151
|
Zeidler JD, Chini CC, Kanamori KS, Kashyap S, Espindola-Netto JM, Thompson K, Warner G, Cabral FS, Peclat TR, Gomez LS, Lopez SA, Wandersee MK, Schoon RA, Reid K, Menzies K, Beckedorff F, Reid JM, Brachs S, Meyer RG, Meyer-Ficca ML, Chini EN. Endogenous metabolism in endothelial and immune cells generates most of the tissue vitamin B3 (nicotinamide). iScience 2022; 25:105431. [PMID: 36388973 PMCID: PMC9646960 DOI: 10.1016/j.isci.2022.105431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/10/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
In mammals, nicotinamide (NAM) is the primary NAD precursor available in circulation, a signaling molecule, and a precursor for methyl-nicotinamide (M-NAM) synthesis. However, our knowledge about how the body regulates tissue NAM levels is still limited. Here we demonstrate that dietary vitamin B3 partially regulates plasma NAM and NAM-derived metabolites, but not their tissue levels. We found that NAD de novo synthesis from tryptophan contributes to plasma and tissue NAM, likely by providing substrates for NAD-degrading enzymes. We also demonstrate that tissue NAM is mainly generated by endogenous metabolism and that the NADase CD38 is the main enzyme that produces tissue NAM. Tissue-specific CD38-floxed mice revealed that CD38 activity on endothelial and immune cells is the major contributor to tissue steady-state levels of NAM in tissues like spleen and heart. Our findings uncover the presence of different pools of NAM in the body and a central role for CD38 in regulating tissue NAM levels.
Collapse
Affiliation(s)
- Julianna D. Zeidler
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Claudia C.S. Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Karina S. Kanamori
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sonu Kashyap
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jair M. Espindola-Netto
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Katie Thompson
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Gina Warner
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Fernanda S. Cabral
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Thais R. Peclat
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Lilian Sales Gomez
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sierra A. Lopez
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, School of Veterinary Medicine, Utah State University, Logan, UT 84332, USA
| | - Miles K. Wandersee
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, School of Veterinary Medicine, Utah State University, Logan, UT 84332, USA
| | - Renee A. Schoon
- Oncology Research, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Kimberly Reid
- Interdisciplinary School of Health of Sciences, University Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Keir Menzies
- Interdisciplinary School of Health of Sciences, University Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Felipe Beckedorff
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joel M. Reid
- Oncology Research, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Sebastian Brachs
- Charité – Universitätsmedizin Berlin, Department of Endocrinology and Metabolism, 10115 Berlin, Germany,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Ralph G. Meyer
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, School of Veterinary Medicine, Utah State University, Logan, UT 84332, USA
| | - Mirella L. Meyer-Ficca
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, School of Veterinary Medicine, Utah State University, Logan, UT 84332, USA
| | - Eduardo Nunes Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA,Corresponding author
| |
Collapse
|
152
|
Wang J, Li M, Geng Z, Khattak S, Ji X, Wu D, Dang Y. Role of Oxidative Stress in Retinal Disease and the Early Intervention Strategies: A Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7836828. [PMID: 36275903 PMCID: PMC9586758 DOI: 10.1155/2022/7836828] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 02/05/2023]
Abstract
The retina, owing to its cellular anatomy and physical location, is susceptible to generating reactive oxygen species (ROS), which are associated with several major retinal diseases. When ROS exceeds the body's natural antioxidants, the retina is in a state of oxidative stress, which is recognized as the pathogenesis of retinal diseases. The early stage of the pathogenic process is an adaptive change in which oxidative stress and endogenous defense mechanisms occur. If no treatment is applied, the retinal diseases will progress to the pathological stage with neuronal and vascular dysfunction or damage and even blindness. This review summarizes the role of oxidative stress in several common retinal diseases, including retinitis pigmentosa, age-related macular degeneration, diabetic retinopathy, glaucoma, and retinopathy of prematurity. In addition, we discuss the early intervention strategies for these diseases. An outline is provided to identify potential intervention targets for further research. Early intervention for retinal diseases is necessary and urgent and may offer hope to improve patients' quality of life through functional vision.
Collapse
Affiliation(s)
- Jun Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Mengling Li
- College of Acu-Moxibustion and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ziyue Geng
- School of Clinical Medicine, Henan University, Kaifeng, Henan, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Xinying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Dongdong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Yalong Dang
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Sanmenxia Central Hospital, Sanmenxia, Henan, China
| |
Collapse
|
153
|
Fomo KN, Schmelter C, Atta J, Beutgen VM, Schwarz R, Perumal N, Govind G, Speck T, Pfeiffer N, Grus FH. Synthetic antibody-derived immunopeptide provides neuroprotection in glaucoma through molecular interaction with retinal protein histone H3.1. Front Med (Lausanne) 2022; 9:993351. [PMID: 36313990 PMCID: PMC9613933 DOI: 10.3389/fmed.2022.993351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Glaucoma is a group of optic neuropathies characterized by the progressive degeneration of retinal ganglion cells (RGCs) as well as their axons leading to irreversible loss of sight. Medical management of the intraocular pressure (IOP) still represents the gold standard in glaucoma therapy, which only manages a single risk factor and does not directly address the neurodegenerative component of this eye disease. Recently, our group showed that antibody-derived immunopeptides (encoding complementarity-determining regions, CDRs) provide attractive glaucoma medication candidates and directly interfere its pathogenic mechanisms by different modes of action. In accordance with these findings, the present study showed the synthetic complementary-determining region 2 (CDR2) peptide (INSDGSSTSYADSVK) significantly increased RGC viability in vitro in a concentration-dependent manner (p < 0.05 using a CDR2 concentration of 50 μg/mL). Employing state-of the-art immunoprecipitation experiments, we confirmed that synthetic CDR2 exhibited a high affinity toward the retinal target protein histone H3.1 (HIST1H3A) (p < 0.001 and log2-fold change > 3). Furthermore, molecular dynamics (MD) simulations along with virtual docking analyses predicted potential CDR2-specific binding regions of HIST1H3A, which might represent essential post-translational modification (PTM) sites for epigenetic regulations. Quantitative mass spectrometry (MS) analysis of retinas demonstrated 39 proteins significantly affected by CDR2 treatment (p < 0.05). An up-regulation of proteins involved in the energy production (e.g., ATP5F1B and MT-CO2) as well as the regulatory ubiquitin proteasome system (e.g., PSMC5) was induced by the synthetic CDR2 peptide. On the other hand, CDR2 reduced metabolic key enzymes (e.g., DDAH1 and MAOB) as well as ER stress-related proteins (e.g., SEC22B and VCP) and these data were partially confirmed by microarray technology. Our outcome measurements indicate that specific protein-peptide interactions influence the regulatory epigenetic function of HIST1H3A promoting the neuroprotective mechanism on RGCs in vitro. In addition to IOP management, such synthetic peptides as CDR2 might serve as a synergistic immunotherapy for glaucoma in the future.
Collapse
Affiliation(s)
- Kristian Nzogang Fomo
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Carsten Schmelter
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Joshua Atta
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Vanessa M. Beutgen
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Rebecca Schwarz
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Natarajan Perumal
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Gokul Govind
- Institute of Physics, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Speck
- Institute of Physics, Johannes Gutenberg University, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Franz H. Grus
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany,*Correspondence: Franz H. Grus,
| |
Collapse
|
154
|
Tang J, Liu Z, Han J, Xue J, Liu L, Lin J, Wu C, Zhang Q, Wu S, Liu C, Huang H, Fu Y, Li M, Zhuo Y, Li Y. Increased Mobile Zinc Regulates Retinal Ganglion Cell Survival via Activating Mitochondrial OMA1 and Integrated Stress Response. Antioxidants (Basel) 2022; 11:antiox11102001. [PMID: 36290724 PMCID: PMC9598227 DOI: 10.3390/antiox11102001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 11/26/2022] Open
Abstract
Retinal ganglion cells (RGCs), the projection neurons of the eye, are irreversibly lost once the optic nerve is injured, which is a critical mechanism of glaucoma. Mobile zinc (Zn2+) levels rapidly increase in retinal interneuron amacrine cells and Zn2+ is then transferred to RGCs via the Zn2+ transporter protein ZnT-3, triggering RGC loss in optic nerve injury. Zn2+ chelation and ZnT-3 deletion promote long-term RGC survival. However, the downstream signaling pathways of Zn2+ in RGCs remains unknown. Here, we show that increased levels of Zn2+ upregulate the expression and activity of mitochondrial zinc metallopeptidase OMA1 in the retina, leading to the cleavage of DELE1 and activation of cytosolic eIF2α kinase PKR, triggering the integrated stress response (ISR) in RGCs. Our study identified OMA1 and ISR as the downstream molecular mechanisms of retinal Zn2+ and potential targets for preventing the progression of Zn2+-associated neuronal damage.
Collapse
Affiliation(s)
- Jiahui Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhe Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jiaxu Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jingfei Xue
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Liyan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jicheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Caiqing Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Qi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Siting Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Canying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Haishun Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yuanyuan Fu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Min Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
- Correspondence: (Y.Z.); (Y.L.)
| | - Yiqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
- Correspondence: (Y.Z.); (Y.L.)
| |
Collapse
|
155
|
DeMaio A, Mehrotra S, Sambamurti K, Husain S. The role of the adaptive immune system and T cell dysfunction in neurodegenerative diseases. J Neuroinflammation 2022; 19:251. [PMID: 36209107 PMCID: PMC9548183 DOI: 10.1186/s12974-022-02605-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
The adaptive immune system and associated inflammation are vital in surveillance and host protection against internal and external threats, but can secondarily damage host tissues. The central nervous system is immune-privileged and largely protected from the circulating inflammatory pathways. However, T cell involvement and the disruption of the blood-brain barriers have been linked to several neurodegenerative diseases including Parkinson's disease, Alzheimer's disease, and multiple sclerosis. Under normal physiological conditions, regulatory T cells (Treg cells) dampen the inflammatory response of effector T cells. In the pathological states of many neurodegenerative disorders, the ability of Treg cells to mitigate inflammation is reduced, and a pro-inflammatory environment persists. This perspective review provides current knowledge on the roles of T cell subsets (e.g., effector T cells, Treg cells) in neurodegenerative and ocular diseases, including uveitis, diabetic retinopathy, age-related macular degeneration, and glaucoma. Many neurodegenerative and ocular diseases have been linked to immune dysregulation, but the cellular events and molecular mechanisms involved in such processes remain largely unknown. Moreover, the role of T cells in ocular pathologies remains poorly defined and limited literature is available in this area of research. Adoptive transfer of Treg cells appears to be a vital immunological approach to control ocular pathologies. Similarities in T cell dysfunction seen among non-ocular neurodegenerative diseases suggest that this area of research has a great potential to develop better therapeutic agents for ocular diseases and warrants further studies. Overall, this perspective review article provides significant information on the roles of T cells in numerous ocular and non-ocular neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexa DeMaio
- Department of Ophthalmology, Storm Eye Institute, Room 713, Medical University of South Carolina, 167 Ashley Ave, SC, 29425, Charleston, USA
| | - Shikhar Mehrotra
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, SC, 29425, Charleston, USA
| | - Kumar Sambamurti
- Department of Neuroscience, Medical University of South Carolina, SC, 29425, Charleston, USA
| | - Shahid Husain
- Department of Ophthalmology, Storm Eye Institute, Room 713, Medical University of South Carolina, 167 Ashley Ave, SC, 29425, Charleston, USA.
| |
Collapse
|
156
|
Van Hook MJ. Influences of Glaucoma on the Structure and Function of Synapses in the Visual System. Antioxid Redox Signal 2022; 37:842-861. [PMID: 35044228 PMCID: PMC9587776 DOI: 10.1089/ars.2021.0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/31/2021] [Indexed: 11/12/2022]
Abstract
Significance: Glaucoma is an age-related neurodegenerative disorder of the visual system associated with sensitivity to intraocular pressure (IOP). It is the leading irreversible cause of vision loss worldwide, and vision loss results from damage and dysfunction of the retinal output neurons known as retinal ganglion cells (RGCs). Recent Advances: Elevated IOP and optic nerve injury triggers pruning of RGC dendrites, altered morphology of excitatory inputs from presynaptic bipolar cells, and disrupted RGC synaptic function. Less is known about RGC outputs, although evidence to date indicates that glaucoma is associated with altered mitochondrial and synaptic structure and function in RGC-projection targets in the brain. These early functional changes likely contribute to vision loss and might be a window into early diagnosis and treatment. Critical Issues: Glaucoma affects different RGC populations to varying extents and along distinct time courses. The influence of glaucoma on RGC synaptic function as well as the mechanisms underlying these effects remain to be determined. Since RGCs are an especially energetically demanding population of neurons, altered intracellular axon transport of mitochondria and mitochondrial function might contribute to RGC synaptic dysfunction in the retina and brain as well as RGC vulnerability in glaucoma. Future Directions: The mechanisms underlying differential RGC vulnerability remain to be determined. Moreover, the timing and mechanisms of RGCs synaptic dysfunction and degeneration will provide valuable insight into the disease process in glaucoma. Future work will be able to capitalize on these findings to better design diagnostic and therapeutic approaches to detect disease and prevent vision loss. Antioxid. Redox Signal. 37, 842-861.
Collapse
Affiliation(s)
- Matthew J. Van Hook
- Department of Ophthalmology & Visual Science and Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Cellular & Integrative Physiology, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
157
|
Subramanian R, Sahoo D. Boolean implication analysis of single-cell data predicts retinal cell type markers. BMC Bioinformatics 2022; 23:378. [PMID: 36114457 PMCID: PMC9482279 DOI: 10.1186/s12859-022-04915-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022] Open
Abstract
Background The retina is a complex tissue containing multiple cell types that are essential for vision. Understanding the gene expression patterns of various retinal cell types has potential applications in regenerative medicine. Retinal organoids (optic vesicles) derived from pluripotent stem cells have begun to yield insights into the transcriptomics of developing retinal cell types in humans through single cell RNA-sequencing studies. Previous methods of gene reporting have relied upon techniques in vivo using microarray data, or correlational and dimension reduction methods for analyzing single cell RNA-sequencing data computationally. We aimed to develop a state-of-the-art Boolean method that filtered out noise, could be applied to a wide variety of datasets and lent insight into gene expression over differentiation. Results Here, we present a bioinformatic approach using Boolean implication to discover genes which are retinal cell type-specific or involved in retinal cell fate. We apply this approach to previously published retina and retinal organoid datasets and improve upon previously published correlational methods. Our method improves the prediction accuracy of marker genes of retinal cell types and discovers several new high confidence cone and rod-specific genes. Conclusions The results of this study demonstrate the benefits of a Boolean approach that considers asymmetric relationships. We have shown a statistically significant improvement from correlational, symmetric methods in the prediction accuracy of retinal cell-type specific genes. Furthermore, our method contains no cell or tissue-specific tuning and hence could impact other areas of gene expression analyses in cancer and other human diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04915-4.
Collapse
|
158
|
Quintero H, Shiga Y, Belforte N, Alarcon-Martinez L, El Hajji S, Villafranca-Baughman D, Dotigny F, Di Polo A. Restoration of mitochondria axonal transport by adaptor Disc1 supplementation prevents neurodegeneration and rescues visual function. Cell Rep 2022; 40:111324. [PMID: 36103832 DOI: 10.1016/j.celrep.2022.111324] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022] Open
Abstract
Deficits in mitochondrial transport are a common feature of neurodegenerative diseases. We investigated whether loss of components of the mitochondrial transport machinery impinge directly on metabolic stress, neuronal death, and circuit dysfunction. Using multiphoton microscope live imaging, we showed that ocular hypertension, a major risk factor in glaucoma, disrupts mitochondria anterograde axonal transport leading to energy decline in vulnerable neurons. Gene- and protein-expression analysis revealed loss of the adaptor disrupted in schizophrenia 1 (Disc1) in retinal neurons subjected to high intraocular pressure. Disc1 gene delivery was sufficient to rescue anterograde transport and replenish axonal mitochondria. A genetically encoded ATP sensor combined with longitudinal live imaging showed that Disc1 supplementation increased ATP production in stressed neurons. Disc1 gene therapy promotes neuronal survival, reverses abnormal single-cell calcium dynamics, and restores visual responses. Our study demonstrates that enhancing anterograde mitochondrial transport is an effective strategy to alleviate metabolic stress and neurodegeneration.
Collapse
Affiliation(s)
- Heberto Quintero
- Department of Neuroscience, University of Montreal, PO Box 6128, Station Centre-ville, Montreal, QC H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC H2X 0A9, Canada
| | - Yukihiro Shiga
- Department of Neuroscience, University of Montreal, PO Box 6128, Station Centre-ville, Montreal, QC H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC H2X 0A9, Canada
| | - Nicolas Belforte
- Department of Neuroscience, University of Montreal, PO Box 6128, Station Centre-ville, Montreal, QC H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC H2X 0A9, Canada
| | - Luis Alarcon-Martinez
- Department of Neuroscience, University of Montreal, PO Box 6128, Station Centre-ville, Montreal, QC H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC H2X 0A9, Canada
| | - Sana El Hajji
- Department of Neuroscience, University of Montreal, PO Box 6128, Station Centre-ville, Montreal, QC H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC H2X 0A9, Canada
| | - Deborah Villafranca-Baughman
- Department of Neuroscience, University of Montreal, PO Box 6128, Station Centre-ville, Montreal, QC H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC H2X 0A9, Canada
| | - Florence Dotigny
- Department of Neuroscience, University of Montreal, PO Box 6128, Station Centre-ville, Montreal, QC H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC H2X 0A9, Canada
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, PO Box 6128, Station Centre-ville, Montreal, QC H3C 3J7, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC H2X 0A9, Canada.
| |
Collapse
|
159
|
Bhartiya S. Niacinamide and Neuroprotection: The Glaucoma Holy Grail. J Curr Glaucoma Pract 2022; 16:141-143. [PMID: 36793265 PMCID: PMC9905873 DOI: 10.5005/jp-journals-10078-1390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
How to cite this article: Bhartiya S. Niacinamide and Neuroprotection: The Glaucoma Holy Grail. J Curr Glaucoma Pract 2022;16(3):141-143.
Collapse
Affiliation(s)
- Shibal Bhartiya
- Department of Ophthalmology, Fortis Memorial Research Institute (FMRI) Gurgaon, Haryana, India
| |
Collapse
|
160
|
Dada T, Verma S, Gagrani M, Bhartiya S, Chauhan N, Satpute K, Sharma N. Ocular and Systemic Factors Associated with Glaucoma. J Curr Glaucoma Pract 2022; 16:179-191. [PMID: 36793269 PMCID: PMC9905876 DOI: 10.5005/jp-journals-10078-1383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/14/2022] [Indexed: 01/25/2023] Open
Abstract
Glaucoma is one of the leading causes of irreversible blindness in the world. Although numerous factors have been implicated in the pathogenesis of glaucoma, the main focus of management still remains lowering the intraocular pressure (IOP) by medical or surgical therapy. However, a major challenge is that many glaucoma patients continue to progress despite good control of IOP. In this regard, the importance of other coexisting factors that may contribute to disease progression needs to be explored. Ophthalmologists need to be aware of ocular risk factors and the impact of systemic diseases and their medications, along with lifestyle modifications on the course of glaucomatous optic neuropathy and adopt a holistic approach in treating the eye as well as the patient to alleviate the suffering from glaucoma in a comprehensive manner. How to cite this article Dada T, Verma S, Gagrani M, et al. Ocular and Systemic Factors associated with Glaucoma. J Curr Glaucoma Pract 2022;16(3):179-191.
Collapse
Affiliation(s)
- Tanuj Dada
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Saurabh Verma
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Meghal Gagrani
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Shibal Bhartiya
- Senior consultant, Department of Opthalmology, fortis memorial research institute, Gurugram, Haryana, India
| | - Nidhi Chauhan
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Kanchan Satpute
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Namrata Sharma
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
161
|
Hui F, Casson RJ. Vitamin
B
3
: More than meets the eye. Clin Exp Ophthalmol 2022; 50:709-710. [DOI: 10.1111/ceo.14169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Flora Hui
- Centre for Eye Research Australia The University of Melbourne, Royal Victorian Eye and Ear Hospital Melbourne Australia
- Department of Optometry and Vision Sciences The University of Melbourne Melbourne Australia
| | - Robert J. Casson
- Ophthalmic Research Laboratories, Discipline of Ophthalmology and Visual Sciences University of Adelaide Adelaide Australia
- Ophthalmology Department Royal Adelaide Hospital Adelaide Australia
| |
Collapse
|
162
|
Johnson TV, Polo AD, Sahel JA, Schuman JS. Neuroprotection, Neuroenhancement, and Neuroregeneration of the Retina and Optic Nerve. OPHTHALMOLOGY SCIENCE 2022; 2:100216. [PMID: 36245765 PMCID: PMC9559091 DOI: 10.1016/j.xops.2022.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
163
|
Xin C, Yang N, Ding Y, Han L, Zhou Z, Guo X, Fang Z, Bai H, Peng B, Zhang C, Li L. Mitochondrial‐Targeting Vitamin B
3
Ameliorates the Phenotypes of Parkinson's Disease in vitro and in vivo by Restoring Mitochondrial Function. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chenqi Xin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 China
- Department of Central Laboratory of Basic Medicine The First Affiliated Hospital of Yangtze University Jingzhou 421000 China
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Yaqi Ding
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Linqi Han
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Zhiqiang Zhou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Xiaolu Guo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Zhijie Fang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University Xi'an 710072 China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University Xi'an 710072 China
| | - Chengwu Zhang
- School of Basic Medical Sciences Shanxi Medical University Taiyuan 310003 China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 China
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University Xi'an 710072 China
- The Institute of Flexible Electronics (IFE Future Technologies) Xiamen University Fujian 361005 China
| |
Collapse
|
164
|
Groth B, Huang CC, Lin SJ. The histone deacetylases Rpd3 and Hst1 antagonistically regulate de novo NAD + metabolism in the budding yeast Saccharomyces cerevisiae. J Biol Chem 2022; 298:102410. [PMID: 36007612 PMCID: PMC9486569 DOI: 10.1016/j.jbc.2022.102410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/05/2022] Open
Abstract
NAD+ is a cellular redox cofactor involved in many essential processes. The regulation of NAD+ metabolism and the signaling networks reciprocally interacting with NAD+-producing metabolic pathways are not yet fully understood. The NAD+-dependent histone deacetylase (HDAC) Hst1 has been shown to inhibit de novo NAD+ synthesis by repressing biosynthesis of nicotinic acid (BNA) gene expression. Here, we alternatively identify HDAC Rpd3 as a positive regulator of de novo NAD+ metabolism in the budding yeast Saccharomyces cerevisiae. We reveal that deletion of RPD3 causes marked decreases in the production of de novo pathway metabolites, in direct contrast to deletion of HST1. We determined the BNA expression profiles of rpd3Δ and hst1Δ cells to be similarly opposed, suggesting the two HDACs may regulate the BNA genes in an antagonistic fashion. Our chromatin immunoprecipitation analysis revealed that Rpd3 and Hst1 mutually influence each other’s binding distribution at the BNA2 promoter. We demonstrate Hst1 to be the main deacetylase active at the BNA2 promoter, with hst1Δ cells displaying increased acetylation of the N-terminal tail lysine residues of histone H4, H4K5, and H4K12. Conversely, we show that deletion of RPD3 reduces the acetylation of these residues in an Hst1-dependent manner. This suggests that Rpd3 may function to oppose spreading of Hst1-dependent heterochromatin and represents a unique form of antagonism between HDACs in regulating gene expression. Moreover, we found that Rpd3 and Hst1 also coregulate additional targets involved in other branches of NAD+ metabolism. These findings help elucidate the complex interconnections involved in effecting the regulation of NAD+ metabolism.
Collapse
Affiliation(s)
- Benjamin Groth
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California, USA
| | - Chi-Chun Huang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California, USA
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California, USA.
| |
Collapse
|
165
|
Vallabh NA, Armstrong J, Czanner G, McDonagh B, Choudhary A, Criddle DN, Willoughby CE. Evidence of impaired mitochondrial cellular bioenergetics in ocular fibroblasts derived from glaucoma patients. Free Radic Biol Med 2022; 189:102-110. [PMID: 35872337 DOI: 10.1016/j.freeradbiomed.2022.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 11/20/2022]
Abstract
Glaucoma is a progressive optic neuropathy characterized by the neurodegeneration of the retinal ganglion cells (RGCs) resulting in irreversible visual impairment and eventual blindness. RGCs are extremely susceptible to mitochondrial compromise due to their marked bioenergetic requirements and morphology. There is increasing interest in therapies targeting mitochondrial health as a method of preventing visual loss in managing glaucoma. The bioenergetic profile of Tenon's ocular fibroblasts from glaucoma patients and controls was investigated using the Seahorse XF24 analyser. Impaired mitochondrial cellular bioenergetics was detected in glaucomatous ocular fibroblasts including basal respiration, maximal respiration and spare capacity. Spare respiratory capacity levels reflect mitochondrial bio-energetic adaptability in response to pathophysiological stress. Basal oxidative stress was elevated in glaucomatous Tenon's ocular fibroblasts and hydrogen peroxide (H2O2) induced reactive oxygen species (ROS) simulated the glaucomatous condition in normal Tenon's ocular fibroblasts. This work supports the role of therapeutic interventions to target oxidative stress or provide mitochondrial energetic support in glaucoma.
Collapse
Affiliation(s)
- Neeru A Vallabh
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L69 3BX, United Kingdom; St. Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, L7 8XP, United Kingdom
| | - Jane Armstrong
- Institute of Systems, Molecular and Integrative Biology, Biosciences Building, University of Liverpool, Liverpool, L69 7BE, United Kingdom
| | - Gabriela Czanner
- School of Computer Science and Mathematics, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, United Kingdom; Faculty of Informatics and Information Technology, Slovak University of Technology, 842 16, Bratislava, Slovakia
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, National University of Ireland, Galway, Ireland
| | - Anshoo Choudhary
- St. Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, L7 8XP, United Kingdom
| | - David N Criddle
- Institute of Systems, Molecular and Integrative Biology, Biosciences Building, University of Liverpool, Liverpool, L69 7BE, United Kingdom
| | - Colin E Willoughby
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L69 3BX, United Kingdom; Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, BT52 1SA, United Kingdom.
| |
Collapse
|
166
|
Kodati B, McGrady NR, Jefferies HB, Stankowska DL, Krishnamoorthy RR. Oral administration of a dual ET A/ET B receptor antagonist promotes neuroprotection in a rodent model of glaucoma. Mol Vis 2022; 28:165-177. [PMID: 36274816 PMCID: PMC9491150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/05/2022] [Indexed: 12/03/2022] Open
Abstract
PURPOSE Glaucoma is a neurodegenerative disease associated with elevated intraocular pressure and characterized by optic nerve axonal degeneration, cupping of the optic disc, and loss of retinal ganglion cells (RGCs). The endothelin (ET) system of vasoactive peptides (ET-1, ET-2, ET-3) and their G-protein coupled receptors (ETA and ETB receptors) have been shown to contribute to the pathophysiology of glaucoma. The purpose of this study was to determine whether administration of the endothelin receptor antagonist macitentan was neuroprotective to RGCs and optic nerve axons when administered after the onset of intraocular pressure (IOP) elevation in ocular hypertensive rats. METHODS Male and female Brown Norway rats were subjected to the Morrison model of ocular hypertension by injection of hypertonic saline through the episcleral veins. Following IOP elevation, macitentan (5 mg/kg body wt) was administered orally 3 days per week, and rats with IOP elevation were maintained for 4 weeks. RGC function was determined by pattern electroretinography (PERG) at 2 and 4 weeks post-IOP elevation. Rats were euthanized by approved humane methods, and retinal flat mounts were generated and immunostained for the RGC-selective marker Brn3a. PPD-stained optic nerve sections were imaged by confocal microscopy. RGC and axon counts were conducted in a masked manner and compared between the treatment groups. RESULTS Significant protection against loss of RGCs and optic nerve axons was found following oral administration of macitentan in rats with elevated IOP. In addition, a protective trend for RGC function, as measured by pattern ERG analysis, was evident following macitentan treatment. CONCLUSIONS Macitentan treatment had a neuroprotective effect on RGCs and their axons, independent of its IOP-lowering effect, suggesting that macitentan may complement existing treatments to prevent neurodegeneration during ocular hypertension. The findings presented have implications for the use of macitentan as an oral formulation to promote neuroprotection in glaucoma patients.
Collapse
Affiliation(s)
- Bindu Kodati
- University of North Texas Health Science Center, Pharmacology and Neuroscience, North Texas Eye Research Institute, Fort Worth, TX
| | | | - Hayden B. Jefferies
- University of Texas Health Science Center, McGovern Medical School, Houston, TX
| | - Dorota L. Stankowska
- University of North Texas Health Science Center, Pharmacology and Neuroscience, North Texas Eye Research Institute, Fort Worth, TX
| | - Raghu R. Krishnamoorthy
- University of North Texas Health Science Center, Pharmacology and Neuroscience, North Texas Eye Research Institute, Fort Worth, TX
| |
Collapse
|
167
|
Sharma P, Ramachandran R. Retina regeneration: lessons from vertebrates. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac012. [PMID: 38596712 PMCID: PMC10913848 DOI: 10.1093/oons/kvac012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/24/2022] [Accepted: 06/25/2022] [Indexed: 04/11/2024]
Abstract
Unlike mammals, vertebrates such as fishes and frogs exhibit remarkable tissue regeneration including the central nervous system. Retina being part of the central nervous system has attracted the interest of several research groups to explore its regenerative ability in different vertebrate models including mice. Fishes and frogs completely restore the size, shape and tissue structure of an injured retina. Several studies have unraveled molecular mechanisms underlying retina regeneration. In teleosts, soon after injury, the Müller glial cells of the retina reprogram to form a proliferating population of Müller glia-derived progenitor cells capable of differentiating into various neural cell types and Müller glia. In amphibians, the transdifferentiation of retinal pigment epithelium and differentiation of ciliary marginal zone cells contribute to retina regeneration. In chicks and mice, supplementation with external growth factors or genetic modifications cause a partial regenerative response in the damaged retina. The initiation of retina regeneration is achieved through sequential orchestration of gene expression through controlled modulations in the genetic and epigenetic landscape of the progenitor cells. Several developmental biology pathways are turned on during the Müller glia reprogramming, retinal pigment epithelium transdifferentiation and ciliary marginal zone differentiation. Further, several tumorigenic pathways and gene expression events also contribute to the complete regeneration cascade of events. In this review, we address the various retinal injury paradigms and subsequent gene expression events governed in different vertebrate species. Further, we compared how vertebrates such as teleost fishes and amphibians can achieve excellent regenerative responses in the retina compared with their mammalian counterparts.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, SAS Nagar, Sector 81, Manauli PO, 140306 Mohali, Punjab, India
| | - Rajesh Ramachandran
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, SAS Nagar, Sector 81, Manauli PO, 140306 Mohali, Punjab, India
| |
Collapse
|
168
|
Mastropasqua L, Agnifili L, Ferrante C, Sacchi M, Figus M, Rossi GCM, Brescia L, Aloia R, Orlando G. Citicoline/Coenzyme Q10/Vitamin B3 Fixed Combination Exerts Synergistic Protective Effects on Neuronal Cells Exposed to Oxidative Stress. Nutrients 2022; 14:nu14142963. [PMID: 35889920 PMCID: PMC9316190 DOI: 10.3390/nu14142963] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The present study aimed to investigate the rationale and efficacy of using a citicoline, coenzyme Q10 (CAVAQ10) and vitamin B3 fixed combination in combating inflammation and oxidation in neuronal cells exposed to oxidative stress. Methods: HypoE22 cells and isolated hypothalamic specimens were selected as in vitro models to conduct the experiments. The efficacy of citicoline, CAVAQ10, and vitamin B3, with their fixed combination, were assayed after the exposure of hypothalamic cells to hydrogen peroxide (concentration range 1 nM–10 µM), in order to evaluate the biocompatibility of treatments. The activity of neuroprotective and pro-inflammatory factors, namely, brain-derived neurotrophic factor (BDNF), interleukin-6 (IL-6), and tumor necrosis factor-α (TNFα), involved in the neuronal cell damage in neurodegenerative diseases, were assayed in isolated hypothalamus. Results: Neither citicoline, CAVAQ10, nor vitamin B3 significantly altered hypothalamic cell viability, thus suggesting the biocompatibility of single ingredients and fixed combination in the concentration range considered for the study. In the same condition, citicoline and CAVAQ10 were also effective in reducing the gene expression of monoaminoxidase-B, involved in dopamine degradation. However, only citicoline demonstrated an ability to reduce dopamine levels. Conversely, all compounds were effective in reducing the gene expression of IL-6, and TNFα, and in inducing the gene expression of BDNF, with the co-administration of citicoline/CAVAQ10/vitamin B3 being generally more effective than single ingredients. Conclusions: The present findings support the beneficial and synergistic effects of citicoline, CAVAQ10, and vitamin B3 in fixed combination in reducing inflammation and oxidation, and in stimulating neurotrophin production in neuronal cells.
Collapse
Affiliation(s)
- Leonardo Mastropasqua
- Ophthalmology Clinic, Department of Medicine and Aging Science, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (L.M.); (R.A.)
| | - Luca Agnifili
- Ophthalmology Clinic, Department of Medicine and Aging Science, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (L.M.); (R.A.)
- Correspondence: (L.A.); (L.B.); Tel.: +39-0871-358489 (L.A. & L.B.); Fax: +39-0871-358794 (L.A. & L.B.)
| | - Claudio Ferrante
- Department of Pharmacy, G. d’Annunzio University, 66013 Chieti, Italy; (C.F.); (G.O.)
| | - Matteo Sacchi
- University Eye Clinic, San Giuseppe Hospital, IRCCS Multimedica, 20900 Milan, Italy;
| | - Michele Figus
- Ophthalmology Unit, Department of Surgery, Medicine, Molecular and Emergency, University of Pisa, 56124 Pisa, Italy;
| | | | - Lorenza Brescia
- Ophthalmology Clinic, Department of Medicine and Aging Science, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (L.M.); (R.A.)
- Correspondence: (L.A.); (L.B.); Tel.: +39-0871-358489 (L.A. & L.B.); Fax: +39-0871-358794 (L.A. & L.B.)
| | - Raffaella Aloia
- Ophthalmology Clinic, Department of Medicine and Aging Science, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (L.M.); (R.A.)
| | - Giustino Orlando
- Department of Pharmacy, G. d’Annunzio University, 66013 Chieti, Italy; (C.F.); (G.O.)
| |
Collapse
|
169
|
Chen S, Wang W, Cao Q, Wu S, Wang N, Ji L, Zhu W. Cationic Mechanosensitive Channels Mediate Trabecular Meshwork Responses to Cyclic Mechanical Stretch. Front Pharmacol 2022; 13:881286. [PMID: 35928263 PMCID: PMC9343793 DOI: 10.3389/fphar.2022.881286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
The trabecular meshwork (TM) is responsible for intraocular pressure (IOP) homeostasis in the eye. The tissue senses IOP fluctuations and dynamically adapts to the mechanical changes to either increase or decrease aqueous humor outflow. Cationic mechanosensitive channels (CMCs) have been reported to play critical roles in mediating the TM responses to mechanical forces. However, how CMCs influence TM cellular function affect aqueous humor drainage is still elusive. In this study, human TM (HTM) cells were collected from a Chinese donor and subjected to cyclically equiaxial stretching with an amplitude of 20% at 1 Hz GsMTx4, a non-selective inhibitor for CMCs, was added to investigate the proteomic changes induced by CMCs in response to mechanical stretch of HTM. Gene ontology enrichment analysis demonstrated that inhibition of CMCs significantly influenced several biochemical pathways, including store-operated calcium channel activity, microtubule cytoskeleton polarity, toll-like receptor signaling pathway, and neuron cell fate specification. Through heatmap analysis, we grouped 148 differentially expressed proteins (DEPs) into 21 clusters and focused on four specific patterns associated with Ca2+ homeostasis, autophagy, cell cycle, and cell fate. Our results indicated that they might be the critical downstream signals of CMCs adapting to mechanical forces and mediating AH outflow.
Collapse
Affiliation(s)
- Susu Chen
- School of Pharmacy, Qingdao University, Qingdao, China
| | - Wenyan Wang
- Department of Clinical Pharmacy, The Second Hospital of Traditional Chinese Medicine of Huangdao District, Qingdao, China
| | - Qilong Cao
- Qingdao Haier Biotech Co.,Ltd., Qingdao, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Capital Medical University, Beijing, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Capital Medical University, Beijing, China
| | - Lixia Ji
- School of Pharmacy, Qingdao University, Qingdao, China
- *Correspondence: Wei Zhu, ; Lixia Ji,
| | - Wei Zhu
- School of Pharmacy, Qingdao University, Qingdao, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University and Capital Medical University, Beijing, China
- *Correspondence: Wei Zhu, ; Lixia Ji,
| |
Collapse
|
170
|
Chen G, Zeng L, Yan F, Liu J, Qin M, Wang F, Zhang X. Long-term oral administration of naringenin counteracts aging-related retinal degeneration via regulation of mitochondrial dynamics and autophagy. Front Pharmacol 2022; 13:919905. [PMID: 35910364 PMCID: PMC9330024 DOI: 10.3389/fphar.2022.919905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Aging-related retinal degeneration can manifest as decreased visual function due to damage to retinal structures and dysfunction in retinal homeostasis. Naringenin, a flavonoid, has beneficial effects in preventing cellular aging, preserving the functionality of photoreceptors, and slowing down visual function loss. However, the role and potential mechanism of naringenin in the aging mouse retina require further investigation. In this study, we evaluated the effects of naringenin on the aging eye using electroretinogram (ERG) and hematoxylin and eosin staining and explored its potential mechanism by western blotting. ERG showed that naringenin increased the amplitude of the a- and b-waves of scotopic 3.0, 10.0, and the a-wave amplitude of photopic 3.0 in the aging mouse retina. Furthermore, administration of naringenin prevented aging-induced retinal degeneration in the total retina, ganglion cell, inner plexiform layer, inner nuclear layer, and outer nuclear layer. The expression of mitochondrial fusion protein two was increased, OPA1 protein expression and the ratio of L-OPA1/S-OPA1 were unchanged, and dynamin-related protein one was decreased in the 12-month-old mice treated with naringenin compared with the 12-month-old mice treated with vehicle. Furthermore, the downregulation of age-related alterations in autophagy was significantly rescued in the aging mice by treatment with naringenin. Taken together, these results suggest that the oral administration of naringenin improves visual function, retinal structure, mitochondrial dynamics, and autophagy in the aging mouse retinas. Naringenin may be a potential dietary supplement for the prevention or treatment of aging-related retinal degeneration.
Collapse
Affiliation(s)
- Guiping Chen
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, JX, China
| | - Ling Zeng
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, JX, China
| | - Feng Yan
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, JX, China
- School of Pharmacy, Nanchang University, Nanchang, JX, China
| | - Jinlong Liu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, JX, China
| | - Mengqi Qin
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, JX, China
| | - Feifei Wang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, JX, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Clinical Research Center of Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, JX, China
- *Correspondence: Xu Zhang,
| |
Collapse
|
171
|
Pietris J. The Role of NAD + and Nicotinamide (Vitamin B3) in Glaucoma: A Literature Review. J Nutr Sci Vitaminol (Tokyo) 2022; 68:151-154. [PMID: 35768245 DOI: 10.3177/jnsv.68.151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glaucoma is a collection of irreversible optic neuropathies which, if left untreated, lead to severe visual field loss. These diseases are a leading cause of blindness across the globe and are estimated to affect approximately 80 million people, particularly women and people of Asian descent (Quigley HA, Broman AT. 2006. Br J Ophthalmol 90: 262-267). This represents a major burden on healthcare systems worldwide. Recently, there has been increasing interest in the potential of nicotinamide (vitamin B3) as a novel option in the management of glaucoma. This review aims to analyse the currently available literature to determine whether there is evidence of an association between nicotinamide adenine dinucleotide (NAD+) and glaucomatous optic neuropathy, and whether nicotinamide has the potential to prevent or reverse these effects. The literature showed a strong connection between reduced NAD+ levels and retinal ganglion cell dysfunction through multiple different studies. There is also evidence of the positive effect of nicotinamide supplementation on retinal ganglion cell function in models of mouse glaucoma and in a study involving humans. Based on the literature findings, a recommendation has been made that more research into the efficacy, appropriate dosing, and potential side effects of nicotinamide supplementation is needed before it can be definitively determined whether it is appropriate for widespread prophylactic and therapeutic use against glaucoma in humans.
Collapse
Affiliation(s)
- James Pietris
- Bond University Faculty of Health Sciences & Medicine
| |
Collapse
|
172
|
Nanofortification of vitamin B-complex in food matrix: Need, regulations, and prospects. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 4:100100. [PMID: 35769403 PMCID: PMC9235048 DOI: 10.1016/j.fochms.2022.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 11/17/2022]
Abstract
Overview of nanomaterials to fortify food with vitamin B-complex. Nanofortification of food with vitamin B-complex to overcome conventional fortification challenges. Regulatory aspects, prospects, and upcoming trends of this indispensable technology are also discussed.
Micronutrient malnutrition (or hidden hunger) caused by vitamin B-complex deficiency is a significant concern in the growing population. Vitamin B-complex plays an essential role in many body functions. With the introduction of nanotechnology in the food industry, new and innovative techniques have started to develop, which holds a promising future to end malnutrition and help achieve United Nations Sustainable Developmental Goal-2 (UN SDG-2), named as zero hunger. This review highlights the need for nanofortification of vitamin B-complex in food matrix to address challenges faced by conventional fortification methods (bioavailability, controlled release, physicochemical stability, and shelf life). Further, different nanomaterials like organic, inorganic, carbon, and composites along with their applications, are discussed in detail. Among various nanomaterials, organic nanomaterials (lipid, polysaccharides, proteins, and biopolymers) were found best for fortifying vitamin B-complex in foods. Additionally, different regulatory aspects across the globe and prospects of this upcoming field are also highlighted in this review.
Collapse
|
173
|
Charng J, Ansari AS, Bondonno NP, Hunter ML, O'Sullivan TA, Louca P, Hammond CJ, Mackey DA. Association between dietary niacin and retinal nerve fibre layer thickness in healthy eyes of different ages. Clin Exp Ophthalmol 2022; 50:736-744. [DOI: 10.1111/ceo.14120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Jason Charng
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute) The University of Western Australia Perth Australia
- Department of Optometry The University of Western Australia Perth Australia
| | - Abdus Samad Ansari
- Section of Academic Ophthalmology School of Life Course Sciences, FoLSM, King's College London UK
| | - Nicola P. Bondonno
- Institute for Nutrition Research School of Medical and Health Sciences, Edith Cowan University Perth Australia
- The Danish Cancer Society Research Centre Copenhagen Denmark
| | - Michael L. Hunter
- School of Population and Global Health The University of Western Australia Perth Australia
- Busselton Population Medical Research Institute Inc. Perth Australia
| | - Therese A. O'Sullivan
- Institute for Nutrition Research School of Medical and Health Sciences, Edith Cowan University Perth Australia
| | - Panayiotis Louca
- Department of Twin Research & Genetic Epidemiology School of Life Course Sciences, FoLSM, King's College London London UK
| | - Chris J. Hammond
- Section of Academic Ophthalmology School of Life Course Sciences, FoLSM, King's College London UK
| | - David A. Mackey
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute) The University of Western Australia Perth Australia
| |
Collapse
|
174
|
Sharif NA. Degeneration of retina-brain components and connections in glaucoma: Disease causation and treatment options for eyesight preservation. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100037. [PMID: 36685768 PMCID: PMC9846481 DOI: 10.1016/j.crneur.2022.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 01/25/2023] Open
Abstract
Eyesight is the most important of our sensory systems for optimal daily activities and overall survival. Patients who experience visual impairment due to elevated intraocular pressure (IOP) are often those afflicted with primary open-angle glaucoma (POAG) which slowly robs them of their vision unless treatment is administered soon after diagnosis. The hallmark features of POAG and other forms of glaucoma are damaged optic nerve, retinal ganglion cell (RGC) loss and atrophied RGC axons connecting to various brain regions associated with receipt of visual input from the eyes and eventual decoding and perception of images in the visual cortex. Even though increased IOP is the major risk factor for POAG, the disease is caused by many injurious chemicals and events that progress slowly within all components of the eye-brain visual axis. Lowering of IOP mitigates the damage to some extent with existing drugs, surgical and device implantation therapeutic interventions. However, since multifactorial degenerative processes occur during aging and with glaucomatous optic neuropathy, different forms of neuroprotective, nutraceutical and electroceutical regenerative and revitalizing agents and processes are being considered to combat these eye-brain disorders. These aspects form the basis of this short review article.
Collapse
Affiliation(s)
- Najam A. Sharif
- Duke-National University of Singapore Medical School, Singapore,Singapore Eye Research Institute (SERI), Singapore,Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, Texas, USA,Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX, USA,Department of Surgery & Cancer, Imperial College of Science and Technology, St. Mary's Campus, London, UK,Department of Pharmacy Sciences, School of School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA,Ophthalmology Innovation Center, Santen Incorporated, 6401 Hollis Street (Suite #125), Emeryville, CA, 94608, USA,Ophthalmology Innovation Center, Santen Incorporated, 6401 Hollis Street (Suite #125), Emeryville, CA, 94608, USA.
| |
Collapse
|
175
|
He M, Rong R, Ji D, Xia X. From Bench to Bed: The Current Genome Editing Therapies for Glaucoma. Front Cell Dev Biol 2022; 10:879957. [PMID: 35652098 PMCID: PMC9149310 DOI: 10.3389/fcell.2022.879957] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Glaucoma is a group of optic neuropathies featured by degeneration of retinal ganglion cells and loss of their axons in the optic nerve. The only currently approved therapies focus on lowering intraocular pressure with medication and surgery. Over the previous few decades, technological advances and research progress regarding pathogenesis has brought glaucomatous gene therapy to the forefront. In this review, we discuss the three current genome editing methods and potential disease mechanisms of glaucoma. We further summarize different genome editing strategies that are being developed to target a number of glaucoma-related genes and pathways from four aspects including strategies to lower intraocular pressure, neuroprotection, RGC and optic nerve neuro-regeneration, and other strategies. In summary, genome therapy is a promising therapy for treating patients with glaucoma and has great potential to be widely applied in clinical practice.
Collapse
Affiliation(s)
- Meihui He
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Rong
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Dan Ji
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
176
|
Wang L, Liu M, Zu Y, Yao H, Wu C, Zhang R, Ma W, Lu H, Xi S, Liu Y, Hua L, Wang G, Tang Y. Optimization of NAMPT activators to achieve in vivo neuroprotective efficacy. Eur J Med Chem 2022; 236:114260. [DOI: 10.1016/j.ejmech.2022.114260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/04/2022]
|
177
|
CB 1R, CB 2R and TRPV1 expression and modulation in in vivo, animal glaucoma models: A systematic review. Biomed Pharmacother 2022; 150:112981. [PMID: 35468582 DOI: 10.1016/j.biopha.2022.112981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The endocannabinoid system (ECS) is a complex biological regulatory system. Its expression and functionality have been widely investigated in ocular tissues. Recent data have reported its modulation to be valid in determining an ocular hypotensive and a neuroprotective effect in preclinical animal models of glaucoma. AIM This study aimed to explore the available literature on cannabinoid receptor 1 (CB1R), cannabinoid receptor 2 (CB2R), and transient receptor potential vanilloid 1 (TRPV1) expression in the trabecular meshwork (TM), ciliary body (CB), and retina as well as their ocular hypotensive and neuroprotective effects in preclinical, in vivo, animal glaucoma models. MATERIALS AND METHODS The study adhered to both PRISMA and SYRCLE guidelines. Sixty-nine full-length articles were included in the final analysis. RESULTS Preclinical studies indicated a widespread distribution of CB1R, CB2R, and TRPV1 in the TM, CB, and retina, although receptor-, age-, and species-dependent differences were observed. CB1R and CB2R modulation have been shown to exert ocular hypotensive effects in preclinical models via the regulation of inflow and outflow pathways. Retinal cell neuroprotection has been achieved in several experimental models, mediated by agonists and antagonists of CB1R, CB2R, and TRPV1. DISCUSSION Despite the growing body of preclinical data regarding the expression and modulation of ECS in ocular tissues, the mechanisms responsible for the hypotensive and neuroprotective efficacy exerted by this system remain largely elusive. Research on this topic is advocated to further substantiate the hypothesis that the ECS is a new potential therapeutic target in the context of glaucoma.
Collapse
|
178
|
Babetto E, Beirowski B. Of axons that struggle to make ends meet: Linking axonal bioenergetic failure to programmed axon degeneration. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148545. [PMID: 35339437 DOI: 10.1016/j.bbabio.2022.148545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023]
Abstract
Axons are the long, fragile, and energy-hungry projections of neurons that are challenging to sustain. Together with their associated glia, they form the bulk of the neuronal network. Pathological axon degeneration (pAxD) is a driver of irreversible neurological disability in a host of neurodegenerative conditions. Halting pAxD is therefore an attractive therapeutic strategy. Here we review recent work demonstrating that pAxD is regulated by an auto-destruction program that revolves around axonal bioenergetics. We then focus on the emerging concept that axonal and glial energy metabolism are intertwined. We anticipate that these discoveries will encourage the pursuit of new treatment strategies for neurodegeneration.
Collapse
Affiliation(s)
- Elisabetta Babetto
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| | - Bogdan Beirowski
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
179
|
Amin D, Kuwajima T. Differential Retinal Ganglion Cell Vulnerability, A Critical Clue for the Identification of Neuroprotective Genes in Glaucoma. FRONTIERS IN OPHTHALMOLOGY 2022; 2:905352. [PMID: 38983528 PMCID: PMC11182220 DOI: 10.3389/fopht.2022.905352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/05/2022] [Indexed: 07/11/2024]
Abstract
Retinal ganglion cells (RGCs) are the neurons in the retina which directly project to the brain and transmit visual information along the optic nerve. Glaucoma, one of the leading causes of blindness, is characterized by elevated intraocular pressure (IOP) and degeneration of the optic nerve, which is followed by RGC death. Currently, there are no clinical therapeutic drugs or molecular interventions that prevent RGC death outside of IOP reduction. In order to overcome these major barriers, an increased number of studies have utilized the following combined analytical methods: well-established rodent models of glaucoma including optic nerve injury models and transcriptomic gene expression profiling, resulting in the successful identification of molecules and signaling pathways relevant to RGC protection. In this review, we present a comprehensive overview of pathological features in a variety of animal models of glaucoma and top differentially expressed genes (DEGs) depending on disease progression, RGC subtypes, retinal regions or animal species. By comparing top DEGs among those different transcriptome profiles, we discuss whether commonly listed DEGs could be defined as potential novel therapeutic targets in glaucoma, which will facilitate development of future therapeutic neuroprotective strategies for treatments of human patients in glaucoma.
Collapse
Affiliation(s)
- Dwarkesh Amin
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Takaaki Kuwajima
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
180
|
Lipid metabolism dysfunction induced by age-dependent DNA methylation accelerates aging. Signal Transduct Target Ther 2022; 7:162. [PMID: 35610223 PMCID: PMC9130224 DOI: 10.1038/s41392-022-00964-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 02/05/2023] Open
Abstract
Epigenetic alterations and metabolic dysfunction are two hallmarks of aging. However, the mechanism of how their interaction regulates aging, particularly in mammals, remains largely unknown. Here we show ELOVL fatty acid elongase 2 (Elovl2), a gene whose epigenetic alterations are most highly correlated with age prediction, contributes to aging by regulating lipid metabolism. We applied artificial intelligence to predict the protein structure of ELOVL2 and the interaction with its substrate. Impaired Elovl2 function disturbs lipid synthesis with increased endoplasmic reticulum stress and mitochondrial dysfunction, leading to key aging phenotypes at both cellular and physiological level. Furthermore, restoration of mitochondrial activity can rescue age-related macular degeneration (AMD) phenotypes induced by Elovl2 deficiency in human retinal pigmental epithelial (RPE) cells; this indicates a conservative mechanism in both human and mouse. Taken together, we revealed an epigenetic-metabolism axis contributing to aging and illustrate the power of an AI-based approach in structure-function studies.
Collapse
|
181
|
Porciatti V, Chou TH. Using Noninvasive Electrophysiology to Determine Time Windows of Neuroprotection in Optic Neuropathies. Int J Mol Sci 2022; 23:5751. [PMID: 35628564 PMCID: PMC9145583 DOI: 10.3390/ijms23105751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
The goal of neuroprotection in optic neuropathies is to prevent loss of retinal ganglion cells (RGCs) and spare their function. The ideal time window for initiating neuroprotective treatments should be the preclinical period at which RGCs start losing their functional integrity before dying. Noninvasive electrophysiological tests such as the Pattern Electroretinogram (PERG) can assess the ability of RGCs to generate electrical signals under a protracted degenerative process in both clinical conditions and experimental models, which may have both diagnostic and prognostic values and provide the rationale for early treatment. The PERG can be used to longitudinally monitor the acute and chronic effects of neuroprotective treatments. User-friendly versions of the PERG technology are now commercially available for both clinical and experimental use.
Collapse
|
182
|
Hydrogen sulfide supplement preserves mitochondrial function of retinal ganglion cell in a rat glaucoma model. Cell Tissue Res 2022; 389:171-185. [PMID: 35593936 DOI: 10.1007/s00441-022-03640-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 05/09/2022] [Indexed: 11/02/2022]
Abstract
Glaucoma is a neurodegenerative disease of visual system characterized by gradual loss of retinal ganglion cells (RGC). Since mitochondrial dysfunction of RGC is significantly involved in the pathological mechanisms of glaucoma, and hydrogen sulfide (H2S) takes part in the pathogeny of glaucoma and shows promising potential in restoring mitochondrial function in other neurons, the authors aimed to investigate the impact of H2S on mitochondrial function of RGC with a rat glaucoma model. An established chronic ocular hypertension (COH) rat model induced by injection of cross-linking hydrogel into anterior chamber was adopted, and a H2S donor, sodium hydrosulfide (NaHS), was selected to treat rats through intraperitoneal injection. After a period of 4 weeks, RGCs were isolated from the subjected rats with an immunopanning method and went through evaluations of mitochondrial membrane potential (MMP), mitochondrial permeability transition pore (MPTP) opening, intracellular Ca2 + level, reactive oxygen species (ROS) level, and cytosolic Cytochrome C distribution. The results showed that the mitochondrial function of RGC in experimental glaucoma was markedly improved by H2S supplement, being presented as stabilization of MMP, alleviation of MPTP opening, improvement of intracellular Ca2+ hemostasis, reduction of ROS accumulation, and inhibition of Cytochrome C release. Our study implicated that preservation of mitochondrial function by H2S probably plays a key role in protecting RGC in the context of glaucomatous neuropathy, and it is worth further deepgoing research to benefit the development of glaucoma treatment.
Collapse
|
183
|
Beirowski B. Emerging evidence for compromised axonal bioenergetics and axoglial metabolic coupling as drivers of neurodegeneration. Neurobiol Dis 2022; 170:105751. [PMID: 35569720 DOI: 10.1016/j.nbd.2022.105751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022] Open
Abstract
Impaired bioenergetic capacity of the nervous system is thought to contribute to the pathogenesis of many neurodegenerative diseases (NDD). Since neuronal synapses are believed to be the major energy consumers in the nervous system, synaptic derangements resulting from energy deficits have been suggested to play a central role for the development of many of these disorders. However, long axons constitute the largest compartment of the neuronal network, require large amounts of energy, are metabolically and structurally highly vulnerable, and undergo early injurious stresses in many NDD. These stresses likely impose additional energy demands for continuous adaptations and repair processes, and may eventually overwhelm axonal maintenance mechanisms. Indeed, pathological axon degeneration (pAxD) is now recognized as an etiological focus in a wide array of NDD associated with bioenergetic abnormalities. In this paper I first discuss the recognition that a simple experimental model for pAxD is regulated by an auto-destruction program that exhausts distressed axons energetically. Provision of the energy substrate pyruvate robustly counteracts this axonal breakdown. Importantly, energy decline in axons is not only a consequence but also an initiator of this program. This opens the intriguing possibility that axon dysfunction and pAxD can be suppressed by preemptively energizing distressed axons. Second, I focus on the emerging concept that axons communicate energetically with their flanking glia. This axoglial metabolic coupling can help offset the axonal energy decline that activates the pAxD program but also jeopardize axon integrity as a result of perturbed glial metabolism. Third, I present compelling evidence that abnormal axonal energetics and compromised axoglial metabolic coupling accompany the activation of the pAxD auto-destruction pathway in models of glaucoma, a widespread neurodegenerative condition with pathogenic overlap to other common NDD. In conclusion, I propose a novel conceptual framework suggesting that therapeutic interventions focused on bioenergetic support of the nervous system should also address axons and their metabolic interactions with glia.
Collapse
Affiliation(s)
- Bogdan Beirowski
- Institute for Myelin and Glia Exploration, New York State Center of Excellence in Bioinformatics & Life Sciences (CBLS), University at Buffalo, Buffalo, NY 14203, USA; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
184
|
Tang Y, Shah S, Cho KS, Sun X, Chen DF. Metabolomics in Primary Open Angle Glaucoma: A Systematic Review and Meta-Analysis. Front Neurosci 2022; 16:835736. [PMID: 35645711 PMCID: PMC9135181 DOI: 10.3389/fnins.2022.835736] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/15/2022] [Indexed: 01/01/2023] Open
Abstract
Glaucoma is a leading cause of blindness worldwide. It is suggested that primary open angle glaucoma (POAG), the most common form of glaucoma, may be associated with significant metabolic alternations, but the systemic literature review and meta-analysis in the area have been missing. Altered metabolomic profiles in the aqueous humor and plasma may serve as possible biomarkers for early detection or treatment targets. In this article, we performed a systematic meta-analysis of the current literature surrounding the metabolomics of patients with POAG and metabolites associated with the disease. Results suggest several metabolites found to be specifically altered in patients with POAG, suggesting broad generalizability and pathways for future research.
Collapse
Affiliation(s)
- Yizhen Tang
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Simran Shah
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Xinghuai Sun
- Department of Ophthalmology, Eye Institute, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Dong Feng Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
- *Correspondence: Dong Feng Chen,
| |
Collapse
|
185
|
Tribble JR, Kastanaki E, Uslular AB, Rutigliani C, Enz TJ, Williams PA. Valproic Acid Reduces Neuroinflammation to Provide Retinal Ganglion Cell Neuroprotection in the Retina Axotomy Model. Front Cell Dev Biol 2022; 10:903436. [PMID: 35646919 PMCID: PMC9135180 DOI: 10.3389/fcell.2022.903436] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroinflammation is a critical and targetable pathogenic component of neurodegenerative diseases, including glaucoma, the leading cause of irreversible blindness. Valproic acid has previously been demonstrated to reduce neuroinflammation and is neuroprotective in a number of experimental settings. To determine whether valproic acid can limit retinal neuroinflammation and protect retinal neurons we used an ex vivo retina explant (axotomy) model to isolate resident glial responses from blood-derived monocytes. Neuroinflammatory status was defined using high resolution confocal imaging with 3D morphological reconstruction and cytokine protein arrays. Valproic acid significantly reduced microglia and astrocyte morphological changes, consistent with a reduction in pro-inflammatory phenotypes. Cytokine profiling demonstrated that valproic acid significantly attenuated or prevented expression of pro-inflammatory cytokines in injured retina. This identifies that the retinal explant model as a useful tool to explore resident neuroinflammation in a rapid timescale whilst maintaining a complex system of cell interactions and valproic acid as a useful drug to further explore anti-neuroinflammatory strategies in retinal disease.
Collapse
|
186
|
Shah SH, Schiapparelli LM, Yokota S, Ma Y, Xia X, Shankar S, Saturday S, Nahmou M, Sun C, Yates J, Cline HT, Goldberg JL. Quantitative BONCAT Allows Identification of Newly Synthesized Proteins after Optic Nerve Injury. J Neurosci 2022; 42:4042-4052. [PMID: 35396330 PMCID: PMC9097770 DOI: 10.1523/jneurosci.3100-20.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/22/2022] [Accepted: 03/24/2022] [Indexed: 11/21/2022] Open
Abstract
Retinal ganglion cells (RGCs) die after optic nerve trauma or in degenerative disease. However, acute changes in protein expression that may regulate RGC response to injury are not fully understood, and detailed methods to quantify new protein synthesis have not been tested. Here, we develop and apply a new in vivo quantitative measure of newly synthesized proteins to examine changes occurring in the retina after optic nerve injury. Azidohomoalanine, a noncanonical amino acid, was injected intravitreally into the eyes of rodents of either sex with or without optic nerve injury. Isotope variants of biotin-alkyne were used for quantitative BONCAT (QBONCAT) mass spectrometry, allowing identification of protein synthesis and transport rate changes in more than 1000 proteins at 1 or 5 d after optic nerve injury. In vitro screening showed several newly synthesized proteins regulate axon outgrowth in primary neurons in vitro This novel approach to targeted quantification of newly synthesized proteins after injury uncovers a dynamic translational response within broader proteostasis regulation and enhances our understanding of the cellular response to injury.SIGNIFICANCE STATEMENT Optic nerve injury results in death and degeneration of retinal ganglion cells and their axons. The specific cellular response to injury, including changes in new protein synthesis, is obscured by existing proteins and protein degradation. In this study, we introduce QBONCAT to isolate and quantify acute protein synthesis and subsequent transport between cellular compartments. We identify novel candidate protein effectors of the regenerative response and uncover their regulation of axon growth in vitro, validating the utility of QBONCAT for the discovery of novel regulatory and therapeutic candidates after optic nerve injury.
Collapse
Affiliation(s)
- Sahil H Shah
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94303
- Neuroscience Department and Dorris Neuroscience Center, Scripps Research, La Jolla, California 92093
- Neurosciences Graduate Program and Medical Scientist Training Program, University of California, San Diego, La Jolla, California 92093
| | - Lucio M Schiapparelli
- Neuroscience Department and Dorris Neuroscience Center, Scripps Research, La Jolla, California 92093
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, 27708
| | - Satoshi Yokota
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94303
| | - Yuanhui Ma
- Department of Molecular Medicine, Scripps Research, La Jolla, California 92093
| | - Xin Xia
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94303
| | - Sahana Shankar
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94303
| | - Sarah Saturday
- Neuroscience Department and Dorris Neuroscience Center, Scripps Research, La Jolla, California 92093
| | - Michael Nahmou
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94303
| | - Catalina Sun
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94303
| | - John Yates
- Department of Molecular Medicine, Scripps Research, La Jolla, California 92093
| | - Hollis T Cline
- Neuroscience Department and Dorris Neuroscience Center, Scripps Research, La Jolla, California 92093
| | - Jeffrey L Goldberg
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94303
| |
Collapse
|
187
|
Marola OJ, Howell GR, Libby RT. Vascular derived endothelin receptor A controls endothelin-induced retinal ganglion cell death. Cell Death Discov 2022; 8:207. [PMID: 35429992 PMCID: PMC9013356 DOI: 10.1038/s41420-022-00985-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Endothelin (EDN, also known as ET) signaling has been suggested to be an important mediator of retinal ganglion cell (RGC) death in glaucoma. Antagonism of EDN receptors (EDNRA and EDNRB, also known as ET-A and ET-B) prevented RGC death in mouse models of chronic ocular hypertension, and intravitreal injection of EDN ligand was sufficient to drive RGC death. However, it remains unclear which cell types EDN ligands directly affect to elicit RGC death. Multiple cell types in the retina and optic nerve express EDNRA and EDNRB and thus could respond to EDN ligands in the context of glaucoma. Here, we systematically deleted Edn receptors from specific cell types to identify the critical EDN receptor mediating RGC death in vivo. Deletion of both Ednra and Ednrb from retinal neurons (including RGCs) and macroglia did not prevent RGC loss after exposure to EDN1 ligands, suggesting EDN1 ligands cause RGC death via an indirect mechanism involving a secondary cell type. Deletion of Ednra from the full body, and then specifically from vascular mural cells, prevented EDN1-induced vasoconstriction and RGC death. Together, these data suggest EDN ligands cause RGC death via a mechanism initiated by vascular mural cells. It is possible RGC death is a consequence of vascular mural cell-induced vasoconstriction and its pathological sequelae. These results highlight the potential importance of neurovascular dysfunction in glaucoma.
Collapse
Affiliation(s)
- Olivia J Marola
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, USA
- Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, USA
- The Center for Visual Sciences, University of Rochester, Rochester, NY, USA
| | - Gareth R Howell
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
| | - Richard T Libby
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, USA.
- The Center for Visual Sciences, University of Rochester, Rochester, NY, USA.
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
188
|
Fang F, Zhuang P, Feng X, Liu P, Liu D, Huang H, Li L, Chen W, Liu L, Sun Y, Jiang H, Ye J, Hu Y. NMNAT2 is downregulated in glaucomatous RGCs, and RGC-specific gene therapy rescues neurodegeneration and visual function. Mol Ther 2022; 30:1421-1431. [PMID: 35114390 PMCID: PMC9077370 DOI: 10.1016/j.ymthe.2022.01.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/17/2021] [Accepted: 01/27/2022] [Indexed: 11/19/2022] Open
Abstract
The lack of neuroprotective treatments for retinal ganglion cells (RGCs) and optic nerve (ON) is a central challenge for glaucoma management. Emerging evidence suggests that redox factor NAD+ decline is a hallmark of aging and neurodegenerative diseases. Supplementation with NAD+ precursors and overexpression of NMNAT1, the key enzyme in the NAD+ biosynthetic process, have significant neuroprotective effects. We first profile the translatomes of RGCs in naive mice and mice with silicone oil-induced ocular hypertension (SOHU)/glaucoma by RiboTag mRNA sequencing. Intriguingly, only NMNAT2, but not NMNAT1 or NMNAT3, is significantly decreased in SOHU glaucomatous RGCs, which we confirm by in situ hybridization. We next demonstrate that AAV2 intravitreal injection-mediated overexpression of long half-life NMNAT2 mutant driven by RGC-specific mouse γ-synuclein (mSncg) promoter restores decreased NAD+ levels in glaucomatous RGCs and ONs. Moreover, this RGC-specific gene therapy strategy delivers significant neuroprotection of both RGC soma and axon and preservation of visual function in the traumatic ON crush model and the SOHU glaucoma model. Collectively, our studies suggest that the weakening of NMNAT2 expression in glaucomatous RGCs contributes to a deleterious NAD+ decline, and that modulating RGC-intrinsic NMNAT2 levels by AAV2-mSncg vector is a promising gene therapy for glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Fang Fang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Pei Zhuang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Xue Feng
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Pingting Liu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Dong Liu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Haoliang Huang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Liang Li
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Wei Chen
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Liang Liu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Haowen Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA.
| |
Collapse
|
189
|
Zhang S, Zhao J, Quan Z, Li H, Qing H. Mitochondria and Other Organelles in Neural Development and Their Potential as Therapeutic Targets in Neurodegenerative Diseases. Front Neurosci 2022; 16:853911. [PMID: 35450015 PMCID: PMC9016280 DOI: 10.3389/fnins.2022.853911] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
The contribution of organelles to neural development has received increasing attention. Studies have shown that organelles such as mitochondria, endoplasmic reticulum (ER), lysosomes, and endosomes play important roles in neurogenesis. Specifically, metabolic switching, reactive oxygen species production, mitochondrial dynamics, mitophagy, mitochondria-mediated apoptosis, and the interaction between mitochondria and the ER all have roles in neurogenesis. Lysosomes and endosomes can regulate neurite growth and extension. Moreover, metabolic reprogramming represents a novel strategy for generating functional neurons. Accordingly, the exploration and application of mechanisms underlying metabolic reprogramming will be beneficial for neural conversion and regenerative medicine. There is adequate evidence implicating the dysfunction of cellular organelles—especially mitochondria—in neurodegenerative disorders, and that improvement of mitochondrial function may reverse the progression of these diseases through the reinforcement of adult neurogenesis. Therefore, these organelles have potential as therapeutic targets for the treatment of neurodegenerative diseases. In this review, we discuss the function of these organelles, especially mitochondria, in neural development, focusing on their potential as therapeutic targets in neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Shuyuan Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Juan Zhao
- Aerospace Medical Center, Aerospace Center Hospital, Beijing, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Hui Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
- *Correspondence: Hui Li,
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
- Hong Qing,
| |
Collapse
|
190
|
Hou M, Shao Z, Zhang S, Liu X, Fan P, Jiang M, Zhao Y, Xiao R, Yuan H. Age-related visual impairments and retinal ganglion cells axonal degeneration in a mouse model harboring OPTN (E50K) mutation. Cell Death Dis 2022; 13:362. [PMID: 35436991 PMCID: PMC9016082 DOI: 10.1038/s41419-022-04836-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 11/09/2022]
Abstract
Retinal ganglion cells (RGCs) axons are the signal carriers of visual information between retina and brain. Therefore, they play one of the important roles affected in many optic neurodegenerative diseases like glaucoma. Among the genetic risks associated with glaucoma, the E50K mutation in the Optineurin (OPTN) gene are known to result in glaucoma in the absence of increased intraocular pressure (IOP), whereas the relevant pathological mechanism and neurological issues remain to be further investigated. In this study, the OPTN (E50K) mutant mouse model was established through CRISPR/Cas9-mediated genome editing, and aging-related RGCs loss and the visual dysfunction were identified. In E50K mice 16 months old, the axonal transport decreased comparing to wild-type (WT) mice at the same age. Furthermore, results of electron microscopy demonstrated significant morphological anomaly of mitochondria in RGCs axons of young E50K mice 3 months old, and these changes were aggravated with age. These indicated that the damaged mitochondria-associated dysfunction of RGCs axon should play an etiological role in glaucoma as an age-related outcome of OPTN (E50K) mutation. The findings of this study have potential implications for the targeted prevention and treatment of NTG.
Collapse
|
191
|
Dias MS, Luo X, Ribas VT, Petrs-Silva H, Koch JC. The Role of Axonal Transport in Glaucoma. Int J Mol Sci 2022; 23:ijms23073935. [PMID: 35409291 PMCID: PMC8999615 DOI: 10.3390/ijms23073935] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Glaucoma is a neurodegenerative disease that affects the retinal ganglion cells (RGCs) and leads to progressive vision loss. The first pathological signs can be seen at the optic nerve head (ONH), the structure where RGC axons leave the retina to compose the optic nerve. Besides damage of the axonal cytoskeleton, axonal transport deficits at the ONH have been described as an important feature of glaucoma. Axonal transport is essential for proper neuronal function, including transport of organelles, synaptic components, vesicles, and neurotrophic factors. Impairment of axonal transport has been related to several neurodegenerative conditions. Studies on axonal transport in glaucoma include analysis in different animal models and in humans, and indicate that its failure happens mainly in the ONH and early in disease progression, preceding axonal and somal degeneration. Thus, a better understanding of the role of axonal transport in glaucoma is not only pivotal to decipher disease mechanisms but could also enable early therapies that might prevent irreversible neuronal damage at an early time point. In this review we present the current evidence of axonal transport impairment in glaucomatous neurodegeneration and summarize the methods employed to evaluate transport in this disease.
Collapse
Affiliation(s)
- Mariana Santana Dias
- Intermediate Laboratory of Gene Therapy and Viral Vectors, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (M.S.D.); (H.P.-S.)
| | - Xiaoyue Luo
- Department of Neurology, University Medical Center Göttingen, 37077 Göttingen, Germany;
| | - Vinicius Toledo Ribas
- Laboratory of Neurobiology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Hilda Petrs-Silva
- Intermediate Laboratory of Gene Therapy and Viral Vectors, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (M.S.D.); (H.P.-S.)
| | - Jan Christoph Koch
- Department of Neurology, University Medical Center Göttingen, 37077 Göttingen, Germany;
- Correspondence:
| |
Collapse
|
192
|
Wareham LK, Liddelow SA, Temple S, Benowitz LI, Di Polo A, Wellington C, Goldberg JL, He Z, Duan X, Bu G, Davis AA, Shekhar K, Torre AL, Chan DC, Canto-Soler MV, Flanagan JG, Subramanian P, Rossi S, Brunner T, Bovenkamp DE, Calkins DJ. Solving neurodegeneration: common mechanisms and strategies for new treatments. Mol Neurodegener 2022; 17:23. [PMID: 35313950 PMCID: PMC8935795 DOI: 10.1186/s13024-022-00524-0] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Across neurodegenerative diseases, common mechanisms may reveal novel therapeutic targets based on neuronal protection, repair, or regeneration, independent of etiology or site of disease pathology. To address these mechanisms and discuss emerging treatments, in April, 2021, Glaucoma Research Foundation, BrightFocus Foundation, and the Melza M. and Frank Theodore Barr Foundation collaborated to bring together key opinion leaders and experts in the field of neurodegenerative disease for a virtual meeting titled "Solving Neurodegeneration". This "think-tank" style meeting focused on uncovering common mechanistic roots of neurodegenerative disease and promising targets for new treatments, catalyzed by the goal of finding new treatments for glaucoma, the world's leading cause of irreversible blindness and the common interest of the three hosting foundations. Glaucoma, which causes vision loss through degeneration of the optic nerve, likely shares early cellular and molecular events with other neurodegenerative diseases of the central nervous system. Here we discuss major areas of mechanistic overlap between neurodegenerative diseases of the central nervous system: neuroinflammation, bioenergetics and metabolism, genetic contributions, and neurovascular interactions. We summarize important discussion points with emphasis on the research areas that are most innovative and promising in the treatment of neurodegeneration yet require further development. The research that is highlighted provides unique opportunities for collaboration that will lead to efforts in preventing neurodegeneration and ultimately vision loss.
Collapse
Affiliation(s)
- Lauren K Wareham
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Sally Temple
- Neural Stem Cell Institute, NY, 12144, Rensselaer, USA
| | - Larry I Benowitz
- Department of Neurosurgery and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
| | - Cheryl Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, CA, Palo Alto, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, MA, Boston, USA
| | - Xin Duan
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Albert A Davis
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, USA
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, CA, 91125, Pasadena, USA
| | - M Valeria Canto-Soler
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado, Aurora, CO, USA
| | - John G Flanagan
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA, USA
| | | | | | | | | | - David J Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
193
|
Syc-Mazurek SB, Yang HS, Marola OJ, Howell GR, Libby RT. Transcriptional control of retinal ganglion cell death after axonal injury. Cell Death Dis 2022; 13:244. [PMID: 35296661 PMCID: PMC8927149 DOI: 10.1038/s41419-022-04666-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 01/19/2022] [Accepted: 02/09/2022] [Indexed: 11/25/2022]
Abstract
Injury to the axons of retinal ganglion cells (RGCs) is a key pathological event in glaucomatous neurodegeneration. The transcription factors JUN (the target of the c-Jun N-terminal kinases, JNKs) and DDIT3/CHOP (a mediator of the endoplasmic reticulum stress response) have been shown to control the majority of proapoptotic signaling after mechanical axonal injury in RGCs and in other models of neurodegeneration. The downstream transcriptional networks controlled by JUN and DDIT3, which are critical for RGC death, however, are not well defined. To determine these networks, RNA was isolated from the retinas of wild-type mice and mice deficient in Jun, Ddit3, and both Jun and Ddit3 three days after mechanical optic nerve crush injury (CONC). RNA-sequencing data analysis was performed and immunohistochemistry was used to validate potential transcriptional signaling changes after axonal injury. This study identified downstream transcriptional changes after injury including both neuronal survival and proinflammatory signaling that were attenuated to differing degrees by loss of Ddit3, Jun, and Ddit3/Jun. These data suggest proinflammatory signaling in the retina might be secondary to activation of pro-death pathways in RGCs after acute axonal injury. These results determine the downstream transcriptional networks important for apoptotic signaling which may be important for ordering and staging the pro-degenerative signals after mechanical axonal injury.
Collapse
Affiliation(s)
- Stephanie B Syc-Mazurek
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
- Medical Scientist Training Program, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Olivia J Marola
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
- Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, USA
- The Center for Visual Sciences, University of Rochester, Rochester, NY, USA
| | | | - Richard T Libby
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA.
- The Center for Visual Sciences, University of Rochester, Rochester, NY, USA.
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
194
|
Neuroprotective Effects of Nicotinamide (Vitamin B3) on Neurodegeneration in Diabetic Rat Retinas. Nutrients 2022; 14:nu14061162. [PMID: 35334819 PMCID: PMC8950738 DOI: 10.3390/nu14061162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 01/27/2023] Open
Abstract
The loss of inner retinal neurons is an initial event in diabetic retinopathy. In diabetic retinas, oxidative stress is increased, which could lead to increased oxidative DNA damage. Nicotinamide is a precursor to nicotinamide adenine dinucleotide, which contributes to the DNA damage response. We investigated whether nicotinamide plays a neuroprotective role in diabetic retinal neurodegeneration in terms of DNA repair. Male Sprague Dawley rats with streptozotocin-induced diabetes were orally administered nicotinamide (500 mg/kg/day) for 4 or 12 weeks. Oxidative stress exhibited by dihydroethidium was upregulated at 4 and 12 weeks after onset of diabetes, and nicotinamide treatment reduced oxidative stress at 4 weeks after induction of diabetes. Oxidative DNA damage measured by 8-hydroxy-2′-deoxyguanosine (8-OHdG) increased at 4 and 12 weeks after induction of diabetes and decreased following nicotinamide treatment. The elevated expression of glial fibrillary acidic protein (GFAP) induced by diabetes was attenuated by nicotinamide treatment. In Western blot analysis, the increased expression of cleaved PARP-1 in diabetes was attenuated by nicotinamide treatment at 12 weeks after induction of diabetes. The diabetes-induced apoptosis of inner retinal cells detected by the TUNEL assay was reduced by nicotinamide treatment. In conclusion, nicotinamide attenuated retinal neurodegeneration in diabetes, probably by reducing oxidative DNA damage and supporting DNA repair.
Collapse
|
195
|
Odoh CK, Guo X, Arnone JT, Wang X, Zhao ZK. The role of NAD and NAD precursors on longevity and lifespan modulation in the budding yeast, Saccharomyces cerevisiae. Biogerontology 2022; 23:169-199. [PMID: 35260986 PMCID: PMC8904166 DOI: 10.1007/s10522-022-09958-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/16/2022] [Indexed: 11/26/2022]
Abstract
Molecular causes of aging and longevity interventions have witnessed an upsurge in the last decade. The resurgent interests in the application of small molecules as potential geroprotectors and/or pharmacogenomics point to nicotinamide adenine dinucleotide (NAD) and its precursors, nicotinamide riboside, nicotinamide mononucleotide, nicotinamide, and nicotinic acid as potentially intriguing molecules. Upon supplementation, these compounds have shown to ameliorate aging related conditions and possibly prevent death in model organisms. Besides being a molecule essential in all living cells, our understanding of the mechanism of NAD metabolism and its regulation remain incomplete owing to its omnipresent nature. Here we discuss recent advances and techniques in the study of chronological lifespan (CLS) and replicative lifespan (RLS) in the model unicellular organism Saccharomyces cerevisiae. We then follow with the mechanism and biology of NAD precursors and their roles in aging and longevity. Finally, we review potential biotechnological applications through engineering of microbial lifespan, and laid perspective on the promising candidature of alternative redox compounds for extending lifespan.
Collapse
Affiliation(s)
- Chuks Kenneth Odoh
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaojia Guo
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
| | - James T Arnone
- Department of Biology, William Paterson University, Wayne, NJ, 07470, USA
| | - Xueying Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
| | - Zongbao K Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
| |
Collapse
|
196
|
Molecular regulation of neuroinflammation in glaucoma: Current knowledge and the ongoing search for new treatment targets. Prog Retin Eye Res 2022; 87:100998. [PMID: 34348167 PMCID: PMC8803988 DOI: 10.1016/j.preteyeres.2021.100998] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
Neuroinflammation relying on the inflammatory responses of glial cells has emerged as an impactful component of the multifactorial etiology of neurodegeneration in glaucoma. It has become increasingly evident that despite early adaptive and reparative features of glial responses, prolonged reactivity of the resident glia, along with the peripheral immune cells, create widespread toxicity to retinal ganglion cell (RGC) axons, somas, and synapses. As much as the synchronized responses of astrocytes and microglia to glaucoma-related stress or neuron injury, their bi-directional interactions are critical to build and amplify neuroinflammation and to dictate the neurodegenerative outcome. Although distinct molecular programs regulate somatic and axonal degeneration in glaucoma, inhibition of neurodegenerative inflammation can provide a broadly beneficial treatment strategy to rescue RGC integrity and function. Since inflammatory toxicity and mitochondrial dysfunction are converging etiological paths that can boost each other and feed into a vicious cycle, anti-inflammatory treatments may also offer a multi-target potential. This review presents an overview of the current knowledge on neuroinflammation in glaucoma with particular emphasis on the cell-intrinsic and cell-extrinsic factors involved in the reciprocal regulation of glial responses, the interdependence between inflammatory and mitochondrial routes of neurodegeneration, and the research aspects inspiring for prospective immunomodulatory treatments. With the advent of powerful technologies, ongoing research on molecular and functional characteristics of glial responses is expected to accumulate more comprehensive and complementary information and to rapidly move the field forward to safe and effective modulation of the glial pro-inflammatory activities, while restoring or augmenting the glial immune-regulatory and neurosupport functions.
Collapse
|
197
|
Cáceres-Vélez PR, Hui F, Hercus J, Bui B, Jusuf PR. Restoring the oxidative balance in age-related diseases - An approach in glaucoma. Ageing Res Rev 2022; 75:101572. [PMID: 35065274 DOI: 10.1016/j.arr.2022.101572] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/10/2021] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
As human life expectancy increases, age-related health issues including neurodegenerative diseases continue to rise. Regardless of genetic or environmental factors, many neurodegenerative conditions share common pathological mechanisms, such as oxidative stress, a hallmark of many age-related health burdens. In this review, we describe oxidative damage and mitochondrial dysfunction in glaucoma, an age-related neurodegenerative eye disease affecting 80 million people worldwide. We consider therapeutic approaches used to counteract oxidative stress in glaucoma, including untapped treatment options such as novel plant-derived antioxidant compounds that can reduce oxidative stress and prevent neuronal loss. We summarize the current pre-clinical models and clinical work exploring the therapeutic potential of a range of candidate plant-derived antioxidant compounds. Finally, we explore advances in drug delivery systems, particular those employing nanotechnology-based carriers which hold significant promise as a carrier for antioxidants to treat age-related disease, thus reviewing the key current state of all of the aspects required towards translation.
Collapse
|
198
|
Casson RJ. Medical therapy for glaucoma: A review. Clin Exp Ophthalmol 2022; 50:198-212. [PMID: 35037367 DOI: 10.1111/ceo.13989] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
A number of pharmacological targets are exploited to modify the parameters in the Goldmann equation and reduce the intraocular pressure (IOP). This strategy constitutes the foundation for the medical management of glaucoma, the evolution of which, until only recently, has been in relative stagnation. A burst of innovation has produced new ocular hypotensive drugs and long-acting delivery methods, including intracameral delivery, which are expanding the clinician's medical armamentarium. A number of IOP-independent neuroprotection strategies have shown strong potential in animal models of glaucoma, but translational attempts have been surprisingly limited. However, while pharmacological options are expanding, the traditional role of topical medical therapy is being challenged by selective laser trabeculoplasty, micro-invasive glaucoma surgery, and sustained delivery methods. A scientifically rigorous assessment of new treatments will be critical to empower clinicians with evidence-based information to optimise vision preservation and quality of life outcomes for their patients.
Collapse
Affiliation(s)
- Robert J Casson
- Ophthalmic Research Laboratories, Adelaide Health & Medical Science Building, University of Adelaide, Adelaide, Australia.,Department of Ophthalmology, Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
199
|
Lima T, Li TY, Mottis A, Auwerx J. Pleiotropic effects of mitochondria in aging. NATURE AGING 2022; 2:199-213. [PMID: 37118378 DOI: 10.1038/s43587-022-00191-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/07/2022] [Indexed: 04/30/2023]
Abstract
Aging is typified by a progressive decline in mitochondrial activity and stress resilience. Here, we review how mitochondrial stress pathways have pleiotropic effects on cellular and systemic homeostasis, which can comprise protective or detrimental responses during aging. We describe recent evidence arguing that defects in these conserved adaptive pathways contribute to aging and age-related diseases. Signaling pathways regulating the mitochondrial unfolded protein response, mitochondrial membrane dynamics, and mitophagy are discussed, emphasizing how their failure contributes to heteroplasmy and de-regulation of key metabolites. Our current understanding of how these processes are controlled and interconnected explains how mitochondria can widely impact fundamental aspects of aging.
Collapse
Affiliation(s)
- Tanes Lima
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Terytty Yang Li
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Adrienne Mottis
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
200
|
Ren J, Wang X, Dong C, Wang G, Zhang W, Cai C, Qian M, Yang D, Ling B, Ning K, Mao Z, Liu B, Wang T, Xiong L, Wang W, Liang A, Gao Z, Xu J. Sirt1 protects subventricular zone derived neural stem cells from DNA double strand breaks and contributes to olfactory function maintenance in aging mice. Stem Cells 2022; 40:493-507. [PMID: 35349711 DOI: 10.1093/stmcls/sxac008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 12/09/2021] [Indexed: 11/12/2022]
Abstract
Abstract
DNA damage is assumed to accumulate in stem cells over time and their ability to withstand this damage and maintain tissue homeostasis is a key determinant of aging. Nonetheless, relatively few studies have investigated whether DNA damage does indeed accumulate in stem cells and whether this contributes to stem cell aging and functional decline. Here, we found that, compared with young mice, DNA double strand breaks (DSBs) are reduced in subventricular zone (SVZ)-derived neural stem cells (NSCs) of aged mice, which was achieved partly through the adaptive upregulation of Sirt1 expression and non-homologous end joining (NHEJ)-mediated DNA repair. Sirt1 deficiency abolished this effect, leading to stem cell exhaustion, olfactory memory decline, and accelerated aging. The reduced DSBs and the upregulation of Sirt1 expression in SVZ-derived NSCs with age may represent a compensatory mechanism that evolved to protect stem cells from excessive DNA damage, as well as mitigate memory loss and other stresses during aging.
Collapse
Affiliation(s)
- Jie Ren
- East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Xianli Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chuanming Dong
- Department of Anatomy, Nantong University, Nantong, People's Republic of China
| | - Guangming Wang
- Department of Hematology, Tongji Hospital of Tongji University School of Medicine, Shanghai, People's Republic of China
- Postdoctoral Station of Clinical Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Wenjun Zhang
- Department of Hematology, Tongji Hospital of Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chunhui Cai
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Minxian Qian
- Medical Research Center, Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, People's Republic of China
| | - Danjing Yang
- East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Bin Ling
- Department of Intensive Care Unit, Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province), Kunming, People's Republic of China
| | - Ke Ning
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Zhiyong Mao
- School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China
| | - Baohua Liu
- Medical Research Center, Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, People's Republic of China
| | - Tinghua Wang
- Animal Center of Zoology, Institute of Neuroscience, Kunming Medical University, Kunming, People's Republic of China
| | - Liuliu Xiong
- Animal Center of Zoology, Institute of Neuroscience, Kunming Medical University, Kunming, People's Republic of China
| | - Wenyuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai, People's Republic of China
- Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Aibin Liang
- Department of Hematology, Tongji Hospital of Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Zhengliang Gao
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, People's Republic of China
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, People's Republic of China
| | - Jun Xu
- East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|