151
|
Tomaras GD, Plotkin SA. Complex immune correlates of protection in HIV-1 vaccine efficacy trials. Immunol Rev 2017; 275:245-261. [PMID: 28133811 DOI: 10.1111/imr.12514] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Development of an efficacious HIV-1 vaccine is a major priority for improving human health worldwide. Vaccine-mediated protection against human pathogens can be achieved through elicitation of protective innate, humoral, and cellular responses. Identification of specific immune responses responsible for pathogen protection enables vaccine development and provides insights into host defenses against pathogens and the immunological mechanisms that most effectively fight infection. Defining immunological correlates of transmission risk in preclinical and clinical HIV-1 vaccine trials has moved the HIV-1 vaccine development field forward and directed new candidate vaccine development. Immune correlate studies are providing novel hypotheses about immunological mechanisms that may be responsible for preventing HIV-1 acquisition. Recent results from HIV-1 immune correlates work has demonstrated that there are multiple types of immune responses that together, comprise an immune correlate-thus implicating polyfunctional immune control of HIV-1 transmission. An in depth understanding of these complex immunological mechanisms of protection against HIV-1 will accelerate the development of an efficacious HIV-1 vaccine.
Collapse
Affiliation(s)
- Georgia D Tomaras
- Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Duke Human Vaccine Institute, Durham, NC, USA
| | - Stanley A Plotkin
- Vaxconsult, Doylestown, PA, USA.,University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
152
|
Planas D, Zhang Y, Monteiro P, Goulet JP, Gosselin A, Grandvaux N, Hope TJ, Fassati A, Routy JP, Ancuta P. HIV-1 selectively targets gut-homing CCR6+CD4+ T cells via mTOR-dependent mechanisms. JCI Insight 2017; 2:93230. [PMID: 28768913 PMCID: PMC5543920 DOI: 10.1172/jci.insight.93230] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/29/2017] [Indexed: 12/30/2022] Open
Abstract
Gut-associated lymphoid tissues are enriched in CCR6+ Th17-polarized CD4+ T cells that contribute to HIV-1 persistence during antiretroviral therapy (ART). This raises the need for Th17-targeted immunotherapies. In an effort to identify mechanisms governing HIV-1 permissiveness/persistence in gut-homing Th17 cells, we analyzed the transcriptome of CCR6+ versus CCR6- T cells exposed to the gut-homing inducer retinoic acid (RA) and performed functional validations in colon biopsies of HIV-infected individuals receiving ART (HIV+ART). Although both CCR6+ and CCR6- T cells acquired gut-homing markers upon RA exposure, the modulation of unique sets of genes coincided with preferential HIV-1 replication in RA-treated CCR6+ T cells. This molecular signature included the upregulation of HIV-dependency factors acting at entry/postentry levels, such as the CCR5 and PI3K/Akt/mTORC1 signaling pathways. Of note, mTOR expression/phosphorylation was distinctively induced by RA in CCR6+ T cells. Consistently, mTOR inhibitors counteracted the effect of RA on HIV replication in vitro and viral reactivation in CD4+ T cells from HIV+ART individuals via postentry mechanisms independent of CCR5. Finally, CCR6+ versus CCR6- T cells infiltrating the colons of HIV+ART individuals expressed unique molecular signatures, including higher levels of CCR5, integrin β7, and mTOR phosphorylation. Together, our results identify mTOR as a druggable key regulator of HIV permissiveness in gut-homing CCR6+ T cells.
Collapse
Affiliation(s)
- Delphine Planas
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
- Département of microbiologie, infectiologie et immunologie, Université de Montréal, Faculté de Médecine, Montreal, Québec, Canada
| | - Yuwei Zhang
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
- Département of microbiologie, infectiologie et immunologie, Université de Montréal, Faculté de Médecine, Montreal, Québec, Canada
| | - Patricia Monteiro
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
- Département of microbiologie, infectiologie et immunologie, Université de Montréal, Faculté de Médecine, Montreal, Québec, Canada
| | | | - Annie Gosselin
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
| | - Nathalie Grandvaux
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
- Faculté de Médecine, Département of biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| | - Thomas J. Hope
- Department of Cellular and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Jean-Pierre Routy
- Chronic Viral Illness Service and Research Institute and
- Division of Hematology, McGill University Health Centre, Montreal, Québec, Canada
| | - Petronela Ancuta
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
- Département of microbiologie, infectiologie et immunologie, Université de Montréal, Faculté de Médecine, Montreal, Québec, Canada
| |
Collapse
|
153
|
Chand S, Messina EL, AlSalmi W, Ananthaswamy N, Gao G, Uritskiy G, Padilla-Sanchez V, Mahalingam M, Peachman KK, Robb ML, Rao M, Rao VB. Glycosylation and oligomeric state of envelope protein might influence HIV-1 virion capture by α4β7 integrin. Virology 2017; 508:199-212. [PMID: 28577856 PMCID: PMC5526109 DOI: 10.1016/j.virol.2017.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 10/19/2022]
Abstract
The α4ß7 integrin present on host cells recognizes the V1V2 domain of the HIV-1 envelope protein. This interaction might be involved in virus transmission. Administration of α4ß7-specific antibodies inhibit acquisition of SIV in a macaque challenge model. But the molecular details of V1V2: α4ß7 interaction are unknown and its importance in HIV-1 infection remains controversial. Our biochemical and mutational analyses show that glycosylation is a key modulator of V1V2 conformation and binding to α4ß7. Partially glycosylated, but not fully glycosylated, envelope proteins are preferred substrates for α4ß7 binding. Surprisingly, monomers of the envelope protein bound strongly to α4ß7 whereas trimers bound poorly. Our results suggest that a conformationally flexible V1V2 domain allows binding of the HIV-1 virion to the α4ß7 integrin, which might impart selectivity for the poorly glycosylated HIV-1 envelope containing monomers to be more efficiently captured by α4ß7 integrin present on mucosal cells at the time of HIV-1 transmission.
Collapse
Affiliation(s)
- Subhash Chand
- Department of Biology, The Catholic University of America, Washington DC 20064
| | - Emily L Messina
- Department of Biology, The Catholic University of America, Washington DC 20064
| | - Wadad AlSalmi
- Department of Biology, The Catholic University of America, Washington DC 20064
| | - Neeti Ananthaswamy
- Department of Biology, The Catholic University of America, Washington DC 20064
| | - Guofen Gao
- Department of Biology, The Catholic University of America, Washington DC 20064
| | - Gherman Uritskiy
- Department of Biology, The Catholic University of America, Washington DC 20064
| | | | | | - Kristina K Peachman
- Henry M Jackson Foundation for the Advancement of Military Medicine, Silver Spring, MD 20910; US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Merlin L Robb
- Henry M Jackson Foundation for the Advancement of Military Medicine, Silver Spring, MD 20910; US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Mangala Rao
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington DC 20064.
| |
Collapse
|
154
|
Swan ZD, Bouwer AL, Wonderlich ER, Barratt-Boyes SM. Persistent accumulation of gut macrophages with impaired phagocytic function correlates with SIV disease progression in macaques. Eur J Immunol 2017; 47:1925-1935. [PMID: 28667761 DOI: 10.1002/eji.201646904] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/26/2017] [Accepted: 06/23/2017] [Indexed: 12/26/2022]
Abstract
The contribution of macrophages in the gastrointestinal tract to disease control or progression in HIV infection remains unclear. To address this question, we analyzed CD163+ macrophages in ileum and mesenteric lymph nodes (LN) from SIV-infected rhesus macaques with dichotomous expression of controlling MHC class I alleles predicted to be SIV controllers or progressors. Infection induced accumulation of macrophages into gut mucosa in the acute phase that persisted in progressors but was resolved in controllers. In contrast, macrophage recruitment to mesenteric LNs occurred only transiently in acute infection irrespective of disease outcome. Persistent gut macrophage accumulation was associated with CD163 expression on α4β7+ CD16+ blood monocytes and correlated with epithelial damage. Macrophages isolated from intestine of progressors had reduced phagocytic function relative to controllers and uninfected macaques, and the proportion of phagocytic macrophages negatively correlated with mucosal epithelial breach, lamina propria Escherichia coli density, and plasma virus burden. Macrophages in intestine produced low levels of cytokines regardless of disease course, while mesenteric LN macrophages from progressors became increasingly responsive as infection advanced. These data indicate that noninflammatory CD163+ macrophages accumulate in gut mucosa in progressive SIV infection in response to intestinal damage but fail to adequately phagocytose debris, potentially perpetuating their recruitment.
Collapse
Affiliation(s)
- Zachary D Swan
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthea L Bouwer
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elizabeth R Wonderlich
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simon M Barratt-Boyes
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
155
|
Huyghe J, Magdalena S, Vandekerckhove L. Fight fire with fire: Gene therapy strategies to cure HIV. Expert Rev Anti Infect Ther 2017; 15:747-758. [DOI: 10.1080/14787210.2017.1353911] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jon Huyghe
- Department of Internal Medicine, HIV Cure Research Center, Ghent University, Ghent, Belgium
| | - Sips Magdalena
- Department of Internal Medicine, HIV Cure Research Center, Ghent University, Ghent, Belgium
| | - Linos Vandekerckhove
- Department of Internal Medicine, HIV Cure Research Center, Ghent University, Ghent, Belgium
| |
Collapse
|
156
|
Girard A, Jelicic K, Van Ryk D, Rochereau N, Cicala C, Arthos J, Noailly B, Genin C, Verrier B, Laurant S, Razanajaoana-Doll D, Pin JJ, Paul S. Neutralizing and Targeting Properties of a New Set of α4β7-Specific Antibodies Are Influenced by Their Isotype. J Acquir Immune Defic Syndr 2017; 75:118-127. [PMID: 28177967 DOI: 10.1097/qai.0000000000001307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The homing of lymphocytes to the mucosa is mainly controlled by α4β7 integrin, and it is amplified during gut chronic inflammation, as occurs with HIV and/or inflammatory bowel diseases. We designed and applied an improved immunization strategy based on an innovative selection process to isolate new α4β7 lymphocyte-specific monoclonal antibodies that are able to prevent their migration into inflamed gut tissues and/or to counteract HIV infection in vitro. First, 5 monoclonal antibodies (1 IgA, 1 IgM, and 4 IgGs) were selected based on their capacity to recognize α4 or β7 homodimers and α4β7 heterodimers in transfected human cells. Their ability to block gp120/α4β7 or MAdCAM-1/α4β7 interactions was then measured in vitro with human T and B lymphocytes. In vitro, the anti-α4β7 IgA isotype was found to have the highest affinity for the α4β7 heterodimer, and it significantly reduced HIV replication in retinoic acid-treated α4β7 CD4 human T cells. This α4β7-specific IgA also displayed a high avidity for human and mouse α4β7 lymphocytes in both mouse and human inflammatory colitis tissues. These new antibodies, and in particular those with mucosa-targeting isotypes such as IgA, could therefore be potential novel therapeutic tools for treating HIV and inflammatory bowel disease.
Collapse
Affiliation(s)
- Alexandre Girard
- *GIMAP/EA3064, Université de Lyon, Saint-Etienne, France; †NIH/NIAID Laboratory of Immunoregulation, Bethesda, MD; ‡Institut de Biologie et Chimie des Protéines, FRE3310/CNRS, Universités de Lyon, Lyon, France; and §Dendritics SA, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Pentavalent HIV-1 vaccine protects against simian-human immunodeficiency virus challenge. Nat Commun 2017; 8:15711. [PMID: 28593989 PMCID: PMC5472724 DOI: 10.1038/ncomms15711] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/21/2017] [Indexed: 02/07/2023] Open
Abstract
The RV144 Thai trial HIV-1 vaccine of recombinant poxvirus (ALVAC) and recombinant HIV-1 gp120 subtype B/subtype E (B/E) proteins demonstrated 31% vaccine efficacy. Here we design an ALVAC/Pentavalent B/E/E/E/E vaccine to increase the diversity of gp120 motifs in the immunogen to elicit a broader antibody response and enhance protection. We find that immunization of rhesus macaques with the pentavalent vaccine results in protection of 55% of pentavalent-vaccine-immunized macaques from simian–human immunodeficiency virus (SHIV) challenge. Systems serology of the antibody responses identifies plasma antibody binding to HIV-infected cells, peak ADCC antibody titres, NK cell-mediated ADCC and antibody-mediated activation of MIP-1β in NK cells as the four immunological parameters that best predict decreased infection risk that are improved by the pentavalent vaccine. Thus inclusion of additional gp120 immunogens to a pox-prime/protein boost regimen can augment antibody responses and enhance protection from a SHIV challenge in rhesus macaques. A previous human HIV-1 vaccine clinical trial, boosting with HIV envelope protein from two strains, demonstrated moderate vaccine efficacy. Here, Bradley et al. show that a pentavalent HIV envelope protein boost improves protection from viral challenge in non-human primates and they identify immune correlates of protection.
Collapse
|
158
|
Kim J, Jobe O, Peachman KK, Michael NL, Robb ML, Rao M, Rao VB. Quantitative analyses reveal distinct sensitivities of the capture of HIV-1 primary viruses and pseudoviruses to broadly neutralizing antibodies. Virology 2017; 508:188-198. [PMID: 28577855 DOI: 10.1016/j.virol.2017.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 01/13/2023]
Abstract
Development of vaccines capable of eliciting broadly neutralizing antibodies (bNAbs) is a key goal to controlling the global AIDS epidemic. To be effective, bNAbs must block the capture of HIV-1 to prevent viral acquisition and establishment of reservoirs. However, the role of bNAbs, particularly during initial exposure of primary viruses to host cells, has not been fully examined. Using a sensitive, quantitative, and high-throughput qRT-PCR assay, we found that primary viruses were captured by host cells and converted into a trypsin-resistant form in less than five minutes. We discovered, unexpectedly, that bNAbs did not block primary virus capture, although they inhibited the capture of pseudoviruses/IMCs and production of progeny viruses at 48h. Further, viruses escaped bNAb inhibition unless the bNAbs were present in the initial minutes of exposure of virus to host cells. These findings will have important implications for HIV-1 vaccine design and determination of vaccine efficacy.
Collapse
Affiliation(s)
- Jiae Kim
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA; Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring 20910, MD, USA
| | - Ousman Jobe
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA; Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring 20910, MD, USA
| | - Kristina K Peachman
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA; Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring 20910, MD, USA
| | - Nelson L Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring 20910, MD, USA
| | - Merlin L Robb
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Mangala Rao
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring 20910, MD, USA.
| | - Venigalla B Rao
- The Catholic University of America, Department of Biology, 620 Michigan Ave., NE, Washington DC 20064, USA.
| |
Collapse
|
159
|
Herschhorn A, Sodroski J. An entry-competent intermediate state of the HIV-1 envelope glycoproteins. ACTA ACUST UNITED AC 2017; 4. [PMID: 28752105 PMCID: PMC5526225 DOI: 10.14800/rci.1544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) mediate viral entry and are the sole target of neutralizing antibodies. Recent studies show that the metastable HIV-1 Env trimer can transit among three conformational states: State 1, State 3, and State 2, corresponding to the “closed”, “open” and intermediate conformations, respectively. During virus entry, binding to the CD4 receptor drives Env from state 1 to state 3. In the unliganded Env, transitions from the closed (State 1) conformation are restrained by intramolecular interactions among different Env residues, which regulate HIV-1 Env conformation. Releasing the specific restraints on State 1 Env leads to increased occupancy of State 2, which is a functional conformation on the entry pathway and an obligate intermediate between State 1 and State 3. Frequent sampling of intermediate State 2 allows HIV-1 to infect cells expressing low levels of CD4, and leads to resistance to several broadly neutralizing antibodies as well as small-molecule inhibitors. Recent findings provide new mechanistic insights into the function and inhibition of HIV-1 Env and will contribute to the development of new therapeutic and prophylactic interventions to combat HIV-1.
Collapse
Affiliation(s)
- Alon Herschhorn
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, 02215, MA, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, 02215, MA, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, 02215, MA, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, 02215, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02215, MA, USA
| |
Collapse
|
160
|
Guzzo C, Ichikawa D, Park C, Phillips D, Liu Q, Zhang P, Kwon A, Miao H, Lu J, Rehm C, Arthos J, Cicala C, Cohen MS, Fauci AS, Kehrl JH, Lusso P. Virion incorporation of integrin α4β7 facilitates HIV-1 infection and intestinal homing. Sci Immunol 2017; 2:2/11/eaam7341. [PMID: 28763793 DOI: 10.1126/sciimmunol.aam7341] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 04/17/2017] [Indexed: 12/11/2022]
Abstract
The intestinal mucosa is a key anatomical site for HIV-1 replication and CD4+ T cell depletion. Accordingly, in vivo treatment with an antibody to the gut-homing integrin α4β7 was shown to reduce viral transmission, delay disease progression, and induce persistent virus control in macaques challenged with simian immunodeficiency virus (SIV). We show that integrin α4β7 is efficiently incorporated into the envelope of HIV-1 virions. Incorporated α4β7 is functionally active as it binds mucosal addressin cell adhesion molecule-1 (MAdCAM-1), promoting HIV-1 capture by and infection of MAdCAM-expressing cells, which in turn mediate trans-infection of bystander cells. Functional α4β7 is present in circulating virions from HIV-infected patients and SIV-infected macaques, with peak levels during the early stages of infection. In vivo homing experiments documented selective and specific uptake of α4β7+ HIV-1 virions by high endothelial venules in the intestinal mucosa. These results extend the paradigm of tissue homing to a retrovirus and are relevant for the pathogenesis, treatment, and prevention of HIV-1 infection.
Collapse
Affiliation(s)
- Christina Guzzo
- Viral Pathogenesis Section, Laboratory of Immunoregulation (LIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - David Ichikawa
- Viral Pathogenesis Section, Laboratory of Immunoregulation (LIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Chung Park
- B-Cell Molecular Immunology Section, LIR, NIAID, NIH, Bethesda, MD 20892, USA
| | - Damilola Phillips
- Viral Pathogenesis Section, Laboratory of Immunoregulation (LIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Qingbo Liu
- Viral Pathogenesis Section, Laboratory of Immunoregulation (LIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Peng Zhang
- Viral Pathogenesis Section, Laboratory of Immunoregulation (LIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Alice Kwon
- Viral Pathogenesis Section, Laboratory of Immunoregulation (LIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Huiyi Miao
- Viral Pathogenesis Section, Laboratory of Immunoregulation (LIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Jacky Lu
- Viral Pathogenesis Section, Laboratory of Immunoregulation (LIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Catherine Rehm
- Clinical Research Section, LIR, NIAID, NIH, Bethesda, MD 20892, USA
| | - James Arthos
- Immunopathogenesis Section, LIR, NIAID, NIH, Bethesda, MD 20892, USA
| | - Claudia Cicala
- Immunopathogenesis Section, LIR, NIAID, NIH, Bethesda, MD 20892, USA
| | - Myron S Cohen
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Anthony S Fauci
- Immunopathogenesis Section, LIR, NIAID, NIH, Bethesda, MD 20892, USA
| | - John H Kehrl
- B-Cell Molecular Immunology Section, LIR, NIAID, NIH, Bethesda, MD 20892, USA
| | - Paolo Lusso
- Viral Pathogenesis Section, Laboratory of Immunoregulation (LIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
161
|
Extracellular Vesicles Carry HIV Env and Facilitate Hiv Infection of Human Lymphoid Tissue. Sci Rep 2017; 7:1695. [PMID: 28490736 PMCID: PMC5431974 DOI: 10.1038/s41598-017-01739-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/12/2017] [Indexed: 01/26/2023] Open
Abstract
Cells productively infected with HIV-1 release virions along with extracellular vesicles (EVs) whose biogenesis, size, and physical properties resemble those of retroviruses. Here, we found that a significant number of EVs (exosomes) released by HIV-1 infected cells carry gp120 (Env), a viral protein that mediates virus attachment and fusion to target cells, and also facilitates HIV infection in various indirect ways. Depletion of viral preparations of EVs, in particular of those that carry gp120, decreases viral infection of human lymphoid tissue ex vivo. Thus, EVs that carry Env identified in our work seem to facilitate HIV infection and therefore may constitute a new therapeutic target for antiviral strategy.
Collapse
|
162
|
Torres OB, Matyas GR, Rao M, Peachman KK, Jalah R, Beck Z, Michael NL, Rice KC, Jacobson AE, Alving CR. Heroin-HIV-1 (H2) vaccine: induction of dual immunologic effects with a heroin hapten-conjugate and an HIV-1 envelope V2 peptide with liposomal lipid A as an adjuvant. NPJ Vaccines 2017; 2:13. [PMID: 29263870 PMCID: PMC5604742 DOI: 10.1038/s41541-017-0013-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 03/15/2017] [Accepted: 03/21/2017] [Indexed: 12/20/2022] Open
Abstract
A synthetic heroin analog (MorHap) and a synthetic 42 amino acid V2 loop peptide from A/E strain of HIV-1 gp120 envelope protein that was previously used in a successful phase III vaccine trial were constructed as antigens together with liposomes containing monophosphoryl lipid A as an adjuvant, to explore the feasibility of producing a dual use vaccine both for treatment of heroin addiction and prevention of HIV-1 infection among injection drug users. The V2 peptide was tethered by a palmitoyl fatty acyl tail embedded in the liposomal lipid bilayer, and the heroin analog was conjugated to tetanus toxoid as a carrier protein that was mixed with the adjuvant. Upon comparison of a linear V2 peptide with a cyclic peptide, differences were found in the secondary configurations by circular dichroism, with the tethered cyclic peptide (palm-cyclic peptide) entirely in a random coil, and the tethered linear V2 peptide (palm-linear V2 peptide) entirely in a beta-sheet. Upon immunization of mice, palm-cyclic peptide induced anti-cyclic peptide endpoint titers >106 and was considered to be a better immunogen overall than palm-linear V2 peptide for inducing antibodies to gp120 and gp70-V1V2. The antibodies also inhibited the binding of V2 peptide to the HIV-1 α4β7 integrin receptor. Antibody titers to MorHap, even with the presence of injected cyclic peptide, were very high, and resulted in inhibition of the hyper-locomotion and antinociception effects of injected heroin. From these initial experiments, we conclude that with a potent adjuvant and mostly synthetic constituents, a vaccine directed to heroin and HIV-1 (H2 vaccine) could be a feasible objective. A vaccine designed to treat heroin addiction while at the same time preventing HIV infection elicited strong immune responses in mice. Scientists from the US government led by Carl Alving from the Walter Reed Army Institute of Research in Bethesda, Maryland, created a dual vaccine formulated with three main components: a segment of a protein expressed on the surface of HIV; synthetic molecules that resemble heroin and its degradation products; and a potent adjuvant to stimulate the immune system. Mice immunized with this vaccine had high antibody titers against the HIV surface protein as well as heroin and its derivatives. These mice also showed dulled responses to injected heroin. The findings suggest this vaccine strategy could help fight heroin abuse and the high risk of HIV infection among intravenous drug users.
Collapse
Affiliation(s)
- Oscar B Torres
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, 20817 MD USA.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, 20910 MD USA
| | - Gary R Matyas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, 20910 MD USA
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, 20910 MD USA
| | - Kristina K Peachman
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, 20817 MD USA.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, 20910 MD USA
| | - Rashmi Jalah
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, 20817 MD USA.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, 20910 MD USA
| | - Zoltan Beck
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, 20817 MD USA.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, 20910 MD USA
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, 20910 MD USA
| | - Kenner C Rice
- Department of Health and Human Services, Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, 9800 Medical Drive, Bethesda, 20892 MD USA.,National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 9800 Medical Drive, Bethesda, 20892 MD USA
| | - Arthur E Jacobson
- Department of Health and Human Services, Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, 9800 Medical Drive, Bethesda, 20892 MD USA.,National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 9800 Medical Drive, Bethesda, 20892 MD USA
| | - Carl R Alving
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, 20910 MD USA
| |
Collapse
|
163
|
Advancements in Developing Strategies for Sterilizing and Functional HIV Cures. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6096134. [PMID: 28529952 PMCID: PMC5424177 DOI: 10.1155/2017/6096134] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/04/2017] [Indexed: 12/14/2022]
Abstract
Combined antiretroviral therapy (cART) has been successful in prolonging lifespan and reducing mortality of patients infected with human immunodeficiency virus (HIV). However, the eradication of latent HIV reservoirs remains a challenge for curing HIV infection (HIV cure) because of HIV latency in primary memory CD4+ T cells. Currently, two types of HIV cures are in development: a “sterilizing cure” and a “functional cure.” A sterilizing cure refers to the complete elimination of replication-competent proviruses in the body, while a functional cure refers to the long-term control of HIV replication without treatment. Based on these concepts, significant progress has been made in different areas. This review focuses on recent advancements and future prospects for HIV cures.
Collapse
|
164
|
A novel mechanism linking memory stem cells with innate immunity in protection against HIV-1 infection. Sci Rep 2017; 7:1057. [PMID: 28432326 PMCID: PMC5430909 DOI: 10.1038/s41598-017-01188-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/27/2017] [Indexed: 11/23/2022] Open
Abstract
HIV infection affects 37 million people and about 1.7 million are infected annually. Among the phase III clinical trials only the RV144 vaccine trial elicited significant protection against HIV-1 acquisition, but the efficacy and immune memory were inadequate. To boost these vaccine functions we studied T stem cell memory (TSCM) and innate immunity. TSCM cells were identified by phenotypic markers of CD4+ T cells and they were further characterised into 4 subsets. These expressed the common IL-2/IL-15 receptors and another subset of APOBEC3G anti-viral restriction factors, both of which were upregulated. In contrast, CD4+ TSCM cells expressing CCR5 co-receptors and α4β7 mucosal homing integrins were decreased. A parallel increase in CD4+ T cells was recorded with IL-15 receptors, APOBEC3G and CC chemokines, the latter downmodulating CCR5 molecules. We suggest a novel mechanism of dual memory stem cells; the established sequential memory pathway, TSCM →Central →Effector memory CD4+ T cells and the innate pathway consisting of the 4 subsets of TSCM. Both pathways are likely to be activated by endogenous HSP70. The TSCM memory stem cell and innate immunity pathways have to be optimised to boost the efficacy and immune memory of protection against HIV-1 in the clinical trial.
Collapse
|
165
|
Reasons for optimism in the search for new vaccines for tuberculosis. Epidemiol Infect 2017; 145:1750-1756. [PMID: 28414012 DOI: 10.1017/s095026881700067x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the development of vaccines for tuberculosis (TB), the combination of the will, funding, scientific rigor, new tools, refined animal models and improved clinical trial designs are all converging at an opportune moment. The lack of optimism that has surrounded the likelihood for finding novel TB vaccines has resulted from a lack of correlates of vaccine-induced protection, a lack of tool candidate vaccines to probe the immunologic space, which may be needed, and the negative result of one recent trial. A vaccine for TB that can be delivered at a reasonable cost to the marketplace will have greater impact on the incidence of new cases of TB than any intervention in world history. Now is the time to increase resources, both financial and human intellectual capacity, for a global tuberculosis vaccine effort.
Collapse
|
166
|
Affiliation(s)
- Robert C Gallo
- Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA.
| |
Collapse
|
167
|
Vasan S, Wansom T, Schuetz A, Krebs S, Thomas R, Kijak G, Polyak C. Highlights from the HIV Research for Prevention Conference (R4P),: 17-21 October 2016, Chicago, IL, USA. J Virus Erad 2017; 3:92-96. [PMID: 28435694 PMCID: PMC5384273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
| | | | | | - Shelly Krebs
- US Military HIV Research Program,
Walter Reed Army Institute of Research,
Silver Spring,
MDUSA
- Henry M Jackson Foundation for the Advancement of Military Medicine,
Bethesda,
MD,
USA
| | - Rasmi Thomas
- US Military HIV Research Program,
Walter Reed Army Institute of Research,
Silver Spring,
MDUSA
- Henry M Jackson Foundation for the Advancement of Military Medicine,
Bethesda,
MD,
USA
| | - Gustavao Kijak
- US Military HIV Research Program,
Walter Reed Army Institute of Research,
Silver Spring,
MDUSA
- Henry M Jackson Foundation for the Advancement of Military Medicine,
Bethesda,
MD,
USA
| | - Christina Polyak
- US Military HIV Research Program,
Walter Reed Army Institute of Research,
Silver Spring,
MDUSA
- Henry M Jackson Foundation for the Advancement of Military Medicine,
Bethesda,
MD,
USA
| |
Collapse
|
168
|
Abstract
PURPOSE OF REVIEW The purpose of this study is to summarize recent advances in the use of broadly neutralizing antibodies (bNAbs) as therapeutics in human clinical trials and in non-human primate (NHP) models. We seek to highlight lessons from these studies with an emphasis on consequences to the virus and immune system. RECENT FINDINGS In the past 10 years, advances in HIV-1 trimer structure and B cell isolation methods have precipitated the identification of "new-generation" anti-HIV antibodies with broad and potent neutralization. In the past 2 years, the concept of using these bNAbs as therapeutic tools has moved from NHP models into human clinical trials. These trials have investigated the effects of bNAb infusions into patients chronically infected with HIV-1, while the NHP model has investigated treatment during acute infection. Through this work, the relationship between in vitro breadth and potency and in vivo clinical effect, although unresolved, is gradually being elucidated. These results emphasize the need for combination antibody therapy.
Collapse
Affiliation(s)
- Jinal N. Bhiman
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), National Health Laboratory Service (NHLS), 1 Modderfontein Road, Sandringham, Johannesburg, Gauteng 2131 South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Rebecca M. Lynch
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, 2300 Eye St. NW, Washington, DC 20001 USA
| |
Collapse
|
169
|
Vasan S, Wansom T, Schuetz A, Krebs S, Thomas R, Kijak G, Polyak C. Highlights from the HIV Research for Prevention Conference (R4P),. J Virus Erad 2017. [DOI: 10.1016/s2055-6640(20)30289-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
170
|
Kariuki SM, Selhorst P, Ariën KK, Dorfman JR. The HIV-1 transmission bottleneck. Retrovirology 2017; 14:22. [PMID: 28335782 PMCID: PMC5364581 DOI: 10.1186/s12977-017-0343-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/05/2017] [Indexed: 02/07/2023] Open
Abstract
It is well established that most new systemic infections of HIV-1 can be traced back to one or a limited number of founder viruses. Usually, these founders are more closely related to minor HIV-1 populations in the blood of the presumed donor than to more abundant lineages. This has led to the widely accepted idea that transmission selects for viral characteristics that facilitate crossing the mucosal barrier of the recipient’s genital tract, although the specific selective forces or advantages are not completely defined. However, there are other steps along the way to becoming a founder virus at which selection may occur. These steps include the transition from the donor’s general circulation to the genital tract compartment, survival within the transmission fluid, and establishment of a nascent stable local infection in the recipient’s genital tract. Finally, there is the possibility that important narrowing events may also occur during establishment of systemic infection. This is suggested by the surprising observation that the number of founder viruses detected after transmission in intravenous drug users is also limited. Although some of these steps may be heavily selective, others may result mostly in a stochastic narrowing of the available founder pool. Collectively, they shape the initial infection in each recipient.
Collapse
Affiliation(s)
- Samuel Mundia Kariuki
- Division of Immunology, Department of Pathology, Falmouth 3.25, University of Cape Town, Anzio Rd, Observatory, Cape Town, 7925, South Africa.,International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa.,Department of Biological Sciences, University of Eldoret, Eldoret, Kenya
| | - Philippe Selhorst
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jeffrey R Dorfman
- Division of Immunology, Department of Pathology, Falmouth 3.25, University of Cape Town, Anzio Rd, Observatory, Cape Town, 7925, South Africa.
| |
Collapse
|
171
|
Leal FE, Premeaux TA, Abdel-Mohsen M, Ndhlovu LC. Role of Natural Killer Cells in HIV-Associated Malignancies. Front Immunol 2017; 8:315. [PMID: 28377768 PMCID: PMC5359293 DOI: 10.3389/fimmu.2017.00315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/06/2017] [Indexed: 12/15/2022] Open
Abstract
Now in its fourth decade, the burden of HIV disease still persists, despite significant milestone achievements in HIV prevention, diagnosis, treatment, care, and support. Even with long-term use of currently available antiretroviral therapies (ARTs), eradication of HIV remains elusive and now poses a unique set of challenges for the HIV-infected individual. The occurrence of HIV-associated non-AIDS-related comorbidities outside the scope of AIDS-defining illnesses, in particular non-AIDS-defining cancers, is much greater than the age-matched uninfected population. The underlying mechanism is now recognized in part to be related to the immune dysregulated and inflammatory status characteristic of HIV infection that persists despite ART. Natural killer (NK) cells are multifunctional effector immune cells that play a critical role in shaping the innate immune responses to viral infections and cancer. NK cells can modulate the adaptive immune response via their role in dendritic cell (DC) maturation, removal of immature tolerogenic DCs, and their ability to produce immunoregulatory cytokines. NK cells are therefore poised as attractive therapeutic targets that can be harnessed to control or clear both HIV and HIV-associated malignancies. To date, features of the tumor microenvironment and the evolution of NK-cell function among individuals with HIV-related malignancies remain unclear and may be distinct from malignancies observed in uninfected persons. This review intends to uncouple anti-HIV and antitumor NK-cell features that can be manipulated to halt the evolution of HIV disease and HIV-associated malignancies and serve as potential preventative and curative immunotherapeutic options.
Collapse
Affiliation(s)
- Fabio E Leal
- Programa de Oncovirologia, Instituto Nacional de Cancer , Rio de Janeiro , Brazil
| | - Thomas A Premeaux
- Department of Tropical Medicine, Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii , Honolulu, HI , USA
| | - Mohamed Abdel-Mohsen
- Blood Systems Research Institute, San Francisco, CA, USA; University of California, San Francisco, CA, USA
| | - Lishomwa C Ndhlovu
- Department of Tropical Medicine, Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii , Honolulu, HI , USA
| |
Collapse
|
172
|
Riley JL, Montaner LJ. Cell-Mediated Immunity to Target the Persistent Human Immunodeficiency Virus Reservoir. J Infect Dis 2017; 215:S160-S171. [PMID: 28520969 PMCID: PMC5853458 DOI: 10.1093/infdis/jix002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Effective clearance of virally infected cells requires the sequential activity of innate and adaptive immunity effectors. In human immunodeficiency virus (HIV) infection, naturally induced cell-mediated immune responses rarely eradicate infection. However, optimized immune responses could potentially be leveraged in HIV cure efforts if epitope escape and lack of sustained effector memory responses were to be addressed. Here we review leading HIV cure strategies that harness cell-mediated control against HIV in stably suppressed antiretroviral-treated subjects. We focus on strategies that may maximize target recognition and eradication by the sequential activation of a reconstituted immune system, together with delivery of optimal T-cell responses that can eliminate the reservoir and serve as means to maintain control of HIV spread in the absence of antiretroviral therapy (ART). As evidenced by the evolution of ART, we argue that a combination of immune-based strategies will be a superior path to cell-mediated HIV control and eradication. Available data from several human pilot trials already identify target strategies that may maximize antiviral pressure by joining innate and engineered T cell responses toward testing for sustained HIV remission and/or cure.
Collapse
Affiliation(s)
- James L Riley
- Department of Microbiology and Center for Cellular Immunotherapies, University of Pennsylvania, and
| | - Luis J Montaner
- HIV-1 Immunopathogenesis Laboratory, Wistar Institute, Philadelphia, Pennsylvania
| |
Collapse
|
173
|
Abstract
An HIV-1 vaccine is needed to curtail the HIV epidemic. Only one (RV144) out of the 6 HIV-1 vaccine efficacy trials performed showed efficacy. A potential mechanism of protection is the induction of functional antibodies to V1V2 region of HIV envelope. The 2 main current approaches to the generation of protective immunity are through broadly neutralizing antibodies (bnAb) and induction of functional antibodies (non-neutralizing Abs with other potential anti-viral functions). Passive immunization using bnAb has advanced into phase II clinical trials. The induction of bnAb using mimics of the natural Env trimer or B-cell lineage vaccine design is still in pre-clinical phase. An attempt at optimization of protective functional antibodies will be assessed next with the efficacy trial (HVTN702) about to start. With on-going optimization of prime/boost strategies, the development of mosaic immunogens, replication competent vectors, and emergence of new strategies designed to induce bnAb, the prospects for a preventive HIV vaccine have never been more promising.
Collapse
Affiliation(s)
- Denise C Hsu
- a Armed Forces Research Institute of Medical Sciences , Bangkok , Thailand.,b US Military HIV Research Program , Silver Spring , MD , USA.,c Henry M. Jackson Foundation for the Advancement of Military Medicine , Bethesda , MD , USA
| | - Robert J O'Connell
- a Armed Forces Research Institute of Medical Sciences , Bangkok , Thailand.,b US Military HIV Research Program , Silver Spring , MD , USA
| |
Collapse
|
174
|
Dart RJ, Samaan MA, Powell N, Irving PM. Vedolizumab: toward a personalized therapy paradigm for people with ulcerative colitis. Clin Exp Gastroenterol 2017; 10:57-66. [PMID: 28424557 PMCID: PMC5344414 DOI: 10.2147/ceg.s110547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic relapsing and remitting inflammatory bowel disease, with a characteristic leukocytic infiltration of the mucosa. Immunosuppression including anti-TNF-α therapy is a mainstay of treatment for many; however, systemic immunosuppression is not universally effective and is associated with potential side effects. The gut-tropic integrin α4β7, which is expressed on leukocytes, mediates migration from the circulation to the intestinal mucosa. Vedolizumab is a monoclonal antibody which blocks the egress of leukocytes via α4β7, preventing accumulation in the mucosa, and attenuating inflammation without systemic immunosuppression. Vedolizumab has been evaluated in UC in a phase III trial, demonstrating efficacy as both an induction and a maintenance agent. In this article, we review the clinical trial data and also explore the growing body of "real-world" effectiveness data, investigating response and remission rates of vedolizumab in clinical practice. In addition, we review the increasing volume of data supporting the reassuring safety profile associated with vedolizumab.
Collapse
Affiliation(s)
- Robin J Dart
- Department of Gastroenterology, IBD Centre, St. Thomas' Hospital.,Immunosurveillance Laboratory, The Francis Crick Institute, London.,Division of Immunology, Infection, and Inflammatory Disease (DIIID), King's College London
| | - Mark A Samaan
- Department of Gastroenterology, IBD Centre, St. Thomas' Hospital
| | - Nick Powell
- Department of Gastroenterology, IBD Centre, St. Thomas' Hospital.,Department of Experimental Immunobiology, Division of Transplantation and Mucosal Biology, King's College London, London, UK
| | - Peter M Irving
- Department of Gastroenterology, IBD Centre, St. Thomas' Hospital
| |
Collapse
|
175
|
Hope TJ. Can a Traditional Chinese Medicine Contribute to a Cure for HIV? AIDS Res Hum Retroviruses 2017; 33:89. [PMID: 28170307 DOI: 10.1089/aid.2017.29001.hop] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Thomas J. Hope
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
176
|
Abstract
Viral latency is a major barrier to curing HIV infection with antiretroviral therapy, and consequently, for eliminating the disease globally. The establishment, maintenance, and potential clearance of latent infection are complex dynamic processes and can be best understood and described with the help of mathematical models. Here we review the use of viral dynamics models for HIV, with a focus on applications to the latent reservoir. Such models have been used to explain the multiphasic decay of viral load during antiretroviral therapy, the early seeding of the latent reservoir during acute infection and the limited inflow during treatment, the dynamics of viral blips, and the phenomenon of posttreatment control. In addition, mathematical models have been used to predict the efficacy of potential HIV cure strategies, such as latency-reversing agents, early treatment initiation, or gene therapies, and to provide guidance for designing trials of these novel interventions.
Collapse
|
177
|
Hsu DC, Ananworanich J. Immune Interventions to Eliminate the HIV Reservoir. Curr Top Microbiol Immunol 2017; 417:181-210. [PMID: 29071472 DOI: 10.1007/82_2017_70] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inducing HIV remission is a monumental challenge. A potential strategy is the "kick and kill" approach where latently infected cells are first activated to express viral proteins and then eliminated through cytopathic effects of HIV or immune-mediated killing. However, pre-existing immune responses to HIV cannot eradicate HIV infection due to the presence of escape variants, inadequate magnitude, and breadth of responses as well as immune exhaustion. The two major approaches to boost immune-mediated elimination of infected cells include enhancing cytotoxic T lymphocyte mediated killing and harnessing antibodies to eliminate HIV. Specific strategies include increasing the magnitude and breadth of T cell responses through therapeutic vaccinations, reversing the effects of T cell exhaustion using immune checkpoint inhibition, employing bispecific T cell targeting immunomodulatory proteins or dual-affinity re-targeting molecules to direct cytotoxic T lymphocytes to virus-expressing cells and broadly neutralizing antibody infusions. Methods to steer immune responses to tissue sites where latently infected cells are located need to be further explored. Ultimately, strategies to induce HIV remission must be tolerable, safe, and scalable in order to make a global impact.
Collapse
Affiliation(s)
- Denise C Hsu
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.,Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Jintanat Ananworanich
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA. .,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA. .,US Military HIV Research Program (MHRP), 6720-A Rockledge Drive, Suite 400, Bethesda, MD, 20817, USA.
| |
Collapse
|
178
|
Lawrence D, Kuo L, Church E, Poon B, Smiley S, Sanders-Beer B, Dawson L, Salzwedel K. Highlights from the Third Biennial Strategies for an HIV Cure Meeting: 14-16 November 2016, Bethesda, MD, USA. J Virus Erad 2017; 3:69-76. [PMID: 28275462 PMCID: PMC5337425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Since the first Strategies for an HIV Cure Meeting organised by the National Institute of Allergy and Infectious Diseases (NIAID) in 2012, one of the primary purposes of the meeting has been to facilitate communication and foster collaboration across the NIAID-funded Martin Delaney Collaboratories for HIV cure research (MDC), the broader HIV cure-related research field, and industry and community stakeholders. This year's meeting agenda reflected NIAID's increasing investment over the last 5 years in research to identify strategies for eradicating or achieving long-term remission of HIV infection. Overviews and research highlights were presented from each of the Martin Delaney Collaboratories, as well as projects funded through the Beyond HAART programme, the Consortia for Innovative AIDS Research in Nonhuman Primates (CIAR) programme, the ACTG and IMPAACT clinical trial networks, and the NIAID Vaccine Research Center in hopes of stimulating cross-talk and synergy among these and other programmes focused on HIV cure research. Aside from the oral presentations described here, the meeting also included 75 poster presentations. Finally, community engagement activities and community participation in the MDC was highlighted throughout the first day and in a special session on Day 2. This reflects NIAID's commitment to engage community partners in the earliest stages of research towards curative interventions through the MDC programme. The entire meeting is available for viewing via the NIH VideoCast website at: https://videocast.nih.gov/PastEvents.asp.
Collapse
Affiliation(s)
- Diane Lawrence
- />Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| | - Lillian Kuo
- />Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| | - Elizabeth Church
- />Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| | - Betty Poon
- />Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| | - Stephen Smiley
- />Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| | - Brigitte Sanders-Beer
- />Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| | - Liza Dawson
- />Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| | - Karl Salzwedel
- />Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| |
Collapse
|
179
|
|
180
|
Crunkhorn S. HIV: Achieving sustained remission. Nat Rev Drug Discov 2016; 15:822. [PMID: 27857141 DOI: 10.1038/nrd.2016.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
181
|
Zhang Z, Li S, Gu Y, Xia N. Antiviral Therapy by HIV-1 Broadly Neutralizing and Inhibitory Antibodies. Int J Mol Sci 2016; 17:ijms17111901. [PMID: 27869733 PMCID: PMC5133900 DOI: 10.3390/ijms17111901] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/10/2016] [Accepted: 11/10/2016] [Indexed: 12/16/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection causes acquired immune deficiency syndrome (AIDS), a global epidemic for more than three decades. HIV-1 replication is primarily controlled through antiretroviral therapy (ART) but this treatment does not cure HIV-1 infection. Furthermore, there is increasing viral resistance to ART, and side effects associated with long-term therapy. Consequently, there is a need of alternative candidates for HIV-1 prevention and therapy. Recent advances have discovered multiple broadly neutralizing antibodies against HIV-1. In this review, we describe the key epitopes on the HIV-1 Env protein and the reciprocal broadly neutralizing antibodies, and discuss the ongoing clinical trials of broadly neutralizing and inhibitory antibody therapy as well as antibody combinations, bispecific antibodies, and methods that improve therapeutic efficacy by combining broadly neutralizing antibodies (bNAbs) with latency reversing agents. Compared with ART, HIV-1 therapeutics that incorporate these broadly neutralizing and inhibitory antibodies offer the advantage of decreasing virus load and clearing infected cells, which is a promising prospect in HIV-1 prevention and treatment.
Collapse
Affiliation(s)
- Zhiqing Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|