151
|
Yu Z, Duan X, Luo L, Dai S, Ding Z, Xia G. How Plant Hormones Mediate Salt Stress Responses. TRENDS IN PLANT SCIENCE 2020; 25:1117-1130. [PMID: 32675014 DOI: 10.1016/j.tplants.2020.06.008] [Citation(s) in RCA: 414] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 05/20/2023]
Abstract
Salt stress is one of the major environmental stresses limiting plant growth and productivity. To adapt to salt stress, plants have developed various strategies to integrate exogenous salinity stress signals with endogenous developmental cues to optimize the balance of growth and stress responses. Accumulating evidence indicates that phytohormones, besides controlling plant growth and development under normal conditions, also mediate various environmental stresses, including salt stress, and thus regulate plant growth adaptation. In this review, we mainly discuss and summarize how plant hormones mediate salinity signals to regulate plant growth adaptation. We also highlight how, in response to salt stress, plants build a defense system by orchestrating the synthesis, signaling, and metabolism of various hormones via multiple crosstalks.
Collapse
Affiliation(s)
- Zipeng Yu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Xiangbo Duan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Lu Luo
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Zhaojun Ding
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China.
| | - Guangmin Xia
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
152
|
Leisengang S, Nürnberger F, Ott D, Murgott J, Gerstberger R, Rummel C, Roth J. Primary culture of the rat spinal dorsal horn: a tool to investigate the effects of inflammatory stimulation on the afferent somatosensory system. Pflugers Arch 2020; 472:1769-1782. [PMID: 33098464 PMCID: PMC7691309 DOI: 10.1007/s00424-020-02478-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/28/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
One maladaptive consequence of inflammatory stimulation of the afferent somatosensory system is the manifestation of inflammatory pain. We established and characterized a neuroglial primary culture of the rat superficial dorsal horn (SDH) of the spinal cord to test responses of this structure to neurochemical, somatosensory, or inflammatory stimulation. Primary cultures of the rat SDH consist of neurons (43%), oligodendrocytes (35%), astrocytes (13%), and microglial cells (9%). Neurons of the SDH responded to cooling (7%), heating (18%), glutamate (80%), substance P (43%), prostaglandin E2 (8%), and KCl (100%) with transient increases in the intracellular calcium [Ca2+]i. Short-term stimulation of SDH primary cultures with LPS (10 μg/ml, 2 h) caused increased expression of pro-inflammatory cytokines, inflammatory transcription factors, and inducible enzymes responsible for inflammatory prostaglandin E2 synthesis. At the protein level, increased concentrations of tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6) were measured in the supernatants of LPS-stimulated SDH cultures and enhanced TNFα and IL-6 immunoreactivity was observed specifically in microglial cells. LPS-exposed microglial cells further showed increased nuclear immunoreactivity for the inflammatory transcription factors NFκB, NF-IL6, and pCREB, indicative of their activation. The short-term exposure to LPS further caused a reduction in the strength of substance P as opposed to glutamate-evoked Ca2+-signals in SDH neurons. However, long-term stimulation with a low dose of LPS (0.01 μg/ml, 24 h) resulted in a significant enhancement of glutamate-induced Ca2+ transients in SDH neurons, while substance P-evoked Ca2+ signals were not influenced. Our data suggest a critical role for microglial cells in the initiation of inflammatory processes within the SDH of the spinal cord, which are accompanied by a modulation of neuronal responses.
Collapse
Affiliation(s)
- Stephan Leisengang
- Department of Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Frankfurter Strasse 100, 35392, Giessen, Germany.,Center for Mind, Brain and Behavior - CMBB, Philipps-University Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior - CMBB, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Franz Nürnberger
- Department of Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Frankfurter Strasse 100, 35392, Giessen, Germany
| | - Daniela Ott
- Department of Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Frankfurter Strasse 100, 35392, Giessen, Germany
| | - Jolanta Murgott
- Department of Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Frankfurter Strasse 100, 35392, Giessen, Germany
| | - Rüdiger Gerstberger
- Department of Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Frankfurter Strasse 100, 35392, Giessen, Germany
| | - Christoph Rummel
- Department of Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Frankfurter Strasse 100, 35392, Giessen, Germany.,Center for Mind, Brain and Behavior - CMBB, Philipps-University Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior - CMBB, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Joachim Roth
- Department of Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Frankfurter Strasse 100, 35392, Giessen, Germany. .,Center for Mind, Brain and Behavior - CMBB, Philipps-University Marburg, Marburg, Germany. .,Center for Mind, Brain and Behavior - CMBB, Justus-Liebig-University of Giessen, Giessen, Germany.
| |
Collapse
|
153
|
Xiao R, Xu XZS. Temperature Sensation: From Molecular Thermosensors to Neural Circuits and Coding Principles. Annu Rev Physiol 2020; 83:205-230. [PMID: 33085927 DOI: 10.1146/annurev-physiol-031220-095215] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Temperature is a universal cue and regulates many essential processes ranging from enzymatic reactions to species migration. Due to the profound impact of temperature on physiology and behavior, animals and humans have evolved sophisticated mechanisms to detect temperature changes. Studies from animal models, such as mouse, Drosophila, and C. elegans, have revealed many exciting principles of thermosensation. For example, conserved molecular thermosensors, including thermosensitive channels and receptors, act as the initial detectors of temperature changes across taxa. Additionally, thermosensory neurons and circuits in different species appear to adopt similar logic to transduce and process temperature information. Here, we present the current understanding of thermosensation at the molecular and cellular levels. We also discuss the fundamental coding strategies of thermosensation at the circuit level. A thorough understanding of thermosensation not only provides key insights into sensory biology but also builds a foundation for developing better treatments for various sensory disorders.
Collapse
Affiliation(s)
- Rui Xiao
- Department of Aging and Geriatric Research, Institute on Aging and Center for Smell and Taste, University of Florida, Gainesville, Florida 32610, USA;
| | - X Z Shawn Xu
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| |
Collapse
|
154
|
Yu P, Cai X, Liang Y, Wang M, Yang W. Roles of NAD + and Its Metabolites Regulated Calcium Channels in Cancer. Molecules 2020; 25:molecules25204826. [PMID: 33092205 PMCID: PMC7587972 DOI: 10.3390/molecules25204826] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor for redox enzymes, but also moonlights as a regulator for ion channels, the same as its metabolites. Ca2+ homeostasis is dysregulated in cancer cells and affects processes such as tumorigenesis, angiogenesis, autophagy, progression, and metastasis. Herein, we summarize the regulation of the most common calcium channels (TRPM2, TPCs, RyRs, and TRPML1) by NAD+ and its metabolites, with a particular focus on their roles in cancers. Although the mechanisms of NAD+ metabolites in these pathological processes are yet to be clearly elucidated, these ion channels are emerging as potential candidates of alternative targets for anticancer therapy.
Collapse
Affiliation(s)
- Peilin Yu
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; (P.Y.); (Y.L.)
| | - Xiaobo Cai
- Department of Biophysics, and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China;
| | - Yan Liang
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; (P.Y.); (Y.L.)
| | - Mingxiang Wang
- BrioPryme Biologics, Inc., Hangzhou 310058, Zhejiang, China;
| | - Wei Yang
- Department of Biophysics, and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China;
- Correspondence: ; Tel.: +86-571-8820-8713
| |
Collapse
|
155
|
Mulier M, Vandewauw I, Vriens J, Voets T. Reply to: Heat detection by the TRPM2 ion channel. Nature 2020; 584:E13-E15. [PMID: 32788731 DOI: 10.1038/s41586-020-2511-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marie Mulier
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Ine Vandewauw
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, University of Leuven, Leuven, Belgium.
| | - Thomas Voets
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, Belgium. .,Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium.
| |
Collapse
|
156
|
Yang WZ, Du X, Zhang W, Gao C, Xie H, Xiao Y, Jia X, Liu J, Xu J, Fu X, Tu H, Fu X, Ni X, He M, Yang J, Wang H, Yang H, Xu XH, Shen WL. Parabrachial neuron types categorically encode thermoregulation variables during heat defense. SCIENCE ADVANCES 2020; 6:6/36/eabb9414. [PMID: 32917598 PMCID: PMC7467693 DOI: 10.1126/sciadv.abb9414] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/17/2020] [Indexed: 06/04/2023]
Abstract
Heat defense is crucial for survival and fitness. Transmission of thermosensory signals into hypothalamic thermoregulation centers represents a key layer of regulation in heat defense. Yet, how these signals are transmitted into the hypothalamus remains poorly understood. Here, we reveal that lateral parabrachial nucleus (LPB) glutamatergic prodynorphin and cholecystokinin neuron populations are progressively recruited to defend elevated body temperature. These two nonoverlapping neuron types form circuits with downstream preoptic hypothalamic neurons to inhibit the thermogenesis of brown adipose tissues (BATs) and activate tail vasodilation, respectively. Both circuits are activated by warmth and can limit fever development. The prodynorphin circuit is further required for regulating energy expenditure and body weight homeostasis. Thus, these findings establish that the genetic and functional specificity of heat defense neurons occurs as early as in the LPB and uncover categorical neuron types for encoding two heat defense variables, inhibition of BAT thermogenesis and activation of vasodilation.
Collapse
Affiliation(s)
- Wen Z Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghaitech University, Shanghai 201210, China.
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaosa Du
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghaitech University, Shanghai 201210, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cuicui Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghaitech University, Shanghai 201210, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hengchang Xie
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghaitech University, Shanghai 201210, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Xiao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- Department of Neurology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine and Health Science, 222 West Third Road, Huanhu, Shanghai 201306, China
| | - Xiaoning Jia
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghaitech University, Shanghai 201210, China
| | - Jiashu Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghaitech University, Shanghai 201210, China
| | - Jianhui Xu
- Thermoregulation and Inflammation Laboratory, Chengdu Medical College, Chengdu Sichuan 610500, China
| | - Xin Fu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghaitech University, Shanghai 201210, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongqing Tu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghaitech University, Shanghai 201210, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Fu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghaitech University, Shanghai 201210, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyan Ni
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghaitech University, Shanghai 201210, China
| | - Miao He
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Jiajun Yang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- Department of Neurology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine and Health Science, 222 West Third Road, Huanhu, Shanghai 201306, China
| | - Hong Wang
- Shenzhen Key Laboratory of Drug Addiction, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghaitech University, Shanghai 201210, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wei L Shen
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghaitech University, Shanghai 201210, China.
| |
Collapse
|
157
|
Zhang KX, D'Souza S, Upton BA, Kernodle S, Vemaraju S, Nayak G, Gaitonde KD, Holt AL, Linne CD, Smith AN, Petts NT, Batie M, Mukherjee R, Tiwari D, Buhr ED, Van Gelder RN, Gross C, Sweeney A, Sanchez-Gurmaches J, Seeley RJ, Lang RA. Violet-light suppression of thermogenesis by opsin 5 hypothalamic neurons. Nature 2020; 585:420-425. [PMID: 32879486 PMCID: PMC8130195 DOI: 10.1038/s41586-020-2683-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
Abstract
The opsin family of G-protein-coupled receptors are used as light detectors in animals. Opsin 5 (also known as neuropsin or OPN5) is a highly conserved opsin that is sensitive to visible violet light1,2. In mice, OPN5 is a known photoreceptor in the retina3 and skin4 but is also expressed in the hypothalamic preoptic area (POA)5. Here we describe a light-sensing pathway in which POA neurons that express Opn5 regulate thermogenesis in brown adipose tissue (BAT). We show that Opn5 is expressed in glutamatergic warm-sensing POA neurons that receive synaptic input from several thermoregulatory nuclei. We further show that Opn5 POA neurons project to BAT and decrease its activity under chemogenetic stimulation. Opn5-null mice show overactive BAT, increased body temperature, and exaggerated thermogenesis when cold-challenged. Moreover, violet photostimulation during cold exposure acutely suppresses BAT temperature in wild-type mice but not in Opn5-null mice. Direct measurements of intracellular cAMP ex vivo show that Opn5 POA neurons increase cAMP when stimulated with violet light. This analysis thus identifies a violet light-sensitive deep brain photoreceptor that normally suppresses BAT thermogenesis.
Collapse
Affiliation(s)
- Kevin X Zhang
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
- Medical Scientist Training Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Shane D'Souza
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Brian A Upton
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
- Medical Scientist Training Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Stace Kernodle
- Department of Surgery, University of Michigan, School of Public Health, Ann Arbor, MI, USA
| | - Shruti Vemaraju
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gowri Nayak
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kevin D Gaitonde
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
- Medical Scientist Training Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Amanda L Holt
- Department of Physics, Yale University, New Haven, CT, USA
| | - Courtney D Linne
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
- Medical Scientist Training Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - April N Smith
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nathan T Petts
- Division of Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew Batie
- Division of Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rajib Mukherjee
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Durgesh Tiwari
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ethan D Buhr
- Department of Ophthalmology, University of Washington Medical School, Seattle, WA, USA
| | - Russell N Van Gelder
- Department of Ophthalmology, University of Washington Medical School, Seattle, WA, USA
- Department of Biological Structure, University of Washington Medical School, Seattle, WA, USA
- Department of Pathology, University of Washington Medical School, Seattle, WA, USA
| | - Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Alison Sweeney
- Department of Physics, Yale University, New Haven, CT, USA
| | - Joan Sanchez-Gurmaches
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, School of Public Health, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, School of Public Health, Ann Arbor, MI, USA
| | - Richard A Lang
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Ophthalmology, University of Cincinnati, College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
158
|
Abstract
A limited number of peripheral targets generate pain. Inflammatory mediators can sensitize these. The review addresses targets acting exclusively or predominantly on sensory neurons, mediators involved in inflammation targeting sensory neurons, and mediators involved in a more general inflammatory process, of which an analgesic effect secondary to an anti-inflammatory effect can be expected. Different approaches to address these systems are discussed, including scavenging proinflammatory mediators, applying anti-inflammatory mediators, and inhibiting proinflammatory or facilitating anti-inflammatory receptors. New approaches are contrasted to established ones; the current stage of progress is mentioned, in particular considering whether there is data from a molecular and cellular level, from animals, or from human trials, including an early stage after a market release. An overview of publication activity is presented, considering a IuPhar/BPS-curated list of targets with restriction to pain-related publications, which was also used to identify topics.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Michael J M Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
159
|
Wen J, Bo T, Zhang X, Wang Z, Wang D. Thermo-TRPs and gut microbiota are involved in thermogenesis and energy metabolism during low temperature exposure of obese mice. J Exp Biol 2020; 223:jeb218974. [PMID: 32341176 DOI: 10.1242/jeb.218974] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
Ambient temperature and food composition can affect energy metabolism of the host. Thermal transient receptor potential ion channels (thermo-TRPs) can detect temperature signals and are involved in the regulation of thermogenesis and energy homeostasis. Further, the gut microbiota have also been implicated in thermogenesis and obesity. In the present study, we tested the hypothesis that thermo-TRPs and gut microbiota are involved in reducing diet-induced obesity (DIO) during low temperature exposure. C57BL/6J mice in obese (body mass gain >45%), lean (body mass gain <15%) and control (body mass gain <1%) groups were exposed to high (23±1°C) or low (4±1°C) ambient temperature for 28 days. Our data showed that low temperature exposure attenuated DIO, but enhanced brown adipose tissue (BAT) thermogenesis. Low temperature exposure also resulted in increased noradrenaline (NA) concentrations in the hypothalamus, decreased TRP melastatin 8 (TRPM8) expression in the small intestine, and altered composition and diversity of gut microbiota. In DIO mice, there was a decrease in overall energy intake along with a reduction in TRP ankyrin 1 (TRPA1) expression and an increase in NA concentration in the small intestine. DIO mice also showed increases in Oscillospira, [Ruminococcus], Lactococcus and Christensenella and decreases in Prevotella, Odoribacter and Lactobacillus at the genus level in fecal samples. Together, our data suggest that thermos-TRPs and gut microbiota are involved in thermogenesis and energy metabolism during low temperature exposure in DIO mice.
Collapse
Affiliation(s)
- Jing Wen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingbei Bo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA
| | - Dehua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
160
|
Pallagi P, Madácsy T, Varga Á, Maléth J. Intracellular Ca 2+ Signalling in the Pathogenesis of Acute Pancreatitis: Recent Advances and Translational Perspectives. Int J Mol Sci 2020; 21:ijms21114005. [PMID: 32503336 PMCID: PMC7312053 DOI: 10.3390/ijms21114005] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Intracellular Ca2+ signalling is a major signal transductional pathway in non-excitable cells, responsible for the regulation of a variety of physiological functions. In the secretory epithelial cells of the exocrine pancreas, such as acinar and ductal cells, intracellular Ca2+ elevation regulates digestive enzyme secretion in acini or fluid and ion secretion in ductal cells. Although Ca2+ is a uniquely versatile orchestrator of epithelial physiology, unregulated global elevation of the intracellular Ca2+ concentration is an early trigger for the development of acute pancreatitis (AP). Regardless of the aetiology, different forms of AP all exhibit sustained intracellular Ca2+ elevation as a common hallmark. The release of endoplasmic reticulum (ER) Ca2+ stores by toxins (such as bile acids or fatty acid ethyl esters (FAEEs)) or increased intrapancreatic pressure activates the influx of extracellular Ca2+ via the Orai1 Ca2+ channel, a process known as store-operated Ca2+ entry (SOCE). Intracellular Ca2+ overload can lead to premature activation of trypsinogen in pancreatic acinar cells and impaired fluid and HCO3- secretion in ductal cells. Increased and unbalanced reactive oxygen species (ROS) production caused by sustained Ca2+ elevation further contributes to cell dysfunction, leading to mitochondrial damage and cell death. Translational studies of AP identified several potential target molecules that can be modified to prevent intracellular Ca2+ overload. One of the most promising drugs, a selective inhibitor of the Orai1 channel that has been shown to inhibit extracellular Ca2+ influx and protect cells from injury, is currently being tested in clinical trials. In this review, we will summarise the recent advances in the field, with a special focus on the translational aspects of the basic findings.
Collapse
Affiliation(s)
- Petra Pallagi
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary; (P.P.); (T.M.); (Á.V.)
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| | - Tamara Madácsy
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary; (P.P.); (T.M.); (Á.V.)
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| | - Árpád Varga
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary; (P.P.); (T.M.); (Á.V.)
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| | - József Maléth
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary; (P.P.); (T.M.); (Á.V.)
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
- Correspondence: or ; Tel.: +36-(62)-342-877 or +36-70-41-66500
| |
Collapse
|
161
|
Abstract
This study by Tóth et al. has defined that the N-terminal MHR1/2 domain is a conserved ADPR binding site in TRPM2 from ancient cnidarians to vertebrate, and that it is the key ligand binding site for invertebrate TRPM2 channel activation by ADPR, the same as observed in human and zebrafish TRPM2.
Collapse
Affiliation(s)
| | - Juan Du
- Van Andel Institute, Grand Rapids, MI
| |
Collapse
|
162
|
Feketa VV, Nikolaev YA, Merriman DK, Bagriantsev SN, Gracheva EO. CNGA3 acts as a cold sensor in hypothalamic neurons. eLife 2020; 9:55370. [PMID: 32270761 PMCID: PMC7182431 DOI: 10.7554/elife.55370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/08/2020] [Indexed: 11/13/2022] Open
Abstract
Most mammals maintain their body temperature around 37°C, whereas in hibernators it can approach 0°C without triggering a thermogenic response. The remarkable plasticity of the thermoregulatory system allowed mammals to thrive in variable environmental conditions and occupy a wide range of geographical habitats, but the molecular basis of thermoregulation remains poorly understood. Here we leverage the thermoregulatory differences between mice and hibernating thirteen-lined ground squirrels (Ictidomys tridecemlineatus) to investigate the mechanism of cold sensitivity in the preoptic area (POA) of the hypothalamus, a critical thermoregulatory region. We report that, in comparison to squirrels, mice have a larger proportion of cold-sensitive neurons in the POA. We further show that mouse cold-sensitive neurons express the cyclic nucleotide-gated ion channel CNGA3, and that mouse, but not squirrel, CNGA3 is potentiated by cold. Our data reveal CNGA3 as a hypothalamic cold sensor and a molecular marker to interrogate the neuronal circuitry underlying thermoregulation.
Collapse
Affiliation(s)
- Viktor V Feketa
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, United States.,Department of Neuroscience, Yale University School of Medicine, New Haven, United States.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, United States
| | - Yury A Nikolaev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, United States
| | - Dana K Merriman
- Department of Biology, University of Wisconsin-Oshkosh, Oshkosh, United States
| | - Sviatoslav N Bagriantsev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, United States
| | - Elena O Gracheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, United States.,Department of Neuroscience, Yale University School of Medicine, New Haven, United States.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
163
|
Paricio-Montesinos R, Schwaller F, Udhayachandran A, Rau F, Walcher J, Evangelista R, Vriens J, Voets T, Poulet JFA, Lewin GR. The Sensory Coding of Warm Perception. Neuron 2020; 106:830-841.e3. [PMID: 32208171 PMCID: PMC7272120 DOI: 10.1016/j.neuron.2020.02.035] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 12/26/2022]
Abstract
Humans detect skin temperature changes that are perceived as warm or cool. Like humans, mice report forepaw skin warming with perceptual thresholds of less than 1°C and do not confuse warm with cool. We identify two populations of polymodal C-fibers that signal warm. Warm excites one population, whereas it suppresses the ongoing cool-driven firing of the other. In the absence of the thermosensitive TRPM2 or TRPV1 ion channels, warm perception was blunted, but not abolished. In addition, trpv1:trpa1:trpm3−/− triple-mutant mice that cannot sense noxious heat detected skin warming, albeit with reduced sensitivity. In contrast, loss or local pharmacological silencing of the cool-driven TRPM8 channel abolished the ability to detect warm. Our data are not reconcilable with a labeled line model for warm perception, with receptors firing only in response to warm stimuli, but instead support a conserved dual sensory model to unambiguously detect skin warming in vertebrates. Mice, like humans, perceive forepaw warming (≥1°C) and discriminate warm from cool Warm-activated and warm-silenced polymodal C-fibers both signal forepaw warming Mice lacking the cool-sensitive ion channel TRPM8 are unable to perceive warm The inability to perceive warm is associated with loss of warm-silenced C-fibers
Collapse
Affiliation(s)
- Ricardo Paricio-Montesinos
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Robert-Rössle Straße 10, 13092 Berlin, Germany; Neuroscience Research Center and Cluster of Excellence NeuroCure, Charité-Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany
| | - Frederick Schwaller
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Robert-Rössle Straße 10, 13092 Berlin, Germany
| | - Annapoorani Udhayachandran
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Robert-Rössle Straße 10, 13092 Berlin, Germany; Neuroscience Research Center and Cluster of Excellence NeuroCure, Charité-Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany
| | - Florian Rau
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Robert-Rössle Straße 10, 13092 Berlin, Germany; Neuroscience Research Center and Cluster of Excellence NeuroCure, Charité-Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jan Walcher
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Robert-Rössle Straße 10, 13092 Berlin, Germany
| | - Roberta Evangelista
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Robert-Rössle Straße 10, 13092 Berlin, Germany
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, KU Leuven Department of Development and Regeneration, G-PURE, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain and Disease Research, KU Leuven Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - James F A Poulet
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Robert-Rössle Straße 10, 13092 Berlin, Germany; Neuroscience Research Center and Cluster of Excellence NeuroCure, Charité-Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Gary R Lewin
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Robert-Rössle Straße 10, 13092 Berlin, Germany.
| |
Collapse
|
164
|
Xiao C, Liu N, Province H, Piñol RA, Gavrilova O, Reitman ML. BRS3 in both MC4R- and SIM1-expressing neurons regulates energy homeostasis in mice. Mol Metab 2020; 36:100969. [PMID: 32229422 PMCID: PMC7113433 DOI: 10.1016/j.molmet.2020.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/13/2020] [Accepted: 02/22/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Bombesin-like receptor 3 (BRS3) is an orphan receptor and Brs3 knockout mice develop obesity with increased food intake and reduced resting metabolic rate and body temperature. The neuronal populations contributing to these effects were examined. METHODS We studied energy metabolism in mice with Cre-mediated recombination causing 1) loss of BRS3 selectively in SIM1- or MC4R-expressing neurons or 2) selective re-expression of BRS3 from a null background in these neurons. RESULTS The deletion of BRS3 in MC4R neurons increased body weight/adiposity, metabolic efficiency, and food intake, and reduced insulin sensitivity. BRS3 re-expression in these neurons caused partial or no reversal of these traits. However, these observations were confounded by an obesity phenotype caused by the Mc4r-Cre allele, independent of its recombinase activity. The deletion of BRS3 in SIM1 neurons increased body weight/adiposity and food intake, but not to the levels of the global null. The re-expression of BRS3 in SIM1 neurons reduced body weight/adiposity and food intake, but not to wild type levels. The deletion of BRS3 in either MC4R- or SIM1-expressing neurons affected body temperature, with re-expression in either population reversing the null phenotype. MK-5046, a BRS3 agonist, increases light phase body temperature in wild type, but not Brs3 null, mice and BRS3 re-expression in either population restored response to MK-5046. CONCLUSIONS BRS3 in both MC4R- and SIM1-expressing neurons contributes to regulation of body weight/adiposity, insulin sensitivity, food intake, and body temperature.
Collapse
Affiliation(s)
- Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Naili Liu
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Haley Province
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Ramón A Piñol
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
165
|
Barry H, Chaseling GK, Moreault S, Sauvageau C, Behzadi P, Gravel H, Ravanelli N, Gagnon D. Improved neural control of body temperature following heat acclimation in humans. J Physiol 2020; 598:1223-1234. [PMID: 32011734 DOI: 10.1113/jp279266] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/21/2020] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS With the advent of more frequent extreme heat events, adaptability to hot environments will be crucial for the survival of many species, including humans. However, the mechanisms that mediate human heat adaptation have remained elusive. We tested the hypothesis that heat acclimation improves the neural control of body temperature. Skin sympathetic nerve activity, comprising the efferent neural signal that activates heat loss thermoeffectors, was measured in healthy adults exposed to passive heat stress before and after a 7 day heat acclimation protocol. Heat acclimation reduced the activation threshold for skin sympathetic nerve activity, leading to an earlier activation of cutaneous vasodilatation and sweat production. These findings demonstrate that heat acclimation improves the neural control of body temperature in humans. ABSTRACT Heat acclimation improves autonomic temperature regulation in humans. However, the mechanisms that mediate human heat adaptation remain poorly understood. The present study tested the hypothesis that heat acclimation improves the neural control of body temperature. Body temperatures, skin sympathetic nerve activity, cutaneous vasodilatation, and sweat production were measured in 14 healthy adults (nine men and five women, aged 27 ± 5 years) during passive heat stress performed before and after a 7 day heat acclimation protocol. Heat acclimation increased whole-body sweat rate [+0.54 L h-1 (0.32, 0.75), P < 0.01] and reduced resting core temperature [-0.29°C (-0.40, -0.18), P < 0.01]. During passive heat stress, the change in mean body temperature required to activate skin sympathetic nerve activity was reduced [-0.21°C (-0.34, -0.08), P < 0.01] following heat acclimation. The earlier activation of skin sympathetic nerve activity resulted in lower activation thresholds for cutaneous vasodilatation [-0.18°C (-0.35, -0.01), P = 0.04] and local sweat rate [-0.13°C (-0.24, -0.01), P = 0.03]. These results demonstrate that heat acclimation leads to an earlier activation of the neural efferent outflow that activates the heat loss thermoeffectors of cutaneous vasodilatation and sweating.
Collapse
Affiliation(s)
- Hadiatou Barry
- Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, Montréal, Canada, Montréal, QC, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Georgia K Chaseling
- Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, Montréal, Canada, Montréal, QC, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Samuel Moreault
- Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, Montréal, Canada, Montréal, QC, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Claudia Sauvageau
- Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, Montréal, Canada, Montréal, QC, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Parya Behzadi
- Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, Montréal, Canada, Montréal, QC, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Hugo Gravel
- Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, Montréal, Canada, Montréal, QC, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Nicholas Ravanelli
- Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, Montréal, Canada, Montréal, QC, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Daniel Gagnon
- Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, Montréal, Canada, Montréal, QC, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
166
|
EP3R-Expressing Glutamatergic Preoptic Neurons Mediate Inflammatory Fever. J Neurosci 2020; 40:2573-2588. [PMID: 32079648 DOI: 10.1523/jneurosci.2887-19.2020] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 12/21/2022] Open
Abstract
Fever is a common phenomenon during infection or inflammatory conditions. This stereotypic rise in body temperature (Tb) in response to inflammatory stimuli is a result of autonomic responses triggered by prostaglandin E2 action on EP3 receptors expressed by neurons in the median preoptic nucleus (MnPOEP3R neurons). To investigate the identity of MnPOEP3R neurons, we first used in situ hybridization to show coexpression of EP3R and the VGluT2 transporter in MnPO neurons. Retrograde tracing showed extensive direct projections from MnPOVGluT2 but few from MnPOVgat neurons to a key site for fever production, the raphe pallidus. Ablation of MnPOVGluT2 but not MnPOVgat neurons abolished fever responses but not changes in Tb induced by behavioral stress or thermal challenges. Finally, we crossed EP3R conditional knock-out mice with either VGluT2-IRES-cre or Vgat-IRES-cre mice and used both male and female mice to confirm that the neurons that express EP3R and mediate fever are glutamatergic, not GABAergic. This finding will require rethinking current concepts concerning the central thermoregulatory pathways based on the MnPOEP3R neurons being GABAergic.SIGNIFICANCE STATEMENT Body temperature is regulated by the CNS. The rise of the body temperature, or fever, is an important brain-orchestrated mechanism for fighting against infectious or inflammatory disease, and is tightly regulated by the neurons located in the median preoptic nucleus (MnPO). Here we demonstrate that excitatory MnPO neurons mediate fever and examine a potential central circuit underlying the development of fever responses.
Collapse
|
167
|
Pan T, Zhu QJ, Xu LX, Ding X, Li JQ, Sun B, Hua J, Feng X. Knocking down TRPM2 expression reduces cell injury and NLRP3 inflammasome activation in PC12 cells subjected to oxygen-glucose deprivation. Neural Regen Res 2020; 15:2154-2161. [PMID: 32394974 PMCID: PMC7716023 DOI: 10.4103/1673-5374.282271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Transient receptor potential melastatin 2 (TRPM2) is an important ion channel that represents a potential target for treating injury caused by cerebral ischemia. However, it is unclear whether reducing TRPM2 expression can help repair cerebral injury, and if so what the mechanism underlying this process involves. This study investigated the protective effect of reducing TRPM2 expression on pheochromocytoma (PC12) cells injured by oxygen-glucose deprivation (OGD). PC12 cells were transfected with plasmid encoding TRPM2 shRNAS, then subjected to OGD by incubation in glucose-free medium under hypoxic conditions for 8 hours, after which the cells were allowed to reoxygenate for 24 hours. Apoptotic cells, mitochondrial membrane potentials, reactive oxygen species levels, and cellular calcium levels were detected using flow cytometry. The relative expression of C-X-C motif chemokine ligand 2 (CXCL2), NACHT, LRR, and PYD domain-containing protein 3 (NALP3), and caspase-1 were detected using fluorescence-based quantitative reverse transcription-polymerase chain reaction and western blotting. The rates of apoptosis, mitochondrial membrane potentials, reactive oxygen species levels, and cellular calcium levels in the TRPM2-shRNA + OGD group were lower than those observed in the OGD group. Taken together, these results suggest that TRPM2 knockdown reduces OGD-induced neuronal injury, potentially by inhibiting apoptosis and reducing oxidative stress levels, mitochondrial membrane potentials, intracellular calcium concentrations, and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Tao Pan
- Department of Neonatology, Children's Hospital Affiliated to Suzhou University, Suzhou, Jiangsu Province, China
| | - Qiu-Jiao Zhu
- Department of Critical Care Medicine, Children's Hospital Affiliated to Suzhou University, Suzhou, Jiangsu Province, China
| | - Li-Xiao Xu
- Institute of Pediatrics, Children's Hospital Affiliated to Suzhou University, Suzhou, Jiangsu Province, China
| | - Xin Ding
- Department of Neonatology, Children's Hospital Affiliated to Suzhou University, Suzhou, Jiangsu Province, China
| | - Jian-Qin Li
- Blood Section, Children's Hospital Affiliated to Suzhou University, Suzhou, Jiangsu Province, China
| | - Bin Sun
- Department of Neonatology, Children's Hospital Affiliated to Suzhou University, Suzhou, Jiangsu Province, China
| | - Jun Hua
- Department of Critical Care Medicine, Children's Hospital Affiliated to Suzhou University, Suzhou, Jiangsu Province, China
| | - Xing Feng
- Department of Neonatology, Children's Hospital Affiliated to Suzhou University, Suzhou, Jiangsu Province, China
| |
Collapse
|
168
|
Huang Y, Fliegert R, Guse AH, Lü W, Du J. A structural overview of the ion channels of the TRPM family. Cell Calcium 2020; 85:102111. [PMID: 31812825 PMCID: PMC7050466 DOI: 10.1016/j.ceca.2019.102111] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022]
Abstract
The TRPM (transient receptor potential melastatin) family belongs to the superfamily of TRP cation channels. The TRPM subfamily is composed of eight members that are involved in diverse biological functions such as temperature sensing, inflammation, insulin secretion, and redox sensing. Since the first cloning of TRPM1 in 1998, tremendous progress has been made uncovering the function, structure, and pharmacology of this family. Complete structures of TRPM2, TRPM4, and TRPM8, as well as a partial structure of TRPM7, have been determined by cryo-EM, providing insights into their channel assembly, ion permeation, gating mechanisms, and structural pharmacology. Here we summarize the current knowledge about channel structure, emphasizing general features and principles of the structure of TRPM channels discovered since 2017. We also discuss some of the key unresolved issues in the field, including the molecular mechanisms underlying voltage and temperature dependence, as well as the functions of the TRPM channels' C-terminal domains.
Collapse
Affiliation(s)
- Yihe Huang
- Van Andel Institute, 333 Bostwick Ave., N.E., Grand Rapids, 49503, MI, USA
| | - Ralf Fliegert
- The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Andreas H Guse
- The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Wei Lü
- Van Andel Institute, 333 Bostwick Ave., N.E., Grand Rapids, 49503, MI, USA.
| | - Juan Du
- Van Andel Institute, 333 Bostwick Ave., N.E., Grand Rapids, 49503, MI, USA.
| |
Collapse
|
169
|
Chen SCJ, Lin JH, Hsu JS, Shih CM, Lai JJ, Hsu MJ. Influence of Alternate Hot and Cold Thermal Stimulation in Cortical Excitability in Healthy Adults: An fMRI Study. J Clin Med 2019; 9:jcm9010018. [PMID: 31861675 PMCID: PMC7019540 DOI: 10.3390/jcm9010018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 11/22/2022] Open
Abstract
Stroke rehabilitation using alternate hot and cold thermal stimulation (altTS) has been reported to improve motor function in hemiplegia; however, the influence of brain excitability induced by altTS remains unclear. This study examined cortical activation induced by altTS in healthy adults, focusing on motor-related areas. This involved a repeated crossover experimental design with two temperature settings (innocuous altTS with alternate heat-pain and cold-pain thermal and noxious altTS with alternate heat and cold thermal) testing both arms (left side and right side). Thirty-one healthy, right-handed participants received four episodes of altTS on four separate days. Functional magnetic resonance imaging scans were performed both before and after each intervention to determine whether altTS intervention affects cortical excitability, while participants performed a finger-tapping task during scanning. The findings revealed greater response intensity of cortical excitability in participants who received noxious altTS in the primary motor cortex, supplementary motor cortex, and somatosensory cortex than in those who received innocuous altTS. Moreover, there was more motor-related excitability in the contra-lateral brain when heat was applied to the dominant arm, and more sensory-associated excitability in the contra-lateral brain when heat was applied to the nondominant arm. The findings highlight the effect of heat on cortical excitability and provide insights into the application of altTS in stroke rehabilitation.
Collapse
Affiliation(s)
- Sharon Chia-Ju Chen
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
| | - Jau-Hong Lin
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- Department of Physical Therapy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| | - Jui-Sheng Hsu
- Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (J.-S.H.); (C.-M.S.); (J.-J.L.)
| | - Chiu-Ming Shih
- Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (J.-S.H.); (C.-M.S.); (J.-J.L.)
| | - Jui-Jen Lai
- Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (J.-S.H.); (C.-M.S.); (J.-J.L.)
| | - Miao-Ju Hsu
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- Department of Physical Therapy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-7-3121101 (ext. 2673); Fax: +886-7-3215845
| |
Collapse
|
170
|
Oxidation of methionine residues activates the high-threshold heat-sensitive ion channel TRPV2. Proc Natl Acad Sci U S A 2019; 116:24359-24365. [PMID: 31719194 DOI: 10.1073/pnas.1904332116] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Thermosensitive transient receptor potential (TRP) ion channels detect changes in ambient temperature to regulate body temperature and temperature-dependent cellular activity. Rodent orthologs of TRP vanilloid 2 (TRPV2) are activated by nonphysiological heat exceeding 50 °C, and human TRPV2 is heat-insensitive. TRPV2 is required for phagocytic activity of macrophages which are rarely exposed to excessive heat, but what activates TRPV2 in vivo remains elusive. Here we describe the molecular mechanism of an oxidation-induced temperature-dependent gating of TRPV2. While high concentrations of H2O2 induce a modest sensitization of heat-induced inward currents, the oxidant chloramine-T (ChT), ultraviolet A light, and photosensitizing agents producing reactive oxygen species (ROS) activate and sensitize TRPV2. This oxidation-induced activation also occurs in excised inside-out membrane patches, indicating a direct effect on TRPV2. The reducing agent dithiothreitol (DTT) in combination with methionine sulfoxide reductase partially reverses ChT-induced sensitization, and the substitution of the methionine (M) residues M528 and M607 to isoleucine almost abolishes oxidation-induced gating of rat TRPV2. Mass spectrometry on purified rat TRPV2 protein confirms oxidation of these residues. Finally, macrophages generate TRPV2-like heat-induced inward currents upon oxidation and exhibit reduced phagocytosis when exposed to the TRP channel inhibitor ruthenium red (RR) or to DTT. In summary, our data reveal a methionine-dependent redox sensitivity of TRPV2 which may be an important endogenous mechanism for regulation of TRPV2 activity and account for its pivotal role for phagocytosis in macrophages.
Collapse
|
171
|
Padilla SL, Johnson CW, Barker FD, Patterson MA, Palmiter RD. A Neural Circuit Underlying the Generation of Hot Flushes. Cell Rep 2019; 24:271-277. [PMID: 29996088 DOI: 10.1016/j.celrep.2018.06.037] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 05/24/2018] [Accepted: 06/08/2018] [Indexed: 12/15/2022] Open
Abstract
Hot flushes are a sudden feeling of warmth commonly associated with the decline of gonadal hormones at menopause. Neurons in the arcuate nucleus of the hypothalamus that express kisspeptin and neurokinin B (Kiss1ARH neurons) are candidates for mediating hot flushes because they are negatively regulated by sex hormones. We used a combination of genetic and viral technologies in mice to demonstrate that artificial activation of Kiss1ARH neurons evokes a heat-dissipation response resulting in vasodilation (flushing) and a corresponding reduction of core-body temperature in both females and males. This response is sensitized by ovariectomy. Brief activation of Kiss1ARH axon terminals in the preoptic area of the hypothalamus recapitulates this response, while pharmacological blockade of neurokinin B (NkB) receptors in the same brain region abolishes it. We conclude that transient activation of Kiss1ARH neurons following sex-hormone withdrawal contributes to the occurrence of hot flushes via NkB release in the rostral preoptic area.
Collapse
Affiliation(s)
- Stephanie L Padilla
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Christopher W Johnson
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Forrest D Barker
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Michael A Patterson
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Richard D Palmiter
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
172
|
Mai C, Mankoo H, Wei L, An X, Li C, Li D, Jiang LH. TRPM2 channel: A novel target for alleviating ischaemia-reperfusion, chronic cerebral hypo-perfusion and neonatal hypoxic-ischaemic brain damage. J Cell Mol Med 2019; 24:4-12. [PMID: 31568632 PMCID: PMC6933339 DOI: 10.1111/jcmm.14679] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 08/10/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
The transient receptor potential melastatin-related 2 (TRPM2) channel, a reactive oxygen species (ROS)-sensitive cation channel, has been well recognized for being an important and common mechanism that confers the susceptibility to ROS-induced cell death. An elevated level of ROS is a salient feature of ischaemia-reperfusion, chronic cerebral hypo-perfusion and neonatal hypoxia-ischaemia. The TRPM2 channel is expressed in hippocampus, cortex and striatum, the brain regions that are critical for cognitive functions. In this review, we examine the recent studies that combine pharmacological and/or genetic interventions with using in vitro and in vivo models to demonstrate a crucial role of the TRPM2 channel in brain damage by ischaemia-reperfusion, chronic cerebral hypo-perfusion and neonatal hypoxic-ischaemia. We also discuss the current understanding of the underlying TRPM2-dependent cellular and molecular mechanisms. These new findings lead to the hypothesis of targeting the TRPM2 channel as a potential novel therapeutic strategy to alleviate brain damage and cognitive dysfunction caused by these conditions.
Collapse
Affiliation(s)
- Chendi Mai
- Sino-UK Joint Laboratory of Brian Function and Injury of Henan Province and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China.,Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Harneet Mankoo
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Linyu Wei
- Sino-UK Joint Laboratory of Brian Function and Injury of Henan Province and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Xinfang An
- Sino-UK Joint Laboratory of Brian Function and Injury of Henan Province and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China.,Xinxiang Maternal and Child Health Care Hospital, Xinxiang, China
| | - Chaokun Li
- Sino-UK Joint Laboratory of Brian Function and Injury of Henan Province and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Dongliang Li
- Sino-UK Joint Laboratory of Brian Function and Injury of Henan Province and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China.,Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Lin-Hua Jiang
- Sino-UK Joint Laboratory of Brian Function and Injury of Henan Province and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China.,Sanquan College of Xinxiang Medical University, Xinxiang, China.,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
173
|
Ma Y, Miracca G, Yu X, Harding EC, Miao A, Yustos R, Vyssotski AL, Franks NP, Wisden W. Galanin Neurons Unite Sleep Homeostasis and α2-Adrenergic Sedation. Curr Biol 2019; 29:3315-3322.e3. [PMID: 31543455 PMCID: PMC6868514 DOI: 10.1016/j.cub.2019.07.087] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/24/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
Abstract
Our urge to sleep increases with time spent awake, until sleep becomes inescapable. The sleep following sleep deprivation is longer and deeper, with an increased power of delta (0.5–4 Hz) oscillations, a phenomenon termed sleep homeostasis [1, 2, 3, 4]. Although widely expressed genes regulate sleep homeostasis [1, 4, 5, 6, 7, 8, 9, 10] and the process is tracked by somnogens and phosphorylation [1, 3, 7, 11, 12, 13, 14], at the circuit level sleep homeostasis has remained mysterious. Previously, we found that sedation induced with α2-adrenergic agonists (e.g., dexmedetomidine) and sleep homeostasis both depend on the preoptic (PO) hypothalamus [15, 16]. Dexmedetomidine, increasingly used for long-term sedation in intensive care units [17], induces a non-rapid-eye-movement (NREM)-like sleep but with undesirable hypothermia [18, 19]. Within the PO, various neuronal subtypes (e.g., GABA/galanin and glutamate/NOS1) induce NREM sleep [20, 21, 22] and concomitant body cooling [21, 22]. This could be because NREM sleep’s restorative effects depend on lower body temperature [23, 24]. Here, we show that mice with lesioned PO galanin neurons have reduced sleep homeostasis: in the recovery sleep following sleep deprivation there is a diminished increase in delta power, and the mice catch up little on lost sleep. Furthermore, dexmedetomidine cannot induce high-power delta oscillations or sustained hypothermia. Some hours after dexmedetomidine administration to wild-type mice there is a rebound in delta power when they enter normal NREM sleep, reminiscent of emergence from torpor. This delta rebound is reduced in mice lacking PO galanin neurons. Thus, sleep homeostasis and dexmedetomidine-induced sedation require PO galanin neurons and likely share common mechanisms. This is the first identification of a cell type underlying sleep homeostasis Preoptic galanin neurons are essential for sleep homeostasis Galanin neurons mediate the sedative and hypothermic actions of dexmedetomidine Dexmedetomidine causes an EEG delta power rebound dependent on galanin neurons
Collapse
Affiliation(s)
- Ying Ma
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Giulia Miracca
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Xiao Yu
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Edward C Harding
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Andawei Miao
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College, London SW7 2AZ, UK
| | - Raquel Yustos
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich 8057, Switzerland
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College, London SW7 2AZ, UK.
| | - William Wisden
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College, London SW7 2AZ, UK.
| |
Collapse
|
174
|
Huang Y, Roth B, Lü W, Du J. Ligand recognition and gating mechanism through three ligand-binding sites of human TRPM2 channel. eLife 2019; 8:50175. [PMID: 31513012 PMCID: PMC6759353 DOI: 10.7554/elife.50175] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
TRPM2 is critically involved in diverse physiological processes including core temperature sensing, apoptosis, and immune response. TRPM2’s activation by Ca2+ and ADP ribose (ADPR), an NAD+-metabolite produced under oxidative stress and neurodegenerative conditions, suggests a role in neurological disorders. We provide a central concept between triple-site ligand binding and the channel gating of human TRPM2. We show consecutive structural rearrangements and channel activation of TRPM2 induced by binding of ADPR in two indispensable locations, and the binding of Ca2+ in the transmembrane domain. The 8-Br-cADPR—an antagonist of cADPR—binds only to the MHR1/2 domain and inhibits TRPM2 by stabilizing the channel in an apo-like conformation. We conclude that MHR1/2 acts as a orthostatic ligand-binding site for TRPM2. The NUDT9-H domain binds to a second ADPR to assist channel activation in vertebrates, but not necessary in invertebrates. Our work provides insights into the gating mechanism of human TRPM2 and its pharmacology.
Collapse
Affiliation(s)
- Yihe Huang
- Van Andel Institute, Grand Rapids, United States
| | - Becca Roth
- Van Andel Institute, Grand Rapids, United States
| | - Wei Lü
- Van Andel Institute, Grand Rapids, United States
| | - Juan Du
- Van Andel Institute, Grand Rapids, United States
| |
Collapse
|
175
|
Vriens J, Voets T. Heat sensing involves a TRiPlet of ion channels. Br J Pharmacol 2019; 176:3893-3898. [PMID: 31372975 DOI: 10.1111/bph.14812] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/24/2019] [Accepted: 06/05/2019] [Indexed: 12/30/2022] Open
Abstract
Detecting and avoiding noxious heat is crucial to prevent burn injury. While the nociceptor neurons involved in conveying heat-induced pain were identified more than a century ago, the molecular sensors responsible for detecting noxious heat had remained elusive. In a recent study, important progress was made in our understanding of the molecular basis of acute noxious heat sensing, with the identification of a set of three transient receptor potential (TRP) ion channels, TRPV1, TRPA1, and TRPM3, which have crucial but largely redundant roles in acute heat sensing. Most strikingly, combined elimination of all three TRP channels causes a complete loss of the acute avoidance reaction to noxious heat, without affecting pain responses to painful mechanical or cold stimuli. Here, we provide a brief account of the current model of acute, noxious heat sensing and discuss possible implications for analgesic drug development.
Collapse
Affiliation(s)
- Joris Vriens
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, G-PURE, KU Leuven, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, VIB-KU Leuven Centre for Brain and Disease Research, and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
176
|
Wong KK, Banham AH, Yaacob NS, Nur Husna SM. The oncogenic roles of TRPM ion channels in cancer. J Cell Physiol 2019; 234:14556-14573. [PMID: 30710353 DOI: 10.1002/jcp.28168] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Transient receptor potential (TRP) proteins are a diverse family of ion channels present in multiple types of tissues. They function as gatekeepers for responses to sensory stimuli including temperature, vision, taste, and pain through their activities in conducting ion fluxes. The TRPM (melastatin) subfamily consists of eight members (i.e., TRPM1-8), which collectively regulate fluxes of various types of cations such as K+ , Na+ , Ca2+ , and Mg2+ . Growing evidence in the past two decades indicates that TRPM ion channels, their isoforms, or long noncoding RNAs encoded within the locus may be oncogenes involved in the regulation of cancer cell growth, proliferation, autophagy, invasion, and epithelial-mesenchymal transition, and their significant association with poor clinical outcomes of cancer patients. In this review, we describe and discuss recent findings implicating TRPM channels in different malignancies, their functions, mechanisms, and signaling pathways involved in cancers, as well as summarizing their normal physiological functions and the availability of ion channel pharmacological inhibitors.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Nik Soriani Yaacob
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Siti Muhamad Nur Husna
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
177
|
|
178
|
Calcium signaling regulates fundamental processes involved in Neuroblastoma progression. Cell Calcium 2019; 82:102052. [DOI: 10.1016/j.ceca.2019.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022]
|
179
|
Yin Y, Wu M, Hsu AL, Borschel WF, Borgnia MJ, Lander GC, Lee SY. Visualizing structural transitions of ligand-dependent gating of the TRPM2 channel. Nat Commun 2019; 10:3740. [PMID: 31431622 PMCID: PMC6702222 DOI: 10.1038/s41467-019-11733-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/31/2019] [Indexed: 12/20/2022] Open
Abstract
The transient receptor potential melastatin 2 (TRPM2) channel plays a key role in redox sensation in many cell types. Channel activation requires binding of both ADP-ribose (ADPR) and Ca2+. The recently published TRPM2 structures from Danio rerio in the ligand-free and the ADPR/Ca2+-bound conditions represent the channel in closed and open states, which uncovered substantial tertiary and quaternary conformational rearrangements. However, it is unclear how these rearrangements are achieved within the tetrameric channel during channel gating. Here we report the cryo-electron microscopy structures of Danio rerio TRPM2 in the absence of ligands, in complex with Ca2+ alone, and with both ADPR and Ca2+, resolved to ~4.3 Å, ~3.8 Å, and ~4.2 Å, respectively. In contrast to the published results, our studies capture ligand-bound TRPM2 structures in two-fold symmetric intermediate states, offering a glimpse of the structural transitions that bridge the closed and open conformations. The transient receptor potential channel member 2 (TRPM2) ion channel has a function in redox-dependent signaling. Here the authors present the cryo-EM structures of zebrafish TRPM2 in the ligand-free form, with Ca2+ and both ADP-ribose/Ca2+ and observe two-fold symmetric quaternary structure rearrangements in the ligand-bound structures that likely represent intermediate gating states.
Collapse
Affiliation(s)
- Ying Yin
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Mengyu Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Allen L Hsu
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - William F Borschel
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Mario J Borgnia
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.,Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
180
|
Abstract
Body temperature control is a critical brain function. In this issue of Neuron, Wang et al. identify a negative feedback circuit in mouse preoptic area of the hypothalamus that regulates body temperature to counter fever.
Collapse
Affiliation(s)
- Bo Duan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - X Z Shawn Xu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
181
|
Tan CL, Knight ZA. Regulation of Body Temperature by the Nervous System. Neuron 2019; 98:31-48. [PMID: 29621489 DOI: 10.1016/j.neuron.2018.02.022] [Citation(s) in RCA: 345] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 01/24/2023]
Abstract
The regulation of body temperature is one of the most critical functions of the nervous system. Here we review our current understanding of thermoregulation in mammals. We outline the molecules and cells that measure body temperature in the periphery, the neural pathways that communicate this information to the brain, and the central circuits that coordinate the homeostatic response. We also discuss some of the key unresolved issues in this field, including the following: the role of temperature sensing in the brain, the molecular identity of the warm sensor, the central representation of the labeled line for cold, and the neural substrates of thermoregulatory behavior. We suggest that approaches for molecularly defined circuit analysis will provide new insight into these topics in the near future.
Collapse
Affiliation(s)
- Chan Lek Tan
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158
| | - Zachary A Knight
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158; Kavli Center for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158.
| |
Collapse
|
182
|
Abstract
In this issue of Neuron, Fang et al. (2018) identified a neural circuit that connects the medial preoptic area to the ventral tegmental area as a critical pathway for pup retrieval in female mice.
Collapse
Affiliation(s)
- Rui Lin
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China; School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Yi Li
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Minmin Luo
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
183
|
Gattkowski E, Johnsen A, Bauche A, Möckl F, Kulow F, Garcia Alai M, Rutherford TJ, Fliegert R, Tidow H. Novel CaM-binding motif in its NudT9H domain contributes to temperature sensitivity of TRPM2. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:1162-1170. [PMID: 30584900 PMCID: PMC6646794 DOI: 10.1016/j.bbamcr.2018.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023]
Abstract
TRPM2 is a non-selective, Ca2+-permeable cation channel, which plays a role in cell death but also contributes to diverse immune cell functions. In addition, TRPM2 contributes to the control of body temperature and is involved in perception of non-noxious heat and thermotaxis. TRPM2 is regulated by many factors including Ca2+, ADPR, 2'-deoxy-ADPR, Ca2+-CaM, and temperature. However, the molecular basis for the temperature sensitivity of TRPM2 as well as the interplay between the regulatory factors is still not understood. Here we identify a novel CaM-binding site in the unique NudT9H domain of TRPM2. Using a multipronged biophysical approach we show that binding of Ca2+-CaM to this site occurs upon partial unfolding at temperatures >35 °C and prevents further thermal destabilization. In combination with patch-clamp measurements of full-length TRPM2 our results suggest a role of this CaM-binding site in the temperature sensitivity of TRPM2. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Ellen Gattkowski
- The Hamburg Centre for Ultrafast Imaging & Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany; Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Anke Johnsen
- Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Andreas Bauche
- Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Franziska Möckl
- Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Frederike Kulow
- Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Maria Garcia Alai
- European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Trevor J Rutherford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Ralf Fliegert
- Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.
| | - Henning Tidow
- The Hamburg Centre for Ultrafast Imaging & Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany.
| |
Collapse
|
184
|
Xu J, Tang Y, Qi H, Yu X, Liu M, Wang N, Lin Y, Zhang J. Electrophysiological properties of thermosensitive neurons in slices of rat lateral parabrachial nucleus. J Therm Biol 2019; 83:87-94. [DOI: 10.1016/j.jtherbio.2019.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 10/26/2022]
|
185
|
Schneeberger M, Parolari L, Das Banerjee T, Bhave V, Wang P, Patel B, Topilko T, Wu Z, Choi CHJ, Yu X, Pellegrino K, Engel EA, Cohen P, Renier N, Friedman JM, Nectow AR. Regulation of Energy Expenditure by Brainstem GABA Neurons. Cell 2019; 178:672-685.e12. [PMID: 31257028 DOI: 10.1016/j.cell.2019.05.048] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 02/21/2019] [Accepted: 05/22/2019] [Indexed: 11/18/2022]
Abstract
Homeostatic control of core body temperature is essential for survival. Temperature is sensed by specific neurons, in turn eliciting both behavioral (i.e., locomotion) and physiologic (i.e., thermogenesis, vasodilatation) responses. Here, we report that a population of GABAergic (Vgat-expressing) neurons in the dorsolateral portion of the dorsal raphe nucleus (DRN), hereafter DRNVgat neurons, are activated by ambient heat and bidirectionally regulate energy expenditure through changes in both thermogenesis and locomotion. We find that DRNVgat neurons innervate brown fat via a descending projection to the raphe pallidus (RPa). These neurons also densely innervate ascending targets implicated in the central regulation of energy expenditure, including the hypothalamus and extended amygdala. Optogenetic stimulation of different projection targets reveals that DRNVgat neurons are capable of regulating thermogenesis through both a "direct" descending pathway through the RPa and multiple "indirect" ascending pathways. This work establishes a key regulatory role for DRNVgat neurons in controlling energy expenditure.
Collapse
Affiliation(s)
- Marc Schneeberger
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Luca Parolari
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Tania Das Banerjee
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Varun Bhave
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Putianqi Wang
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Bindiben Patel
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Thomas Topilko
- ICM, Brain and Spine Institute, Hopital de la Pitie-Salpetriere, Sorbonne Universite, Inserm, CNRS, Paris 75013, France
| | - Zhuhao Wu
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Chan Hee J Choi
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY 10065, USA
| | - Xiaofei Yu
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Kyle Pellegrino
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Esteban A Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY 10065, USA
| | - Nicolas Renier
- ICM, Brain and Spine Institute, Hopital de la Pitie-Salpetriere, Sorbonne Universite, Inserm, CNRS, Paris 75013, France
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Alexander R Nectow
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
186
|
Thakore P, Earley S. Transient Receptor Potential Channels and Endothelial Cell Calcium Signaling. Compr Physiol 2019; 9:1249-1277. [PMID: 31187891 DOI: 10.1002/cphy.c180034] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The vascular endothelium is a broadly distributed and highly specialized organ. The endothelium has a number of functions including the control of blood vessels diameter through the production and release of potent vasoactive substances or direct electrical communication with underlying smooth muscle cells, regulates the permeability of the vascular barrier, stimulates the formation of new blood vessels, and influences inflammatory and thrombotic processes. Endothelial cells that make up the endothelium express a variety of cell-surface receptors and ion channels on the plasma membrane that are capable of detecting circulating hormones, neurotransmitters, oxygen tension, and shear stress across the vascular wall. Changes in these stimuli activate signaling cascades that initiate an appropriate physiological response. Increases in the global intracellular Ca2+ concentration and localized Ca2+ signals that occur within specialized subcellular microdomains are fundamentally important components of many signaling pathways in the endothelium. The transient receptor potential (TRP) channels are a superfamily of cation-permeable ion channels that act as a primary means of increasing cytosolic Ca2+ in endothelial cells. Consequently, TRP channels are vitally important for the major functions of the endothelium. In this review, we provide an in-depth discussion of Ca2+ -permeable TRP channels in the endothelium and their role in vascular regulation. © 2019 American Physiological Society. Compr Physiol 9:1249-1277, 2019.
Collapse
Affiliation(s)
- Pratish Thakore
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Scott Earley
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
187
|
Ordás P, Hernández-Ortego P, Vara H, Fernández-Peña C, Reimúndez A, Morenilla-Palao C, Guadaño-Ferraz A, Gomis A, Hoon M, Viana F, Señarís R. Expression of the cold thermoreceptor TRPM8 in rodent brain thermoregulatory circuits. J Comp Neurol 2019; 529:234-256. [PMID: 30942489 DOI: 10.1002/cne.24694] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/14/2022]
Abstract
The cold- and menthol-activated ion channel transient receptor potential channel subfamily M member 8 (TRPM8) is the principal detector of environmental cold in mammalian sensory nerve endings. Although it is mainly expressed in a subpopulation of peripheral sensory neurons, it has also been identified in non-neuronal tissues. Here, we show, by in situ hybridization (ISH) and by the analysis of transgenic reporter expression in two different reporter mouse strains, that TRPM8 is also expressed in the central nervous system. Although it is present at much lower levels than in peripheral sensory neurons, we found cells expressing TRPM8 in restricted areas of the brain, especially in the hypothalamus, septum, thalamic reticular nucleus, certain cortices and other limbic structures, as well as in some specific nuclei in the brainstem. Interestingly, positive fibers were also found traveling through the major limbic tracts, suggesting a role of TRPM8-expressing central neurons in multiple aspects of thermal regulation, including autonomic and behavioral thermoregulation. Additional ISH experiments in rat brain demonstrated a conserved pattern of expression of this ion channel between rodent species. We confirmed the functional activity of this channel in the mouse brain using electrophysiological patch-clamp recordings of septal neurons. These results open a new window in TRPM8 physiology, guiding further efforts to understand potential roles of this molecular sensor within the brain.
Collapse
Affiliation(s)
- Purificación Ordás
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Pablo Hernández-Ortego
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Hugo Vara
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Carlos Fernández-Peña
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Alfonso Reimúndez
- Departmento de Fisiología, CIMUS, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Cruz Morenilla-Palao
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Ana Guadaño-Ferraz
- Instituto de Investigaciones Biomédicas "Alberto Sols", Universidad Autónoma de Madrid-CSIC, Madrid, Spain
| | - Ana Gomis
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Mark Hoon
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, Bethesda, MD, USA
| | - Félix Viana
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Rosa Señarís
- Departmento de Fisiología, CIMUS, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
188
|
Wang TA, Teo CF, Åkerblom M, Chen C, Tynan-La Fontaine M, Greiner VJ, Diaz A, McManus MT, Jan YN, Jan LY. Thermoregulation via Temperature-Dependent PGD 2 Production in Mouse Preoptic Area. Neuron 2019; 103:309-322.e7. [PMID: 31151773 DOI: 10.1016/j.neuron.2019.04.035] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 04/03/2019] [Accepted: 04/24/2019] [Indexed: 12/30/2022]
Abstract
Body temperature control is essential for survival. In mammals, thermoregulation is mediated by the preoptic area of anterior hypothalamus (POA), with ∼30% of its neurons sensitive to brain temperature change. It is still unknown whether and how these temperature-sensitive neurons are involved in thermoregulation, because for eight decades they have only been identified via electrophysiological recording. By combining single-cell RNA-seq with whole-cell patch-clamp recordings, we identified Ptgds as a genetic marker for temperature-sensitive POA neurons. Then, we demonstrated these neurons' role in thermoregulation via chemogenetics. Given that Ptgds encodes the enzyme that synthesizes prostaglandin D2 (PGD2), we further explored its role in thermoregulation. Our study revealed that rising temperature of POA alters the activity of Ptgds-expressing neurons so as to increase PGD2 production. PGD2 activates its receptor DP1 and excites downstream neurons in the ventral medial preoptic area (vMPO) that mediates body temperature decrease, a negative feedback loop for thermoregulation.
Collapse
Affiliation(s)
- Tongfei A Wang
- Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chin Fen Teo
- Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Malin Åkerblom
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chao Chen
- Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Marena Tynan-La Fontaine
- Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Vanille Juliette Greiner
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Aaron Diaz
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael T McManus
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuh Nung Jan
- Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lily Y Jan
- Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
189
|
Zhang F, Xu X, He J, Du B, Wang Y. Highly sensitive temperature sensor based on a polymer-infiltrated Mach-Zehnder interferometer created in graded index fiber. OPTICS LETTERS 2019; 44:2466-2469. [PMID: 31090708 DOI: 10.1364/ol.44.002466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/20/2019] [Indexed: 06/09/2023]
Abstract
A highly sensitive temperature sensor is proposed and demonstrated based on a UV-curable polymer-infiltrated Mach-Zehnder interferometer (MZI) created in a graded index fiber (GIF). The device was constructed by splicing a half-pitch GIF between two single-mode fibers and creating an inner air cavity in one lateral side of the GIF core by means of femtosecond laser micromachining. The air cavity and the residual GIF core functioned as two interference arms of the MZI. Moreover, the GIF was used as a miniature in-fiber collimator to reduce insertion loss of the air cavity. Experimental results show such an MZI device has a high refractive index (RI) sensitivity of 24611.54 nm/RIU (RI=1.545-1.565). Subsequently, thermo-sensitive polymer liquid was infiltrated into the air cavity, then cured with UV illumination, and annealed at 50°C for 12 h. The infiltrated MZI exhibits a high temperature sensitivity of -13.27 nm/°C. In addition, this MZI also has excellent thermal stability and repeatability, compact structure, low insertion loss, and high fringe visibility. As such, the proposed MZI could be developed for high-accuracy temperature measurements in many areas such as biomedical or oceanographic applications.
Collapse
|
190
|
Nordeen CA, Martin SL. Engineering Human Stasis for Long-Duration Spaceflight. Physiology (Bethesda) 2019; 34:101-111. [PMID: 30724130 DOI: 10.1152/physiol.00046.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Suspended animation for deep-space travelers is moving out of the realm of science fiction. Two approaches are considered: the first elaborates the current medical practice of therapeutic hypothermia; the second invokes the cascade of metabolic processes naturally employed by hibernators. We explore the basis and evidence behind each approach and argue that mimicry of natural hibernation will be critical to overcome the innate limitations of human physiology for long-duration space travel.
Collapse
Affiliation(s)
- Claire A Nordeen
- Department of Emergency Medicine, Harborview Medical Center, University of Washington , Seattle, Washington
| | - Sandra L Martin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine , Aurora, Colorado
| |
Collapse
|
191
|
Emerging structural biology of TRPM subfamily channels. Cell Calcium 2019; 79:75-79. [DOI: 10.1016/j.ceca.2019.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 12/20/2022]
|
192
|
García-Ávila M, Islas LD. What is new about mild temperature sensing? A review of recent findings. Temperature (Austin) 2019; 6:132-141. [PMID: 31286024 PMCID: PMC6601417 DOI: 10.1080/23328940.2019.1607490] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 12/15/2022] Open
Abstract
The superfamily of Transient Receptor Potential (TRP) channels is composed by a group of calcium-permeable ionic channels with a generally shared topology. The thermoTRP channels are a subgroup of 11 members, found in the TRPA, TRPV, TRPC, and TRPM subfamilies. Historically, members of this subgroup have been classified as cold, warm or hot-specific temperature sensors. Recently, new experimental results have shown that the role that has been given to the thermoTRPs in thermosensation is not necessarily strict. In addition, it has been shown that these channels activate over temperature ranges, which can have variations depending on the species and the interaction with a specific biological context. Investigation of these interactions could help to elucidate the mechanisms of activation by temperature, which remains uncertain. Abbreviations: Cryo-EM: Cryogenic electron microscopy; DRG: Dorsal root ganglia; H: Human; ROS: Reactive Oxygen Species; TG: Trigeminal ganglia; TRP: Transient Receptor Potential; TRPA: TRP ankyrin; TRPV: TRP vanilloid; TRPC: TRP canonical; TRPM: TRP melastatin.
Collapse
Affiliation(s)
| | - León D. Islas
- Departamento de Fisiología, Facultad de Medicina, UNAM, México City, México
| |
Collapse
|
193
|
Harding EC, Franks NP, Wisden W. The Temperature Dependence of Sleep. Front Neurosci 2019; 13:336. [PMID: 31105512 PMCID: PMC6491889 DOI: 10.3389/fnins.2019.00336] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/22/2019] [Indexed: 12/18/2022] Open
Abstract
Mammals have evolved a range of behavioural and neurological mechanisms that coordinate cycles of thermoregulation and sleep. Whether diurnal or nocturnal, sleep onset and a reduction in core temperature occur together. Non-rapid eye movement (NREM) sleep episodes are also accompanied by core and brain cooling. Thermoregulatory behaviours, like nest building and curling up, accompany this circadian temperature decline in preparation for sleeping. This could be a matter of simply comfort as animals seek warmth to compensate for lower temperatures. However, in both humans and other mammals, direct skin warming can shorten sleep-latency and promote NREM sleep. We discuss the evidence that body cooling and sleep are more fundamentally connected and that thermoregulatory behaviours, prior to sleep, form warm microclimates that accelerate NREM directly through neuronal circuits. Paradoxically, this warmth might also induce vasodilation and body cooling. In this way, warmth seeking and nesting behaviour might enhance the circadian cycle by activating specific circuits that link NREM initiation to body cooling. We suggest that these circuits explain why NREM onset is most likely when core temperature is at its steepest rate of decline and why transitions to NREM are accompanied by a decrease in brain temperature. This connection may have implications for energy homeostasis and the function of sleep.
Collapse
Affiliation(s)
- Edward C Harding
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Centre for Neurotechnology, Imperial College London, London, United Kingdom.,UK Dementia Research Institute, Imperial College London, London, United Kingdom
| | - William Wisden
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Centre for Neurotechnology, Imperial College London, London, United Kingdom.,UK Dementia Research Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
194
|
Fourgeaud L, Dvorak C, Faouzi M, Starkus J, Sahdeo S, Wang Q, Lord B, Coate H, Taylor N, He Y, Qin N, Wickenden A, Carruthers N, Lovenberg TW, Penner R, Bhattacharya A. Pharmacology of JNJ-28583113: A novel TRPM2 antagonist. Eur J Pharmacol 2019; 853:299-307. [PMID: 30965058 DOI: 10.1016/j.ejphar.2019.03.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 03/13/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022]
Abstract
Transient receptor potential melastatin type 2 (TRPM2) is a cation channel activated by free intracellular ADP-ribose and reactive oxygen species. TRPM2 signaling has been linked to the pathophysiology of CNS disorders such as neuropathic pain, bipolar disorder and Alzheimer's disease. In this manuscript, we describe the discovery of JNJ-28583113, a potent brain penetrant TRPM2 antagonist. Ca2+ flux assays in cells overexpressing TRPM2 and electrophysiological recordings were used to test the pharmacology of JNJ-28583113. JNJ-28583113 was assayed in vitro on GSK-3 phosphorylation levels, cell death, cytokine release in microglia and unbiased morphological phenotypic analysis. Finally, we dosed animals to evaluate its pharmacokinetic properties. Our results showed that JNJ-28583113 is a potent (126 ± 0.5 nM) TRPM2 antagonist. Blocking TRPM2 caused phosphorylation of GSK3α and β subunits. JNJ-28583113 also protected cells from oxidative stress induced cell death as well as morphological changes induced by non-cytotoxic concentrations of H2O2. In addition, inhibiting TRPM2 blunted cytokine release in response to pro-inflammatory stimuli in microglia. Lastly, we showed that JNJ-28583113 was brain penetrant but not suitable for systemic dosing as it was rapidly metabolized in vivo. While the in-vitro pharmacology of JNJ-28583113 is the best in class, its in-vivo properties would need optimization to assist in further probing key roles of TRPM2 in CNS pathophysiology.
Collapse
Affiliation(s)
- Lawrence Fourgeaud
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA.
| | - Curt Dvorak
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Malika Faouzi
- Centre for Biomedical Research at the Queen's Medical Centre, Honolulu, HI, 96813, USA
| | - John Starkus
- Centre for Biomedical Research at the Queen's Medical Centre, Honolulu, HI, 96813, USA
| | - Sunil Sahdeo
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Qi Wang
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Brian Lord
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Heather Coate
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Natalie Taylor
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Yingbo He
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Ning Qin
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Alan Wickenden
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Nicholas Carruthers
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Timothy W Lovenberg
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Reinhold Penner
- Centre for Biomedical Research at the Queen's Medical Centre, Honolulu, HI, 96813, USA
| | - Anindya Bhattacharya
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| |
Collapse
|
195
|
Iordanov I, Tóth B, Szollosi A, Csanády L. Enzyme activity and selectivity filter stability of ancient TRPM2 channels were simultaneously lost in early vertebrates. eLife 2019; 8:44556. [PMID: 30938679 PMCID: PMC6461439 DOI: 10.7554/elife.44556] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/01/2019] [Indexed: 01/01/2023] Open
Abstract
Transient Receptor Potential Melastatin 2 (TRPM2) is a cation channel important for the immune response, insulin secretion, and body temperature regulation. It is activated by cytosolic ADP ribose (ADPR) and contains a nudix-type motif 9 (NUDT9)-homology (NUDT9-H) domain homologous to ADPR phosphohydrolases (ADPRases). Human TRPM2 (hsTRPM2) is catalytically inactive due to mutations in the conserved Nudix box sequence. Here, we show that TRPM2 Nudix motifs are canonical in all invertebrates but vestigial in vertebrates. Correspondingly, TRPM2 of the cnidarian Nematostella vectensis (nvTRPM2) and the choanoflagellate Salpingoeca rosetta (srTRPM2) are active ADPRases. Disruption of ADPRase activity fails to affect nvTRPM2 channel currents, reporting a catalytic cycle uncoupled from gating. Furthermore, pore sequence substitutions responsible for inactivation of hsTRPM2 also appeared in vertebrates. Correspondingly, zebrafish (Danio rerio) TRPM2 (drTRPM2) and hsTRPM2 channels inactivate, but srTRPM2 and nvTRPM2 currents are stable. Thus, catalysis and pore stability were lost simultaneously in vertebrate TRPM2 channels.
Collapse
Affiliation(s)
- Iordan Iordanov
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.,MTA-SE Lendület Ion Channel Research Group, Semmelweis University, Budapest, Hungary
| | - Balázs Tóth
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.,MTA-SE Lendület Ion Channel Research Group, Semmelweis University, Budapest, Hungary
| | - Andras Szollosi
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.,MTA-SE Lendület Ion Channel Research Group, Semmelweis University, Budapest, Hungary
| | - László Csanády
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.,MTA-SE Lendület Ion Channel Research Group, Semmelweis University, Budapest, Hungary
| |
Collapse
|
196
|
Krajewski-Hall SJ, Miranda Dos Santos F, McMullen NT, Blackmore EM, Rance NE. Glutamatergic Neurokinin 3 Receptor Neurons in the Median Preoptic Nucleus Modulate Heat-Defense Pathways in Female Mice. Endocrinology 2019; 160:803-816. [PMID: 30753503 PMCID: PMC6424091 DOI: 10.1210/en.2018-00934] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/04/2019] [Indexed: 01/06/2023]
Abstract
We have proposed that arcuate neurons coexpressing kisspeptin, neurokinin B, and dynorphin (KNDy neurons) contribute to hot flushes via projections to neurokinin 3 receptor (NK3R)-expressing neurons in the median preoptic nucleus (MnPO). To characterize the thermoregulatory role of MnPO NK3R neurons in female mice, we ablated these neurons using injections of saporin toxin conjugated to a selective NK3R agonist. Loss of MnPO NK3R neurons increased the core temperature (TCORE) during the light phase, with the frequency distributions indicating a regulated shift in the balance point. The increase in TCORE in the ablated mice occurred despite changes in the ambient temperature and regardless of estrogen status. We next determined whether an acute increase in ambient temperature or higher TCORE would induce Fos in preoptic enhanced green fluorescent protein (EGFP)-immunoreactive neurons in Tacr3-EGFP mice. Fos activation was increased in the MnPO but no induction of Fos was found in NK3R (EGFP-immunoreactive) neurons. Thus, MnPO NK3R neurons are not activated by warm thermosensors in the skin or viscera and are not warm-sensitive neurons. Finally, RNAscope was used to determine whether Tacr3 (NK3R) mRNA was coexpressed with vesicular glutamate transporter 2 or vesicular γ-aminobutyric acid (GABA) transporter mRNA, markers of glutamatergic and GABAergic neurotransmission, respectively. In the MnPO, 94% of NK3R neurons were glutamatergic, but in the adjacent medial preoptic area, 97% of NK3R neurons were GABAergic. Thus, NK3R neurons in the MnPO are glutamatergic and play a role in reducing TCORE but are not activated by warm thermal stimuli (internal or external). These findings suggest that KNDy neurons modulate thermosensory pathways for heat defense indirectly via a subpopulation of glutamatergic MnPO neurons that express NK3R.
Collapse
Affiliation(s)
| | | | - Nathaniel T McMullen
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Elise M Blackmore
- Department of Pathology, University of Arizona College of Medicine, Tucson, Arizona
| | - Naomi E Rance
- Department of Pathology, University of Arizona College of Medicine, Tucson, Arizona
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, Arizona
- Department of Neurology, University of Arizona College of Medicine, Tucson, Arizona
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, Arizona
| |
Collapse
|
197
|
Conceição EPS, Madden CJ, Morrison SF. Neurons in the rat ventral lateral preoptic area are essential for the warm-evoked inhibition of brown adipose tissue and shivering thermogenesis. Acta Physiol (Oxf) 2019; 225:e13213. [PMID: 30365209 PMCID: PMC6686665 DOI: 10.1111/apha.13213] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/25/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
Abstract
AIM To determine the role of neurons in the ventral part of the lateral preoptic area (vLPO) in CNS thermoregulation. METHODS In vivo electrophysiological and neuropharmacological were used to evaluate the contribution of neurons in the vLPO to the regulation of brown adipose tissue (BAT) thermogenesis and muscle shivering in urethane/chloralose-anaesthetized rats. RESULTS Nanoinjections of NMDA targeting the medial preoptic area (MPA) and the vLPO suppressed the cold-evoked BAT sympathetic activity (SNA), reduced the BAT temperature (TBAT ), expired CO2 , mean arterial pressure (MAP), and heart rate. Inhibition of vLPO neurons with muscimol or AP5/CNQX elicited increases in BAT SNA, TBAT , tachycardia, and small elevations in MAP. The BAT thermogenesis evoked by AP5/CNQX in vLPO was inhibited by the activation of MPA neurons. The inhibition of BAT SNA by vLPO neurons does not require a GABAergic input to dorsomedial hypothalamus (DMH), but MPA provides a GABAergic input to DMH. The activation of vLPO neurons inhibits the BAT thermogenesis evoked by NMDA in the rostral raphe pallidus (rRPa), but not that after bicuculline in rRPa. The BAT thermogenesis elicited by vLPO inhibition is dependent on glutamatergic inputs to DMH and rRPa, but these excitatory inputs do not arise from MnPO neurons. The activation of neurons in the vLPO also inhibits cold- and prostaglandin-evoked muscle shivering, and vLPO inhibition is sufficient to evoke shivering. CONCLUSION The vLPO contains neurons that are required for the warm ambient-evoked inhibition of muscle shivering and of BAT thermogenesis, mediated through a direct or indirect GABAergic input to rRPa from vLPO.
Collapse
Affiliation(s)
- Ellen P S Conceição
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | - Christopher J Madden
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | - Shaun F Morrison
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
198
|
Madden CJ, Morrison SF. Central nervous system circuits that control body temperature. Neurosci Lett 2019; 696:225-232. [PMID: 30586638 PMCID: PMC6397692 DOI: 10.1016/j.neulet.2018.11.027] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 02/01/2023]
Abstract
Maintenance of mammalian core body temperature within a narrow range is a fundamental homeostatic process to optimize cellular and tissue function, and to improve survival in adverse thermal environments. Body temperature is maintained during a broad range of environmental and physiological challenges by central nervous system circuits that process thermal afferent inputs from the skin and the body core to control the activity of thermoeffectors. These include thermoregulatory behaviors, cutaneous vasomotion (vasoconstriction and, in humans, active vasodilation), thermogenesis (shivering and brown adipose tissue), evaporative heat loss (salivary spreading in rodents, and human sweating). This review provides an overview of the central nervous system circuits for thermoregulatory reflex regulation of thermoeffectors.
Collapse
Affiliation(s)
- Christopher J Madden
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States.
| | - Shaun F Morrison
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
199
|
Biochemical detection of fatal hypothermia and hyperthermia in affected rat hypothalamus tissues by Fourier transform infrared spectroscopy. Biosci Rep 2019; 39:BSR20181633. [PMID: 30824563 PMCID: PMC6418404 DOI: 10.1042/bsr20181633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 02/16/2019] [Accepted: 02/27/2019] [Indexed: 12/27/2022] Open
Abstract
It is difficult to determinate the cause of death from exposure to fatal hypothermia and hyperthermia in forensic casework. Here, we present a state-of-the-art study that employs Fourier-transform infrared (FTIR) spectroscopy to investigate the hypothalamus tissues of fatal hypothermic, fatal hyperthermic and normothermic rats to determine forensically significant biomarkers related to fatal hypothermia and hyperthermia. Our results revealed that the spectral variations in the lipid, protein, carbohydrate and nucleic acid components are highly different for hypothalamuses after exposure to fatal hypothermic, fatal hyperthermic and normothermic conditions. In comparison with the normothermia group, the fatal hypothermia and hyperthermia groups contained higher total lipid amounts but were lower in unsaturated lipids. Additionally, their cell membranes were found to have less motional freedom. Among these three groups, the fatal hyperthermia group contained the lowest total proteins and carbohydrates and the highest aggregated and dysfunctional proteins, while the fatal hypothermia group contained the highest level of nucleic acids. In conclusion, this study demonstrates that FTIR spectroscopy has the potential to become a reliable method for the biochemical characterization of fatal hypothermia and hyperthermia hypothalamus tissues, and this could be used as a postmortem diagnostic feature in fatal hypothermia and hyperthermia deaths.
Collapse
|
200
|
Malko P, Syed Mortadza SA, McWilliam J, Jiang LH. TRPM2 Channel in Microglia as a New Player in Neuroinflammation Associated With a Spectrum of Central Nervous System Pathologies. Front Pharmacol 2019; 10:239. [PMID: 30914955 PMCID: PMC6423084 DOI: 10.3389/fphar.2019.00239] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/26/2019] [Indexed: 12/15/2022] Open
Abstract
Microglial cells in the central nervous system (CNS) are crucial in maintaining a healthy environment for neurons to function properly. However, aberrant microglial cell activation can lead to excessive generation of neurotoxic proinflammatory mediators and neuroinflammation, which represents a contributing factor in a wide spectrum of CNS pathologies, including ischemic stroke, traumatic brain damage, Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, psychiatric disorders, autism spectrum disorders, and chronic neuropathic pain. Oxidative stress is a salient and common feature of these conditions and has been strongly implicated in microglial cell activation and neuroinflammation. The transient receptor potential melastatin-related 2 (TRPM2) channel, an oxidative stress-sensitive calcium-permeable cationic channel, is highly expressed in microglial cells. In this review, we examine the recent studies that provide evidence to support an important role for the TRPM2 channel, particularly TRPM2-mediated Ca2+ signaling, in mediating microglial cell activation, generation of proinflammatory mediators and neuroinflammation, which are of relevance to CNS pathologies. These findings lead to a growing interest in the TRPM2 channel, a new player in neuroinflammation, as a novel therapeutic target for CNS diseases.
Collapse
Affiliation(s)
- Philippa Malko
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sharifah A Syed Mortadza
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.,Department of Biochemistry, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Joseph McWilliam
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|