151
|
Wang T, Donahoe PK, Zervos AS. Specific interaction of type I receptors of the TGF-beta family with the immunophilin FKBP-12. Science 1994; 265:674-6. [PMID: 7518616 DOI: 10.1126/science.7518616] [Citation(s) in RCA: 266] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Transforming growth factor-beta (TGF-beta) family members bind to receptors that consist of heteromeric serine-threonine kinase subunits (type I and type II). In a yeast genetic screen, the immunophilin FKBP-12, a target of the macrolides FK506 and rapamycin, interacted with the type I receptor for TGF-beta and with other type I receptors. Deletion, point mutation, and co-immunoprecipitation studies further demonstrated the specificity of the interaction. Excess FK506 competed with type I receptors for binding to FKBP-12, which suggests that these receptors share or overlap the macrolide binding site on FKBP-12, and therefore they may represent its natural ligand. The specific interaction between the type I receptors and FKBP-12 suggests that FKBP-12 may play a role in type I receptor-mediated signaling.
Collapse
Affiliation(s)
- T Wang
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02114
| | | | | |
Collapse
|
152
|
Henis YI, Moustakas A, Lin HY, Lodish HF. The types II and III transforming growth factor-beta receptors form homo-oligomers. J Cell Biol 1994; 126:139-54. [PMID: 8027173 PMCID: PMC2120107 DOI: 10.1083/jcb.126.1.139] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Affinity-labeling experiments have detected hetero-oligomers of the types I, II, and III transforming growth factor beta (TGF-beta) receptors which mediate intracellular signaling by TGF-beta, but the oligomeric state of the individual receptor types remains unknown. Here we use two types of experiments to show that a major portion of the receptor types II and III forms homo-oligomers both in the absence and presence of TGF-beta. Both experiments used COS-7 cells co-transfected with combinations of these receptors carrying different epitope tags at their extracellular termini. In immunoprecipitation experiments, radiolabeled TGF-beta was bound and cross-linked to cells co-expressing two differently tagged type II receptors. Sequential immunoprecipitations using anti-epitope monoclonal antibodies showed that type II TGF-beta receptors form homo-oligomers. In cells co-expressing epitope-tagged types II and III receptors, a low level of co-precipitation of the ligand-labeled receptors was observed, indicating that some hetero-oligomers of the types II and III receptors exist in the presence of ligand. Antibody-mediated cross-linking studies based on double-labeling immunofluorescence explored co-patching of the receptors at the cell surface on live cells. In cells co-expressing two differently tagged type II receptors or two differently tagged type III receptors, forcing one receptor into micropatches by IgG induced co-patching of the receptor carrying the other tag, labeled by noncross-linking monovalent Fab'. These studies showed that homo-oligomers of the types II and III receptors exist on the cell surface in the absence or presence of TGF-beta 1 or -beta 2. In cells co-expressing types II and III receptors, the amount of heterocomplexes at the cell surface was too low to be detected in the immunofluorescence co-patching experiments, confirming that hetero-oligomers of the types II and III receptors are minor and probably transient species.
Collapse
Affiliation(s)
- Y I Henis
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | | | | | | |
Collapse
|
153
|
The transforming growth factor beta type II receptor can replace the activin type II receptor in inducing mesoderm. Mol Cell Biol 1994. [PMID: 8196664 DOI: 10.1128/mcb.14.6.4280] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type II receptors for the polypeptide growth factors transforming growth factor beta (TGF-beta) and activin belong to a new family of predicted serine/threonine protein kinases. In Xenopus embryos, the biological effects of activin and TGF-beta 1 are strikingly different; activin induces a full range of mesodermal cell types in the animal cap assay, while TGF-beta 1 has no effects, presumably because of the lack of functional TGF-beta receptors. In order to assess the biological activities of exogenously added TGF-beta 1, RNA encoding the TGF-beta type II receptor was introduced into Xenopus embryos. In animal caps from these embryos, TGF-beta 1 and activin show similar potencies for induction of mesoderm-specific mRNAs, and both elicit the same types of mesodermal tissues. In addition, the response of animal caps to TGF-beta 1, as well as to activin, is blocked by a dominant inhibitory ras mutant, p21(Asn-17)Ha-ras. These results indicate that the activin and TGF-beta type II receptors can couple to similar signalling pathways and that the biological specificities of these growth factors lie in their different ligand-binding domains and in different competences of the responding cells.
Collapse
|
154
|
Type I receptors specify growth-inhibitory and transcriptional responses to transforming growth factor beta and activin. Mol Cell Biol 1994. [PMID: 8196624 DOI: 10.1128/mcb.14.6.3810] [Citation(s) in RCA: 261] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transforming growth factor beta (TGF-beta) and activin bind to receptor complexes that contain two distantly related transmembrane serine/threonine kinases known as receptor types I and II. The type II receptors determine ligand binding specificity, and each interacts with a distinct repertoire of type I receptors. Here we identify a new type I receptor for activin, ActR-IB, whose kinase domain is nearly identical to that of the recently cloned TGF-beta type I receptor, T beta R-I. ActR-IB has the structural and binding properties of a type I receptor: it binds activin only in the presence of an activin type II receptor and forms a heteromeric noncovalent complex with activin type II receptors. In Mv1Lu lung epithelial cells, ActR-IB and T beta R-I signal a common set of growth-inhibitory and transcriptional responses in association with their corresponding ligands and type II receptors. The transcriptional responses include elevated expression of fibronectin and plasminogen activator inhibitor 1. Although T beta R-I and ActR-IB are nearly identical in their kinase domains (90% amino acid sequence identity), their corresponding type II receptor kinase domains are very different from each other (42% amino acid sequence identity). Therefore, signaling of a specific set of responses by TGF-beta and activin correlates with the presence of similar type I kinases in their complex. Indeed, other TGF-beta and activin type I receptors (TSR-I and ActR-I) whose kinase domains significantly diverge from those of T beta R-I and ActR-IB do not substitute as mediators of these growth-inhibitory and extracellular matrix transcriptional responses. Hence, we conclude that the type I receptor subunits are primary specifiers of signals sent by TGF-beta and activin receptor complexes.
Collapse
|
155
|
Bhushan A, Lin HY, Lodish HF, Kintner CR. The transforming growth factor beta type II receptor can replace the activin type II receptor in inducing mesoderm. Mol Cell Biol 1994; 14:4280-5. [PMID: 8196664 PMCID: PMC358794 DOI: 10.1128/mcb.14.6.4280-4285.1994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The type II receptors for the polypeptide growth factors transforming growth factor beta (TGF-beta) and activin belong to a new family of predicted serine/threonine protein kinases. In Xenopus embryos, the biological effects of activin and TGF-beta 1 are strikingly different; activin induces a full range of mesodermal cell types in the animal cap assay, while TGF-beta 1 has no effects, presumably because of the lack of functional TGF-beta receptors. In order to assess the biological activities of exogenously added TGF-beta 1, RNA encoding the TGF-beta type II receptor was introduced into Xenopus embryos. In animal caps from these embryos, TGF-beta 1 and activin show similar potencies for induction of mesoderm-specific mRNAs, and both elicit the same types of mesodermal tissues. In addition, the response of animal caps to TGF-beta 1, as well as to activin, is blocked by a dominant inhibitory ras mutant, p21(Asn-17)Ha-ras. These results indicate that the activin and TGF-beta type II receptors can couple to similar signalling pathways and that the biological specificities of these growth factors lie in their different ligand-binding domains and in different competences of the responding cells.
Collapse
Affiliation(s)
- A Bhushan
- Molecular Neurobiology Laboratory, Salk Institute, La Jolla, California 92037
| | | | | | | |
Collapse
|
156
|
ten Dijke P, Yamashita H, Sampath T, Reddi A, Estevez M, Riddle D, Ichijo H, Heldin C, Miyazono K. Identification of type I receptors for osteogenic protein-1 and bone morphogenetic protein-4. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32506-1] [Citation(s) in RCA: 288] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
157
|
McCarthy SA, Turley H, Gatter KC, Bicknell R. Monoclonal antibodies that recognize the type-2 activin receptor, ACTR2. Hybridoma (Larchmt) 1994; 13:199-203. [PMID: 7927363 DOI: 10.1089/hyb.1994.13.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Monoclonal antibodies (MAbs) were raised in mice against a bacterial fusion protein composed of the intracellular serine/threonine kinase domain of the type-2 activin receptor, ACTR2, fused to glutathione S-transferase. Three MAbs with high affinity toward the ACTR2 kinase domain were isolated, one of which recognized specifically ACTR2 expressed transiently in vascular endothelial cells. These reagents should be of use in the elucidation of mechanisms of transmembrane signaling by this member of the emerging receptor serine threonine kinase family.
Collapse
Affiliation(s)
- S A McCarthy
- Molecular Angiogenesis Group, Imperial Cancer Research Fund, Oxford, UK
| | | | | | | |
Collapse
|
158
|
Cárcamo J, Weis FM, Ventura F, Wieser R, Wrana JL, Attisano L, Massagué J. Type I receptors specify growth-inhibitory and transcriptional responses to transforming growth factor beta and activin. Mol Cell Biol 1994; 14:3810-21. [PMID: 8196624 PMCID: PMC358748 DOI: 10.1128/mcb.14.6.3810-3821.1994] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Transforming growth factor beta (TGF-beta) and activin bind to receptor complexes that contain two distantly related transmembrane serine/threonine kinases known as receptor types I and II. The type II receptors determine ligand binding specificity, and each interacts with a distinct repertoire of type I receptors. Here we identify a new type I receptor for activin, ActR-IB, whose kinase domain is nearly identical to that of the recently cloned TGF-beta type I receptor, T beta R-I. ActR-IB has the structural and binding properties of a type I receptor: it binds activin only in the presence of an activin type II receptor and forms a heteromeric noncovalent complex with activin type II receptors. In Mv1Lu lung epithelial cells, ActR-IB and T beta R-I signal a common set of growth-inhibitory and transcriptional responses in association with their corresponding ligands and type II receptors. The transcriptional responses include elevated expression of fibronectin and plasminogen activator inhibitor 1. Although T beta R-I and ActR-IB are nearly identical in their kinase domains (90% amino acid sequence identity), their corresponding type II receptor kinase domains are very different from each other (42% amino acid sequence identity). Therefore, signaling of a specific set of responses by TGF-beta and activin correlates with the presence of similar type I kinases in their complex. Indeed, other TGF-beta and activin type I receptors (TSR-I and ActR-I) whose kinase domains significantly diverge from those of T beta R-I and ActR-IB do not substitute as mediators of these growth-inhibitory and extracellular matrix transcriptional responses. Hence, we conclude that the type I receptor subunits are primary specifiers of signals sent by TGF-beta and activin receptor complexes.
Collapse
MESH Headings
- Activin Receptors
- Activin Receptors, Type I
- Activins
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Division/drug effects
- Cell Division/physiology
- Cell Line
- Chlorocebus aethiops
- DNA Primers
- DNA, Complementary/isolation & purification
- DNA, Complementary/metabolism
- Gene Expression/drug effects
- Humans
- Inhibins/metabolism
- Inhibins/pharmacology
- Kidney
- Luciferases/biosynthesis
- Luciferases/metabolism
- Lung
- Mink
- Molecular Sequence Data
- Mutagenesis
- Polymerase Chain Reaction
- Receptors, Growth Factor/biosynthesis
- Receptors, Growth Factor/metabolism
- Receptors, Growth Factor/physiology
- Receptors, Transforming Growth Factor beta/biosynthesis
- Receptors, Transforming Growth Factor beta/metabolism
- Sequence Homology, Amino Acid
- Swine
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
- Transfection
- Transforming Growth Factor beta/metabolism
- Transforming Growth Factor beta/pharmacology
Collapse
Affiliation(s)
- J Cárcamo
- Cell Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | | | | | | | | | | | | |
Collapse
|
159
|
Filvaroff EH, Ebner R, Derynck R. Inhibition of myogenic differentiation in myoblasts expressing a truncated type II TGF-beta receptor. Development 1994; 120:1085-95. [PMID: 8026322 DOI: 10.1242/dev.120.5.1085] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transforming growth factor-beta (TGF-beta) is thought to play a role in mesenchymal cell development and, specifically, in muscle differentiation, yet its precise role in the latter process remains unclear. TGF-beta has been shown to both inhibit and induce myoblast maturation in vitro, depending on the culture conditions. Whether the type I or type II TGF-beta receptor mediates the various TGF-beta effects on myogenesis is not known. In the present study, C2C12 myoblasts were transfected with an expression vector for a truncated type II TGF-beta receptor, which has been shown to act as a dominant negative inhibitor of type II receptor signaling. In contrast to the parental cells, the transfected clones did not efficiently form myotubes or induce expression of MyoD, myogenin and several other differentiation markers following incubation in low serum media. However, some muscle differentiation markers continued to be expressed in the transfected cells suggesting that at least two pathways are involved in muscle cell differentiation. These cells could still growth arrest in low serum media, showing that decreased proliferation can be dissociated from differentiation. Unlike several oncogenes known to block myogenic differentiation, expression of the truncated TGF-beta receptor did not result in myoblast transformation. Injection of the parental or the transfected C2C12 cells into the limb muscle of nude mice revealed quantitative and qualitative differences in their behavior, and suggested that myoblasts expressing the truncated TGF-beta receptor cannot fuse in vivo. Finally, retrovirus-mediated expression of MyoD in the transfected cells restored their ability to form myotubes in vitro, indicating that inhibition of myoblast differentiation by the truncated TGF-beta receptor may depend on decreased MyoD expression. We propose that TGF-beta signaling through the type II receptor is required for several distinct aspects of myogenic differentiation and that TGF-beta acts as a competence factor in this multistep process.
Collapse
Affiliation(s)
- E H Filvaroff
- Department of Growth and Development, University of California at San Francisco 94143-0640
| | | | | |
Collapse
|
160
|
A single heteromeric receptor complex is sufficient to mediate biological effects of transforming growth factor-beta ligands. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36543-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
161
|
ten Dijke P, Yamashita H, Ichijo H, Franzén P, Laiho M, Miyazono K, Heldin CH. Characterization of type I receptors for transforming growth factor-beta and activin. Science 1994; 264:101-4. [PMID: 8140412 DOI: 10.1126/science.8140412] [Citation(s) in RCA: 402] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Transforming growth factor-beta (TGF-beta) and activin exert their effects by binding to heteromeric complexes of type I and type II receptors. The type II receptors for TGF-beta and activin are transmembrane serine-threonine kinases; a series of related receptors, denoted activin receptor-like kinase (ALK) 1 to 5, have recently been identified, and ALK-6 is described here. ALK-5 has been shown to be a functional TGF-beta type I receptor. A systematic analysis revealed that most ALKs formed heteromeric complexes with the type II receptors for TGF-beta and activin after overexpression in COS cells; however, among the six ALKs, only ALK-5 was a functional TGF-beta type I receptor for activation of plasminogen activator inhibitor-1, and only ALK-2 and ALK-4 bound activin with high affinity.
Collapse
Affiliation(s)
- P ten Dijke
- Ludwig Institute for Cancer Research, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
162
|
Xie T, Finelli AL, Padgett RW. The Drosophila saxophone gene: a serine-threonine kinase receptor of the TGF-beta superfamily. Science 1994; 263:1756-9. [PMID: 8134837 DOI: 10.1126/science.8134837] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The Drosophila decapentaplegic (dpp) gene encodes a transforming growth factor-beta (TGF-beta)-like protein that plays a key role in several aspects of development. Transduction of the DPP signal was investigated by cloning of serine-threonine kinase transmembrane receptors from Drosophila because this type of receptor is specific for the TGF-beta-like ligands. Here evidence is provided demonstrating that the Drosophila saxophone (sax) gene, a previously identified female sterile locus, encodes a TGF-beta-like type I receptor. Embryos from sax mothers and dpp embryos exhibit similar mutant phenotypes during early gastrulation, and these two loci exhibit genetic interactions, which suggest that they are utilized in the same pathway. These data suggest that sax encodes a receptor for dpp.
Collapse
Affiliation(s)
- T Xie
- Waksman Institute, Rutgers University, Piscataway, NJ 08855-0759
| | | | | |
Collapse
|
163
|
DuBois RN. Activin A and hepatocyte growth regulation. Hepatology 1994; 19:788-90. [PMID: 8119708 DOI: 10.1002/hep.1840190336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- R N DuBois
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2279
| |
Collapse
|
164
|
McCarthy S, Bicknell R. Activin-A binds to a heterotrimeric receptor complex on the vascular endothelial cell surface. Evidence for a type 3 activin receptor. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41717-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
165
|
Bassing CH, Yingling JM, Howe DJ, Wang T, He WW, Gustafson ML, Shah P, Donahoe PK, Wang XF. A transforming growth factor beta type I receptor that signals to activate gene expression. Science 1994; 263:87-9. [PMID: 8272871 DOI: 10.1126/science.8272871] [Citation(s) in RCA: 236] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Transforming growth factor beta (TGF-beta) is a multifunctional factor that regulates many aspects of cellular functions. TGF-beta signals through a heteromeric complex of the type I and type II TGF-beta receptors. However, the molecular mechanism of signal transduction by this receptor complex remains unresolved. The type II receptor belongs to a transmembrane receptor serine-threonine kinase family. A new member of this receptor family (R4) was identified and shown to be a functional TGF-beta type I receptor on the basis of its ability to restore a TGF-beta-induced gene response in mutant cell lines lacking endogenous type I receptor. Both ligand binding and signaling of the R4 protein were dependent on the presence of a functional type II receptor. The type I receptor has an intrinsic serine-threonine kinase activity, which was essential for signal transduction.
Collapse
Affiliation(s)
- C H Bassing
- Department of Pharmacology, Duke University Medical Center, Durham, NC 27710
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Membrane Receptors. Mol Endocrinol 1994. [DOI: 10.1016/b978-0-12-111231-8.50011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
167
|
Kingsley DM. The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 1994; 8:133-46. [PMID: 8299934 DOI: 10.1101/gad.8.2.133] [Citation(s) in RCA: 1509] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- D M Kingsley
- Department of Developmental Biology, Stanford University, California 94305-5427
| |
Collapse
|
168
|
Bassing CH, Yingling JM, Wang XF. Receptors for the TGF-beta ligand family. VITAMINS AND HORMONES 1994; 48:111-56. [PMID: 7941425 DOI: 10.1016/s0083-6729(08)60497-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- C H Bassing
- Department of Pharmacology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | |
Collapse
|