lee
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA 02118
| | - David E Levin
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA 02118.,Department of Microbiology, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
163
|
Schwartz M, Böckmann S, Borchert P, Hinz B. SB202190 inhibits endothelial cell apoptosis via induction of autophagy and heme oxygenase-1. Oncotarget 2018; 9:23149-23163. [PMID: 29796178 PMCID: PMC5955409 DOI: 10.18632/oncotarget.25234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/29/2018] [Indexed: 12/20/2022] Open
Abstract
Activation of the p38 mitogen-activated protein kinase (MAPK) pathway has been implicated in various detrimental events finally leading to endothelial dysfunction. The present study therefore investigates the impact of the p38 MAPK inhibitor SB202190 on the expression of the cytoprotective enzyme heme oxygenase-1 (HO-1) as well as metabolic activity, apoptosis and autophagy of endothelial cells. Using human umbilical vein endothelial cells (HUVEC) SB202190 was found to cause a time- and concentration-dependent induction of HO-1 protein. Induction of HO-1 protein expression was mimicked by SB203580, another p38 MAPK inhibitor, but not by SB202474, an inactive structural analogue of p38 MAPK inhibitors. HO-1 induction by both SB202190 and SB203580 was also demonstrated by analysis of mRNA expression. On the functional level, SB202190 was shown to increase metabolic activity and autophagy of HUVEC along with diminishing basal apoptosis. Treatment of cells with tin protoporphyrin IX (SnPPIX), a well-characterised HO-1 enzymatic inhibitor, or HO-1 siRNA left SB202190-modulated metabolic activity and autophagy virtually unaltered but caused a significant reversal of the anti-apoptotic action of SB202190. Conversely, however, HO-1 expression by SB202190 became completely suppressed by the autophagy inhibitor bafilomycin A1. Bafilomycin A1 likewise fully reversed effects of SB202190 on metabolic activity and apoptosis, albeit significantly inducing apoptosis per se. Collectively, this work demonstrates SB202190 to confer upstream induction of autophagy followed by HO-1 induction resulting in potential protective effects against apoptosis. On the other hand, our data oppose HO-1 to contribute to SB202190-mediated increases in metabolic activity and autophagy, respectively.
Collapse
Affiliation(s)
- Margit Schwartz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Sabine Böckmann
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Philipp Borchert
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
164
|
Wang W, Wu L, Li Q, Zhang Z, Xu L, Lin C, Gao L, Zhao K, Liang F, Zhang Q, Zhou M, Jiang W. Madecassoside prevents acute liver failure in LPS/D-GalN-induced mice by inhibiting p38/NF-κB and activating Nrf2/HO-1 signaling. Biomed Pharmacother 2018; 103:1137-1145. [PMID: 29715757 DOI: 10.1016/j.biopha.2018.04.162] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 12/30/2022] Open
Abstract
Madecassoside (MA), a triterpenoid saponin isolated from Centella asiatica, exerts various pharmacological activities including antioxidative and anti-inflammatory effects. The aim of this study was to explore the protective effect of MA in the treatment of lipopolysaccharide (LPS) and D-galactosamine (D-GalN)-induced acute liver failure(ALF) in mice. We hypothesized that MA administration may decrease the degree of liver injury caused by LPS/D-GalN. In this study, we investigated this hypothesis by treating a mouse model of LPS/D-GalN-induced liver injury with MA. Our study demonstrated that MA (20 mg/kg and 40 mg/kg) treatment for 10 days attenuated LPS/D-GalN-induced liver injury by protecting liver function, suppressing the production of inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, and recovering antioxidant enzyme activity. MA also significantly suppressed LPS-stimulated protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 by blocking the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and eukaryotic transcription factor nuclear factor-kappa B (NF-κB). In addition, MA treatment enhanced protein levels of heme oxygenase (HO)-1 and anti-oxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) through the upregulation of nuclear factor E2-related factor 2 (Nrf2) in LPS-stimulated liver injury. These results suggest that MA is a promising agent for the treatment of LPS/D-GalN-induced liver injury that could serve as a candidate for the development of a hepatoprotective drug against ALF.
Collapse
Affiliation(s)
- Wei Wang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Lingling Wu
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Qing Li
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Zhuo Zhang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Liba Xu
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Caixia Lin
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Ling Gao
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Kaili Zhao
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Fei Liang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Qing Zhang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Mei Zhou
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Weizhe Jiang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
165
|
Sajda T, Sinha AA. Autoantibody Signaling in Pemphigus Vulgaris: Development of an Integrated Model. Front Immunol 2018; 9:692. [PMID: 29755451 PMCID: PMC5932349 DOI: 10.3389/fimmu.2018.00692] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/21/2018] [Indexed: 01/10/2023] Open
Abstract
Pemphigus vulgaris (PV) is an autoimmune skin blistering disease effecting both cutaneous and mucosal epithelia. Blister formation in PV is known to result from the binding of autoantibodies (autoAbs) to keratinocyte antigens. The primary antigenic targets of pathogenic autoAbs are known to be desmoglein 3, and to a lesser extent, desmoglein 1, cadherin family proteins that partially comprise the desmosome, a protein structure responsible for maintaining cell adhesion, although additional autoAbs, whose role in blister formation is still unclear, are also known to be present in PV patients. Nevertheless, there remain large gaps in knowledge concerning the precise mechanisms through which autoAb binding induces blister formation. Consequently, the primary therapeutic interventions for PV focus on systemic immunosuppression, whose side effects represent a significant health risk to patients. In an effort to identify novel, disease-specific therapeutic targets, a multitude of studies attempting to elucidate the pathogenic mechanisms downstream of autoAb binding, have led to significant advancements in the understanding of autoAb-mediated blister formation. Despite this enhanced characterization of disease processes, a satisfactory explanation of autoAb-induced acantholysis still does not exist. Here, we carefully review the literature investigating the pathogenic disease mechanisms in PV and, taking into account the full scope of results from these studies, provide a novel, comprehensive theory of blister formation in PV.
Collapse
Affiliation(s)
- Thomas Sajda
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Animesh A Sinha
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
166
|
Liu S, Ginzberg MB, Patel N, Hild M, Leung B, Li Z, Chen YC, Chang N, Wang Y, Tan C, Diena S, Trimble W, Wasserman L, Jenkins JL, Kirschner MW, Kafri R. Size uniformity of animal cells is actively maintained by a p38 MAPK-dependent regulation of G1-length. eLife 2018; 7:26947. [PMID: 29595474 PMCID: PMC5876018 DOI: 10.7554/elife.26947] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 12/22/2017] [Indexed: 01/09/2023] Open
Abstract
Animal cells within a tissue typically display a striking regularity in their size. To date, the molecular mechanisms that control this uniformity are still unknown. We have previously shown that size uniformity in animal cells is promoted, in part, by size-dependent regulation of G1 length. To identify the molecular mechanisms underlying this process, we performed a large-scale small molecule screen and found that the p38 MAPK pathway is involved in coordinating cell size and cell cycle progression. Small cells display higher p38 activity and spend more time in G1 than larger cells. Inhibition of p38 MAPK leads to loss of the compensatory G1 length extension in small cells, resulting in faster proliferation, smaller cell size and increased size heterogeneity. We propose a model wherein the p38 pathway responds to changes in cell size and regulates G1 exit accordingly, to increase cell size uniformity.
Collapse
Affiliation(s)
- Shixuan Liu
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | | | - Nish Patel
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Marc Hild
- Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Bosco Leung
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Zhengda Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, United States
| | - Yen-Chi Chen
- Department of Statistics, University of Washington, Seattle, United States
| | - Nancy Chang
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Yuan Wang
- Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Ceryl Tan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Shulamit Diena
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - William Trimble
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Larry Wasserman
- Department of Statistics, Carnegie Mellon University, Pittsburgh, United States
| | - Jeremy L Jenkins
- Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Marc W Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | - Ran Kafri
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
167
|
Redox Regulation, Rather than Stress-Induced Phosphorylation, of a Hog1 Mitogen-Activated Protein Kinase Modulates Its Nitrosative-Stress-Specific Outputs. mBio 2018; 9:mBio.02229-17. [PMID: 29588408 PMCID: PMC5874921 DOI: 10.1128/mbio.02229-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In all eukaryotic kingdoms, mitogen-activated protein kinases (MAPKs) play critical roles in cellular responses to environmental cues. These MAPKs are activated by phosphorylation at highly conserved threonine and tyrosine residues in response to specific inputs, leading to their accumulation in the nucleus and the activation of their downstream targets. A specific MAP kinase can regulate different downstream targets depending on the nature of the input signal, thereby raising a key question: what defines the stress-specific outputs of MAP kinases? We find that the Hog1 MAPK contributes to nitrosative-stress resistance in Candida albicans even though it displays minimal stress-induced phosphorylation under these conditions. We show that Hog1 becomes oxidized in response to nitrosative stress, accumulates in the nucleus, and regulates the nitrosative stress-induced transcriptome. Mutation of specific cysteine residues revealed that C156 and C161 function together to promote stress resistance, Hog1-mediated nitrosative-stress-induced gene expression, resistance to phagocytic killing, and C. albicans virulence. We propose that the oxidation of Hog1, rather than its phosphorylation, contributes to the nitrosative-stress-specific responses of this MAP kinase. Mitogen-activated protein kinases play key roles in the responses of eukaryotic cells to extracellular signals and are critical for environmental-stress resistance. The widely accepted paradigm is that MAP kinases are activated by phosphorylation, which then triggers their nuclear accumulation and the activation of target proteins and genes that promote cellular adaptation. Our data suggest that alternative forms of posttranslational modification can modulate MAP kinase functionality in Candida albicans. We demonstrate that Hog1 is not significantly phosphorylated in response to nitrosative stress, yet it displays nuclear accumulation and contributes to the global transcriptional response to this stress, as well as promoting nitrosative-stress resistance. Instead, nitrosative stress triggers changes in the redox status of Hog1. We also show that specific Hog1 cysteine residues influence its activation of stress genes. Therefore, alternative posttranslational modifications appear to regulate the stress-specific outputs of MAP kinases.
Collapse
|
168
|
Chiu YJ, Hour MJ, Jin YA, Lu CC, Tsai FJ, Chen TL, Ma H, Juan YN, Yang JS. Disruption of IGF‑1R signaling by a novel quinazoline derivative, HMJ‑30, inhibits invasiveness and reverses epithelial-mesenchymal transition in osteosarcoma U‑2 OS cells. Int J Oncol 2018; 52:1465-1478. [PMID: 29568964 PMCID: PMC5873869 DOI: 10.3892/ijo.2018.4325] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 03/01/2018] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma is the most common primary malignancy of the bone and is characterized by local invasion and distant metastasis. Over the past 20 years, long-term outcomes have reached a plateau even with aggressive therapy. Overexpression of insulin-like growth factor 1 receptor (IGF‑1R) is associated with tumor proliferation, invasion and migration in osteosarcoma. In the present study, our group developed a novel quinazoline derivative, 6-fluoro‑2-(3-fluorophenyl)-4-(cyanoanilino)quinazoline (HMJ‑30), in order to disrupt IGF‑1R signaling and tumor invasiveness in osteosarcoma U‑2 OS cells. Molecular modeling, immune-precipitation, western blotting and phosphorylated protein kinase sandwich ELISA assays were used to confirm this hypothesis. The results demonstrated that HMJ‑30 selectively targeted the ATP-binding site of IGF‑1R and inhibited its downstream phosphoinositide 3-kinase/protein kinase B, Ras/mitogen-activated protein kinase, and IκK/nuclear factor-κB signaling pathways in U‑2 OS cells. HMJ‑30 inhibited U‑2 OS cell invasion and migration and downregulated protein levels and activities of matrix metalloproteinase (MMP)‑2 and MMP-9. An increase in protein levels of tissue inhibitor of metalloproteinase (TIMP)‑1 and TIMP‑2 was also observed. Furthermore, HMJ‑30 caused U‑2 OS cells to aggregate and form tight clusters, and these cells were flattened, less elongated and displayed cobblestone-like shapes. There was an increase in epithelial markers and a decrease in mesenchymal markers, indicating that the cells underwent the reverse epithelial-mesenchymal transition (EMT) process. Overall, these results demonstrated the potential molecular mechanisms underlying the effects of HMJ‑30 on invasiveness and EMT in U‑2 OS cells, suggesting that this compound deserves further investigation as a potential anti-osteosarcoma drug.
Collapse
Affiliation(s)
- Yu-Jen Chiu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veteran General Hospital, Taipei 112, Taiwan, R.O.C
| | - Mann-Jen Hour
- School of Pharmacy, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Yi-An Jin
- Department of Dermatology, Taipei Medical University Hospital, Taipei 110, Taiwan, R.O.C
| | - Chi-Cheng Lu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Tai-Lin Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei 112, Taiwan, R.O.C
| | - Hsu Ma
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veteran General Hospital, Taipei 112, Taiwan, R.O.C
| | - Yu-Ning Juan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan, R.O.C
| |
Collapse
|
169
|
Zhang B, Zhang Z, Wang J, Yang B, Zhao Y, Rao Z, Gao J. Dihydroartemisinin sensitizes Lewis lung carcinoma cells to carboplatin therapy via p38 mitogen-activated protein kinase activation. Oncol Lett 2018; 15:7531-7536. [PMID: 29740482 PMCID: PMC5934725 DOI: 10.3892/ol.2018.8276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/21/2017] [Indexed: 01/18/2023] Open
Abstract
Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin isolated from the traditional Chinese herb Artemisia annua, is an effective novel antimalarial agent. Studies have suggested that it also exhibits anticancer effects when administered alone or in combination with conventional chemotherapeutic agents. The present study investigated the therapeutic effect of DHA combined with carboplatin (CBP) on Lewis lung carcinoma (LLC) cells and the possible underlying molecular mechanisms. MTT and clonogenic assays demonstrated that the proliferation activity of LLC cells was inhibited in a dose-dependent manner by DHA combined with CBP. In addition, flow cytometry analysis revealed that cell cycle arrest was induced at the G0/G1 phase and apoptosis was induced following treatment with the combination. When administered in combination with CBP, DHA exhibited more effective anticancer activity compared with DHA or CBP used alone, via increased apoptosis. Following treatment with DHA with or without CBP, the expression of phosphorylated-p38 mitogen-activated protein kinase (MAPK), which can be inhibited with the selective inhibitor SB202190, was detected by western blotting. To summarize, the results of the present study indicated that DHA may sensitize LLC cells to CBP therapy via the activation of p38MAPK, which suggests that a combined treatment of DHA and CBP may be a potential novel therapeutic schedule for lung adenocarcinoma.
Collapse
Affiliation(s)
- Bicheng Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhimin Zhang
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Jun Wang
- Department of Oncology, General Hospital of Jinan Command, People's Liberation Army, Jinan, Shandong 250031, P.R. China
| | - Bo Yang
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Yong Zhao
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Zhiguo Rao
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Jianfei Gao
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
170
|
Kasuya Y, Umezawa H, Hatano M. Stress-Activated Protein Kinases in Spinal Cord Injury: Focus on Roles of p38. Int J Mol Sci 2018; 19:ijms19030867. [PMID: 29543752 PMCID: PMC5877728 DOI: 10.3390/ijms19030867] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/01/2018] [Accepted: 03/12/2018] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) consists of three phases-acute, secondary, and chronic damages-and limiting the development of secondary damage possibly improves functional recovery after SCI. A major component of the secondary phase of SCI is regarded as inflammation-triggered events: induction of cytokines, edema, microglial activation, apoptosis of cells including oligodendrocytes and neurons, demyelination, formation of the astrocytic scar, and so on. Two major stress-activated protein kinases (SAPKs)-c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK)-are activated in various types of cells in response to cellular stresses such as apoptotic stimuli and inflammatory waves. In animal models of SCI, inhibition of either JNK or p38 has been shown to promote neuroprotection-associated functional recovery. Here, we provide an overview on the roles of SAPKs in SCI and, in particular, the pathological role of p38 will be discussed as a promising target for therapeutic intervention in SCI.
Collapse
Affiliation(s)
- Yoshitoshi Kasuya
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan.
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan.
| | - Hiroki Umezawa
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan.
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan.
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan.
| | - Masahiko Hatano
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan.
| |
Collapse
|
171
|
Zheng T, Zhao W, Li H, Xiao S, Hu R, Han M, Liu H, Liu Y, Otsu K, Liu X, Huang G. p38α signaling in Langerhans cells promotes the development of IL-17-producing T cells and psoriasiform skin inflammation. Sci Signal 2018. [PMID: 29535261 DOI: 10.1126/scisignal.aao1685] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dendritic cells (DCs) contribute to psoriasis pathogenesis. In a mouse model of imiquimod-induced psoriasiform skin inflammation, we found that p38α activity in Langerhans cells (LCs), a skin-resident subset of DCs, promoted the generation of T cells that produce IL-17, a proinflammatory cytokine that is implicated in autoimmune disease. Deletion of p38α in LCs, but not in other skin or circulating DC subsets or T cells, decreased T cell-mediated psoriasiform skin inflammation in mice. The activity of p38α in LCs specifically promoted IL-17 production from γδ and CD4+ T cells by increasing the abundance of IL-23 and IL-6, two cytokines that stimulate IL-17 secretion. Inhibition of p38 activity through either pharmacological inhibition or genetic deletion also reduced the severity of established psoriasiform skin inflammation. Together, our findings indicate a critical role for p38α signaling in LCs in promoting inflammatory responses in the skin and suggest that targeting p38α signaling in LCs may offer an effective therapeutic approach to treat psoriasis.
Collapse
Affiliation(s)
- Tingting Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weiheng Zhao
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongjin Li
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shuxiu Xiao
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ran Hu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Miaomiao Han
- Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Heng Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Yeqiang Liu
- Shanghai Skin Disease Hospital, Tongji University, Shanghai 200443, China
| | - Kinya Otsu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.,Cardiovascular Division, King's College London, London WC2R 2LS, UK
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Gonghua Huang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
172
|
Yeung YT, Yin S, Lu B, Fan S, Yang R, Bai R, Zhang C, Bode AM, Liu K, Dong Z. Losmapimod Overcomes Gefitinib Resistance in Non-small Cell Lung Cancer by Preventing Tetraploidization. EBioMedicine 2018; 28:51-61. [PMID: 29398601 PMCID: PMC5835564 DOI: 10.1016/j.ebiom.2018.01.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 02/03/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is known to play a critical role in non-small cell lung cancer (NSCLC). Constitutively active EGFR mutations, including in-frame deletion in exon 19 and L858R point mutation in exon 21, contribute about 90% of all EGFR-activating mutations in NSCLC. Although oral EGFR-tyrosine kinase inhibitors (TKIs), gefitinib and erlotinib, show dramatic clinical efficacy with significantly prolonged progression-free survival in patients harboring these EGFR-activating mutations, most of these patients will eventually develop acquired resistance. Researchers have recently named genomic instability as one of the hallmarks of cancer. Genomic instability usually involves a transient phase of polyploidization, in particular tetraploidization. Tetraploid cells can undergo asymmetric cell division or chromosome loss, leading to tumor heterogeneity and multidrug resistance. Therefore, identification of signaling pathways involved in tetraploidization is crucial in overcoming drug resistance. In our present study, we found that gefitinib could activate YAP-MKK3/6-p38 MAPK-STAT3 signaling and induce tetraploidization in gefitinib-resistance cells. Using p38 MAPK inhibitors, SB203580 and losmapimod, we could eliminate gefitinib-induced tetraploidization and overcome gefitinib-resistance. In addition, shRNA approach to knockdown p38α MAPK could prevent tetraploidy formation and showed significant inhibition of cancer cell growth. Finally, in an in vivo study, losmapimod could successfully overcome gefitinib resistance using an in-house established patient-derived xenograft (PDX) mouse model. Overall, these findings suggest that losmapimod could be a potential clinical agent to overcome gefitinib resistance in NSCLC. Gefitinib induces tetraploidy formation in gefitinib-resistant NSCLC cells YAP-MKK3/6-p38 MAPK signaling is essential for tetraploidization Losmapimod, a p38 MAPK inhibitor, overcomes gefitinib-resistance both in vitro and PDX xenograft mode
Gefitinib is a targeted drug therapy in non-small cell lung cancer (NSCLC) which shows dramatic clinical efficacy. However, most of these patients eventually develop drug resistance. Although researchers have identified different mechanisms contributing to the drug resistance, developing a single therapy to overcome the drug resistance remains difficult. In this study, we find that tetraploidization of cancer cells through YAP-MKK3/6-p38 MAPK signaling could be one of the common mechanisms in developing the drug resistance. By using losmapimod, we could eliminate tetraploidization and overcome gefitinib resistance in an animal model suggesting that losmapimod could be a potential clinical agent to overcome gefitinib resistance in NSCLC.
Collapse
Affiliation(s)
- Yiu To Yeung
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China; The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Shuying Yin
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Bingbing Lu
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China; Pathophysiology Department, Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China
| | - Suyu Fan
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Ran Yang
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Ruihua Bai
- The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Chengjuan Zhang
- The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Kangdong Liu
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China; The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, Henan, China; Pathophysiology Department, Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China; Collaborative Innovation Center, Cancer Chemoprevention of Henan, Zhengzhou, Henan, China.
| | - Zigang Dong
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China; The Hormel Institute, University of Minnesota, Austin, MN, USA; The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, Henan, China; Pathophysiology Department, Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China; Collaborative Innovation Center, Cancer Chemoprevention of Henan, Zhengzhou, Henan, China.
| |
Collapse
|
173
|
Expression profiles of the p38 MAPK signaling pathway from Chinese shrimp Fenneropenaeus chinensis in response to viral and bacterial infections. Gene 2018; 642:381-388. [DOI: 10.1016/j.gene.2017.11.050] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/22/2017] [Accepted: 11/15/2017] [Indexed: 11/23/2022]
|
174
|
|
175
|
Pomatto LCD, Davies KJA. The role of declining adaptive homeostasis in ageing. J Physiol 2017; 595:7275-7309. [PMID: 29028112 PMCID: PMC5730851 DOI: 10.1113/jp275072] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022] Open
Abstract
Adaptive homeostasis is "the transient expansion or contraction of the homeostatic range for any given physiological parameter in response to exposure to sub-toxic, non-damaging, signalling molecules or events, or the removal or cessation of such molecules or events" (Davies, 2016). Adaptive homeostasis enables biological systems to make continuous short-term adjustments for optimal functioning despite ever-changing internal and external environments. Initiation of adaptation in response to an appropriate signal allows organisms to successfully cope with much greater, normally toxic, stresses. These short-term responses are initiated following effective signals, including hypoxia, cold shock, heat shock, oxidative stress, exercise-induced adaptation, caloric restriction, osmotic stress, mechanical stress, immune response, and even emotional stress. There is now substantial literature detailing a decline in adaptive homeostasis that, unfortunately, appears to manifest with ageing, especially in the last third of the lifespan. In this review, we present the hypothesis that one hallmark of the ageing process is a significant decline in adaptive homeostasis capacity. We discuss the mechanistic importance of diminished capacity for short-term (reversible) adaptive responses (both biochemical and signal transduction/gene expression-based) to changing internal and external conditions, for short-term survival and for lifespan and healthspan. Studies of cultured mammalian cells, worms, flies, rodents, simians, apes, and even humans, all indicate declining adaptive homeostasis as a potential contributor to age-dependent senescence, increased risk of disease, and even mortality. Emerging work points to Nrf2-Keap1 signal transduction pathway inhibitors, including Bach1 and c-Myc, both of whose tissue concentrations increase with age, as possible major causes for age-dependent loss of adaptive homeostasis.
Collapse
Affiliation(s)
- Laura C. D. Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology CenterUniversity of Southern CaliforniaLos AngelesCA 90089USA
| | - Kelvin J. A. Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology CenterUniversity of Southern CaliforniaLos AngelesCA 90089USA
- Molecular and Computational Biology Program, Department of Biological Sciences of the Dornsife College of LettersArts & Sciences: the University of Southern CaliforniaLos AngelesCA 90089‐0191USA
| |
Collapse
|
176
|
Liu J, Zhang S, Cao H, Wang H, Sun C, Liu S, Yu S, Li Y, Liu W, Wang H, Jiang J, Ying H. Deficiency of p38α in macrophage ameliorates d
-galactosamine/TNF-α-induced acute liver injury in mice. FEBS J 2017; 284:4200-4215. [DOI: 10.1111/febs.14294] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/20/2017] [Accepted: 10/16/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Jiao Liu
- Key Laboratory of Food Safety Research; Institute for Nutritional Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
| | - Shengjie Zhang
- Key Laboratory of Food Safety Research; Institute for Nutritional Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
| | - Hongchao Cao
- Key Laboratory of Food Safety Research; Institute for Nutritional Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
| | - Hui Wang
- Key Laboratory of Food Safety Research; Institute for Nutritional Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
| | - Chao Sun
- Key Laboratory of Food Safety Research; Institute for Nutritional Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
| | - Shengnan Liu
- Key Laboratory of Food Safety Research; Institute for Nutritional Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
| | - Shuxian Yu
- Key Laboratory of Food Safety Research; Institute for Nutritional Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
| | - Yan Li
- Key Laboratory of Food Safety Research; Institute for Nutritional Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
| | - Wei Liu
- Key Laboratory of Food Safety Research; Institute for Nutritional Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
| | - Hui Wang
- School of Public Health; Shanghai Jiao Tong University School of Medicine; China
| | - Jingjing Jiang
- Department of Endocrinology and Metabolism; Zhongshan Hospital; Fudan University; Shanghai China
| | - Hao Ying
- Key Laboratory of Food Safety Research; Institute for Nutritional Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
- Key Laboratory of Food Safety Risk Assessment; Ministry of Health; Beijing China
| |
Collapse
|
177
|
Guo Y, Jiang M, Zhao X, Gu M, Wang Z, Xu S, Yue W. Cyclophilin A promotes non-small cell lung cancer metastasis via p38 MAPK. Thorac Cancer 2017; 9:120-128. [PMID: 29110442 PMCID: PMC5754294 DOI: 10.1111/1759-7714.12548] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cyclophilin A (CypA) is associated with metastasis in diverse cancers; however, its role in lung cancer metastasis and the underlying mechanisms remain poorly understood. Our study investigated the effect of CypA on non-small cell lung cancer (NSCLC) metastasis in vitro and in vivo to determine its mechanisms. METHODS In this study, A549 and H1299 cell lines with downregulated and overexpressed CypA, respectively, were constructed by lentivirus transfection of NSCLC cells. in vitro experiments, including wound healing and transwell assays and Western blotting, showed that CypA promoted cancer cell migration and epithelial-mesenchymal transition in NSCLC. Lung metastasis mouse models were used for the first time to confirm that CypA promoted NSCLC metastasis in vivo. The p38 inhibitor SB203580 was used to show that p38 MAPK is involved in CypA-mediated NSCLC metastasis. RESULTS Wound healing and transwell assays showed that the migration of both A549 and H1299 cells decreased in the CypA downregulated group and increased in the CypA overexpressed group. CypA also positively promoted the expression of epithelial-mesenchymal transition-relevant proteins. Results of mouse models confirmed that the tumor metastasis rate was much higher in the CypA overexpressed than in the CypA downregulated group. In addition, SB203580 inhibited NSCLC cell migration significantly in the CypA overexpressed group, while the difference in the CypA downregulated group was not significant. CONCLUSIONS In conclusion, this study demonstrated that CypA promotes NSCLC cancer metastasis via p38 MAPK.
Collapse
Affiliation(s)
- Yinan Guo
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Mei Jiang
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xiaoting Zhao
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Meng Gu
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Ziyu Wang
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Shaofa Xu
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Wentao Yue
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
178
|
Huberman LB, Coradetti ST, Glass NL. Network of nutrient-sensing pathways and a conserved kinase cascade integrate osmolarity and carbon sensing in Neurospora crassa. Proc Natl Acad Sci U S A 2017; 114:E8665-E8674. [PMID: 28973881 PMCID: PMC5642704 DOI: 10.1073/pnas.1707713114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Identifying nutrients available in the environment and utilizing them in the most efficient manner is a challenge common to all organisms. The model filamentous fungus Neurospora crassa is capable of utilizing a variety of carbohydrates, from simple sugars to the complex carbohydrates found in plant cell walls. The zinc binuclear cluster transcription factor CLR-1 is necessary for utilization of cellulose, a major, recalcitrant component of the plant cell wall; however, expression of clr-1 in the absence of an inducer is not sufficient to induce cellulase gene expression. We performed a screen for unidentified actors in the cellulose-response pathway and identified a gene encoding a hypothetical protein (clr-3) that is required for repression of CLR-1 activity in the absence of an inducer. Using clr-3 mutants, we implicated the hyperosmotic-response pathway in the tunable regulation of glycosyl hydrolase production in response to changes in osmolarity. The role of the hyperosmotic-response pathway in nutrient sensing may indicate that cells use osmolarity as a proxy for the presence of free sugar in their environment. These signaling pathways form a nutrient-sensing network that allows Ncrassa cells to tightly regulate gene expression in response to environmental conditions.
Collapse
Affiliation(s)
- Lori B Huberman
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720
- Energy Biosciences Institute, University of California, Berkeley, CA 94720
| | - Samuel T Coradetti
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720
- Energy Biosciences Institute, University of California, Berkeley, CA 94720
| | - N Louise Glass
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720;
- Energy Biosciences Institute, University of California, Berkeley, CA 94720
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
179
|
Zhang Y, Liu H, Yan F, Zhou J. Oscillatory dynamics of p38 activity with transcriptional and translational time delays. Sci Rep 2017; 7:11495. [PMID: 28904347 PMCID: PMC5597677 DOI: 10.1038/s41598-017-11149-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/31/2017] [Indexed: 01/30/2023] Open
Abstract
Recent experimental evidence reports that oscillations of p38 MAPK (p38) activity would efficiently induce pro-inflammatory gene expression, which might be deleterious to immune systems and may even cause cellular damage and apoptosis. It is widely accepted now that transcriptional and translational delays are ubiquitous in gene expression, which can typically result in oscillatory responses of gene regulations. Consequently, delay-driven sustained oscillations in p38 activity (p38*) could in principle be commonplace. Nevertheless, so far the studies of the impact of such delays on p38* have been lacking both experimentally and theoretically. Here, we use experimental data to develop a delayed mathematical model, with the aim of understanding how such delays affect oscillatory behaviour on p38*. We analyze the stability and oscillation of the model with and without explicit time delays. We show that a sufficiently input stimulation strength is prerequisite for generating p38* oscillations, and that an optimal rate of model parameters is also essential to these oscillations. Moreover, we find that the time delays required for transcription and translation in mitogen-activated protein kinase phosphatase-1 (MKP-1) gene expression can drive p38* to be oscillatory even when the concentration of p38* level is at a stable state. Furthermore, the length of these delays can determine the amplitude and period of the oscillations and can enormously extend the oscillatory ranges of model parameters. These results indicate that time delays in MKP-1 synthesis are required, albeit not sufficient, for p38* oscillations, which may lead to new insights related to p38 oscillations.
Collapse
Affiliation(s)
- Yuan Zhang
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai, 200072, China
| | - Haihong Liu
- Department of mathematics, Yunnan Normal University, Kunming, 650092, China
| | - Fang Yan
- Department of mathematics, Yunnan Normal University, Kunming, 650092, China
| | - Jin Zhou
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai, 200072, China.
| |
Collapse
|
180
|
Wang Y, Xiu Y, Bi K, Ou J, Gu W, Wang W, Meng Q. Integrated analysis of mRNA-seq in the haemocytes of Eriocheir sinensis in response to Spiroplasma eriocheiris infection. FISH & SHELLFISH IMMUNOLOGY 2017; 68:289-298. [PMID: 28734969 DOI: 10.1016/j.fsi.2017.07.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/10/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
The Chinese mitten crab Eriocheir sinensis is an important economic crustacean that has been exposed to various diseases. Spiroplasma eriocheiris, isolated from tremor-diseased E. sinensis, was first identified as a lethal pathogen of freshwater crustaceans. To understand the pathogenesis of S. eriocheiris to E. sinensis, the transcriptomic profiles of haemocytes in the experimental and control groups at 1 d and 7 d post-injection were obtained using Illumina HiSeq 2500. These results showed that 40,358,724, 44,462,112, 45,516,576 and 37,713,728 paired-end clean reads were obtained from the cDNA libraries of DZ1 (the control group at 1 d), DZ7 (the control group at 7 d), SY1 (the experimental group at 1 d) and SY7 (the experimental group at 7 d), respectively. In total, 106,641 unique transcript fragments (unigenes) were assembled, with an average length of 710 bp. On the first day of stimulation, 33,084 up-regulated transcripts and 19,208 down-regulated transcripts were found in the experimental group compared with those in the control group. On the seventh day of stimulation, 40,198 up-regulated transcripts and 12,032 down-regulated transcripts were found in the experimental group compared with those in the control group. Some canonical immune-related pathways were identified via KEGG pathway analysis, including complement and coagulation cascades, the VEGF signalling pathway, the Wnt signalling pathway, natural killer cell-mediated cytotoxicity, the MAPK signalling pathway, neuroactive ligand-receptor interactions, and the Lysosome pathway. We found important immune-related genes (GNPTAB, MASP2, F7, F5, NFATC, TRAF6, MAP3K5, and TRa) in the KEGG pathway, and those genes were confirmed by qRT-PCR analysis. In addition, the significantly enriched neuroactive ligand-receptor interaction pathway was associated with intense paroxysmal tremors of infected crabs. Our results provide valuable information for the further analysis of the mechanisms of E. sinensis defence against S. eriocheiris invasion.
Collapse
Affiliation(s)
- Yinghui Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yunji Xiu
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Keran Bi
- Jiangsu Key Laboratory for Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang, Jiangsu 222005, China
| | - Jiangtao Ou
- School of Marine and Bioengneering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Wei Gu
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
181
|
Up-regulation of ANKDR49, a poor prognostic factor, regulates cell proliferation of gliomas. Biosci Rep 2017; 37:BSR20170800. [PMID: 28694302 PMCID: PMC6435464 DOI: 10.1042/bsr20170800] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 11/30/2022] Open
Abstract
The Ankyrin repeat domain 49 (ANKRD49) is an evolutionarily conserved protein, which is related to mediate protein–protein interaction. However, the function of ANKRD49 in human glioma remains elusive. Mining through The Cancer Genome Atlas (TCGA) database, we found that the expression of ANKRD49 was increased in glioma tissues and that high expression of ANKRD49 was strongly associated with high disease grade and poor overall survival. To investigate the role of ANKRD49 in malignant glioma, lentivirus expressing shRNA targetting ANKRD49 was constructed in U251 and U87 malignant glioma cells. We demonstrated that ANKRD49 knockdown reduced the proliferation rate of U251 and U87 cells. Further mechanism analysis indicated that depletion of ANKRD49 led to the cell-cycle arrest and induced apoptosis in U251 and U87 cells. ANKRD49 knockdown also changed the expression of key effectors that are involved in stress response, cell cycle, and apoptosis, including p-HSP27 (heat shock protein 27), p-Smad2 (SMAD family member 2), p-p53, p-p38, p-MAPK (mitogen-activated protein kinase), p-SAPK/JNK (stress-activated protein kinase/c-jun n-terminal kinase), cleveagated Caspase-7, p-Chk1 (checkpoint kinase 1), and p-eIF2a (eukaryotic translation initiation factor 2a). Taken together, our findings implicate that ANKRD49 promotes the proliferation of human malignant glioma cells. ANKRD49 maybe an attractive target for malignant glioma therapy.
Collapse
|
182
|
Bittner S, Knoll G, Ehrenschwender M. Hyperosmotic stress enhances cytotoxicity of SMAC mimetics. Cell Death Dis 2017; 8:e2967. [PMID: 28771230 PMCID: PMC5596546 DOI: 10.1038/cddis.2017.355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/26/2017] [Accepted: 07/03/2017] [Indexed: 01/10/2023]
Abstract
Inhibitors of apoptosis (IAP) proteins contribute to cell death resistance in malignancies and emerged as promising targets in cancer therapy. Currently, small molecules mimicking the IAP-antagonizing activity of endogenous second mitochondria-derived activator of caspases (SMAC) are evaluated in phase 1/2 clinical trials. In cancer cells, SMAC mimetic (SM)-mediated IAP depletion induces tumor necrosis factor (TNF) secretion and simultaneously sensitizes for TNF-induced cell death. However, tumor cells lacking SM-induced autocrine TNF release survive and thus limit therapeutic efficacy. Here, we show that hyperosmotic stress boosts SM cytotoxicity in human and murine cells through hypertonicity-induced upregulation of TNF with subsequent induction of apoptosis and/or necroptosis. Hypertonicity allowed robust TNF-dependent killing in SM-treated human acute lymphoblastic leukemia cells, which under isotonic conditions resisted SM treatment due to poor SM-induced TNF secretion. Mechanistically, hypertonicity-triggered TNF release bypassed the dependency on SM-induced TNF production to execute SM cytotoxicity, effectively reducing the role of SM to TNF-sensitizing, but not necessarily TNF-inducing agents. Perspectively, these findings could extend the clinical application of SM.
Collapse
Affiliation(s)
- Sebastian Bittner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg 93053, Germany
| | - Gertrud Knoll
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg 93053, Germany
| | - Martin Ehrenschwender
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg 93053, Germany
| |
Collapse
|
183
|
Feng J, Zhang Q, Mo W, Wu L, Li S, Li J, Liu T, Xu S, Fan X, Guo C. Salidroside pretreatment attenuates apoptosis and autophagy during hepatic ischemia-reperfusion injury by inhibiting the mitogen-activated protein kinase pathway in mice. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1989-2006. [PMID: 28721018 PMCID: PMC5501634 DOI: 10.2147/dddt.s136792] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ischemia–reperfusion injury (IRI) contributes to liver damage in many clinical situations, such as liver resection and liver transplantation. In the present study, we investigated the effects of the antioxidant, anti-inflammatory, and anticancer agent salidroside (Sal) on hepatic IRI in mice. The mice were randomly divided into six groups: normal control, Sham, Sal (20 mg/kg), IRI, IRI + Sal (10 mg/kg), and IRI + Sal (20 mg/kg). We measured liver enzymes, proinflammatory cytokines, TNF-α and interleukin-6, and apoptosis- and autophagy-related marker proteins at 2, 8, and 24 hours after reperfusion. Components of mitogen-activated protein kinase (MAPK) signaling, including P-38, jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK), were also measured using an MAPK activator anisomycin to deduce their roles in hepatic IRI. Our results show that Sal safely protects hepatocytes from IRI by reducing levels of liver enzymes in the serum. These findings were confirmed by histopathology. We concluded that Sal protects hepatocytes from IRI partly by inhibiting the activation of MAPK signaling, including the phosphorylation of P38, JNK, and ERK. This ameliorates inflammatory reactions, apoptosis, and autophagy in the mouse liver.
Collapse
Affiliation(s)
- Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai
| | - Qinghui Zhang
- Department of Clinical Laboratory, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, JiangSu
| | - Wenhui Mo
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai
| | - Shizan Xu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai
| | - Xiaoming Fan
- Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai, China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai
| |
Collapse
|
184
|
Kumar S, Wang J, Shanmukhappa SK, Gandhi CR. Toll-Like Receptor 4-Independent Carbon Tetrachloride-Induced Fibrosis and Lipopolysaccharide-Induced Acute Liver Injury in Mice: Role of Hepatic Stellate Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1356-1367. [PMID: 28412299 PMCID: PMC5455062 DOI: 10.1016/j.ajpath.2017.01.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 01/30/2017] [Indexed: 12/29/2022]
Abstract
Gram-negative bacterial endotoxin lipopolysaccharide (LPS) is implicated in acute and chronic liver injury; its effects are mediated predominantly via the membrane receptor Toll-like receptor 4 (TLR4). However, TLR4-independent effects of LPS may play important role in hepatic pathophysiology. We investigated carbon tetrachloride (CCl4)-induced fibrosis and LPS-induced acute liver injury in wild-type (WT) and B6.B10ScN-Tlr4lps-del/JthJ [TLR4-knockout (KO)] mice. Effects of LPS on fibrogenic hepatic stellate cells (HSCs) from WT and TLR4-KO mice were assessed in vitro. CCl4 produced similar fibrosis and necroinflammation and increased the mRNA and protein expression of cytokines and chemokines in WT and TLR4-KO mice. However, circulating LPS concentration did not increase in CCl4-treated mice. Interestingly, LPS down-modulated α-smooth muscle actin (activated HSC marker) and collagen 1 in both WT and TLR4-KO HSCs. LPS induced similar activation of NF-κB, and stimulated the expression of cytokines and chemokines in WT and TLR4-KO HSCs. Finally, LPS caused similar inflammation and injury in previously untreated WT and TLR4-KO mice. The results provide evidence of the TLR4/LPS-independent mechanisms of liver fibrosis and also indicate that TLR4 is not entirely critical to LPS-induced acute liver injury. The results further indicate that LPS signaling in activated HSCs might be a mechanism of limiting liver fibrosis.
Collapse
Affiliation(s)
- Sudhir Kumar
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Cincinnati VA Medical Center, Cincinnati, Ohio; Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Jiang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Shiva Kumar Shanmukhappa
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Chandrashekhar R Gandhi
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Cincinnati VA Medical Center, Cincinnati, Ohio; Department of Surgery, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
185
|
Inflammation and vascular remodeling in the ventral hippocampus contributes to vulnerability to stress. Transl Psychiatry 2017; 7:e1160. [PMID: 28654094 PMCID: PMC5537643 DOI: 10.1038/tp.2017.122] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/13/2017] [Accepted: 03/29/2017] [Indexed: 12/22/2022] Open
Abstract
During exposure to chronic stress, some individuals engage in active coping behaviors that promote resiliency to stress. Other individuals engage in passive coping that is associated with vulnerability to stress and with anxiety and depression. In an effort to identify novel molecular mechanisms that underlie vulnerability or resilience to stress, we used nonbiased analyses of microRNAs in the ventral hippocampus (vHPC) to identify those miRNAs differentially expressed in active (long-latency (LL)/resilient) or passive (short-latency (SL)/vulnerable) rats following chronic social defeat. In the vHPC of active coping rats, miR-455-3p level was increased, while miR-30e-3p level was increased in the vHPC of passive coping rats. Pathway analyses identified inflammatory and vascular remodeling pathways as enriched by genes targeted by these microRNAs. Utilizing several independent markers for blood vessels, inflammatory processes and neural activity in the vHPC, we found that SL/vulnerable rats exhibit increased neural activity, vascular remodeling and inflammatory processes that include both increased blood-brain barrier permeability and increased number of microglia in the vHPC relative to control and resilient rats. To test the relevance of these changes for the development of the vulnerable phenotype, we used pharmacological approaches to determine the contribution of inflammatory processes in mediating vulnerability and resiliency. Administration of the pro-inflammatory cytokine vascular endothelial growth factor-164 increased vulnerability to stress, while the non-steroidal anti-inflammatory drug meloxicam attenuated vulnerability. Collectively, these results show that vulnerability to stress is determined by a re-designed neurovascular unit characterized by increased neural activity, vascular remodeling and pro-inflammatory mechanisms in the vHPC. These results suggest that dampening inflammatory processes by administering anti-inflammatory agents reduces vulnerability to stress. These results have translational relevance as they suggest that administration of anti-inflammatory agents may reduce the impact of stress or trauma in vulnerable individuals.
Collapse
|
186
|
Shellhammer JP, Morin-Kensicki E, Matson JP, Yin G, Isom DG, Campbell SL, Mohney RP, Dohlman HG. Amino acid metabolites that regulate G protein signaling during osmotic stress. PLoS Genet 2017; 13:e1006829. [PMID: 28558063 PMCID: PMC5469498 DOI: 10.1371/journal.pgen.1006829] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/13/2017] [Accepted: 05/17/2017] [Indexed: 12/29/2022] Open
Abstract
All cells respond to osmotic stress by implementing molecular signaling events to protect the organism. Failure to properly adapt can lead to pathologies such as hypertension and ischemia-reperfusion injury. Mitogen-activated protein kinases (MAPKs) are activated in response to osmotic stress, as well as by signals acting through G protein-coupled receptors (GPCRs). For proper adaptation, the action of these kinases must be coordinated. To identify second messengers of stress adaptation, we conducted a mass spectrometry-based global metabolomics profiling analysis, quantifying nearly 300 metabolites in the yeast S. cerevisiae. We show that three branched-chain amino acid (BCAA) metabolites increase in response to osmotic stress and require the MAPK Hog1. Ectopic addition of these BCAA derivatives promotes phosphorylation of the G protein α subunit and dampens G protein-dependent transcription, similar to that seen in response to osmotic stress. Conversely, genetic ablation of Hog1 activity or the BCAA-regulatory enzymes leads to diminished phosphorylation of Gα and increased transcription. Taken together, our results define a new class of candidate second messengers that mediate cross talk between osmotic stress and GPCR signaling pathways.
Collapse
Affiliation(s)
- James P. Shellhammer
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | | | - Jacob P. Matson
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Guowei Yin
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Daniel G. Isom
- The University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Sharon L. Campbell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert P. Mohney
- Metabolon, Inc., Research Triangle Park, North Carolina, United States of America
| | - Henrik G. Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
187
|
Corre I, Paris F, Huot J. The p38 pathway, a major pleiotropic cascade that transduces stress and metastatic signals in endothelial cells. Oncotarget 2017; 8:55684-55714. [PMID: 28903453 PMCID: PMC5589692 DOI: 10.18632/oncotarget.18264] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/03/2017] [Indexed: 12/29/2022] Open
Abstract
By gating the traffic of molecules and cells across the vessel wall, endothelial cells play a central role in regulating cardiovascular functions and systemic homeostasis and in modulating pathophysiological processes such as inflammation and immunity. Accordingly, the loss of endothelial cell integrity is associated with pathological disorders that include atherosclerosis and cancer. The p38 mitogen-activated protein kinase (MAPK) cascades are major signaling pathways that regulate several functions of endothelial cells in response to exogenous and endogenous stimuli including growth factors, stress and cytokines. The p38 MAPK family contains four isoforms p38α, p38β, p38γ and p38δ that are encoded by four different genes. They are all widely expressed although to different levels in almost all human tissues. p38α/MAPK14, that is ubiquitously expressed is the prototype member of the family and is referred here as p38. It regulates the production of inflammatory mediators, and controls cell proliferation, differentiation, migration and survival. Its activation in endothelial cells leads to actin remodeling, angiogenesis, DNA damage response and thereby has major impact on cardiovascular homeostasis, and on cancer progression. In this manuscript, we review the biology of p38 in regulating endothelial functions especially in response to oxidative stress and during the metastatic process.
Collapse
Affiliation(s)
- Isabelle Corre
- CRCINA, INSERM, CNRS, Université de Nantes, Nantes, France
| | - François Paris
- CRCINA, INSERM, CNRS, Université de Nantes, Nantes, France
| | - Jacques Huot
- Le Centre de Recherche du CHU de Québec-Université Laval et le Centre de Recherche sur le Cancer de l'Université Laval, Québec, Canada
| |
Collapse
|
188
|
Molina MD, Quirin M, Haillot E, Jimenez F, Chessel A, Lepage T. p38 MAPK as an essential regulator of dorsal-ventral axis specification and skeletogenesis during sea urchin development: a re-evaluation. Development 2017; 144:2270-2281. [PMID: 28507001 DOI: 10.1242/dev.152330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022]
Abstract
Dorsal-ventral axis formation in the sea urchin embryo relies on the asymmetrical expression of the TGFβ Nodal. The p38-MAPK pathway has been proposed to be essential for dorsal-ventral axis formation by acting upstream of nodal expression. Here, we report that, in contrast to previous studies that used pharmacological inhibitors of p38, manipulating the activity of p38 by genetic means has no obvious impact on morphogenesis. Instead, we discovered that p38 inhibitors strongly disrupt specification of all germ layers by blocking signalling from the Nodal receptor and by interfering with the ERK pathway. Strikingly, while expression of a mutant p38 that is resistant to SB203580 did not rescue dorsal-ventral axis formation or skeletogenesis in embryos treated with this inhibitor, expression of mutant Nodal receptors that are resistant to SB203580 fully restored nodal expression in SB203580-treated embryos. Taken together, these results establish that p38 activity is not required for dorsal-ventral axis formation through nodal expression nor for skeletogenesis. Our results prompt a re-evaluation of the conclusions of several recent studies that linked p38 activity to dorsal-ventral axis formation and to patterning of the skeleton.
Collapse
Affiliation(s)
| | - Magali Quirin
- Université Côte d'Azur, CNRS, INSERM iBV, 06108 Nice cedex 2, France
| | - Emmanuel Haillot
- Université Côte d'Azur, CNRS, INSERM iBV, 06108 Nice cedex 2, France
| | - Felipe Jimenez
- Université Côte d'Azur, CNRS, INSERM iBV, 06108 Nice cedex 2, France
| | - Aline Chessel
- Université Côte d'Azur, CNRS, INSERM iBV, 06108 Nice cedex 2, France
| | - Thierry Lepage
- Université Côte d'Azur, CNRS, INSERM iBV, 06108 Nice cedex 2, France
| |
Collapse
|
189
|
Ryou MG, Mallet RT, Metzger DB, Jung ME. Intermittent hypoxia training blunts cerebrocortical presenilin 1 overexpression and amyloid-β accumulation in ethanol-withdrawn rats. Am J Physiol Regul Integr Comp Physiol 2017; 313:R10-R18. [PMID: 28490448 DOI: 10.1152/ajpregu.00050.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 01/08/2023]
Abstract
Abrupt cessation of chronic alcohol consumption triggers signaling cascades that harm vulnerable brain regions and produce neurobehavioral deficits. We have demonstrated that a program of intermittent, normobaric hypoxia training (IHT) in rats prevents brain damage and neurobehavioral impairment resulting from abrupt ethanol withdrawal (EW). Moreover, EW induced expression of stress-activated protein kinase p38 and presenilin 1 (PS1), the catalytic subunit of γ-secretase that produces the neurotoxic amyloid-β (Aβ) peptides Aβ40 and Aβ42. We tested the hypotheses that 1) IHT limits EW-induced activation of the p38-PS1 axis, thereby attenuating γ-secretase activation and Aβ accumulation, and 2) EW disables heat shock protein 25 (HSP25), a p38 substrate, molecular chaperone, and antioxidant, and provokes protein carbonylation in a manner suppressed by IHT. Adult male rats completed two cycles of a 4-wk ethanol diet (6.5% wt/vol) and a 3-wk EW or an isocaloric, dextrin-based control diet. A 20-day IHT program (5-8 daily cycles of 5-10 min of 9.5-10% fractional inspired O2 + 4 min of 21% fractional inspired O2) was administered during the first EW phase. After the second EW phase, the brain was excised and the prefrontal cortex extracted. PS1, phosphorylated p38 (p-p38), and HSP25 were analyzed by immunoblot, PS1 messenger RNA by quantitative polymerase chain reaction, protein carbonyl content by spectrometry, and Aβ40 and Aβ42 contents by enzyme-linked immunosorbent assay. IHT attenuated the EW-associated increases in PS1, p-p38, Aβ40, Aβ42, and protein carbonyl contents, but not that of PS1 messenger RNA, while preserving functionally competent HSP25 dimers in EW rats. Collectively, these findings suggest that IHT may attenuate EW-induced γ-secretase overactivation by suppressing activation of the p38-PS1 axis and by preventing oxidative protein damage.
Collapse
Affiliation(s)
- Myoung-Gwi Ryou
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas.,Department of Medical Laboratory Science and Public Health, Tarleton State University, Fort Worth, Texas
| | - Robert T Mallet
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas
| | - Daniel B Metzger
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, Texas; and
| | - Marianna E Jung
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, Texas; and
| |
Collapse
|
190
|
Wang H, Zhao YT, Zhang S, Dubielecka PM, Du J, Yano N, Chin YE, Zhuang S, Qin G, Zhao TC. Irisin plays a pivotal role to protect the heart against ischemia and reperfusion injury. J Cell Physiol 2017; 232:3775-3785. [PMID: 28181692 DOI: 10.1002/jcp.25857] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 02/08/2017] [Indexed: 02/06/2023]
Abstract
Irisin, a newly identified hormone, is critical to modulating body metabolism, thermogenesis and reducing oxidative stresses. However, whether irisin protects the heart against myocardial ischemia and reperfusion (I/R) injury remains unknown. In this study, we determine the effect of irisin on myocardial I/R injury in the Langendorff perfused heart and cultured myocytes. Adult C57/BL6 mice were treated with irisin (100 mg/kg) or vehicle for 30 min to elicit preconditioning. The isolated hearts were subjected to 30 min ischemia followed by 30 min reperfusion. Left ventricular function was measured and infarction size were determined using by tetrazolium staining. Western blot was employed to determine myocardial SOD-1, active-caspase 3, annexin V, p38, and phospho-p38. H9c2 cardiomyoblasts were exposed to hypoxia and reoxygenation for assessment of the effects of irisin on mitochondrial respiration and mitochondrial permeability transition pore (mPTP). Irisin treatment produced remarkable improvements in ventricular functional recovery, as evident by the increase in RPP and attenuation in LVEDP. As compared to the vehicle treatment, irisin resulted in a marked reduction of myocardial infarct size. Notably, irisin treatment increased SOD-1 and p38 phosphorylation, but suppressed levels of active-caspase 3, cleaved PARP, and annexin V. In cardiomyoblasts exposed to hypoxia/reoxygenation, irisin treatment significantly attenuated hypoxia/reoxygenation (H/R), as indicated by the reduction of lactate dehydrogenase (LDH) leakage and apoptotic cardiomyocytes. Furthermore, irisin treatments suppressed the opening of mPTP, mitochondrial swelling, and protected mitochondria function. Our results indicate that irisin serves as a novel approach to eliciting cardioprotection, which is associated with the improvement of mitochondrial function.
Collapse
Affiliation(s)
- Hao Wang
- Department of Surgery, Boston University Medical School, Roger Williams Medical Center, Providence, Rhode Island
| | - Yu Tina Zhao
- Department of Surgery, Boston University Medical School, Roger Williams Medical Center, Providence, Rhode Island
| | - Shouyan Zhang
- Department of Cardiology, Luoyang Central Hospital affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Patrycja M Dubielecka
- Department of Medicine, Alpert Medical School, Brown University, Providence, Rhode Island
| | - Jianfeng Du
- Department of Surgery, Boston University Medical School, Roger Williams Medical Center, Providence, Rhode Island
| | - Naohiro Yano
- Women and Infants Hospital, Brown University, Providence, Rhode Island
| | - Y Eugene Chin
- Key Laboratory of Stem Cell Biology, Institutes of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shougang Zhuang
- Department of Medicine, Alpert Medical School, Brown University, Providence, Rhode Island
| | - Gangjian Qin
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ting C Zhao
- Department of Surgery, Boston University Medical School, Roger Williams Medical Center, Providence, Rhode Island
| |
Collapse
|
191
|
Hamann BL, Blind RD. Nuclear phosphoinositide regulation of chromatin. J Cell Physiol 2017; 233:107-123. [PMID: 28256711 DOI: 10.1002/jcp.25886] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/26/2022]
Abstract
Phospholipid signaling has clear connections to a wide array of cellular processes, particularly in gene expression and in controlling the chromatin biology of cells. However, most of the work elucidating how phospholipid signaling pathways contribute to cellular physiology have studied cytoplasmic membranes, while relatively little attention has been paid to the role of phospholipid signaling in the nucleus. Recent work from several labs has shown that nuclear phospholipid signaling can have important roles that are specific to this cellular compartment. This review focuses on the nuclear phospholipid functions and the activities of phospholipid signaling enzymes that regulate metazoan chromatin and gene expression. In particular, we highlight the roles that nuclear phosphoinositides play in several nuclear-driven physiological processes, such as differentiation, proliferation, and gene expression. Taken together, the recent discovery of several specifically nuclear phospholipid functions could have dramatic impact on our understanding of the fundamental mechanisms that enable tight control of cellular physiology.
Collapse
Affiliation(s)
- Bree L Hamann
- Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Raymond D Blind
- Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee.,Departments of Medicine, Biochemistry and Pharmacology, Division of Diabetes Endocrinology and Metabolism, The Vanderbilt Diabetes Research and Training Center and the Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| |
Collapse
|
192
|
Kanungo J. DNA-PK and P38 MAPK: A Kinase Collusion in Alzheimer's Disease? BRAIN DISORDERS & THERAPY 2017; 6:232. [PMID: 28706768 PMCID: PMC5504707 DOI: 10.4172/2168-975x.1000232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The pathogenesis of Alzheimer's disease (AD), characterized by prevalent neuronal death and extracellular deposit of amyloid plaques, is poorly understood. DNA lesions downstream of reduced DNA repair ability have been reported in AD brains. Neurons predominantly use a mechanism to repair double-strand DNA breaks (DSB), which is non-homologous end joining (NHEJ). NHEJ requires DNA-dependent protein kinase (DNA-PK) activity. DNA-PK is a holoenzyme comprising the p460 kD catalytic subunit (DNA-PKcs) and its activator Ku, a heterodimer of p86 and p70 subunits. Ku first binds and then recruits DNA-PKcs to double-stranded DNA ends before NHEJ process begins. Studies have shown reduced NHEJ activity as well as DNA-PKcs and Ku protein levels in AD brains suggesting possible contribution of unrepaired DSB to AD development. However, normal aging brains also show reduced DNA-PKcs and Ku levels thus challenging the notion of any direct link between NHEJ and AD. Another kinase, p38 MAPK is induced by various DNA damaging agents and DSB itself. Increased DNA damage with aging could induce p38 MAPK and its induction may be sustained when DNA repair is compromised in the brain with reduced DNA-PK activity. Combined, these two events may potentially set the stage for an awry nervous system approaching AD.
Collapse
Affiliation(s)
- Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, USA
| |
Collapse
|
193
|
Yin X, Gong X, Zhang L, Jiang R, Kuang G, Wang B, Chen X, Wan J. Glycyrrhetinic acid attenuates lipopolysaccharide-induced fulminant hepatic failure in d -galactosamine-sensitized mice by up-regulating expression of interleukin-1 receptor-associated kinase-M. Toxicol Appl Pharmacol 2017; 320:8-16. [DOI: 10.1016/j.taap.2017.02.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/07/2017] [Accepted: 02/13/2017] [Indexed: 12/22/2022]
|
194
|
Casasnovas R, Limongelli V, Tiwary P, Carloni P, Parrinello M. Unbinding Kinetics of a p38 MAP Kinase Type II Inhibitor from Metadynamics Simulations. J Am Chem Soc 2017; 139:4780-4788. [PMID: 28290199 DOI: 10.1021/jacs.6b12950] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Understanding the structural and energetic requisites of ligand binding toward its molecular target is of paramount relevance in drug design. In recent years, atomistic free energy calculations have proven to be a valid tool to complement experiments in characterizing the thermodynamic and kinetic properties of protein/ligand interaction. Here, we investigate, through a recently developed metadynamics-based protocol, the unbinding mechanism of an inhibitor of the pharmacologically relevant target p38 MAP kinase. We provide a thorough description of the ligand unbinding pathway identifying the most stable binding mode and other thermodynamically relevant poses. From our simulations, we estimated the unbinding rate as koff = 0.020 ± 0.011 s-1. This is in good agreement with the experimental value (koff = 0.14 s-1). Next, we developed a Markov state model that allowed identifying the rate-limiting step of the ligand unbinding process. Our calculations further show that the solvation of the ligand and that of the active site play crucial roles in the unbinding process. This study paves the way to investigations on the unbinding dynamics of more complex p38 inhibitors and other pharmacologically relevant inhibitors in general, demonstrating that metadynamics can be a powerful tool in designing new drugs with engineered binding/unbinding kinetics.
Collapse
Affiliation(s)
- Rodrigo Casasnovas
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich , Jülich 52425, Germany
| | - Vittorio Limongelli
- Università della Svizzera Italiana (USI) , Faculty of Informatics, Institute of Computational Science - Center for Computational Medicine in Cardiology, via G. Buffi 13, CH-6900, Lugano, Switzerland.,Department of Pharmacy, University of Naples "Federico II" , via D. Montesano 49, Naples I-80131, Italy
| | - Pratyush Tiwary
- Department of Chemistry, Columbia University , New York, New York, 10027, United States
| | - Paolo Carloni
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich , Jülich 52425, Germany
| | - Michele Parrinello
- Department of Chemistry and Applied Biosciences, ETH Zurich, and Faculty of Informatics, Institute of Computational Science, Università della Svizzera Italiana , via G. Buffi 13, Lugano CH-6900, Switzerland
| |
Collapse
|
195
|
Hilton GM, Taylor AJ, Hussain S, Dandley EC, Griffith EH, Garantziotis S, Parsons GN, Bonner JC, Bereman MS. Mapping differential cellular protein response of mouse alveolar epithelial cells to multi-walled carbon nanotubes as a function of atomic layer deposition coating. Nanotoxicology 2017; 11:313-326. [PMID: 28277982 DOI: 10.1080/17435390.2017.1299888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Carbon nanotubes (CNTs), a prototypical engineered nanomaterial, have been increasingly manufactured for a variety of novel applications over the past two decades. However, since CNTs possess fiber-like shape and cause pulmonary fibrosis in rodents, there is concern that mass production of CNTs will lead to occupational exposure and associated pulmonary diseases. The aim of this study was to use contemporary proteomics to investigate the mechanisms of cellular response in E10 mouse alveolar epithelial cells in vitro after exposure to multi-walled CNTs (MWCNTs) that were functionalized by atomic layer deposition (ALD). ALD is a method used to generate highly uniform and conformal nanoscale thin-film coatings of metals to enhance novel conductive properties of CNTs. We hypothesized that specific types of metal oxide coatings applied to the surface of MWCNTs by ALD would determine distinct proteomic profiles in mouse alveolar epithelial cells in vitro that could be used to predict oxidative stress and pulmonary inflammation. Uncoated (U)-MWCNTs were functionalized by ALD with zinc oxide (ZnO) to yield Z-MWCNTs or aluminum oxide (Al2O3) to yield A-MWCNTs. Significant differential protein expression was found in the following critical pathways: mTOR/eIF4/p70S6K signaling and Nrf-2 mediated oxidative stress response increased following exposure to Z-MWCNTs, interleukin-1 signaling increased following U-MWCNT exposure, and inhibition of angiogenesis by thrombospondin-1, oxidative phosphorylation, and mitochondrial dysfunction increased following A-MWCNT exposure. This study demonstrates that specific types of metal oxide thin film coatings applied by ALD produce distinct cellular and biochemical responses related to lung inflammation and fibrosis compared to uncoated MWCNT exposure in vitro.
Collapse
Affiliation(s)
- Gina M Hilton
- a Toxicology Program, Department of Biological Sciences , North Carolina State University , Raleigh , NC , USA
| | - Alexia J Taylor
- a Toxicology Program, Department of Biological Sciences , North Carolina State University , Raleigh , NC , USA
| | - Salik Hussain
- b Clinical Research Unit , National Institute of Environmental Health Sciences/National Institute of Health , Research Triangle Park , NC , USA
| | - Erinn C Dandley
- c Department of Chemical and Biomolecular Engineering , North Carolina State University , Raleigh , NC , USA
| | - Emily H Griffith
- d Department of Statistics , North Carolina State University , Raleigh , NC , USA
| | - Stavros Garantziotis
- b Clinical Research Unit , National Institute of Environmental Health Sciences/National Institute of Health , Research Triangle Park , NC , USA
| | - Gregory N Parsons
- c Department of Chemical and Biomolecular Engineering , North Carolina State University , Raleigh , NC , USA
| | - James C Bonner
- a Toxicology Program, Department of Biological Sciences , North Carolina State University , Raleigh , NC , USA
| | - Michael S Bereman
- a Toxicology Program, Department of Biological Sciences , North Carolina State University , Raleigh , NC , USA
| |
Collapse
|
196
|
Kong F, Han F, Xu Y, Shi Y. Molecular Mechanisms of IRE1α-ASK1 Pathway Reactions to Unfolded Protein Response in DRN Neurons of Post-Traumatic Stress Disorder Rats. J Mol Neurosci 2017; 61:531-541. [PMID: 28210980 DOI: 10.1007/s12031-017-0895-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/31/2017] [Indexed: 12/12/2022]
Abstract
The goal of this study was to further elucidate the molecular mechanisms of post-traumatic stress disorder (PTSD) pathogenesis and to provide experimental evidence for new drug targets for effective PTSD treatment. Expression changes of IRE1α, ASK1, and other downstream molecules of the IRE1α-ASK1 endoplasmic reticulum stress (ERS) signaling pathway were investigated. JNK, P38, CHOP, Bcl-2, and Bax were analyzed at both protein and mRNA levels of dorsal raphe nucleus (DRN) neurons of PTSD rats. The rat PTSD model was established via the single-prolonged stress (SPS) method. Animals were randomly divided into five groups: a normal control group, a 1-day SPS group, a 4-days SPS group, a 7-day SPS group, and a 14-day SPS group. Spatial memory and learning ability of rats were evaluated subsequent to SPS using the Morris water maze test. Changes of IRE1α expression in the control and SPS groups were detected via immunohistochemistry (IHC). Protein and mRNA expressions of IRE1α, ASK1, JNK, P38, CHOP, Bcl-2, and Bax in the control and SPS groups were detected via Western blot and RT-PCR, respectively. The Morris water maze test revealed significantly longer average escape latencies in all SPS groups compared to the control group. In the spatial probe test, the percentage of time spent in the target quadrant was significantly lower in the SPS groups compared to control. IHC revealed increased positive expression of IRE1α subsequent to SPS challenge, reaching maximal levels on days four and seven (P < 0.01), while significantly decreasing on day 14 (P < 0.01). Western blot and RT-PCR revealed that protein and mRNA expressions of IRE1α, ASK1, JNK, CHOP, and P38 were significantly increased compared to control, peaking on days one, four, and seven post-SPS before returning to previous levels. Compared to control, expressions of Bcl-2 and Bax presented an initial increasing tendency followed by a decrease. A peak of Bcl-2 expression appeared early on day one following SPS, then decreased to a steady level. Bax expression in the SPS groups remained constant during early stages after SPS (days one to three) compared to control; however, expression significantly increased on day four and maintained a high level. In summary, 1) SPS challenge significantly activated the IRE1α-ASK1-JNK and IRE1α-ASK1-P38 apoptosis-signaling pathways in DRN neurons of PTSD rats. This resulted in a cascade of downstream reactions and ultimately apoptosis of DRN neurons. 2) Increased expression of apoptosis-associated molecules Bcl-2 and Bax in DRN neurons following SPS challenge was revealed as a central mechanism, inducing apoptosis of DRN neurons in PTSD rats.
Collapse
Affiliation(s)
- Fanzhen Kong
- PTSD Laboratory, Department of Histology and Embryology, School of Basic Medicine, China Medical University, Shenyang, China.,Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Fang Han
- PTSD Laboratory, Department of Histology and Embryology, School of Basic Medicine, China Medical University, Shenyang, China
| | - Yanhao Xu
- PTSD Laboratory, Department of Histology and Embryology, School of Basic Medicine, China Medical University, Shenyang, China.
| | - Yuxiu Shi
- PTSD Laboratory, Department of Histology and Embryology, School of Basic Medicine, China Medical University, Shenyang, China.
| |
Collapse
|
197
|
Matsushita T, Date M, Kano M, Mizumaki K, Tennichi M, Kobayashi T, Hamaguchi Y, Hasegawa M, Fujimoto M, Takehara K. Blockade of p38 Mitogen-Activated Protein Kinase Inhibits Murine Sclerodermatous Chronic Graft-versus-Host Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:841-850. [PMID: 28189565 DOI: 10.1016/j.ajpath.2016.12.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/28/2016] [Accepted: 12/19/2016] [Indexed: 01/29/2023]
Abstract
Bone marrow transplantation (BMT) of B10.D2 mice into sublethally irradiated BALB/c mice across minor histocompatibility loci is a well-established animal model for human sclerodermatous chronic graft-versus-host disease (Scl-cGVHD) and systemic sclerosis (SSc). The p38 mitogen-activated protein kinase (MAPK) pathway is a key regulator of inflammation and cytokine production. Furthermore, the activation of p38 MAPK plays an important role in collagen production in SSc. We investigated the effects of p38 MAPK inhibitor, VX-702, on Scl-cGVHD mice. VX-702 was orally administered to Scl-cGVHD mice from day 7 to 35 after BMT. We compared skin fibrosis of Scl-cGVHD mice between the VX-702-treated group and control group. Allogeneic BMT increased the phosphorylation of p38 MAPK in the skin. The administration of VX-702 attenuated the skin fibrosis of Scl-cGVHD compared to the control mice. Immunohistochemical staining showed that VX-702 suppressed the infiltration of CD4+ T cells, CD8+ T cells, and CD11b+ cells into the dermis of Scl-cGVHD mice compared to the control mice. VX-702 attenuated the mRNA expression of extracellular matrix and fibrogenic cytokines, such as IL-6 and IL-13, in the skin of Scl-cGVHD mice. In addition, VX-702 directly inhibited collagen production from fibroblasts in vitro. VX-702 was shown to be a promising candidate for use in treating patients with Scl-cGVHD and SSc.
Collapse
Affiliation(s)
- Takashi Matsushita
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| | - Mutsumi Date
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Miyu Kano
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kie Mizumaki
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Momoko Tennichi
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Tadahiro Kobayashi
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yasuhito Hamaguchi
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Minoru Hasegawa
- Department of Dermatology, University of Fukui, Fukui, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuhiko Takehara
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
198
|
Schatz V, Neubert P, Schröder A, Binger K, Gebhard M, Müller DN, Luft FC, Titze J, Jantsch J. Elementary immunology: Na + as a regulator of immunity. Pediatr Nephrol 2017; 32:201-210. [PMID: 26921211 PMCID: PMC5203836 DOI: 10.1007/s00467-016-3349-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 12/13/2022]
Abstract
The skin can serve as an interstitial Na+ reservoir. Local tissue Na+ accumulation increases with age, inflammation and infection. This increased local Na+ availability favors pro-inflammatory immune cell function and dampens their anti-inflammatory capacity. In this review, we summarize available data on how NaCl affects various immune cells. We particularly focus on how salt promotes pro-inflammatory macrophage and T cell function and simultaneously curtails their regulatory and anti-inflammatory potential. Overall, these findings demonstrate that local Na+ availability is a promising novel regulator of immunity. Hence, the modulation of tissue Na+ levels bears broad therapeutic potential: increasing local Na+ availability may help in treating infections, while lowering tissue Na+ levels may be used to treat, for example, autoimmune and cardiovascular diseases.
Collapse
Affiliation(s)
- Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, Universitätsklinikum Regensburg-Universität Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Patrick Neubert
- Institute of Clinical Microbiology and Hygiene, Universitätsklinikum Regensburg-Universität Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Agnes Schröder
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen-Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Katrina Binger
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Matthias Gebhard
- Experimental and Clinical Research Center (ECRC), Research Building, Charité Lindenberger Weg 80, Berlin, Germany
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center (ECRC), Research Building, Charité Lindenberger Weg 80, Berlin, Germany
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Friedrich C Luft
- Experimental and Clinical Research Center (ECRC), Research Building, Charité Lindenberger Weg 80, Berlin, Germany
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jens Titze
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen-Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, Universitätsklinikum Regensburg-Universität Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
199
|
Hayakawa M, Hayakawa H, Petrova T, Ritprajak P, Sutavani RV, Jiménez-Andrade GY, Sano Y, Choo MK, Seavitt J, Venigalla RKC, Otsu K, Georgopoulos K, Arthur JSC, Park JM. Loss of Functionally Redundant p38 Isoforms in T Cells Enhances Regulatory T Cell Induction. J Biol Chem 2016; 292:1762-1772. [PMID: 28011639 PMCID: PMC5290950 DOI: 10.1074/jbc.m116.764548] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/01/2016] [Indexed: 12/16/2022] Open
Abstract
The evolutionarily conserved protein kinase p38 mediates innate resistance to environmental stress and microbial infection. Four p38 isoforms exist in mammals and may have been co-opted for new roles in adaptive immunity. Murine T cells deficient in p38α, the ubiquitously expressed p38 isoform, showed no readily apparent cell-autonomous defects while expressing elevated amounts of another isoform, p38β. Mice with T cells simultaneously lacking p38α and p38β displayed lymphoid atrophy and elevated Foxp3+ regulatory T cell frequencies. Double deficiency of p38α and p38β in naïve CD4+ T cells resulted in an attenuation of MAPK-activated protein kinase (MK)-dependent mTOR signaling after T cell receptor engagement, and enhanced their differentiation into regulatory T cells under appropriate inducing conditions. Pharmacological inhibition of the p38-MK-mTOR signaling module produced similar effects, revealing potential for therapeutic applications.
Collapse
Affiliation(s)
- Morisada Hayakawa
- From the Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129; the Department of Biochemistry, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Hiroko Hayakawa
- From the Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129; the Department of Biochemistry, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Tsvetana Petrova
- the Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, Dundee DD1 5EH, United Kingdom
| | - Patcharee Ritprajak
- From the Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129; the Department of Microbiology and Immunology and Research Unit of Oral Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ruhcha V Sutavani
- the Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, Dundee DD1 5EH, United Kingdom
| | - Guillermina Yanek Jiménez-Andrade
- From the Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Yasuyo Sano
- From the Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Min-Kyung Choo
- From the Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - John Seavitt
- From the Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Ram K C Venigalla
- MRC Protein Phosphorylation Unit, School of Life Sciences, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Kinya Otsu
- the Cardiovascular Division, King's College London, London SE5 9NU, United Kingdom
| | - Katia Georgopoulos
- From the Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - J Simon C Arthur
- the Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, Dundee DD1 5EH, United Kingdom
| | - Jin Mo Park
- From the Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129.
| |
Collapse
|
200
|
A negative feedback loop of ICER and NF-κB regulates TLR signaling in innate immune responses. Cell Death Differ 2016; 24:492-499. [PMID: 28009352 DOI: 10.1038/cdd.2016.148] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 01/31/2023] Open
Abstract
The NF-κB pathway has important roles in innate immune responses and its regulation is critical to maintain immune homeostasis. Here, we report a newly discovered feedback mechanism for the regulation of this pathway by TLR ligands in macrophages. Lipopolysaccharide (LPS) induced the expression of ICER via p38-mediated activation of CREB in macrophages. ICER, in turn, inhibited the transcriptional activity of NF-κB by direct interaction with the p65 subunit of NF-κB. Deficiency in ICER elevated binding of NF-κB to promoters of pro-inflammatory genes and their subsequent gene expression. Mice deficient in ICER were hypersensitive to LPS-induced endotoxic shock and showed propagated inflammation. Whereas ICER expression in ICER KO bone marrow transplanted mice rescued the ultra-inflammation phenotype, expression of a p65 binding-deficient ICER mutant failed to do so. Our results thus establish p38-CREB-ICER as key components of a negative feedback mechanism necessary to regulate TLR-driven inflammation.
Collapse
|